thinkpad-acpi: constrain IBM-era support to IBM boxes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blobd42b0217911c8d2377052fa481e8e9456f9701c6
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 #include "internal.h"
59 * Array of node states.
61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 [N_POSSIBLE] = NODE_MASK_ALL,
63 [N_ONLINE] = { { [0] = 1UL } },
64 #ifndef CONFIG_NUMA
65 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
66 #ifdef CONFIG_HIGHMEM
67 [N_HIGH_MEMORY] = { { [0] = 1UL } },
68 #endif
69 [N_CPU] = { { [0] = 1UL } },
70 #endif /* NUMA */
72 EXPORT_SYMBOL(node_states);
74 unsigned long totalram_pages __read_mostly;
75 unsigned long totalreserve_pages __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80 int pageblock_order __read_mostly;
81 #endif
83 static void __free_pages_ok(struct page *page, unsigned int order);
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
96 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
97 #ifdef CONFIG_ZONE_DMA
98 256,
99 #endif
100 #ifdef CONFIG_ZONE_DMA32
101 256,
102 #endif
103 #ifdef CONFIG_HIGHMEM
105 #endif
109 EXPORT_SYMBOL(totalram_pages);
111 static char * const zone_names[MAX_NR_ZONES] = {
112 #ifdef CONFIG_ZONE_DMA
113 "DMA",
114 #endif
115 #ifdef CONFIG_ZONE_DMA32
116 "DMA32",
117 #endif
118 "Normal",
119 #ifdef CONFIG_HIGHMEM
120 "HighMem",
121 #endif
122 "Movable",
125 int min_free_kbytes = 1024;
127 static unsigned long __meminitdata nr_kernel_pages;
128 static unsigned long __meminitdata nr_all_pages;
129 static unsigned long __meminitdata dma_reserve;
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 int nr_online_nodes __read_mostly = 1;
168 EXPORT_SYMBOL(nr_node_ids);
169 EXPORT_SYMBOL(nr_online_nodes);
170 #endif
172 int page_group_by_mobility_disabled __read_mostly;
174 static void set_pageblock_migratetype(struct page *page, int migratetype)
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
184 bool oom_killer_disabled __read_mostly;
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
201 return ret;
204 static int page_is_consistent(struct zone *zone, struct page *page)
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
211 return 1;
214 * Temporary debugging check for pages not lying within a given zone.
216 static int bad_range(struct zone *zone, struct page *page)
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
223 return 0;
225 #else
226 static inline int bad_range(struct zone *zone, struct page *page)
228 return 0;
230 #endif
232 static void bad_page(struct page *page)
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page)) {
240 __ClearPageBuddy(page);
241 return;
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
248 if (nr_shown == 60) {
249 if (time_before(jiffies, resume)) {
250 nr_unshown++;
251 goto out;
253 if (nr_unshown) {
254 printk(KERN_ALERT
255 "BUG: Bad page state: %lu messages suppressed\n",
256 nr_unshown);
257 nr_unshown = 0;
259 nr_shown = 0;
261 if (nr_shown++ == 0)
262 resume = jiffies + 60 * HZ;
264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 printk(KERN_ALERT
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page, (void *)page->flags, page_count(page),
269 page_mapcount(page), page->mapping, page->index);
271 dump_stack();
272 out:
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page);
275 add_taint(TAINT_BAD_PAGE);
279 * Higher-order pages are called "compound pages". They are structured thusly:
281 * The first PAGE_SIZE page is called the "head page".
283 * The remaining PAGE_SIZE pages are called "tail pages".
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
293 static void free_compound_page(struct page *page)
295 __free_pages_ok(page, compound_order(page));
298 void prep_compound_page(struct page *page, unsigned long order)
300 int i;
301 int nr_pages = 1 << order;
303 set_compound_page_dtor(page, free_compound_page);
304 set_compound_order(page, order);
305 __SetPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
309 __SetPageTail(p);
310 p->first_page = page;
314 static int destroy_compound_page(struct page *page, unsigned long order)
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
326 __ClearPageHead(page);
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
335 __ClearPageTail(p);
338 return bad;
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 int i;
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
354 static inline void set_page_order(struct page *page, int order)
356 set_page_private(page, order);
357 __SetPageBuddy(page);
360 static inline void rmv_page_order(struct page *page)
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 unsigned long buddy_idx = page_idx ^ (1 << order);
388 return page + (buddy_idx - page_idx);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
394 return (page_idx & ~(1 << order));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 VM_BUG_ON(page_count(buddy) != 0);
421 return 1;
423 return 0;
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
447 * -- wli
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order,
452 int migratetype)
454 unsigned long page_idx;
456 if (unlikely(PageCompound(page)))
457 if (unlikely(destroy_compound_page(page, order)))
458 return;
460 VM_BUG_ON(migratetype == -1);
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
464 VM_BUG_ON(page_idx & ((1 << order) - 1));
465 VM_BUG_ON(bad_range(zone, page));
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page *page)
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
501 static inline int free_pages_check(struct page *page)
503 if (unlikely(page_mapcount(page) |
504 (page->mapping != NULL) |
505 (atomic_read(&page->_count) != 0) |
506 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
507 bad_page(page);
508 return 1;
510 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
511 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
512 return 0;
516 * Frees a number of pages from the PCP lists
517 * Assumes all pages on list are in same zone, and of same order.
518 * count is the number of pages to free.
520 * If the zone was previously in an "all pages pinned" state then look to
521 * see if this freeing clears that state.
523 * And clear the zone's pages_scanned counter, to hold off the "all pages are
524 * pinned" detection logic.
526 static void free_pcppages_bulk(struct zone *zone, int count,
527 struct per_cpu_pages *pcp)
529 int migratetype = 0;
530 int batch_free = 0;
531 int to_free = count;
533 spin_lock(&zone->lock);
534 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
535 zone->pages_scanned = 0;
537 while (to_free) {
538 struct page *page;
539 struct list_head *list;
542 * Remove pages from lists in a round-robin fashion. A
543 * batch_free count is maintained that is incremented when an
544 * empty list is encountered. This is so more pages are freed
545 * off fuller lists instead of spinning excessively around empty
546 * lists
548 do {
549 batch_free++;
550 if (++migratetype == MIGRATE_PCPTYPES)
551 migratetype = 0;
552 list = &pcp->lists[migratetype];
553 } while (list_empty(list));
555 do {
556 page = list_entry(list->prev, struct page, lru);
557 /* must delete as __free_one_page list manipulates */
558 list_del(&page->lru);
559 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
560 __free_one_page(page, zone, 0, page_private(page));
561 trace_mm_page_pcpu_drain(page, 0, page_private(page));
562 } while (--to_free && --batch_free && !list_empty(list));
564 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
565 spin_unlock(&zone->lock);
568 static void free_one_page(struct zone *zone, struct page *page, int order,
569 int migratetype)
571 spin_lock(&zone->lock);
572 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
573 zone->pages_scanned = 0;
575 __free_one_page(page, zone, order, migratetype);
576 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
577 spin_unlock(&zone->lock);
580 static void __free_pages_ok(struct page *page, unsigned int order)
582 unsigned long flags;
583 int i;
584 int bad = 0;
585 int wasMlocked = __TestClearPageMlocked(page);
587 kmemcheck_free_shadow(page, order);
589 for (i = 0 ; i < (1 << order) ; ++i)
590 bad += free_pages_check(page + i);
591 if (bad)
592 return;
594 if (!PageHighMem(page)) {
595 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
596 debug_check_no_obj_freed(page_address(page),
597 PAGE_SIZE << order);
599 arch_free_page(page, order);
600 kernel_map_pages(page, 1 << order, 0);
602 local_irq_save(flags);
603 if (unlikely(wasMlocked))
604 free_page_mlock(page);
605 __count_vm_events(PGFREE, 1 << order);
606 free_one_page(page_zone(page), page, order,
607 get_pageblock_migratetype(page));
608 local_irq_restore(flags);
612 * permit the bootmem allocator to evade page validation on high-order frees
614 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
616 if (order == 0) {
617 __ClearPageReserved(page);
618 set_page_count(page, 0);
619 set_page_refcounted(page);
620 __free_page(page);
621 } else {
622 int loop;
624 prefetchw(page);
625 for (loop = 0; loop < BITS_PER_LONG; loop++) {
626 struct page *p = &page[loop];
628 if (loop + 1 < BITS_PER_LONG)
629 prefetchw(p + 1);
630 __ClearPageReserved(p);
631 set_page_count(p, 0);
634 set_page_refcounted(page);
635 __free_pages(page, order);
641 * The order of subdivision here is critical for the IO subsystem.
642 * Please do not alter this order without good reasons and regression
643 * testing. Specifically, as large blocks of memory are subdivided,
644 * the order in which smaller blocks are delivered depends on the order
645 * they're subdivided in this function. This is the primary factor
646 * influencing the order in which pages are delivered to the IO
647 * subsystem according to empirical testing, and this is also justified
648 * by considering the behavior of a buddy system containing a single
649 * large block of memory acted on by a series of small allocations.
650 * This behavior is a critical factor in sglist merging's success.
652 * -- wli
654 static inline void expand(struct zone *zone, struct page *page,
655 int low, int high, struct free_area *area,
656 int migratetype)
658 unsigned long size = 1 << high;
660 while (high > low) {
661 area--;
662 high--;
663 size >>= 1;
664 VM_BUG_ON(bad_range(zone, &page[size]));
665 list_add(&page[size].lru, &area->free_list[migratetype]);
666 area->nr_free++;
667 set_page_order(&page[size], high);
672 * This page is about to be returned from the page allocator
674 static inline int check_new_page(struct page *page)
676 if (unlikely(page_mapcount(page) |
677 (page->mapping != NULL) |
678 (atomic_read(&page->_count) != 0) |
679 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
680 bad_page(page);
681 return 1;
683 return 0;
686 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
688 int i;
690 for (i = 0; i < (1 << order); i++) {
691 struct page *p = page + i;
692 if (unlikely(check_new_page(p)))
693 return 1;
696 set_page_private(page, 0);
697 set_page_refcounted(page);
699 arch_alloc_page(page, order);
700 kernel_map_pages(page, 1 << order, 1);
702 if (gfp_flags & __GFP_ZERO)
703 prep_zero_page(page, order, gfp_flags);
705 if (order && (gfp_flags & __GFP_COMP))
706 prep_compound_page(page, order);
708 return 0;
712 * Go through the free lists for the given migratetype and remove
713 * the smallest available page from the freelists
715 static inline
716 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
717 int migratetype)
719 unsigned int current_order;
720 struct free_area * area;
721 struct page *page;
723 /* Find a page of the appropriate size in the preferred list */
724 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
725 area = &(zone->free_area[current_order]);
726 if (list_empty(&area->free_list[migratetype]))
727 continue;
729 page = list_entry(area->free_list[migratetype].next,
730 struct page, lru);
731 list_del(&page->lru);
732 rmv_page_order(page);
733 area->nr_free--;
734 expand(zone, page, order, current_order, area, migratetype);
735 return page;
738 return NULL;
743 * This array describes the order lists are fallen back to when
744 * the free lists for the desirable migrate type are depleted
746 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
747 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
748 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
749 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
750 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
754 * Move the free pages in a range to the free lists of the requested type.
755 * Note that start_page and end_pages are not aligned on a pageblock
756 * boundary. If alignment is required, use move_freepages_block()
758 static int move_freepages(struct zone *zone,
759 struct page *start_page, struct page *end_page,
760 int migratetype)
762 struct page *page;
763 unsigned long order;
764 int pages_moved = 0;
766 #ifndef CONFIG_HOLES_IN_ZONE
768 * page_zone is not safe to call in this context when
769 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
770 * anyway as we check zone boundaries in move_freepages_block().
771 * Remove at a later date when no bug reports exist related to
772 * grouping pages by mobility
774 BUG_ON(page_zone(start_page) != page_zone(end_page));
775 #endif
777 for (page = start_page; page <= end_page;) {
778 /* Make sure we are not inadvertently changing nodes */
779 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
781 if (!pfn_valid_within(page_to_pfn(page))) {
782 page++;
783 continue;
786 if (!PageBuddy(page)) {
787 page++;
788 continue;
791 order = page_order(page);
792 list_del(&page->lru);
793 list_add(&page->lru,
794 &zone->free_area[order].free_list[migratetype]);
795 page += 1 << order;
796 pages_moved += 1 << order;
799 return pages_moved;
802 static int move_freepages_block(struct zone *zone, struct page *page,
803 int migratetype)
805 unsigned long start_pfn, end_pfn;
806 struct page *start_page, *end_page;
808 start_pfn = page_to_pfn(page);
809 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
810 start_page = pfn_to_page(start_pfn);
811 end_page = start_page + pageblock_nr_pages - 1;
812 end_pfn = start_pfn + pageblock_nr_pages - 1;
814 /* Do not cross zone boundaries */
815 if (start_pfn < zone->zone_start_pfn)
816 start_page = page;
817 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
818 return 0;
820 return move_freepages(zone, start_page, end_page, migratetype);
823 static void change_pageblock_range(struct page *pageblock_page,
824 int start_order, int migratetype)
826 int nr_pageblocks = 1 << (start_order - pageblock_order);
828 while (nr_pageblocks--) {
829 set_pageblock_migratetype(pageblock_page, migratetype);
830 pageblock_page += pageblock_nr_pages;
834 /* Remove an element from the buddy allocator from the fallback list */
835 static inline struct page *
836 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
838 struct free_area * area;
839 int current_order;
840 struct page *page;
841 int migratetype, i;
843 /* Find the largest possible block of pages in the other list */
844 for (current_order = MAX_ORDER-1; current_order >= order;
845 --current_order) {
846 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
847 migratetype = fallbacks[start_migratetype][i];
849 /* MIGRATE_RESERVE handled later if necessary */
850 if (migratetype == MIGRATE_RESERVE)
851 continue;
853 area = &(zone->free_area[current_order]);
854 if (list_empty(&area->free_list[migratetype]))
855 continue;
857 page = list_entry(area->free_list[migratetype].next,
858 struct page, lru);
859 area->nr_free--;
862 * If breaking a large block of pages, move all free
863 * pages to the preferred allocation list. If falling
864 * back for a reclaimable kernel allocation, be more
865 * agressive about taking ownership of free pages
867 if (unlikely(current_order >= (pageblock_order >> 1)) ||
868 start_migratetype == MIGRATE_RECLAIMABLE ||
869 page_group_by_mobility_disabled) {
870 unsigned long pages;
871 pages = move_freepages_block(zone, page,
872 start_migratetype);
874 /* Claim the whole block if over half of it is free */
875 if (pages >= (1 << (pageblock_order-1)) ||
876 page_group_by_mobility_disabled)
877 set_pageblock_migratetype(page,
878 start_migratetype);
880 migratetype = start_migratetype;
883 /* Remove the page from the freelists */
884 list_del(&page->lru);
885 rmv_page_order(page);
887 /* Take ownership for orders >= pageblock_order */
888 if (current_order >= pageblock_order)
889 change_pageblock_range(page, current_order,
890 start_migratetype);
892 expand(zone, page, order, current_order, area, migratetype);
894 trace_mm_page_alloc_extfrag(page, order, current_order,
895 start_migratetype, migratetype);
897 return page;
901 return NULL;
905 * Do the hard work of removing an element from the buddy allocator.
906 * Call me with the zone->lock already held.
908 static struct page *__rmqueue(struct zone *zone, unsigned int order,
909 int migratetype)
911 struct page *page;
913 retry_reserve:
914 page = __rmqueue_smallest(zone, order, migratetype);
916 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
917 page = __rmqueue_fallback(zone, order, migratetype);
920 * Use MIGRATE_RESERVE rather than fail an allocation. goto
921 * is used because __rmqueue_smallest is an inline function
922 * and we want just one call site
924 if (!page) {
925 migratetype = MIGRATE_RESERVE;
926 goto retry_reserve;
930 trace_mm_page_alloc_zone_locked(page, order, migratetype);
931 return page;
935 * Obtain a specified number of elements from the buddy allocator, all under
936 * a single hold of the lock, for efficiency. Add them to the supplied list.
937 * Returns the number of new pages which were placed at *list.
939 static int rmqueue_bulk(struct zone *zone, unsigned int order,
940 unsigned long count, struct list_head *list,
941 int migratetype, int cold)
943 int i;
945 spin_lock(&zone->lock);
946 for (i = 0; i < count; ++i) {
947 struct page *page = __rmqueue(zone, order, migratetype);
948 if (unlikely(page == NULL))
949 break;
952 * Split buddy pages returned by expand() are received here
953 * in physical page order. The page is added to the callers and
954 * list and the list head then moves forward. From the callers
955 * perspective, the linked list is ordered by page number in
956 * some conditions. This is useful for IO devices that can
957 * merge IO requests if the physical pages are ordered
958 * properly.
960 if (likely(cold == 0))
961 list_add(&page->lru, list);
962 else
963 list_add_tail(&page->lru, list);
964 set_page_private(page, migratetype);
965 list = &page->lru;
967 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
968 spin_unlock(&zone->lock);
969 return i;
972 #ifdef CONFIG_NUMA
974 * Called from the vmstat counter updater to drain pagesets of this
975 * currently executing processor on remote nodes after they have
976 * expired.
978 * Note that this function must be called with the thread pinned to
979 * a single processor.
981 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
983 unsigned long flags;
984 int to_drain;
986 local_irq_save(flags);
987 if (pcp->count >= pcp->batch)
988 to_drain = pcp->batch;
989 else
990 to_drain = pcp->count;
991 free_pcppages_bulk(zone, to_drain, pcp);
992 pcp->count -= to_drain;
993 local_irq_restore(flags);
995 #endif
998 * Drain pages of the indicated processor.
1000 * The processor must either be the current processor and the
1001 * thread pinned to the current processor or a processor that
1002 * is not online.
1004 static void drain_pages(unsigned int cpu)
1006 unsigned long flags;
1007 struct zone *zone;
1009 for_each_populated_zone(zone) {
1010 struct per_cpu_pageset *pset;
1011 struct per_cpu_pages *pcp;
1013 pset = zone_pcp(zone, cpu);
1015 pcp = &pset->pcp;
1016 local_irq_save(flags);
1017 free_pcppages_bulk(zone, pcp->count, pcp);
1018 pcp->count = 0;
1019 local_irq_restore(flags);
1024 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1026 void drain_local_pages(void *arg)
1028 drain_pages(smp_processor_id());
1032 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1034 void drain_all_pages(void)
1036 on_each_cpu(drain_local_pages, NULL, 1);
1039 #ifdef CONFIG_HIBERNATION
1041 void mark_free_pages(struct zone *zone)
1043 unsigned long pfn, max_zone_pfn;
1044 unsigned long flags;
1045 int order, t;
1046 struct list_head *curr;
1048 if (!zone->spanned_pages)
1049 return;
1051 spin_lock_irqsave(&zone->lock, flags);
1053 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1054 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1055 if (pfn_valid(pfn)) {
1056 struct page *page = pfn_to_page(pfn);
1058 if (!swsusp_page_is_forbidden(page))
1059 swsusp_unset_page_free(page);
1062 for_each_migratetype_order(order, t) {
1063 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1064 unsigned long i;
1066 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1067 for (i = 0; i < (1UL << order); i++)
1068 swsusp_set_page_free(pfn_to_page(pfn + i));
1071 spin_unlock_irqrestore(&zone->lock, flags);
1073 #endif /* CONFIG_PM */
1076 * Free a 0-order page
1078 static void free_hot_cold_page(struct page *page, int cold)
1080 struct zone *zone = page_zone(page);
1081 struct per_cpu_pages *pcp;
1082 unsigned long flags;
1083 int migratetype;
1084 int wasMlocked = __TestClearPageMlocked(page);
1086 kmemcheck_free_shadow(page, 0);
1088 if (PageAnon(page))
1089 page->mapping = NULL;
1090 if (free_pages_check(page))
1091 return;
1093 if (!PageHighMem(page)) {
1094 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1095 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1097 arch_free_page(page, 0);
1098 kernel_map_pages(page, 1, 0);
1100 pcp = &zone_pcp(zone, get_cpu())->pcp;
1101 migratetype = get_pageblock_migratetype(page);
1102 set_page_private(page, migratetype);
1103 local_irq_save(flags);
1104 if (unlikely(wasMlocked))
1105 free_page_mlock(page);
1106 __count_vm_event(PGFREE);
1109 * We only track unmovable, reclaimable and movable on pcp lists.
1110 * Free ISOLATE pages back to the allocator because they are being
1111 * offlined but treat RESERVE as movable pages so we can get those
1112 * areas back if necessary. Otherwise, we may have to free
1113 * excessively into the page allocator
1115 if (migratetype >= MIGRATE_PCPTYPES) {
1116 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1117 free_one_page(zone, page, 0, migratetype);
1118 goto out;
1120 migratetype = MIGRATE_MOVABLE;
1123 if (cold)
1124 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1125 else
1126 list_add(&page->lru, &pcp->lists[migratetype]);
1127 pcp->count++;
1128 if (pcp->count >= pcp->high) {
1129 free_pcppages_bulk(zone, pcp->batch, pcp);
1130 pcp->count -= pcp->batch;
1133 out:
1134 local_irq_restore(flags);
1135 put_cpu();
1138 void free_hot_page(struct page *page)
1140 trace_mm_page_free_direct(page, 0);
1141 free_hot_cold_page(page, 0);
1145 * split_page takes a non-compound higher-order page, and splits it into
1146 * n (1<<order) sub-pages: page[0..n]
1147 * Each sub-page must be freed individually.
1149 * Note: this is probably too low level an operation for use in drivers.
1150 * Please consult with lkml before using this in your driver.
1152 void split_page(struct page *page, unsigned int order)
1154 int i;
1156 VM_BUG_ON(PageCompound(page));
1157 VM_BUG_ON(!page_count(page));
1159 #ifdef CONFIG_KMEMCHECK
1161 * Split shadow pages too, because free(page[0]) would
1162 * otherwise free the whole shadow.
1164 if (kmemcheck_page_is_tracked(page))
1165 split_page(virt_to_page(page[0].shadow), order);
1166 #endif
1168 for (i = 1; i < (1 << order); i++)
1169 set_page_refcounted(page + i);
1173 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1174 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1175 * or two.
1177 static inline
1178 struct page *buffered_rmqueue(struct zone *preferred_zone,
1179 struct zone *zone, int order, gfp_t gfp_flags,
1180 int migratetype)
1182 unsigned long flags;
1183 struct page *page;
1184 int cold = !!(gfp_flags & __GFP_COLD);
1185 int cpu;
1187 again:
1188 cpu = get_cpu();
1189 if (likely(order == 0)) {
1190 struct per_cpu_pages *pcp;
1191 struct list_head *list;
1193 pcp = &zone_pcp(zone, cpu)->pcp;
1194 list = &pcp->lists[migratetype];
1195 local_irq_save(flags);
1196 if (list_empty(list)) {
1197 pcp->count += rmqueue_bulk(zone, 0,
1198 pcp->batch, list,
1199 migratetype, cold);
1200 if (unlikely(list_empty(list)))
1201 goto failed;
1204 if (cold)
1205 page = list_entry(list->prev, struct page, lru);
1206 else
1207 page = list_entry(list->next, struct page, lru);
1209 list_del(&page->lru);
1210 pcp->count--;
1211 } else {
1212 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1214 * __GFP_NOFAIL is not to be used in new code.
1216 * All __GFP_NOFAIL callers should be fixed so that they
1217 * properly detect and handle allocation failures.
1219 * We most definitely don't want callers attempting to
1220 * allocate greater than order-1 page units with
1221 * __GFP_NOFAIL.
1223 WARN_ON_ONCE(order > 1);
1225 spin_lock_irqsave(&zone->lock, flags);
1226 page = __rmqueue(zone, order, migratetype);
1227 spin_unlock(&zone->lock);
1228 if (!page)
1229 goto failed;
1230 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1233 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1234 zone_statistics(preferred_zone, zone);
1235 local_irq_restore(flags);
1236 put_cpu();
1238 VM_BUG_ON(bad_range(zone, page));
1239 if (prep_new_page(page, order, gfp_flags))
1240 goto again;
1241 return page;
1243 failed:
1244 local_irq_restore(flags);
1245 put_cpu();
1246 return NULL;
1249 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1250 #define ALLOC_WMARK_MIN WMARK_MIN
1251 #define ALLOC_WMARK_LOW WMARK_LOW
1252 #define ALLOC_WMARK_HIGH WMARK_HIGH
1253 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1255 /* Mask to get the watermark bits */
1256 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1258 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1259 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1260 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1262 #ifdef CONFIG_FAIL_PAGE_ALLOC
1264 static struct fail_page_alloc_attr {
1265 struct fault_attr attr;
1267 u32 ignore_gfp_highmem;
1268 u32 ignore_gfp_wait;
1269 u32 min_order;
1271 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1273 struct dentry *ignore_gfp_highmem_file;
1274 struct dentry *ignore_gfp_wait_file;
1275 struct dentry *min_order_file;
1277 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1279 } fail_page_alloc = {
1280 .attr = FAULT_ATTR_INITIALIZER,
1281 .ignore_gfp_wait = 1,
1282 .ignore_gfp_highmem = 1,
1283 .min_order = 1,
1286 static int __init setup_fail_page_alloc(char *str)
1288 return setup_fault_attr(&fail_page_alloc.attr, str);
1290 __setup("fail_page_alloc=", setup_fail_page_alloc);
1292 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1294 if (order < fail_page_alloc.min_order)
1295 return 0;
1296 if (gfp_mask & __GFP_NOFAIL)
1297 return 0;
1298 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1299 return 0;
1300 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1301 return 0;
1303 return should_fail(&fail_page_alloc.attr, 1 << order);
1306 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1308 static int __init fail_page_alloc_debugfs(void)
1310 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1311 struct dentry *dir;
1312 int err;
1314 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1315 "fail_page_alloc");
1316 if (err)
1317 return err;
1318 dir = fail_page_alloc.attr.dentries.dir;
1320 fail_page_alloc.ignore_gfp_wait_file =
1321 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1322 &fail_page_alloc.ignore_gfp_wait);
1324 fail_page_alloc.ignore_gfp_highmem_file =
1325 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1326 &fail_page_alloc.ignore_gfp_highmem);
1327 fail_page_alloc.min_order_file =
1328 debugfs_create_u32("min-order", mode, dir,
1329 &fail_page_alloc.min_order);
1331 if (!fail_page_alloc.ignore_gfp_wait_file ||
1332 !fail_page_alloc.ignore_gfp_highmem_file ||
1333 !fail_page_alloc.min_order_file) {
1334 err = -ENOMEM;
1335 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1336 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1337 debugfs_remove(fail_page_alloc.min_order_file);
1338 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1341 return err;
1344 late_initcall(fail_page_alloc_debugfs);
1346 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1348 #else /* CONFIG_FAIL_PAGE_ALLOC */
1350 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1352 return 0;
1355 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1358 * Return 1 if free pages are above 'mark'. This takes into account the order
1359 * of the allocation.
1361 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1362 int classzone_idx, int alloc_flags)
1364 /* free_pages my go negative - that's OK */
1365 long min = mark;
1366 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1367 int o;
1369 if (alloc_flags & ALLOC_HIGH)
1370 min -= min / 2;
1371 if (alloc_flags & ALLOC_HARDER)
1372 min -= min / 4;
1374 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1375 return 0;
1376 for (o = 0; o < order; o++) {
1377 /* At the next order, this order's pages become unavailable */
1378 free_pages -= z->free_area[o].nr_free << o;
1380 /* Require fewer higher order pages to be free */
1381 min >>= 1;
1383 if (free_pages <= min)
1384 return 0;
1386 return 1;
1389 #ifdef CONFIG_NUMA
1391 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1392 * skip over zones that are not allowed by the cpuset, or that have
1393 * been recently (in last second) found to be nearly full. See further
1394 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1395 * that have to skip over a lot of full or unallowed zones.
1397 * If the zonelist cache is present in the passed in zonelist, then
1398 * returns a pointer to the allowed node mask (either the current
1399 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1401 * If the zonelist cache is not available for this zonelist, does
1402 * nothing and returns NULL.
1404 * If the fullzones BITMAP in the zonelist cache is stale (more than
1405 * a second since last zap'd) then we zap it out (clear its bits.)
1407 * We hold off even calling zlc_setup, until after we've checked the
1408 * first zone in the zonelist, on the theory that most allocations will
1409 * be satisfied from that first zone, so best to examine that zone as
1410 * quickly as we can.
1412 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1414 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1415 nodemask_t *allowednodes; /* zonelist_cache approximation */
1417 zlc = zonelist->zlcache_ptr;
1418 if (!zlc)
1419 return NULL;
1421 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1422 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1423 zlc->last_full_zap = jiffies;
1426 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1427 &cpuset_current_mems_allowed :
1428 &node_states[N_HIGH_MEMORY];
1429 return allowednodes;
1433 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1434 * if it is worth looking at further for free memory:
1435 * 1) Check that the zone isn't thought to be full (doesn't have its
1436 * bit set in the zonelist_cache fullzones BITMAP).
1437 * 2) Check that the zones node (obtained from the zonelist_cache
1438 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1439 * Return true (non-zero) if zone is worth looking at further, or
1440 * else return false (zero) if it is not.
1442 * This check -ignores- the distinction between various watermarks,
1443 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1444 * found to be full for any variation of these watermarks, it will
1445 * be considered full for up to one second by all requests, unless
1446 * we are so low on memory on all allowed nodes that we are forced
1447 * into the second scan of the zonelist.
1449 * In the second scan we ignore this zonelist cache and exactly
1450 * apply the watermarks to all zones, even it is slower to do so.
1451 * We are low on memory in the second scan, and should leave no stone
1452 * unturned looking for a free page.
1454 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1455 nodemask_t *allowednodes)
1457 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1458 int i; /* index of *z in zonelist zones */
1459 int n; /* node that zone *z is on */
1461 zlc = zonelist->zlcache_ptr;
1462 if (!zlc)
1463 return 1;
1465 i = z - zonelist->_zonerefs;
1466 n = zlc->z_to_n[i];
1468 /* This zone is worth trying if it is allowed but not full */
1469 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1473 * Given 'z' scanning a zonelist, set the corresponding bit in
1474 * zlc->fullzones, so that subsequent attempts to allocate a page
1475 * from that zone don't waste time re-examining it.
1477 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1479 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1480 int i; /* index of *z in zonelist zones */
1482 zlc = zonelist->zlcache_ptr;
1483 if (!zlc)
1484 return;
1486 i = z - zonelist->_zonerefs;
1488 set_bit(i, zlc->fullzones);
1491 #else /* CONFIG_NUMA */
1493 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1495 return NULL;
1498 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1499 nodemask_t *allowednodes)
1501 return 1;
1504 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1507 #endif /* CONFIG_NUMA */
1510 * get_page_from_freelist goes through the zonelist trying to allocate
1511 * a page.
1513 static struct page *
1514 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1515 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1516 struct zone *preferred_zone, int migratetype)
1518 struct zoneref *z;
1519 struct page *page = NULL;
1520 int classzone_idx;
1521 struct zone *zone;
1522 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1523 int zlc_active = 0; /* set if using zonelist_cache */
1524 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1526 classzone_idx = zone_idx(preferred_zone);
1527 zonelist_scan:
1529 * Scan zonelist, looking for a zone with enough free.
1530 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1532 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1533 high_zoneidx, nodemask) {
1534 if (NUMA_BUILD && zlc_active &&
1535 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1536 continue;
1537 if ((alloc_flags & ALLOC_CPUSET) &&
1538 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1539 goto try_next_zone;
1541 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1542 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1543 unsigned long mark;
1544 int ret;
1546 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1547 if (zone_watermark_ok(zone, order, mark,
1548 classzone_idx, alloc_flags))
1549 goto try_this_zone;
1551 if (zone_reclaim_mode == 0)
1552 goto this_zone_full;
1554 ret = zone_reclaim(zone, gfp_mask, order);
1555 switch (ret) {
1556 case ZONE_RECLAIM_NOSCAN:
1557 /* did not scan */
1558 goto try_next_zone;
1559 case ZONE_RECLAIM_FULL:
1560 /* scanned but unreclaimable */
1561 goto this_zone_full;
1562 default:
1563 /* did we reclaim enough */
1564 if (!zone_watermark_ok(zone, order, mark,
1565 classzone_idx, alloc_flags))
1566 goto this_zone_full;
1570 try_this_zone:
1571 page = buffered_rmqueue(preferred_zone, zone, order,
1572 gfp_mask, migratetype);
1573 if (page)
1574 break;
1575 this_zone_full:
1576 if (NUMA_BUILD)
1577 zlc_mark_zone_full(zonelist, z);
1578 try_next_zone:
1579 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1581 * we do zlc_setup after the first zone is tried but only
1582 * if there are multiple nodes make it worthwhile
1584 allowednodes = zlc_setup(zonelist, alloc_flags);
1585 zlc_active = 1;
1586 did_zlc_setup = 1;
1590 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1591 /* Disable zlc cache for second zonelist scan */
1592 zlc_active = 0;
1593 goto zonelist_scan;
1595 return page;
1598 static inline int
1599 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1600 unsigned long pages_reclaimed)
1602 /* Do not loop if specifically requested */
1603 if (gfp_mask & __GFP_NORETRY)
1604 return 0;
1607 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1608 * means __GFP_NOFAIL, but that may not be true in other
1609 * implementations.
1611 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1612 return 1;
1615 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1616 * specified, then we retry until we no longer reclaim any pages
1617 * (above), or we've reclaimed an order of pages at least as
1618 * large as the allocation's order. In both cases, if the
1619 * allocation still fails, we stop retrying.
1621 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1622 return 1;
1625 * Don't let big-order allocations loop unless the caller
1626 * explicitly requests that.
1628 if (gfp_mask & __GFP_NOFAIL)
1629 return 1;
1631 return 0;
1634 static inline struct page *
1635 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1636 struct zonelist *zonelist, enum zone_type high_zoneidx,
1637 nodemask_t *nodemask, struct zone *preferred_zone,
1638 int migratetype)
1640 struct page *page;
1642 /* Acquire the OOM killer lock for the zones in zonelist */
1643 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1644 schedule_timeout_uninterruptible(1);
1645 return NULL;
1649 * Go through the zonelist yet one more time, keep very high watermark
1650 * here, this is only to catch a parallel oom killing, we must fail if
1651 * we're still under heavy pressure.
1653 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1654 order, zonelist, high_zoneidx,
1655 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1656 preferred_zone, migratetype);
1657 if (page)
1658 goto out;
1660 if (!(gfp_mask & __GFP_NOFAIL)) {
1661 /* The OOM killer will not help higher order allocs */
1662 if (order > PAGE_ALLOC_COSTLY_ORDER)
1663 goto out;
1665 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1666 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1667 * The caller should handle page allocation failure by itself if
1668 * it specifies __GFP_THISNODE.
1669 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1671 if (gfp_mask & __GFP_THISNODE)
1672 goto out;
1674 /* Exhausted what can be done so it's blamo time */
1675 out_of_memory(zonelist, gfp_mask, order, nodemask);
1677 out:
1678 clear_zonelist_oom(zonelist, gfp_mask);
1679 return page;
1682 /* The really slow allocator path where we enter direct reclaim */
1683 static inline struct page *
1684 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1685 struct zonelist *zonelist, enum zone_type high_zoneidx,
1686 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1687 int migratetype, unsigned long *did_some_progress)
1689 struct page *page = NULL;
1690 struct reclaim_state reclaim_state;
1691 struct task_struct *p = current;
1692 bool drained = false;
1694 cond_resched();
1696 /* We now go into synchronous reclaim */
1697 cpuset_memory_pressure_bump();
1698 p->flags |= PF_MEMALLOC;
1699 lockdep_set_current_reclaim_state(gfp_mask);
1700 reclaim_state.reclaimed_slab = 0;
1701 p->reclaim_state = &reclaim_state;
1703 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1705 p->reclaim_state = NULL;
1706 lockdep_clear_current_reclaim_state();
1707 p->flags &= ~PF_MEMALLOC;
1709 cond_resched();
1711 if (unlikely(!(*did_some_progress)))
1712 return NULL;
1714 retry:
1715 page = get_page_from_freelist(gfp_mask, nodemask, order,
1716 zonelist, high_zoneidx,
1717 alloc_flags, preferred_zone,
1718 migratetype);
1721 * If an allocation failed after direct reclaim, it could be because
1722 * pages are pinned on the per-cpu lists. Drain them and try again
1724 if (!page && !drained) {
1725 drain_all_pages();
1726 drained = true;
1727 goto retry;
1730 return page;
1734 * This is called in the allocator slow-path if the allocation request is of
1735 * sufficient urgency to ignore watermarks and take other desperate measures
1737 static inline struct page *
1738 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1739 struct zonelist *zonelist, enum zone_type high_zoneidx,
1740 nodemask_t *nodemask, struct zone *preferred_zone,
1741 int migratetype)
1743 struct page *page;
1745 do {
1746 page = get_page_from_freelist(gfp_mask, nodemask, order,
1747 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1748 preferred_zone, migratetype);
1750 if (!page && gfp_mask & __GFP_NOFAIL)
1751 congestion_wait(BLK_RW_ASYNC, HZ/50);
1752 } while (!page && (gfp_mask & __GFP_NOFAIL));
1754 return page;
1757 static inline
1758 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1759 enum zone_type high_zoneidx)
1761 struct zoneref *z;
1762 struct zone *zone;
1764 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1765 wakeup_kswapd(zone, order);
1768 static inline int
1769 gfp_to_alloc_flags(gfp_t gfp_mask)
1771 struct task_struct *p = current;
1772 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1773 const gfp_t wait = gfp_mask & __GFP_WAIT;
1775 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1776 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1779 * The caller may dip into page reserves a bit more if the caller
1780 * cannot run direct reclaim, or if the caller has realtime scheduling
1781 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1782 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1784 alloc_flags |= (gfp_mask & __GFP_HIGH);
1786 if (!wait) {
1787 alloc_flags |= ALLOC_HARDER;
1789 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1790 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1792 alloc_flags &= ~ALLOC_CPUSET;
1793 } else if (unlikely(rt_task(p)) && !in_interrupt())
1794 alloc_flags |= ALLOC_HARDER;
1796 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1797 if (!in_interrupt() &&
1798 ((p->flags & PF_MEMALLOC) ||
1799 unlikely(test_thread_flag(TIF_MEMDIE))))
1800 alloc_flags |= ALLOC_NO_WATERMARKS;
1803 return alloc_flags;
1806 static inline struct page *
1807 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1808 struct zonelist *zonelist, enum zone_type high_zoneidx,
1809 nodemask_t *nodemask, struct zone *preferred_zone,
1810 int migratetype)
1812 const gfp_t wait = gfp_mask & __GFP_WAIT;
1813 struct page *page = NULL;
1814 int alloc_flags;
1815 unsigned long pages_reclaimed = 0;
1816 unsigned long did_some_progress;
1817 struct task_struct *p = current;
1820 * In the slowpath, we sanity check order to avoid ever trying to
1821 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1822 * be using allocators in order of preference for an area that is
1823 * too large.
1825 if (order >= MAX_ORDER) {
1826 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1827 return NULL;
1831 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1832 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1833 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1834 * using a larger set of nodes after it has established that the
1835 * allowed per node queues are empty and that nodes are
1836 * over allocated.
1838 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1839 goto nopage;
1841 restart:
1842 wake_all_kswapd(order, zonelist, high_zoneidx);
1845 * OK, we're below the kswapd watermark and have kicked background
1846 * reclaim. Now things get more complex, so set up alloc_flags according
1847 * to how we want to proceed.
1849 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1851 /* This is the last chance, in general, before the goto nopage. */
1852 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1853 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1854 preferred_zone, migratetype);
1855 if (page)
1856 goto got_pg;
1858 rebalance:
1859 /* Allocate without watermarks if the context allows */
1860 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1861 page = __alloc_pages_high_priority(gfp_mask, order,
1862 zonelist, high_zoneidx, nodemask,
1863 preferred_zone, migratetype);
1864 if (page)
1865 goto got_pg;
1868 /* Atomic allocations - we can't balance anything */
1869 if (!wait)
1870 goto nopage;
1872 /* Avoid recursion of direct reclaim */
1873 if (p->flags & PF_MEMALLOC)
1874 goto nopage;
1876 /* Avoid allocations with no watermarks from looping endlessly */
1877 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1878 goto nopage;
1880 /* Try direct reclaim and then allocating */
1881 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1882 zonelist, high_zoneidx,
1883 nodemask,
1884 alloc_flags, preferred_zone,
1885 migratetype, &did_some_progress);
1886 if (page)
1887 goto got_pg;
1890 * If we failed to make any progress reclaiming, then we are
1891 * running out of options and have to consider going OOM
1893 if (!did_some_progress) {
1894 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1895 if (oom_killer_disabled)
1896 goto nopage;
1897 page = __alloc_pages_may_oom(gfp_mask, order,
1898 zonelist, high_zoneidx,
1899 nodemask, preferred_zone,
1900 migratetype);
1901 if (page)
1902 goto got_pg;
1905 * The OOM killer does not trigger for high-order
1906 * ~__GFP_NOFAIL allocations so if no progress is being
1907 * made, there are no other options and retrying is
1908 * unlikely to help.
1910 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1911 !(gfp_mask & __GFP_NOFAIL))
1912 goto nopage;
1914 goto restart;
1918 /* Check if we should retry the allocation */
1919 pages_reclaimed += did_some_progress;
1920 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1921 /* Wait for some write requests to complete then retry */
1922 congestion_wait(BLK_RW_ASYNC, HZ/50);
1923 goto rebalance;
1926 nopage:
1927 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1928 printk(KERN_WARNING "%s: page allocation failure."
1929 " order:%d, mode:0x%x\n",
1930 p->comm, order, gfp_mask);
1931 dump_stack();
1932 show_mem();
1934 return page;
1935 got_pg:
1936 if (kmemcheck_enabled)
1937 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1938 return page;
1943 * This is the 'heart' of the zoned buddy allocator.
1945 struct page *
1946 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1947 struct zonelist *zonelist, nodemask_t *nodemask)
1949 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1950 struct zone *preferred_zone;
1951 struct page *page;
1952 int migratetype = allocflags_to_migratetype(gfp_mask);
1954 gfp_mask &= gfp_allowed_mask;
1956 lockdep_trace_alloc(gfp_mask);
1958 might_sleep_if(gfp_mask & __GFP_WAIT);
1960 if (should_fail_alloc_page(gfp_mask, order))
1961 return NULL;
1964 * Check the zones suitable for the gfp_mask contain at least one
1965 * valid zone. It's possible to have an empty zonelist as a result
1966 * of GFP_THISNODE and a memoryless node
1968 if (unlikely(!zonelist->_zonerefs->zone))
1969 return NULL;
1971 /* The preferred zone is used for statistics later */
1972 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1973 if (!preferred_zone)
1974 return NULL;
1976 /* First allocation attempt */
1977 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1978 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1979 preferred_zone, migratetype);
1980 if (unlikely(!page))
1981 page = __alloc_pages_slowpath(gfp_mask, order,
1982 zonelist, high_zoneidx, nodemask,
1983 preferred_zone, migratetype);
1985 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1986 return page;
1988 EXPORT_SYMBOL(__alloc_pages_nodemask);
1991 * Common helper functions.
1993 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1995 struct page *page;
1998 * __get_free_pages() returns a 32-bit address, which cannot represent
1999 * a highmem page
2001 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2003 page = alloc_pages(gfp_mask, order);
2004 if (!page)
2005 return 0;
2006 return (unsigned long) page_address(page);
2008 EXPORT_SYMBOL(__get_free_pages);
2010 unsigned long get_zeroed_page(gfp_t gfp_mask)
2012 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2014 EXPORT_SYMBOL(get_zeroed_page);
2016 void __pagevec_free(struct pagevec *pvec)
2018 int i = pagevec_count(pvec);
2020 while (--i >= 0) {
2021 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2022 free_hot_cold_page(pvec->pages[i], pvec->cold);
2026 void __free_pages(struct page *page, unsigned int order)
2028 if (put_page_testzero(page)) {
2029 trace_mm_page_free_direct(page, order);
2030 if (order == 0)
2031 free_hot_page(page);
2032 else
2033 __free_pages_ok(page, order);
2037 EXPORT_SYMBOL(__free_pages);
2039 void free_pages(unsigned long addr, unsigned int order)
2041 if (addr != 0) {
2042 VM_BUG_ON(!virt_addr_valid((void *)addr));
2043 __free_pages(virt_to_page((void *)addr), order);
2047 EXPORT_SYMBOL(free_pages);
2050 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2051 * @size: the number of bytes to allocate
2052 * @gfp_mask: GFP flags for the allocation
2054 * This function is similar to alloc_pages(), except that it allocates the
2055 * minimum number of pages to satisfy the request. alloc_pages() can only
2056 * allocate memory in power-of-two pages.
2058 * This function is also limited by MAX_ORDER.
2060 * Memory allocated by this function must be released by free_pages_exact().
2062 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2064 unsigned int order = get_order(size);
2065 unsigned long addr;
2067 addr = __get_free_pages(gfp_mask, order);
2068 if (addr) {
2069 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2070 unsigned long used = addr + PAGE_ALIGN(size);
2072 split_page(virt_to_page((void *)addr), order);
2073 while (used < alloc_end) {
2074 free_page(used);
2075 used += PAGE_SIZE;
2079 return (void *)addr;
2081 EXPORT_SYMBOL(alloc_pages_exact);
2084 * free_pages_exact - release memory allocated via alloc_pages_exact()
2085 * @virt: the value returned by alloc_pages_exact.
2086 * @size: size of allocation, same value as passed to alloc_pages_exact().
2088 * Release the memory allocated by a previous call to alloc_pages_exact.
2090 void free_pages_exact(void *virt, size_t size)
2092 unsigned long addr = (unsigned long)virt;
2093 unsigned long end = addr + PAGE_ALIGN(size);
2095 while (addr < end) {
2096 free_page(addr);
2097 addr += PAGE_SIZE;
2100 EXPORT_SYMBOL(free_pages_exact);
2102 static unsigned int nr_free_zone_pages(int offset)
2104 struct zoneref *z;
2105 struct zone *zone;
2107 /* Just pick one node, since fallback list is circular */
2108 unsigned int sum = 0;
2110 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2112 for_each_zone_zonelist(zone, z, zonelist, offset) {
2113 unsigned long size = zone->present_pages;
2114 unsigned long high = high_wmark_pages(zone);
2115 if (size > high)
2116 sum += size - high;
2119 return sum;
2123 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2125 unsigned int nr_free_buffer_pages(void)
2127 return nr_free_zone_pages(gfp_zone(GFP_USER));
2129 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2132 * Amount of free RAM allocatable within all zones
2134 unsigned int nr_free_pagecache_pages(void)
2136 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2139 static inline void show_node(struct zone *zone)
2141 if (NUMA_BUILD)
2142 printk("Node %d ", zone_to_nid(zone));
2145 void si_meminfo(struct sysinfo *val)
2147 val->totalram = totalram_pages;
2148 val->sharedram = 0;
2149 val->freeram = global_page_state(NR_FREE_PAGES);
2150 val->bufferram = nr_blockdev_pages();
2151 val->totalhigh = totalhigh_pages;
2152 val->freehigh = nr_free_highpages();
2153 val->mem_unit = PAGE_SIZE;
2156 EXPORT_SYMBOL(si_meminfo);
2158 #ifdef CONFIG_NUMA
2159 void si_meminfo_node(struct sysinfo *val, int nid)
2161 pg_data_t *pgdat = NODE_DATA(nid);
2163 val->totalram = pgdat->node_present_pages;
2164 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2165 #ifdef CONFIG_HIGHMEM
2166 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2167 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2168 NR_FREE_PAGES);
2169 #else
2170 val->totalhigh = 0;
2171 val->freehigh = 0;
2172 #endif
2173 val->mem_unit = PAGE_SIZE;
2175 #endif
2177 #define K(x) ((x) << (PAGE_SHIFT-10))
2180 * Show free area list (used inside shift_scroll-lock stuff)
2181 * We also calculate the percentage fragmentation. We do this by counting the
2182 * memory on each free list with the exception of the first item on the list.
2184 void show_free_areas(void)
2186 int cpu;
2187 struct zone *zone;
2189 for_each_populated_zone(zone) {
2190 show_node(zone);
2191 printk("%s per-cpu:\n", zone->name);
2193 for_each_online_cpu(cpu) {
2194 struct per_cpu_pageset *pageset;
2196 pageset = zone_pcp(zone, cpu);
2198 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2199 cpu, pageset->pcp.high,
2200 pageset->pcp.batch, pageset->pcp.count);
2204 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2205 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2206 " unevictable:%lu"
2207 " dirty:%lu writeback:%lu unstable:%lu\n"
2208 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2209 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2210 global_page_state(NR_ACTIVE_ANON),
2211 global_page_state(NR_INACTIVE_ANON),
2212 global_page_state(NR_ISOLATED_ANON),
2213 global_page_state(NR_ACTIVE_FILE),
2214 global_page_state(NR_INACTIVE_FILE),
2215 global_page_state(NR_ISOLATED_FILE),
2216 global_page_state(NR_UNEVICTABLE),
2217 global_page_state(NR_FILE_DIRTY),
2218 global_page_state(NR_WRITEBACK),
2219 global_page_state(NR_UNSTABLE_NFS),
2220 global_page_state(NR_FREE_PAGES),
2221 global_page_state(NR_SLAB_RECLAIMABLE),
2222 global_page_state(NR_SLAB_UNRECLAIMABLE),
2223 global_page_state(NR_FILE_MAPPED),
2224 global_page_state(NR_SHMEM),
2225 global_page_state(NR_PAGETABLE),
2226 global_page_state(NR_BOUNCE));
2228 for_each_populated_zone(zone) {
2229 int i;
2231 show_node(zone);
2232 printk("%s"
2233 " free:%lukB"
2234 " min:%lukB"
2235 " low:%lukB"
2236 " high:%lukB"
2237 " active_anon:%lukB"
2238 " inactive_anon:%lukB"
2239 " active_file:%lukB"
2240 " inactive_file:%lukB"
2241 " unevictable:%lukB"
2242 " isolated(anon):%lukB"
2243 " isolated(file):%lukB"
2244 " present:%lukB"
2245 " mlocked:%lukB"
2246 " dirty:%lukB"
2247 " writeback:%lukB"
2248 " mapped:%lukB"
2249 " shmem:%lukB"
2250 " slab_reclaimable:%lukB"
2251 " slab_unreclaimable:%lukB"
2252 " kernel_stack:%lukB"
2253 " pagetables:%lukB"
2254 " unstable:%lukB"
2255 " bounce:%lukB"
2256 " writeback_tmp:%lukB"
2257 " pages_scanned:%lu"
2258 " all_unreclaimable? %s"
2259 "\n",
2260 zone->name,
2261 K(zone_nr_free_pages(zone)),
2262 K(min_wmark_pages(zone)),
2263 K(low_wmark_pages(zone)),
2264 K(high_wmark_pages(zone)),
2265 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2266 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2267 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2268 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2269 K(zone_page_state(zone, NR_UNEVICTABLE)),
2270 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2271 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2272 K(zone->present_pages),
2273 K(zone_page_state(zone, NR_MLOCK)),
2274 K(zone_page_state(zone, NR_FILE_DIRTY)),
2275 K(zone_page_state(zone, NR_WRITEBACK)),
2276 K(zone_page_state(zone, NR_FILE_MAPPED)),
2277 K(zone_page_state(zone, NR_SHMEM)),
2278 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2279 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2280 zone_page_state(zone, NR_KERNEL_STACK) *
2281 THREAD_SIZE / 1024,
2282 K(zone_page_state(zone, NR_PAGETABLE)),
2283 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2284 K(zone_page_state(zone, NR_BOUNCE)),
2285 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2286 zone->pages_scanned,
2287 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2289 printk("lowmem_reserve[]:");
2290 for (i = 0; i < MAX_NR_ZONES; i++)
2291 printk(" %lu", zone->lowmem_reserve[i]);
2292 printk("\n");
2295 for_each_populated_zone(zone) {
2296 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2298 show_node(zone);
2299 printk("%s: ", zone->name);
2301 spin_lock_irqsave(&zone->lock, flags);
2302 for (order = 0; order < MAX_ORDER; order++) {
2303 nr[order] = zone->free_area[order].nr_free;
2304 total += nr[order] << order;
2306 spin_unlock_irqrestore(&zone->lock, flags);
2307 for (order = 0; order < MAX_ORDER; order++)
2308 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2309 printk("= %lukB\n", K(total));
2312 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2314 show_swap_cache_info();
2317 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2319 zoneref->zone = zone;
2320 zoneref->zone_idx = zone_idx(zone);
2324 * Builds allocation fallback zone lists.
2326 * Add all populated zones of a node to the zonelist.
2328 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2329 int nr_zones, enum zone_type zone_type)
2331 struct zone *zone;
2333 BUG_ON(zone_type >= MAX_NR_ZONES);
2334 zone_type++;
2336 do {
2337 zone_type--;
2338 zone = pgdat->node_zones + zone_type;
2339 if (populated_zone(zone)) {
2340 zoneref_set_zone(zone,
2341 &zonelist->_zonerefs[nr_zones++]);
2342 check_highest_zone(zone_type);
2345 } while (zone_type);
2346 return nr_zones;
2351 * zonelist_order:
2352 * 0 = automatic detection of better ordering.
2353 * 1 = order by ([node] distance, -zonetype)
2354 * 2 = order by (-zonetype, [node] distance)
2356 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2357 * the same zonelist. So only NUMA can configure this param.
2359 #define ZONELIST_ORDER_DEFAULT 0
2360 #define ZONELIST_ORDER_NODE 1
2361 #define ZONELIST_ORDER_ZONE 2
2363 /* zonelist order in the kernel.
2364 * set_zonelist_order() will set this to NODE or ZONE.
2366 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2367 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2370 #ifdef CONFIG_NUMA
2371 /* The value user specified ....changed by config */
2372 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2373 /* string for sysctl */
2374 #define NUMA_ZONELIST_ORDER_LEN 16
2375 char numa_zonelist_order[16] = "default";
2378 * interface for configure zonelist ordering.
2379 * command line option "numa_zonelist_order"
2380 * = "[dD]efault - default, automatic configuration.
2381 * = "[nN]ode - order by node locality, then by zone within node
2382 * = "[zZ]one - order by zone, then by locality within zone
2385 static int __parse_numa_zonelist_order(char *s)
2387 if (*s == 'd' || *s == 'D') {
2388 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2389 } else if (*s == 'n' || *s == 'N') {
2390 user_zonelist_order = ZONELIST_ORDER_NODE;
2391 } else if (*s == 'z' || *s == 'Z') {
2392 user_zonelist_order = ZONELIST_ORDER_ZONE;
2393 } else {
2394 printk(KERN_WARNING
2395 "Ignoring invalid numa_zonelist_order value: "
2396 "%s\n", s);
2397 return -EINVAL;
2399 return 0;
2402 static __init int setup_numa_zonelist_order(char *s)
2404 if (s)
2405 return __parse_numa_zonelist_order(s);
2406 return 0;
2408 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2411 * sysctl handler for numa_zonelist_order
2413 int numa_zonelist_order_handler(ctl_table *table, int write,
2414 void __user *buffer, size_t *length,
2415 loff_t *ppos)
2417 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2418 int ret;
2419 static DEFINE_MUTEX(zl_order_mutex);
2421 mutex_lock(&zl_order_mutex);
2422 if (write)
2423 strcpy(saved_string, (char*)table->data);
2424 ret = proc_dostring(table, write, buffer, length, ppos);
2425 if (ret)
2426 goto out;
2427 if (write) {
2428 int oldval = user_zonelist_order;
2429 if (__parse_numa_zonelist_order((char*)table->data)) {
2431 * bogus value. restore saved string
2433 strncpy((char*)table->data, saved_string,
2434 NUMA_ZONELIST_ORDER_LEN);
2435 user_zonelist_order = oldval;
2436 } else if (oldval != user_zonelist_order)
2437 build_all_zonelists();
2439 out:
2440 mutex_unlock(&zl_order_mutex);
2441 return ret;
2445 #define MAX_NODE_LOAD (nr_online_nodes)
2446 static int node_load[MAX_NUMNODES];
2449 * find_next_best_node - find the next node that should appear in a given node's fallback list
2450 * @node: node whose fallback list we're appending
2451 * @used_node_mask: nodemask_t of already used nodes
2453 * We use a number of factors to determine which is the next node that should
2454 * appear on a given node's fallback list. The node should not have appeared
2455 * already in @node's fallback list, and it should be the next closest node
2456 * according to the distance array (which contains arbitrary distance values
2457 * from each node to each node in the system), and should also prefer nodes
2458 * with no CPUs, since presumably they'll have very little allocation pressure
2459 * on them otherwise.
2460 * It returns -1 if no node is found.
2462 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2464 int n, val;
2465 int min_val = INT_MAX;
2466 int best_node = -1;
2467 const struct cpumask *tmp = cpumask_of_node(0);
2469 /* Use the local node if we haven't already */
2470 if (!node_isset(node, *used_node_mask)) {
2471 node_set(node, *used_node_mask);
2472 return node;
2475 for_each_node_state(n, N_HIGH_MEMORY) {
2477 /* Don't want a node to appear more than once */
2478 if (node_isset(n, *used_node_mask))
2479 continue;
2481 /* Use the distance array to find the distance */
2482 val = node_distance(node, n);
2484 /* Penalize nodes under us ("prefer the next node") */
2485 val += (n < node);
2487 /* Give preference to headless and unused nodes */
2488 tmp = cpumask_of_node(n);
2489 if (!cpumask_empty(tmp))
2490 val += PENALTY_FOR_NODE_WITH_CPUS;
2492 /* Slight preference for less loaded node */
2493 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2494 val += node_load[n];
2496 if (val < min_val) {
2497 min_val = val;
2498 best_node = n;
2502 if (best_node >= 0)
2503 node_set(best_node, *used_node_mask);
2505 return best_node;
2510 * Build zonelists ordered by node and zones within node.
2511 * This results in maximum locality--normal zone overflows into local
2512 * DMA zone, if any--but risks exhausting DMA zone.
2514 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2516 int j;
2517 struct zonelist *zonelist;
2519 zonelist = &pgdat->node_zonelists[0];
2520 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2522 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2523 MAX_NR_ZONES - 1);
2524 zonelist->_zonerefs[j].zone = NULL;
2525 zonelist->_zonerefs[j].zone_idx = 0;
2529 * Build gfp_thisnode zonelists
2531 static void build_thisnode_zonelists(pg_data_t *pgdat)
2533 int j;
2534 struct zonelist *zonelist;
2536 zonelist = &pgdat->node_zonelists[1];
2537 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2538 zonelist->_zonerefs[j].zone = NULL;
2539 zonelist->_zonerefs[j].zone_idx = 0;
2543 * Build zonelists ordered by zone and nodes within zones.
2544 * This results in conserving DMA zone[s] until all Normal memory is
2545 * exhausted, but results in overflowing to remote node while memory
2546 * may still exist in local DMA zone.
2548 static int node_order[MAX_NUMNODES];
2550 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2552 int pos, j, node;
2553 int zone_type; /* needs to be signed */
2554 struct zone *z;
2555 struct zonelist *zonelist;
2557 zonelist = &pgdat->node_zonelists[0];
2558 pos = 0;
2559 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2560 for (j = 0; j < nr_nodes; j++) {
2561 node = node_order[j];
2562 z = &NODE_DATA(node)->node_zones[zone_type];
2563 if (populated_zone(z)) {
2564 zoneref_set_zone(z,
2565 &zonelist->_zonerefs[pos++]);
2566 check_highest_zone(zone_type);
2570 zonelist->_zonerefs[pos].zone = NULL;
2571 zonelist->_zonerefs[pos].zone_idx = 0;
2574 static int default_zonelist_order(void)
2576 int nid, zone_type;
2577 unsigned long low_kmem_size,total_size;
2578 struct zone *z;
2579 int average_size;
2581 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2582 * If they are really small and used heavily, the system can fall
2583 * into OOM very easily.
2584 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2586 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2587 low_kmem_size = 0;
2588 total_size = 0;
2589 for_each_online_node(nid) {
2590 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2591 z = &NODE_DATA(nid)->node_zones[zone_type];
2592 if (populated_zone(z)) {
2593 if (zone_type < ZONE_NORMAL)
2594 low_kmem_size += z->present_pages;
2595 total_size += z->present_pages;
2599 if (!low_kmem_size || /* there are no DMA area. */
2600 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2601 return ZONELIST_ORDER_NODE;
2603 * look into each node's config.
2604 * If there is a node whose DMA/DMA32 memory is very big area on
2605 * local memory, NODE_ORDER may be suitable.
2607 average_size = total_size /
2608 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2609 for_each_online_node(nid) {
2610 low_kmem_size = 0;
2611 total_size = 0;
2612 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2613 z = &NODE_DATA(nid)->node_zones[zone_type];
2614 if (populated_zone(z)) {
2615 if (zone_type < ZONE_NORMAL)
2616 low_kmem_size += z->present_pages;
2617 total_size += z->present_pages;
2620 if (low_kmem_size &&
2621 total_size > average_size && /* ignore small node */
2622 low_kmem_size > total_size * 70/100)
2623 return ZONELIST_ORDER_NODE;
2625 return ZONELIST_ORDER_ZONE;
2628 static void set_zonelist_order(void)
2630 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2631 current_zonelist_order = default_zonelist_order();
2632 else
2633 current_zonelist_order = user_zonelist_order;
2636 static void build_zonelists(pg_data_t *pgdat)
2638 int j, node, load;
2639 enum zone_type i;
2640 nodemask_t used_mask;
2641 int local_node, prev_node;
2642 struct zonelist *zonelist;
2643 int order = current_zonelist_order;
2645 /* initialize zonelists */
2646 for (i = 0; i < MAX_ZONELISTS; i++) {
2647 zonelist = pgdat->node_zonelists + i;
2648 zonelist->_zonerefs[0].zone = NULL;
2649 zonelist->_zonerefs[0].zone_idx = 0;
2652 /* NUMA-aware ordering of nodes */
2653 local_node = pgdat->node_id;
2654 load = nr_online_nodes;
2655 prev_node = local_node;
2656 nodes_clear(used_mask);
2658 memset(node_order, 0, sizeof(node_order));
2659 j = 0;
2661 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2662 int distance = node_distance(local_node, node);
2665 * If another node is sufficiently far away then it is better
2666 * to reclaim pages in a zone before going off node.
2668 if (distance > RECLAIM_DISTANCE)
2669 zone_reclaim_mode = 1;
2672 * We don't want to pressure a particular node.
2673 * So adding penalty to the first node in same
2674 * distance group to make it round-robin.
2676 if (distance != node_distance(local_node, prev_node))
2677 node_load[node] = load;
2679 prev_node = node;
2680 load--;
2681 if (order == ZONELIST_ORDER_NODE)
2682 build_zonelists_in_node_order(pgdat, node);
2683 else
2684 node_order[j++] = node; /* remember order */
2687 if (order == ZONELIST_ORDER_ZONE) {
2688 /* calculate node order -- i.e., DMA last! */
2689 build_zonelists_in_zone_order(pgdat, j);
2692 build_thisnode_zonelists(pgdat);
2695 /* Construct the zonelist performance cache - see further mmzone.h */
2696 static void build_zonelist_cache(pg_data_t *pgdat)
2698 struct zonelist *zonelist;
2699 struct zonelist_cache *zlc;
2700 struct zoneref *z;
2702 zonelist = &pgdat->node_zonelists[0];
2703 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2704 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2705 for (z = zonelist->_zonerefs; z->zone; z++)
2706 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2710 #else /* CONFIG_NUMA */
2712 static void set_zonelist_order(void)
2714 current_zonelist_order = ZONELIST_ORDER_ZONE;
2717 static void build_zonelists(pg_data_t *pgdat)
2719 int node, local_node;
2720 enum zone_type j;
2721 struct zonelist *zonelist;
2723 local_node = pgdat->node_id;
2725 zonelist = &pgdat->node_zonelists[0];
2726 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2729 * Now we build the zonelist so that it contains the zones
2730 * of all the other nodes.
2731 * We don't want to pressure a particular node, so when
2732 * building the zones for node N, we make sure that the
2733 * zones coming right after the local ones are those from
2734 * node N+1 (modulo N)
2736 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2737 if (!node_online(node))
2738 continue;
2739 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2740 MAX_NR_ZONES - 1);
2742 for (node = 0; node < local_node; node++) {
2743 if (!node_online(node))
2744 continue;
2745 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2746 MAX_NR_ZONES - 1);
2749 zonelist->_zonerefs[j].zone = NULL;
2750 zonelist->_zonerefs[j].zone_idx = 0;
2753 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2754 static void build_zonelist_cache(pg_data_t *pgdat)
2756 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2759 #endif /* CONFIG_NUMA */
2761 /* return values int ....just for stop_machine() */
2762 static int __build_all_zonelists(void *dummy)
2764 int nid;
2766 #ifdef CONFIG_NUMA
2767 memset(node_load, 0, sizeof(node_load));
2768 #endif
2769 for_each_online_node(nid) {
2770 pg_data_t *pgdat = NODE_DATA(nid);
2772 build_zonelists(pgdat);
2773 build_zonelist_cache(pgdat);
2775 return 0;
2778 void build_all_zonelists(void)
2780 set_zonelist_order();
2782 if (system_state == SYSTEM_BOOTING) {
2783 __build_all_zonelists(NULL);
2784 mminit_verify_zonelist();
2785 cpuset_init_current_mems_allowed();
2786 } else {
2787 /* we have to stop all cpus to guarantee there is no user
2788 of zonelist */
2789 stop_machine(__build_all_zonelists, NULL, NULL);
2790 /* cpuset refresh routine should be here */
2792 vm_total_pages = nr_free_pagecache_pages();
2794 * Disable grouping by mobility if the number of pages in the
2795 * system is too low to allow the mechanism to work. It would be
2796 * more accurate, but expensive to check per-zone. This check is
2797 * made on memory-hotadd so a system can start with mobility
2798 * disabled and enable it later
2800 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2801 page_group_by_mobility_disabled = 1;
2802 else
2803 page_group_by_mobility_disabled = 0;
2805 printk("Built %i zonelists in %s order, mobility grouping %s. "
2806 "Total pages: %ld\n",
2807 nr_online_nodes,
2808 zonelist_order_name[current_zonelist_order],
2809 page_group_by_mobility_disabled ? "off" : "on",
2810 vm_total_pages);
2811 #ifdef CONFIG_NUMA
2812 printk("Policy zone: %s\n", zone_names[policy_zone]);
2813 #endif
2817 * Helper functions to size the waitqueue hash table.
2818 * Essentially these want to choose hash table sizes sufficiently
2819 * large so that collisions trying to wait on pages are rare.
2820 * But in fact, the number of active page waitqueues on typical
2821 * systems is ridiculously low, less than 200. So this is even
2822 * conservative, even though it seems large.
2824 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2825 * waitqueues, i.e. the size of the waitq table given the number of pages.
2827 #define PAGES_PER_WAITQUEUE 256
2829 #ifndef CONFIG_MEMORY_HOTPLUG
2830 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2832 unsigned long size = 1;
2834 pages /= PAGES_PER_WAITQUEUE;
2836 while (size < pages)
2837 size <<= 1;
2840 * Once we have dozens or even hundreds of threads sleeping
2841 * on IO we've got bigger problems than wait queue collision.
2842 * Limit the size of the wait table to a reasonable size.
2844 size = min(size, 4096UL);
2846 return max(size, 4UL);
2848 #else
2850 * A zone's size might be changed by hot-add, so it is not possible to determine
2851 * a suitable size for its wait_table. So we use the maximum size now.
2853 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2855 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2856 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2857 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2859 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2860 * or more by the traditional way. (See above). It equals:
2862 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2863 * ia64(16K page size) : = ( 8G + 4M)byte.
2864 * powerpc (64K page size) : = (32G +16M)byte.
2866 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2868 return 4096UL;
2870 #endif
2873 * This is an integer logarithm so that shifts can be used later
2874 * to extract the more random high bits from the multiplicative
2875 * hash function before the remainder is taken.
2877 static inline unsigned long wait_table_bits(unsigned long size)
2879 return ffz(~size);
2882 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2885 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2886 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2887 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2888 * higher will lead to a bigger reserve which will get freed as contiguous
2889 * blocks as reclaim kicks in
2891 static void setup_zone_migrate_reserve(struct zone *zone)
2893 unsigned long start_pfn, pfn, end_pfn;
2894 struct page *page;
2895 unsigned long block_migratetype;
2896 int reserve;
2898 /* Get the start pfn, end pfn and the number of blocks to reserve */
2899 start_pfn = zone->zone_start_pfn;
2900 end_pfn = start_pfn + zone->spanned_pages;
2901 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2902 pageblock_order;
2905 * Reserve blocks are generally in place to help high-order atomic
2906 * allocations that are short-lived. A min_free_kbytes value that
2907 * would result in more than 2 reserve blocks for atomic allocations
2908 * is assumed to be in place to help anti-fragmentation for the
2909 * future allocation of hugepages at runtime.
2911 reserve = min(2, reserve);
2913 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2914 if (!pfn_valid(pfn))
2915 continue;
2916 page = pfn_to_page(pfn);
2918 /* Watch out for overlapping nodes */
2919 if (page_to_nid(page) != zone_to_nid(zone))
2920 continue;
2922 /* Blocks with reserved pages will never free, skip them. */
2923 if (PageReserved(page))
2924 continue;
2926 block_migratetype = get_pageblock_migratetype(page);
2928 /* If this block is reserved, account for it */
2929 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2930 reserve--;
2931 continue;
2934 /* Suitable for reserving if this block is movable */
2935 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2936 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2937 move_freepages_block(zone, page, MIGRATE_RESERVE);
2938 reserve--;
2939 continue;
2943 * If the reserve is met and this is a previous reserved block,
2944 * take it back
2946 if (block_migratetype == MIGRATE_RESERVE) {
2947 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2948 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2954 * Initially all pages are reserved - free ones are freed
2955 * up by free_all_bootmem() once the early boot process is
2956 * done. Non-atomic initialization, single-pass.
2958 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2959 unsigned long start_pfn, enum memmap_context context)
2961 struct page *page;
2962 unsigned long end_pfn = start_pfn + size;
2963 unsigned long pfn;
2964 struct zone *z;
2966 if (highest_memmap_pfn < end_pfn - 1)
2967 highest_memmap_pfn = end_pfn - 1;
2969 z = &NODE_DATA(nid)->node_zones[zone];
2970 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2972 * There can be holes in boot-time mem_map[]s
2973 * handed to this function. They do not
2974 * exist on hotplugged memory.
2976 if (context == MEMMAP_EARLY) {
2977 if (!early_pfn_valid(pfn))
2978 continue;
2979 if (!early_pfn_in_nid(pfn, nid))
2980 continue;
2982 page = pfn_to_page(pfn);
2983 set_page_links(page, zone, nid, pfn);
2984 mminit_verify_page_links(page, zone, nid, pfn);
2985 init_page_count(page);
2986 reset_page_mapcount(page);
2987 SetPageReserved(page);
2989 * Mark the block movable so that blocks are reserved for
2990 * movable at startup. This will force kernel allocations
2991 * to reserve their blocks rather than leaking throughout
2992 * the address space during boot when many long-lived
2993 * kernel allocations are made. Later some blocks near
2994 * the start are marked MIGRATE_RESERVE by
2995 * setup_zone_migrate_reserve()
2997 * bitmap is created for zone's valid pfn range. but memmap
2998 * can be created for invalid pages (for alignment)
2999 * check here not to call set_pageblock_migratetype() against
3000 * pfn out of zone.
3002 if ((z->zone_start_pfn <= pfn)
3003 && (pfn < z->zone_start_pfn + z->spanned_pages)
3004 && !(pfn & (pageblock_nr_pages - 1)))
3005 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3007 INIT_LIST_HEAD(&page->lru);
3008 #ifdef WANT_PAGE_VIRTUAL
3009 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3010 if (!is_highmem_idx(zone))
3011 set_page_address(page, __va(pfn << PAGE_SHIFT));
3012 #endif
3016 static void __meminit zone_init_free_lists(struct zone *zone)
3018 int order, t;
3019 for_each_migratetype_order(order, t) {
3020 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3021 zone->free_area[order].nr_free = 0;
3025 #ifndef __HAVE_ARCH_MEMMAP_INIT
3026 #define memmap_init(size, nid, zone, start_pfn) \
3027 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3028 #endif
3030 static int zone_batchsize(struct zone *zone)
3032 #ifdef CONFIG_MMU
3033 int batch;
3036 * The per-cpu-pages pools are set to around 1000th of the
3037 * size of the zone. But no more than 1/2 of a meg.
3039 * OK, so we don't know how big the cache is. So guess.
3041 batch = zone->present_pages / 1024;
3042 if (batch * PAGE_SIZE > 512 * 1024)
3043 batch = (512 * 1024) / PAGE_SIZE;
3044 batch /= 4; /* We effectively *= 4 below */
3045 if (batch < 1)
3046 batch = 1;
3049 * Clamp the batch to a 2^n - 1 value. Having a power
3050 * of 2 value was found to be more likely to have
3051 * suboptimal cache aliasing properties in some cases.
3053 * For example if 2 tasks are alternately allocating
3054 * batches of pages, one task can end up with a lot
3055 * of pages of one half of the possible page colors
3056 * and the other with pages of the other colors.
3058 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3060 return batch;
3062 #else
3063 /* The deferral and batching of frees should be suppressed under NOMMU
3064 * conditions.
3066 * The problem is that NOMMU needs to be able to allocate large chunks
3067 * of contiguous memory as there's no hardware page translation to
3068 * assemble apparent contiguous memory from discontiguous pages.
3070 * Queueing large contiguous runs of pages for batching, however,
3071 * causes the pages to actually be freed in smaller chunks. As there
3072 * can be a significant delay between the individual batches being
3073 * recycled, this leads to the once large chunks of space being
3074 * fragmented and becoming unavailable for high-order allocations.
3076 return 0;
3077 #endif
3080 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3082 struct per_cpu_pages *pcp;
3083 int migratetype;
3085 memset(p, 0, sizeof(*p));
3087 pcp = &p->pcp;
3088 pcp->count = 0;
3089 pcp->high = 6 * batch;
3090 pcp->batch = max(1UL, 1 * batch);
3091 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3092 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3096 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3097 * to the value high for the pageset p.
3100 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3101 unsigned long high)
3103 struct per_cpu_pages *pcp;
3105 pcp = &p->pcp;
3106 pcp->high = high;
3107 pcp->batch = max(1UL, high/4);
3108 if ((high/4) > (PAGE_SHIFT * 8))
3109 pcp->batch = PAGE_SHIFT * 8;
3113 #ifdef CONFIG_NUMA
3115 * Boot pageset table. One per cpu which is going to be used for all
3116 * zones and all nodes. The parameters will be set in such a way
3117 * that an item put on a list will immediately be handed over to
3118 * the buddy list. This is safe since pageset manipulation is done
3119 * with interrupts disabled.
3121 * Some NUMA counter updates may also be caught by the boot pagesets.
3123 * The boot_pagesets must be kept even after bootup is complete for
3124 * unused processors and/or zones. They do play a role for bootstrapping
3125 * hotplugged processors.
3127 * zoneinfo_show() and maybe other functions do
3128 * not check if the processor is online before following the pageset pointer.
3129 * Other parts of the kernel may not check if the zone is available.
3131 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3134 * Dynamically allocate memory for the
3135 * per cpu pageset array in struct zone.
3137 static int __cpuinit process_zones(int cpu)
3139 struct zone *zone, *dzone;
3140 int node = cpu_to_node(cpu);
3142 node_set_state(node, N_CPU); /* this node has a cpu */
3144 for_each_populated_zone(zone) {
3145 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3146 GFP_KERNEL, node);
3147 if (!zone_pcp(zone, cpu))
3148 goto bad;
3150 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3152 if (percpu_pagelist_fraction)
3153 setup_pagelist_highmark(zone_pcp(zone, cpu),
3154 (zone->present_pages / percpu_pagelist_fraction));
3157 return 0;
3158 bad:
3159 for_each_zone(dzone) {
3160 if (!populated_zone(dzone))
3161 continue;
3162 if (dzone == zone)
3163 break;
3164 kfree(zone_pcp(dzone, cpu));
3165 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3167 return -ENOMEM;
3170 static inline void free_zone_pagesets(int cpu)
3172 struct zone *zone;
3174 for_each_zone(zone) {
3175 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3177 /* Free per_cpu_pageset if it is slab allocated */
3178 if (pset != &boot_pageset[cpu])
3179 kfree(pset);
3180 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3184 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3185 unsigned long action,
3186 void *hcpu)
3188 int cpu = (long)hcpu;
3189 int ret = NOTIFY_OK;
3191 switch (action) {
3192 case CPU_UP_PREPARE:
3193 case CPU_UP_PREPARE_FROZEN:
3194 if (process_zones(cpu))
3195 ret = NOTIFY_BAD;
3196 break;
3197 case CPU_UP_CANCELED:
3198 case CPU_UP_CANCELED_FROZEN:
3199 case CPU_DEAD:
3200 case CPU_DEAD_FROZEN:
3201 free_zone_pagesets(cpu);
3202 break;
3203 default:
3204 break;
3206 return ret;
3209 static struct notifier_block __cpuinitdata pageset_notifier =
3210 { &pageset_cpuup_callback, NULL, 0 };
3212 void __init setup_per_cpu_pageset(void)
3214 int err;
3216 /* Initialize per_cpu_pageset for cpu 0.
3217 * A cpuup callback will do this for every cpu
3218 * as it comes online
3220 err = process_zones(smp_processor_id());
3221 BUG_ON(err);
3222 register_cpu_notifier(&pageset_notifier);
3225 #endif
3227 static noinline __init_refok
3228 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3230 int i;
3231 struct pglist_data *pgdat = zone->zone_pgdat;
3232 size_t alloc_size;
3235 * The per-page waitqueue mechanism uses hashed waitqueues
3236 * per zone.
3238 zone->wait_table_hash_nr_entries =
3239 wait_table_hash_nr_entries(zone_size_pages);
3240 zone->wait_table_bits =
3241 wait_table_bits(zone->wait_table_hash_nr_entries);
3242 alloc_size = zone->wait_table_hash_nr_entries
3243 * sizeof(wait_queue_head_t);
3245 if (!slab_is_available()) {
3246 zone->wait_table = (wait_queue_head_t *)
3247 alloc_bootmem_node(pgdat, alloc_size);
3248 } else {
3250 * This case means that a zone whose size was 0 gets new memory
3251 * via memory hot-add.
3252 * But it may be the case that a new node was hot-added. In
3253 * this case vmalloc() will not be able to use this new node's
3254 * memory - this wait_table must be initialized to use this new
3255 * node itself as well.
3256 * To use this new node's memory, further consideration will be
3257 * necessary.
3259 zone->wait_table = vmalloc(alloc_size);
3261 if (!zone->wait_table)
3262 return -ENOMEM;
3264 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3265 init_waitqueue_head(zone->wait_table + i);
3267 return 0;
3270 static int __zone_pcp_update(void *data)
3272 struct zone *zone = data;
3273 int cpu;
3274 unsigned long batch = zone_batchsize(zone), flags;
3276 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3277 struct per_cpu_pageset *pset;
3278 struct per_cpu_pages *pcp;
3280 pset = zone_pcp(zone, cpu);
3281 pcp = &pset->pcp;
3283 local_irq_save(flags);
3284 free_pcppages_bulk(zone, pcp->count, pcp);
3285 setup_pageset(pset, batch);
3286 local_irq_restore(flags);
3288 return 0;
3291 void zone_pcp_update(struct zone *zone)
3293 stop_machine(__zone_pcp_update, zone, NULL);
3296 static __meminit void zone_pcp_init(struct zone *zone)
3298 int cpu;
3299 unsigned long batch = zone_batchsize(zone);
3301 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3302 #ifdef CONFIG_NUMA
3303 /* Early boot. Slab allocator not functional yet */
3304 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3305 setup_pageset(&boot_pageset[cpu],0);
3306 #else
3307 setup_pageset(zone_pcp(zone,cpu), batch);
3308 #endif
3310 if (zone->present_pages)
3311 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3312 zone->name, zone->present_pages, batch);
3315 __meminit int init_currently_empty_zone(struct zone *zone,
3316 unsigned long zone_start_pfn,
3317 unsigned long size,
3318 enum memmap_context context)
3320 struct pglist_data *pgdat = zone->zone_pgdat;
3321 int ret;
3322 ret = zone_wait_table_init(zone, size);
3323 if (ret)
3324 return ret;
3325 pgdat->nr_zones = zone_idx(zone) + 1;
3327 zone->zone_start_pfn = zone_start_pfn;
3329 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3330 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3331 pgdat->node_id,
3332 (unsigned long)zone_idx(zone),
3333 zone_start_pfn, (zone_start_pfn + size));
3335 zone_init_free_lists(zone);
3337 return 0;
3340 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3342 * Basic iterator support. Return the first range of PFNs for a node
3343 * Note: nid == MAX_NUMNODES returns first region regardless of node
3345 static int __meminit first_active_region_index_in_nid(int nid)
3347 int i;
3349 for (i = 0; i < nr_nodemap_entries; i++)
3350 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3351 return i;
3353 return -1;
3357 * Basic iterator support. Return the next active range of PFNs for a node
3358 * Note: nid == MAX_NUMNODES returns next region regardless of node
3360 static int __meminit next_active_region_index_in_nid(int index, int nid)
3362 for (index = index + 1; index < nr_nodemap_entries; index++)
3363 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3364 return index;
3366 return -1;
3369 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3371 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3372 * Architectures may implement their own version but if add_active_range()
3373 * was used and there are no special requirements, this is a convenient
3374 * alternative
3376 int __meminit __early_pfn_to_nid(unsigned long pfn)
3378 int i;
3380 for (i = 0; i < nr_nodemap_entries; i++) {
3381 unsigned long start_pfn = early_node_map[i].start_pfn;
3382 unsigned long end_pfn = early_node_map[i].end_pfn;
3384 if (start_pfn <= pfn && pfn < end_pfn)
3385 return early_node_map[i].nid;
3387 /* This is a memory hole */
3388 return -1;
3390 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3392 int __meminit early_pfn_to_nid(unsigned long pfn)
3394 int nid;
3396 nid = __early_pfn_to_nid(pfn);
3397 if (nid >= 0)
3398 return nid;
3399 /* just returns 0 */
3400 return 0;
3403 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3404 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3406 int nid;
3408 nid = __early_pfn_to_nid(pfn);
3409 if (nid >= 0 && nid != node)
3410 return false;
3411 return true;
3413 #endif
3415 /* Basic iterator support to walk early_node_map[] */
3416 #define for_each_active_range_index_in_nid(i, nid) \
3417 for (i = first_active_region_index_in_nid(nid); i != -1; \
3418 i = next_active_region_index_in_nid(i, nid))
3421 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3422 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3423 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3425 * If an architecture guarantees that all ranges registered with
3426 * add_active_ranges() contain no holes and may be freed, this
3427 * this function may be used instead of calling free_bootmem() manually.
3429 void __init free_bootmem_with_active_regions(int nid,
3430 unsigned long max_low_pfn)
3432 int i;
3434 for_each_active_range_index_in_nid(i, nid) {
3435 unsigned long size_pages = 0;
3436 unsigned long end_pfn = early_node_map[i].end_pfn;
3438 if (early_node_map[i].start_pfn >= max_low_pfn)
3439 continue;
3441 if (end_pfn > max_low_pfn)
3442 end_pfn = max_low_pfn;
3444 size_pages = end_pfn - early_node_map[i].start_pfn;
3445 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3446 PFN_PHYS(early_node_map[i].start_pfn),
3447 size_pages << PAGE_SHIFT);
3451 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3453 int i;
3454 int ret;
3456 for_each_active_range_index_in_nid(i, nid) {
3457 ret = work_fn(early_node_map[i].start_pfn,
3458 early_node_map[i].end_pfn, data);
3459 if (ret)
3460 break;
3464 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3465 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3467 * If an architecture guarantees that all ranges registered with
3468 * add_active_ranges() contain no holes and may be freed, this
3469 * function may be used instead of calling memory_present() manually.
3471 void __init sparse_memory_present_with_active_regions(int nid)
3473 int i;
3475 for_each_active_range_index_in_nid(i, nid)
3476 memory_present(early_node_map[i].nid,
3477 early_node_map[i].start_pfn,
3478 early_node_map[i].end_pfn);
3482 * get_pfn_range_for_nid - Return the start and end page frames for a node
3483 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3484 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3485 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3487 * It returns the start and end page frame of a node based on information
3488 * provided by an arch calling add_active_range(). If called for a node
3489 * with no available memory, a warning is printed and the start and end
3490 * PFNs will be 0.
3492 void __meminit get_pfn_range_for_nid(unsigned int nid,
3493 unsigned long *start_pfn, unsigned long *end_pfn)
3495 int i;
3496 *start_pfn = -1UL;
3497 *end_pfn = 0;
3499 for_each_active_range_index_in_nid(i, nid) {
3500 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3501 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3504 if (*start_pfn == -1UL)
3505 *start_pfn = 0;
3509 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3510 * assumption is made that zones within a node are ordered in monotonic
3511 * increasing memory addresses so that the "highest" populated zone is used
3513 static void __init find_usable_zone_for_movable(void)
3515 int zone_index;
3516 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3517 if (zone_index == ZONE_MOVABLE)
3518 continue;
3520 if (arch_zone_highest_possible_pfn[zone_index] >
3521 arch_zone_lowest_possible_pfn[zone_index])
3522 break;
3525 VM_BUG_ON(zone_index == -1);
3526 movable_zone = zone_index;
3530 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3531 * because it is sized independant of architecture. Unlike the other zones,
3532 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3533 * in each node depending on the size of each node and how evenly kernelcore
3534 * is distributed. This helper function adjusts the zone ranges
3535 * provided by the architecture for a given node by using the end of the
3536 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3537 * zones within a node are in order of monotonic increases memory addresses
3539 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3540 unsigned long zone_type,
3541 unsigned long node_start_pfn,
3542 unsigned long node_end_pfn,
3543 unsigned long *zone_start_pfn,
3544 unsigned long *zone_end_pfn)
3546 /* Only adjust if ZONE_MOVABLE is on this node */
3547 if (zone_movable_pfn[nid]) {
3548 /* Size ZONE_MOVABLE */
3549 if (zone_type == ZONE_MOVABLE) {
3550 *zone_start_pfn = zone_movable_pfn[nid];
3551 *zone_end_pfn = min(node_end_pfn,
3552 arch_zone_highest_possible_pfn[movable_zone]);
3554 /* Adjust for ZONE_MOVABLE starting within this range */
3555 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3556 *zone_end_pfn > zone_movable_pfn[nid]) {
3557 *zone_end_pfn = zone_movable_pfn[nid];
3559 /* Check if this whole range is within ZONE_MOVABLE */
3560 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3561 *zone_start_pfn = *zone_end_pfn;
3566 * Return the number of pages a zone spans in a node, including holes
3567 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3569 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3570 unsigned long zone_type,
3571 unsigned long *ignored)
3573 unsigned long node_start_pfn, node_end_pfn;
3574 unsigned long zone_start_pfn, zone_end_pfn;
3576 /* Get the start and end of the node and zone */
3577 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3578 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3579 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3580 adjust_zone_range_for_zone_movable(nid, zone_type,
3581 node_start_pfn, node_end_pfn,
3582 &zone_start_pfn, &zone_end_pfn);
3584 /* Check that this node has pages within the zone's required range */
3585 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3586 return 0;
3588 /* Move the zone boundaries inside the node if necessary */
3589 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3590 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3592 /* Return the spanned pages */
3593 return zone_end_pfn - zone_start_pfn;
3597 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3598 * then all holes in the requested range will be accounted for.
3600 unsigned long __meminit __absent_pages_in_range(int nid,
3601 unsigned long range_start_pfn,
3602 unsigned long range_end_pfn)
3604 int i = 0;
3605 unsigned long prev_end_pfn = 0, hole_pages = 0;
3606 unsigned long start_pfn;
3608 /* Find the end_pfn of the first active range of pfns in the node */
3609 i = first_active_region_index_in_nid(nid);
3610 if (i == -1)
3611 return 0;
3613 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3615 /* Account for ranges before physical memory on this node */
3616 if (early_node_map[i].start_pfn > range_start_pfn)
3617 hole_pages = prev_end_pfn - range_start_pfn;
3619 /* Find all holes for the zone within the node */
3620 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3622 /* No need to continue if prev_end_pfn is outside the zone */
3623 if (prev_end_pfn >= range_end_pfn)
3624 break;
3626 /* Make sure the end of the zone is not within the hole */
3627 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3628 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3630 /* Update the hole size cound and move on */
3631 if (start_pfn > range_start_pfn) {
3632 BUG_ON(prev_end_pfn > start_pfn);
3633 hole_pages += start_pfn - prev_end_pfn;
3635 prev_end_pfn = early_node_map[i].end_pfn;
3638 /* Account for ranges past physical memory on this node */
3639 if (range_end_pfn > prev_end_pfn)
3640 hole_pages += range_end_pfn -
3641 max(range_start_pfn, prev_end_pfn);
3643 return hole_pages;
3647 * absent_pages_in_range - Return number of page frames in holes within a range
3648 * @start_pfn: The start PFN to start searching for holes
3649 * @end_pfn: The end PFN to stop searching for holes
3651 * It returns the number of pages frames in memory holes within a range.
3653 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3654 unsigned long end_pfn)
3656 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3659 /* Return the number of page frames in holes in a zone on a node */
3660 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3661 unsigned long zone_type,
3662 unsigned long *ignored)
3664 unsigned long node_start_pfn, node_end_pfn;
3665 unsigned long zone_start_pfn, zone_end_pfn;
3667 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3668 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3669 node_start_pfn);
3670 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3671 node_end_pfn);
3673 adjust_zone_range_for_zone_movable(nid, zone_type,
3674 node_start_pfn, node_end_pfn,
3675 &zone_start_pfn, &zone_end_pfn);
3676 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3679 #else
3680 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3681 unsigned long zone_type,
3682 unsigned long *zones_size)
3684 return zones_size[zone_type];
3687 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3688 unsigned long zone_type,
3689 unsigned long *zholes_size)
3691 if (!zholes_size)
3692 return 0;
3694 return zholes_size[zone_type];
3697 #endif
3699 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3700 unsigned long *zones_size, unsigned long *zholes_size)
3702 unsigned long realtotalpages, totalpages = 0;
3703 enum zone_type i;
3705 for (i = 0; i < MAX_NR_ZONES; i++)
3706 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3707 zones_size);
3708 pgdat->node_spanned_pages = totalpages;
3710 realtotalpages = totalpages;
3711 for (i = 0; i < MAX_NR_ZONES; i++)
3712 realtotalpages -=
3713 zone_absent_pages_in_node(pgdat->node_id, i,
3714 zholes_size);
3715 pgdat->node_present_pages = realtotalpages;
3716 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3717 realtotalpages);
3720 #ifndef CONFIG_SPARSEMEM
3722 * Calculate the size of the zone->blockflags rounded to an unsigned long
3723 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3724 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3725 * round what is now in bits to nearest long in bits, then return it in
3726 * bytes.
3728 static unsigned long __init usemap_size(unsigned long zonesize)
3730 unsigned long usemapsize;
3732 usemapsize = roundup(zonesize, pageblock_nr_pages);
3733 usemapsize = usemapsize >> pageblock_order;
3734 usemapsize *= NR_PAGEBLOCK_BITS;
3735 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3737 return usemapsize / 8;
3740 static void __init setup_usemap(struct pglist_data *pgdat,
3741 struct zone *zone, unsigned long zonesize)
3743 unsigned long usemapsize = usemap_size(zonesize);
3744 zone->pageblock_flags = NULL;
3745 if (usemapsize)
3746 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3748 #else
3749 static void inline setup_usemap(struct pglist_data *pgdat,
3750 struct zone *zone, unsigned long zonesize) {}
3751 #endif /* CONFIG_SPARSEMEM */
3753 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3755 /* Return a sensible default order for the pageblock size. */
3756 static inline int pageblock_default_order(void)
3758 if (HPAGE_SHIFT > PAGE_SHIFT)
3759 return HUGETLB_PAGE_ORDER;
3761 return MAX_ORDER-1;
3764 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3765 static inline void __init set_pageblock_order(unsigned int order)
3767 /* Check that pageblock_nr_pages has not already been setup */
3768 if (pageblock_order)
3769 return;
3772 * Assume the largest contiguous order of interest is a huge page.
3773 * This value may be variable depending on boot parameters on IA64
3775 pageblock_order = order;
3777 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3780 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3781 * and pageblock_default_order() are unused as pageblock_order is set
3782 * at compile-time. See include/linux/pageblock-flags.h for the values of
3783 * pageblock_order based on the kernel config
3785 static inline int pageblock_default_order(unsigned int order)
3787 return MAX_ORDER-1;
3789 #define set_pageblock_order(x) do {} while (0)
3791 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3794 * Set up the zone data structures:
3795 * - mark all pages reserved
3796 * - mark all memory queues empty
3797 * - clear the memory bitmaps
3799 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3800 unsigned long *zones_size, unsigned long *zholes_size)
3802 enum zone_type j;
3803 int nid = pgdat->node_id;
3804 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3805 int ret;
3807 pgdat_resize_init(pgdat);
3808 pgdat->nr_zones = 0;
3809 init_waitqueue_head(&pgdat->kswapd_wait);
3810 pgdat->kswapd_max_order = 0;
3811 pgdat_page_cgroup_init(pgdat);
3813 for (j = 0; j < MAX_NR_ZONES; j++) {
3814 struct zone *zone = pgdat->node_zones + j;
3815 unsigned long size, realsize, memmap_pages;
3816 enum lru_list l;
3818 size = zone_spanned_pages_in_node(nid, j, zones_size);
3819 realsize = size - zone_absent_pages_in_node(nid, j,
3820 zholes_size);
3823 * Adjust realsize so that it accounts for how much memory
3824 * is used by this zone for memmap. This affects the watermark
3825 * and per-cpu initialisations
3827 memmap_pages =
3828 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3829 if (realsize >= memmap_pages) {
3830 realsize -= memmap_pages;
3831 if (memmap_pages)
3832 printk(KERN_DEBUG
3833 " %s zone: %lu pages used for memmap\n",
3834 zone_names[j], memmap_pages);
3835 } else
3836 printk(KERN_WARNING
3837 " %s zone: %lu pages exceeds realsize %lu\n",
3838 zone_names[j], memmap_pages, realsize);
3840 /* Account for reserved pages */
3841 if (j == 0 && realsize > dma_reserve) {
3842 realsize -= dma_reserve;
3843 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3844 zone_names[0], dma_reserve);
3847 if (!is_highmem_idx(j))
3848 nr_kernel_pages += realsize;
3849 nr_all_pages += realsize;
3851 zone->spanned_pages = size;
3852 zone->present_pages = realsize;
3853 #ifdef CONFIG_NUMA
3854 zone->node = nid;
3855 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3856 / 100;
3857 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3858 #endif
3859 zone->name = zone_names[j];
3860 spin_lock_init(&zone->lock);
3861 spin_lock_init(&zone->lru_lock);
3862 zone_seqlock_init(zone);
3863 zone->zone_pgdat = pgdat;
3865 zone->prev_priority = DEF_PRIORITY;
3867 zone_pcp_init(zone);
3868 for_each_lru(l) {
3869 INIT_LIST_HEAD(&zone->lru[l].list);
3870 zone->reclaim_stat.nr_saved_scan[l] = 0;
3872 zone->reclaim_stat.recent_rotated[0] = 0;
3873 zone->reclaim_stat.recent_rotated[1] = 0;
3874 zone->reclaim_stat.recent_scanned[0] = 0;
3875 zone->reclaim_stat.recent_scanned[1] = 0;
3876 zap_zone_vm_stats(zone);
3877 zone->flags = 0;
3878 if (!size)
3879 continue;
3881 set_pageblock_order(pageblock_default_order());
3882 setup_usemap(pgdat, zone, size);
3883 ret = init_currently_empty_zone(zone, zone_start_pfn,
3884 size, MEMMAP_EARLY);
3885 BUG_ON(ret);
3886 memmap_init(size, nid, j, zone_start_pfn);
3887 zone_start_pfn += size;
3891 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3893 /* Skip empty nodes */
3894 if (!pgdat->node_spanned_pages)
3895 return;
3897 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3898 /* ia64 gets its own node_mem_map, before this, without bootmem */
3899 if (!pgdat->node_mem_map) {
3900 unsigned long size, start, end;
3901 struct page *map;
3904 * The zone's endpoints aren't required to be MAX_ORDER
3905 * aligned but the node_mem_map endpoints must be in order
3906 * for the buddy allocator to function correctly.
3908 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3909 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3910 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3911 size = (end - start) * sizeof(struct page);
3912 map = alloc_remap(pgdat->node_id, size);
3913 if (!map)
3914 map = alloc_bootmem_node(pgdat, size);
3915 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3917 #ifndef CONFIG_NEED_MULTIPLE_NODES
3919 * With no DISCONTIG, the global mem_map is just set as node 0's
3921 if (pgdat == NODE_DATA(0)) {
3922 mem_map = NODE_DATA(0)->node_mem_map;
3923 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3924 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3925 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3926 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3928 #endif
3929 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3932 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3933 unsigned long node_start_pfn, unsigned long *zholes_size)
3935 pg_data_t *pgdat = NODE_DATA(nid);
3937 pgdat->node_id = nid;
3938 pgdat->node_start_pfn = node_start_pfn;
3939 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3941 alloc_node_mem_map(pgdat);
3942 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3943 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3944 nid, (unsigned long)pgdat,
3945 (unsigned long)pgdat->node_mem_map);
3946 #endif
3948 free_area_init_core(pgdat, zones_size, zholes_size);
3951 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3953 #if MAX_NUMNODES > 1
3955 * Figure out the number of possible node ids.
3957 static void __init setup_nr_node_ids(void)
3959 unsigned int node;
3960 unsigned int highest = 0;
3962 for_each_node_mask(node, node_possible_map)
3963 highest = node;
3964 nr_node_ids = highest + 1;
3966 #else
3967 static inline void setup_nr_node_ids(void)
3970 #endif
3973 * add_active_range - Register a range of PFNs backed by physical memory
3974 * @nid: The node ID the range resides on
3975 * @start_pfn: The start PFN of the available physical memory
3976 * @end_pfn: The end PFN of the available physical memory
3978 * These ranges are stored in an early_node_map[] and later used by
3979 * free_area_init_nodes() to calculate zone sizes and holes. If the
3980 * range spans a memory hole, it is up to the architecture to ensure
3981 * the memory is not freed by the bootmem allocator. If possible
3982 * the range being registered will be merged with existing ranges.
3984 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3985 unsigned long end_pfn)
3987 int i;
3989 mminit_dprintk(MMINIT_TRACE, "memory_register",
3990 "Entering add_active_range(%d, %#lx, %#lx) "
3991 "%d entries of %d used\n",
3992 nid, start_pfn, end_pfn,
3993 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3995 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3997 /* Merge with existing active regions if possible */
3998 for (i = 0; i < nr_nodemap_entries; i++) {
3999 if (early_node_map[i].nid != nid)
4000 continue;
4002 /* Skip if an existing region covers this new one */
4003 if (start_pfn >= early_node_map[i].start_pfn &&
4004 end_pfn <= early_node_map[i].end_pfn)
4005 return;
4007 /* Merge forward if suitable */
4008 if (start_pfn <= early_node_map[i].end_pfn &&
4009 end_pfn > early_node_map[i].end_pfn) {
4010 early_node_map[i].end_pfn = end_pfn;
4011 return;
4014 /* Merge backward if suitable */
4015 if (start_pfn < early_node_map[i].start_pfn &&
4016 end_pfn >= early_node_map[i].start_pfn) {
4017 early_node_map[i].start_pfn = start_pfn;
4018 return;
4022 /* Check that early_node_map is large enough */
4023 if (i >= MAX_ACTIVE_REGIONS) {
4024 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4025 MAX_ACTIVE_REGIONS);
4026 return;
4029 early_node_map[i].nid = nid;
4030 early_node_map[i].start_pfn = start_pfn;
4031 early_node_map[i].end_pfn = end_pfn;
4032 nr_nodemap_entries = i + 1;
4036 * remove_active_range - Shrink an existing registered range of PFNs
4037 * @nid: The node id the range is on that should be shrunk
4038 * @start_pfn: The new PFN of the range
4039 * @end_pfn: The new PFN of the range
4041 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4042 * The map is kept near the end physical page range that has already been
4043 * registered. This function allows an arch to shrink an existing registered
4044 * range.
4046 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4047 unsigned long end_pfn)
4049 int i, j;
4050 int removed = 0;
4052 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4053 nid, start_pfn, end_pfn);
4055 /* Find the old active region end and shrink */
4056 for_each_active_range_index_in_nid(i, nid) {
4057 if (early_node_map[i].start_pfn >= start_pfn &&
4058 early_node_map[i].end_pfn <= end_pfn) {
4059 /* clear it */
4060 early_node_map[i].start_pfn = 0;
4061 early_node_map[i].end_pfn = 0;
4062 removed = 1;
4063 continue;
4065 if (early_node_map[i].start_pfn < start_pfn &&
4066 early_node_map[i].end_pfn > start_pfn) {
4067 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4068 early_node_map[i].end_pfn = start_pfn;
4069 if (temp_end_pfn > end_pfn)
4070 add_active_range(nid, end_pfn, temp_end_pfn);
4071 continue;
4073 if (early_node_map[i].start_pfn >= start_pfn &&
4074 early_node_map[i].end_pfn > end_pfn &&
4075 early_node_map[i].start_pfn < end_pfn) {
4076 early_node_map[i].start_pfn = end_pfn;
4077 continue;
4081 if (!removed)
4082 return;
4084 /* remove the blank ones */
4085 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4086 if (early_node_map[i].nid != nid)
4087 continue;
4088 if (early_node_map[i].end_pfn)
4089 continue;
4090 /* we found it, get rid of it */
4091 for (j = i; j < nr_nodemap_entries - 1; j++)
4092 memcpy(&early_node_map[j], &early_node_map[j+1],
4093 sizeof(early_node_map[j]));
4094 j = nr_nodemap_entries - 1;
4095 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4096 nr_nodemap_entries--;
4101 * remove_all_active_ranges - Remove all currently registered regions
4103 * During discovery, it may be found that a table like SRAT is invalid
4104 * and an alternative discovery method must be used. This function removes
4105 * all currently registered regions.
4107 void __init remove_all_active_ranges(void)
4109 memset(early_node_map, 0, sizeof(early_node_map));
4110 nr_nodemap_entries = 0;
4113 /* Compare two active node_active_regions */
4114 static int __init cmp_node_active_region(const void *a, const void *b)
4116 struct node_active_region *arange = (struct node_active_region *)a;
4117 struct node_active_region *brange = (struct node_active_region *)b;
4119 /* Done this way to avoid overflows */
4120 if (arange->start_pfn > brange->start_pfn)
4121 return 1;
4122 if (arange->start_pfn < brange->start_pfn)
4123 return -1;
4125 return 0;
4128 /* sort the node_map by start_pfn */
4129 void __init sort_node_map(void)
4131 sort(early_node_map, (size_t)nr_nodemap_entries,
4132 sizeof(struct node_active_region),
4133 cmp_node_active_region, NULL);
4136 /* Find the lowest pfn for a node */
4137 static unsigned long __init find_min_pfn_for_node(int nid)
4139 int i;
4140 unsigned long min_pfn = ULONG_MAX;
4142 /* Assuming a sorted map, the first range found has the starting pfn */
4143 for_each_active_range_index_in_nid(i, nid)
4144 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4146 if (min_pfn == ULONG_MAX) {
4147 printk(KERN_WARNING
4148 "Could not find start_pfn for node %d\n", nid);
4149 return 0;
4152 return min_pfn;
4156 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4158 * It returns the minimum PFN based on information provided via
4159 * add_active_range().
4161 unsigned long __init find_min_pfn_with_active_regions(void)
4163 return find_min_pfn_for_node(MAX_NUMNODES);
4167 * early_calculate_totalpages()
4168 * Sum pages in active regions for movable zone.
4169 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4171 static unsigned long __init early_calculate_totalpages(void)
4173 int i;
4174 unsigned long totalpages = 0;
4176 for (i = 0; i < nr_nodemap_entries; i++) {
4177 unsigned long pages = early_node_map[i].end_pfn -
4178 early_node_map[i].start_pfn;
4179 totalpages += pages;
4180 if (pages)
4181 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4183 return totalpages;
4187 * Find the PFN the Movable zone begins in each node. Kernel memory
4188 * is spread evenly between nodes as long as the nodes have enough
4189 * memory. When they don't, some nodes will have more kernelcore than
4190 * others
4192 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4194 int i, nid;
4195 unsigned long usable_startpfn;
4196 unsigned long kernelcore_node, kernelcore_remaining;
4197 /* save the state before borrow the nodemask */
4198 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4199 unsigned long totalpages = early_calculate_totalpages();
4200 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4203 * If movablecore was specified, calculate what size of
4204 * kernelcore that corresponds so that memory usable for
4205 * any allocation type is evenly spread. If both kernelcore
4206 * and movablecore are specified, then the value of kernelcore
4207 * will be used for required_kernelcore if it's greater than
4208 * what movablecore would have allowed.
4210 if (required_movablecore) {
4211 unsigned long corepages;
4214 * Round-up so that ZONE_MOVABLE is at least as large as what
4215 * was requested by the user
4217 required_movablecore =
4218 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4219 corepages = totalpages - required_movablecore;
4221 required_kernelcore = max(required_kernelcore, corepages);
4224 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4225 if (!required_kernelcore)
4226 goto out;
4228 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4229 find_usable_zone_for_movable();
4230 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4232 restart:
4233 /* Spread kernelcore memory as evenly as possible throughout nodes */
4234 kernelcore_node = required_kernelcore / usable_nodes;
4235 for_each_node_state(nid, N_HIGH_MEMORY) {
4237 * Recalculate kernelcore_node if the division per node
4238 * now exceeds what is necessary to satisfy the requested
4239 * amount of memory for the kernel
4241 if (required_kernelcore < kernelcore_node)
4242 kernelcore_node = required_kernelcore / usable_nodes;
4245 * As the map is walked, we track how much memory is usable
4246 * by the kernel using kernelcore_remaining. When it is
4247 * 0, the rest of the node is usable by ZONE_MOVABLE
4249 kernelcore_remaining = kernelcore_node;
4251 /* Go through each range of PFNs within this node */
4252 for_each_active_range_index_in_nid(i, nid) {
4253 unsigned long start_pfn, end_pfn;
4254 unsigned long size_pages;
4256 start_pfn = max(early_node_map[i].start_pfn,
4257 zone_movable_pfn[nid]);
4258 end_pfn = early_node_map[i].end_pfn;
4259 if (start_pfn >= end_pfn)
4260 continue;
4262 /* Account for what is only usable for kernelcore */
4263 if (start_pfn < usable_startpfn) {
4264 unsigned long kernel_pages;
4265 kernel_pages = min(end_pfn, usable_startpfn)
4266 - start_pfn;
4268 kernelcore_remaining -= min(kernel_pages,
4269 kernelcore_remaining);
4270 required_kernelcore -= min(kernel_pages,
4271 required_kernelcore);
4273 /* Continue if range is now fully accounted */
4274 if (end_pfn <= usable_startpfn) {
4277 * Push zone_movable_pfn to the end so
4278 * that if we have to rebalance
4279 * kernelcore across nodes, we will
4280 * not double account here
4282 zone_movable_pfn[nid] = end_pfn;
4283 continue;
4285 start_pfn = usable_startpfn;
4289 * The usable PFN range for ZONE_MOVABLE is from
4290 * start_pfn->end_pfn. Calculate size_pages as the
4291 * number of pages used as kernelcore
4293 size_pages = end_pfn - start_pfn;
4294 if (size_pages > kernelcore_remaining)
4295 size_pages = kernelcore_remaining;
4296 zone_movable_pfn[nid] = start_pfn + size_pages;
4299 * Some kernelcore has been met, update counts and
4300 * break if the kernelcore for this node has been
4301 * satisified
4303 required_kernelcore -= min(required_kernelcore,
4304 size_pages);
4305 kernelcore_remaining -= size_pages;
4306 if (!kernelcore_remaining)
4307 break;
4312 * If there is still required_kernelcore, we do another pass with one
4313 * less node in the count. This will push zone_movable_pfn[nid] further
4314 * along on the nodes that still have memory until kernelcore is
4315 * satisified
4317 usable_nodes--;
4318 if (usable_nodes && required_kernelcore > usable_nodes)
4319 goto restart;
4321 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4322 for (nid = 0; nid < MAX_NUMNODES; nid++)
4323 zone_movable_pfn[nid] =
4324 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4326 out:
4327 /* restore the node_state */
4328 node_states[N_HIGH_MEMORY] = saved_node_state;
4331 /* Any regular memory on that node ? */
4332 static void check_for_regular_memory(pg_data_t *pgdat)
4334 #ifdef CONFIG_HIGHMEM
4335 enum zone_type zone_type;
4337 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4338 struct zone *zone = &pgdat->node_zones[zone_type];
4339 if (zone->present_pages)
4340 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4342 #endif
4346 * free_area_init_nodes - Initialise all pg_data_t and zone data
4347 * @max_zone_pfn: an array of max PFNs for each zone
4349 * This will call free_area_init_node() for each active node in the system.
4350 * Using the page ranges provided by add_active_range(), the size of each
4351 * zone in each node and their holes is calculated. If the maximum PFN
4352 * between two adjacent zones match, it is assumed that the zone is empty.
4353 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4354 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4355 * starts where the previous one ended. For example, ZONE_DMA32 starts
4356 * at arch_max_dma_pfn.
4358 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4360 unsigned long nid;
4361 int i;
4363 /* Sort early_node_map as initialisation assumes it is sorted */
4364 sort_node_map();
4366 /* Record where the zone boundaries are */
4367 memset(arch_zone_lowest_possible_pfn, 0,
4368 sizeof(arch_zone_lowest_possible_pfn));
4369 memset(arch_zone_highest_possible_pfn, 0,
4370 sizeof(arch_zone_highest_possible_pfn));
4371 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4372 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4373 for (i = 1; i < MAX_NR_ZONES; i++) {
4374 if (i == ZONE_MOVABLE)
4375 continue;
4376 arch_zone_lowest_possible_pfn[i] =
4377 arch_zone_highest_possible_pfn[i-1];
4378 arch_zone_highest_possible_pfn[i] =
4379 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4381 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4382 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4384 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4385 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4386 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4388 /* Print out the zone ranges */
4389 printk("Zone PFN ranges:\n");
4390 for (i = 0; i < MAX_NR_ZONES; i++) {
4391 if (i == ZONE_MOVABLE)
4392 continue;
4393 printk(" %-8s %0#10lx -> %0#10lx\n",
4394 zone_names[i],
4395 arch_zone_lowest_possible_pfn[i],
4396 arch_zone_highest_possible_pfn[i]);
4399 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4400 printk("Movable zone start PFN for each node\n");
4401 for (i = 0; i < MAX_NUMNODES; i++) {
4402 if (zone_movable_pfn[i])
4403 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4406 /* Print out the early_node_map[] */
4407 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4408 for (i = 0; i < nr_nodemap_entries; i++)
4409 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4410 early_node_map[i].start_pfn,
4411 early_node_map[i].end_pfn);
4413 /* Initialise every node */
4414 mminit_verify_pageflags_layout();
4415 setup_nr_node_ids();
4416 for_each_online_node(nid) {
4417 pg_data_t *pgdat = NODE_DATA(nid);
4418 free_area_init_node(nid, NULL,
4419 find_min_pfn_for_node(nid), NULL);
4421 /* Any memory on that node */
4422 if (pgdat->node_present_pages)
4423 node_set_state(nid, N_HIGH_MEMORY);
4424 check_for_regular_memory(pgdat);
4428 static int __init cmdline_parse_core(char *p, unsigned long *core)
4430 unsigned long long coremem;
4431 if (!p)
4432 return -EINVAL;
4434 coremem = memparse(p, &p);
4435 *core = coremem >> PAGE_SHIFT;
4437 /* Paranoid check that UL is enough for the coremem value */
4438 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4440 return 0;
4444 * kernelcore=size sets the amount of memory for use for allocations that
4445 * cannot be reclaimed or migrated.
4447 static int __init cmdline_parse_kernelcore(char *p)
4449 return cmdline_parse_core(p, &required_kernelcore);
4453 * movablecore=size sets the amount of memory for use for allocations that
4454 * can be reclaimed or migrated.
4456 static int __init cmdline_parse_movablecore(char *p)
4458 return cmdline_parse_core(p, &required_movablecore);
4461 early_param("kernelcore", cmdline_parse_kernelcore);
4462 early_param("movablecore", cmdline_parse_movablecore);
4464 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4467 * set_dma_reserve - set the specified number of pages reserved in the first zone
4468 * @new_dma_reserve: The number of pages to mark reserved
4470 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4471 * In the DMA zone, a significant percentage may be consumed by kernel image
4472 * and other unfreeable allocations which can skew the watermarks badly. This
4473 * function may optionally be used to account for unfreeable pages in the
4474 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4475 * smaller per-cpu batchsize.
4477 void __init set_dma_reserve(unsigned long new_dma_reserve)
4479 dma_reserve = new_dma_reserve;
4482 #ifndef CONFIG_NEED_MULTIPLE_NODES
4483 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4484 EXPORT_SYMBOL(contig_page_data);
4485 #endif
4487 void __init free_area_init(unsigned long *zones_size)
4489 free_area_init_node(0, zones_size,
4490 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4493 static int page_alloc_cpu_notify(struct notifier_block *self,
4494 unsigned long action, void *hcpu)
4496 int cpu = (unsigned long)hcpu;
4498 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4499 drain_pages(cpu);
4502 * Spill the event counters of the dead processor
4503 * into the current processors event counters.
4504 * This artificially elevates the count of the current
4505 * processor.
4507 vm_events_fold_cpu(cpu);
4510 * Zero the differential counters of the dead processor
4511 * so that the vm statistics are consistent.
4513 * This is only okay since the processor is dead and cannot
4514 * race with what we are doing.
4516 refresh_cpu_vm_stats(cpu);
4518 return NOTIFY_OK;
4521 void __init page_alloc_init(void)
4523 hotcpu_notifier(page_alloc_cpu_notify, 0);
4527 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4528 * or min_free_kbytes changes.
4530 static void calculate_totalreserve_pages(void)
4532 struct pglist_data *pgdat;
4533 unsigned long reserve_pages = 0;
4534 enum zone_type i, j;
4536 for_each_online_pgdat(pgdat) {
4537 for (i = 0; i < MAX_NR_ZONES; i++) {
4538 struct zone *zone = pgdat->node_zones + i;
4539 unsigned long max = 0;
4541 /* Find valid and maximum lowmem_reserve in the zone */
4542 for (j = i; j < MAX_NR_ZONES; j++) {
4543 if (zone->lowmem_reserve[j] > max)
4544 max = zone->lowmem_reserve[j];
4547 /* we treat the high watermark as reserved pages. */
4548 max += high_wmark_pages(zone);
4550 if (max > zone->present_pages)
4551 max = zone->present_pages;
4552 reserve_pages += max;
4555 totalreserve_pages = reserve_pages;
4559 * setup_per_zone_lowmem_reserve - called whenever
4560 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4561 * has a correct pages reserved value, so an adequate number of
4562 * pages are left in the zone after a successful __alloc_pages().
4564 static void setup_per_zone_lowmem_reserve(void)
4566 struct pglist_data *pgdat;
4567 enum zone_type j, idx;
4569 for_each_online_pgdat(pgdat) {
4570 for (j = 0; j < MAX_NR_ZONES; j++) {
4571 struct zone *zone = pgdat->node_zones + j;
4572 unsigned long present_pages = zone->present_pages;
4574 zone->lowmem_reserve[j] = 0;
4576 idx = j;
4577 while (idx) {
4578 struct zone *lower_zone;
4580 idx--;
4582 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4583 sysctl_lowmem_reserve_ratio[idx] = 1;
4585 lower_zone = pgdat->node_zones + idx;
4586 lower_zone->lowmem_reserve[j] = present_pages /
4587 sysctl_lowmem_reserve_ratio[idx];
4588 present_pages += lower_zone->present_pages;
4593 /* update totalreserve_pages */
4594 calculate_totalreserve_pages();
4598 * setup_per_zone_wmarks - called when min_free_kbytes changes
4599 * or when memory is hot-{added|removed}
4601 * Ensures that the watermark[min,low,high] values for each zone are set
4602 * correctly with respect to min_free_kbytes.
4604 void setup_per_zone_wmarks(void)
4606 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4607 unsigned long lowmem_pages = 0;
4608 struct zone *zone;
4609 unsigned long flags;
4611 /* Calculate total number of !ZONE_HIGHMEM pages */
4612 for_each_zone(zone) {
4613 if (!is_highmem(zone))
4614 lowmem_pages += zone->present_pages;
4617 for_each_zone(zone) {
4618 u64 tmp;
4620 spin_lock_irqsave(&zone->lock, flags);
4621 tmp = (u64)pages_min * zone->present_pages;
4622 do_div(tmp, lowmem_pages);
4623 if (is_highmem(zone)) {
4625 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4626 * need highmem pages, so cap pages_min to a small
4627 * value here.
4629 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4630 * deltas controls asynch page reclaim, and so should
4631 * not be capped for highmem.
4633 int min_pages;
4635 min_pages = zone->present_pages / 1024;
4636 if (min_pages < SWAP_CLUSTER_MAX)
4637 min_pages = SWAP_CLUSTER_MAX;
4638 if (min_pages > 128)
4639 min_pages = 128;
4640 zone->watermark[WMARK_MIN] = min_pages;
4641 } else {
4643 * If it's a lowmem zone, reserve a number of pages
4644 * proportionate to the zone's size.
4646 zone->watermark[WMARK_MIN] = tmp;
4649 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4650 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4651 setup_zone_migrate_reserve(zone);
4652 spin_unlock_irqrestore(&zone->lock, flags);
4655 /* update totalreserve_pages */
4656 calculate_totalreserve_pages();
4660 * The inactive anon list should be small enough that the VM never has to
4661 * do too much work, but large enough that each inactive page has a chance
4662 * to be referenced again before it is swapped out.
4664 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4665 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4666 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4667 * the anonymous pages are kept on the inactive list.
4669 * total target max
4670 * memory ratio inactive anon
4671 * -------------------------------------
4672 * 10MB 1 5MB
4673 * 100MB 1 50MB
4674 * 1GB 3 250MB
4675 * 10GB 10 0.9GB
4676 * 100GB 31 3GB
4677 * 1TB 101 10GB
4678 * 10TB 320 32GB
4680 void calculate_zone_inactive_ratio(struct zone *zone)
4682 unsigned int gb, ratio;
4684 /* Zone size in gigabytes */
4685 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4686 if (gb)
4687 ratio = int_sqrt(10 * gb);
4688 else
4689 ratio = 1;
4691 zone->inactive_ratio = ratio;
4694 static void __init setup_per_zone_inactive_ratio(void)
4696 struct zone *zone;
4698 for_each_zone(zone)
4699 calculate_zone_inactive_ratio(zone);
4703 * Initialise min_free_kbytes.
4705 * For small machines we want it small (128k min). For large machines
4706 * we want it large (64MB max). But it is not linear, because network
4707 * bandwidth does not increase linearly with machine size. We use
4709 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4710 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4712 * which yields
4714 * 16MB: 512k
4715 * 32MB: 724k
4716 * 64MB: 1024k
4717 * 128MB: 1448k
4718 * 256MB: 2048k
4719 * 512MB: 2896k
4720 * 1024MB: 4096k
4721 * 2048MB: 5792k
4722 * 4096MB: 8192k
4723 * 8192MB: 11584k
4724 * 16384MB: 16384k
4726 static int __init init_per_zone_wmark_min(void)
4728 unsigned long lowmem_kbytes;
4730 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4732 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4733 if (min_free_kbytes < 128)
4734 min_free_kbytes = 128;
4735 if (min_free_kbytes > 65536)
4736 min_free_kbytes = 65536;
4737 setup_per_zone_wmarks();
4738 setup_per_zone_lowmem_reserve();
4739 setup_per_zone_inactive_ratio();
4740 return 0;
4742 module_init(init_per_zone_wmark_min)
4745 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4746 * that we can call two helper functions whenever min_free_kbytes
4747 * changes.
4749 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4750 void __user *buffer, size_t *length, loff_t *ppos)
4752 proc_dointvec(table, write, buffer, length, ppos);
4753 if (write)
4754 setup_per_zone_wmarks();
4755 return 0;
4758 #ifdef CONFIG_NUMA
4759 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4760 void __user *buffer, size_t *length, loff_t *ppos)
4762 struct zone *zone;
4763 int rc;
4765 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4766 if (rc)
4767 return rc;
4769 for_each_zone(zone)
4770 zone->min_unmapped_pages = (zone->present_pages *
4771 sysctl_min_unmapped_ratio) / 100;
4772 return 0;
4775 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4776 void __user *buffer, size_t *length, loff_t *ppos)
4778 struct zone *zone;
4779 int rc;
4781 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4782 if (rc)
4783 return rc;
4785 for_each_zone(zone)
4786 zone->min_slab_pages = (zone->present_pages *
4787 sysctl_min_slab_ratio) / 100;
4788 return 0;
4790 #endif
4793 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4794 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4795 * whenever sysctl_lowmem_reserve_ratio changes.
4797 * The reserve ratio obviously has absolutely no relation with the
4798 * minimum watermarks. The lowmem reserve ratio can only make sense
4799 * if in function of the boot time zone sizes.
4801 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4802 void __user *buffer, size_t *length, loff_t *ppos)
4804 proc_dointvec_minmax(table, write, buffer, length, ppos);
4805 setup_per_zone_lowmem_reserve();
4806 return 0;
4810 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4811 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4812 * can have before it gets flushed back to buddy allocator.
4815 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4816 void __user *buffer, size_t *length, loff_t *ppos)
4818 struct zone *zone;
4819 unsigned int cpu;
4820 int ret;
4822 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4823 if (!write || (ret == -EINVAL))
4824 return ret;
4825 for_each_populated_zone(zone) {
4826 for_each_online_cpu(cpu) {
4827 unsigned long high;
4828 high = zone->present_pages / percpu_pagelist_fraction;
4829 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4832 return 0;
4835 int hashdist = HASHDIST_DEFAULT;
4837 #ifdef CONFIG_NUMA
4838 static int __init set_hashdist(char *str)
4840 if (!str)
4841 return 0;
4842 hashdist = simple_strtoul(str, &str, 0);
4843 return 1;
4845 __setup("hashdist=", set_hashdist);
4846 #endif
4849 * allocate a large system hash table from bootmem
4850 * - it is assumed that the hash table must contain an exact power-of-2
4851 * quantity of entries
4852 * - limit is the number of hash buckets, not the total allocation size
4854 void *__init alloc_large_system_hash(const char *tablename,
4855 unsigned long bucketsize,
4856 unsigned long numentries,
4857 int scale,
4858 int flags,
4859 unsigned int *_hash_shift,
4860 unsigned int *_hash_mask,
4861 unsigned long limit)
4863 unsigned long long max = limit;
4864 unsigned long log2qty, size;
4865 void *table = NULL;
4867 /* allow the kernel cmdline to have a say */
4868 if (!numentries) {
4869 /* round applicable memory size up to nearest megabyte */
4870 numentries = nr_kernel_pages;
4871 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4872 numentries >>= 20 - PAGE_SHIFT;
4873 numentries <<= 20 - PAGE_SHIFT;
4875 /* limit to 1 bucket per 2^scale bytes of low memory */
4876 if (scale > PAGE_SHIFT)
4877 numentries >>= (scale - PAGE_SHIFT);
4878 else
4879 numentries <<= (PAGE_SHIFT - scale);
4881 /* Make sure we've got at least a 0-order allocation.. */
4882 if (unlikely(flags & HASH_SMALL)) {
4883 /* Makes no sense without HASH_EARLY */
4884 WARN_ON(!(flags & HASH_EARLY));
4885 if (!(numentries >> *_hash_shift)) {
4886 numentries = 1UL << *_hash_shift;
4887 BUG_ON(!numentries);
4889 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4890 numentries = PAGE_SIZE / bucketsize;
4892 numentries = roundup_pow_of_two(numentries);
4894 /* limit allocation size to 1/16 total memory by default */
4895 if (max == 0) {
4896 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4897 do_div(max, bucketsize);
4900 if (numentries > max)
4901 numentries = max;
4903 log2qty = ilog2(numentries);
4905 do {
4906 size = bucketsize << log2qty;
4907 if (flags & HASH_EARLY)
4908 table = alloc_bootmem_nopanic(size);
4909 else if (hashdist)
4910 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4911 else {
4913 * If bucketsize is not a power-of-two, we may free
4914 * some pages at the end of hash table which
4915 * alloc_pages_exact() automatically does
4917 if (get_order(size) < MAX_ORDER) {
4918 table = alloc_pages_exact(size, GFP_ATOMIC);
4919 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4922 } while (!table && size > PAGE_SIZE && --log2qty);
4924 if (!table)
4925 panic("Failed to allocate %s hash table\n", tablename);
4927 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4928 tablename,
4929 (1U << log2qty),
4930 ilog2(size) - PAGE_SHIFT,
4931 size);
4933 if (_hash_shift)
4934 *_hash_shift = log2qty;
4935 if (_hash_mask)
4936 *_hash_mask = (1 << log2qty) - 1;
4938 return table;
4941 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4942 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4943 unsigned long pfn)
4945 #ifdef CONFIG_SPARSEMEM
4946 return __pfn_to_section(pfn)->pageblock_flags;
4947 #else
4948 return zone->pageblock_flags;
4949 #endif /* CONFIG_SPARSEMEM */
4952 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4954 #ifdef CONFIG_SPARSEMEM
4955 pfn &= (PAGES_PER_SECTION-1);
4956 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4957 #else
4958 pfn = pfn - zone->zone_start_pfn;
4959 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4960 #endif /* CONFIG_SPARSEMEM */
4964 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4965 * @page: The page within the block of interest
4966 * @start_bitidx: The first bit of interest to retrieve
4967 * @end_bitidx: The last bit of interest
4968 * returns pageblock_bits flags
4970 unsigned long get_pageblock_flags_group(struct page *page,
4971 int start_bitidx, int end_bitidx)
4973 struct zone *zone;
4974 unsigned long *bitmap;
4975 unsigned long pfn, bitidx;
4976 unsigned long flags = 0;
4977 unsigned long value = 1;
4979 zone = page_zone(page);
4980 pfn = page_to_pfn(page);
4981 bitmap = get_pageblock_bitmap(zone, pfn);
4982 bitidx = pfn_to_bitidx(zone, pfn);
4984 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4985 if (test_bit(bitidx + start_bitidx, bitmap))
4986 flags |= value;
4988 return flags;
4992 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4993 * @page: The page within the block of interest
4994 * @start_bitidx: The first bit of interest
4995 * @end_bitidx: The last bit of interest
4996 * @flags: The flags to set
4998 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4999 int start_bitidx, int end_bitidx)
5001 struct zone *zone;
5002 unsigned long *bitmap;
5003 unsigned long pfn, bitidx;
5004 unsigned long value = 1;
5006 zone = page_zone(page);
5007 pfn = page_to_pfn(page);
5008 bitmap = get_pageblock_bitmap(zone, pfn);
5009 bitidx = pfn_to_bitidx(zone, pfn);
5010 VM_BUG_ON(pfn < zone->zone_start_pfn);
5011 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5013 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5014 if (flags & value)
5015 __set_bit(bitidx + start_bitidx, bitmap);
5016 else
5017 __clear_bit(bitidx + start_bitidx, bitmap);
5021 * This is designed as sub function...plz see page_isolation.c also.
5022 * set/clear page block's type to be ISOLATE.
5023 * page allocater never alloc memory from ISOLATE block.
5026 int set_migratetype_isolate(struct page *page)
5028 struct zone *zone;
5029 struct page *curr_page;
5030 unsigned long flags, pfn, iter;
5031 unsigned long immobile = 0;
5032 struct memory_isolate_notify arg;
5033 int notifier_ret;
5034 int ret = -EBUSY;
5035 int zone_idx;
5037 zone = page_zone(page);
5038 zone_idx = zone_idx(zone);
5040 spin_lock_irqsave(&zone->lock, flags);
5041 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5042 zone_idx == ZONE_MOVABLE) {
5043 ret = 0;
5044 goto out;
5047 pfn = page_to_pfn(page);
5048 arg.start_pfn = pfn;
5049 arg.nr_pages = pageblock_nr_pages;
5050 arg.pages_found = 0;
5053 * It may be possible to isolate a pageblock even if the
5054 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5055 * notifier chain is used by balloon drivers to return the
5056 * number of pages in a range that are held by the balloon
5057 * driver to shrink memory. If all the pages are accounted for
5058 * by balloons, are free, or on the LRU, isolation can continue.
5059 * Later, for example, when memory hotplug notifier runs, these
5060 * pages reported as "can be isolated" should be isolated(freed)
5061 * by the balloon driver through the memory notifier chain.
5063 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5064 notifier_ret = notifier_to_errno(notifier_ret);
5065 if (notifier_ret || !arg.pages_found)
5066 goto out;
5068 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5069 if (!pfn_valid_within(pfn))
5070 continue;
5072 curr_page = pfn_to_page(iter);
5073 if (!page_count(curr_page) || PageLRU(curr_page))
5074 continue;
5076 immobile++;
5079 if (arg.pages_found == immobile)
5080 ret = 0;
5082 out:
5083 if (!ret) {
5084 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5085 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5088 spin_unlock_irqrestore(&zone->lock, flags);
5089 if (!ret)
5090 drain_all_pages();
5091 return ret;
5094 void unset_migratetype_isolate(struct page *page)
5096 struct zone *zone;
5097 unsigned long flags;
5098 zone = page_zone(page);
5099 spin_lock_irqsave(&zone->lock, flags);
5100 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5101 goto out;
5102 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5103 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5104 out:
5105 spin_unlock_irqrestore(&zone->lock, flags);
5108 #ifdef CONFIG_MEMORY_HOTREMOVE
5110 * All pages in the range must be isolated before calling this.
5112 void
5113 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5115 struct page *page;
5116 struct zone *zone;
5117 int order, i;
5118 unsigned long pfn;
5119 unsigned long flags;
5120 /* find the first valid pfn */
5121 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5122 if (pfn_valid(pfn))
5123 break;
5124 if (pfn == end_pfn)
5125 return;
5126 zone = page_zone(pfn_to_page(pfn));
5127 spin_lock_irqsave(&zone->lock, flags);
5128 pfn = start_pfn;
5129 while (pfn < end_pfn) {
5130 if (!pfn_valid(pfn)) {
5131 pfn++;
5132 continue;
5134 page = pfn_to_page(pfn);
5135 BUG_ON(page_count(page));
5136 BUG_ON(!PageBuddy(page));
5137 order = page_order(page);
5138 #ifdef CONFIG_DEBUG_VM
5139 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5140 pfn, 1 << order, end_pfn);
5141 #endif
5142 list_del(&page->lru);
5143 rmv_page_order(page);
5144 zone->free_area[order].nr_free--;
5145 __mod_zone_page_state(zone, NR_FREE_PAGES,
5146 - (1UL << order));
5147 for (i = 0; i < (1 << order); i++)
5148 SetPageReserved((page+i));
5149 pfn += (1 << order);
5151 spin_unlock_irqrestore(&zone->lock, flags);
5153 #endif
5155 #ifdef CONFIG_MEMORY_FAILURE
5156 bool is_free_buddy_page(struct page *page)
5158 struct zone *zone = page_zone(page);
5159 unsigned long pfn = page_to_pfn(page);
5160 unsigned long flags;
5161 int order;
5163 spin_lock_irqsave(&zone->lock, flags);
5164 for (order = 0; order < MAX_ORDER; order++) {
5165 struct page *page_head = page - (pfn & ((1 << order) - 1));
5167 if (PageBuddy(page_head) && page_order(page_head) >= order)
5168 break;
5170 spin_unlock_irqrestore(&zone->lock, flags);
5172 return order < MAX_ORDER;
5174 #endif