platform/x86: move rfkill for Dell Mini 1012 to compal-laptop
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blob3544f60b8739a5b5a06206354dad09adc3ad3f4b
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
18 void task_mem(struct seq_file *m, struct mm_struct *mm)
20 unsigned long data, text, lib, swap;
21 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 * hiwater_rss only when about to *lower* total_vm or rss. Any
26 * collector of these hiwater stats must therefore get total_vm
27 * and rss too, which will usually be the higher. Barriers? not
28 * worth the effort, such snapshots can always be inconsistent.
30 hiwater_vm = total_vm = mm->total_vm;
31 if (hiwater_vm < mm->hiwater_vm)
32 hiwater_vm = mm->hiwater_vm;
33 hiwater_rss = total_rss = get_mm_rss(mm);
34 if (hiwater_rss < mm->hiwater_rss)
35 hiwater_rss = mm->hiwater_rss;
37 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 swap = get_mm_counter(mm, MM_SWAPENTS);
41 seq_printf(m,
42 "VmPeak:\t%8lu kB\n"
43 "VmSize:\t%8lu kB\n"
44 "VmLck:\t%8lu kB\n"
45 "VmHWM:\t%8lu kB\n"
46 "VmRSS:\t%8lu kB\n"
47 "VmData:\t%8lu kB\n"
48 "VmStk:\t%8lu kB\n"
49 "VmExe:\t%8lu kB\n"
50 "VmLib:\t%8lu kB\n"
51 "VmPTE:\t%8lu kB\n"
52 "VmSwap:\t%8lu kB\n",
53 hiwater_vm << (PAGE_SHIFT-10),
54 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
55 mm->locked_vm << (PAGE_SHIFT-10),
56 hiwater_rss << (PAGE_SHIFT-10),
57 total_rss << (PAGE_SHIFT-10),
58 data << (PAGE_SHIFT-10),
59 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
60 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
61 swap << (PAGE_SHIFT-10));
64 unsigned long task_vsize(struct mm_struct *mm)
66 return PAGE_SIZE * mm->total_vm;
69 int task_statm(struct mm_struct *mm, int *shared, int *text,
70 int *data, int *resident)
72 *shared = get_mm_counter(mm, MM_FILEPAGES);
73 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
74 >> PAGE_SHIFT;
75 *data = mm->total_vm - mm->shared_vm;
76 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
77 return mm->total_vm;
80 static void pad_len_spaces(struct seq_file *m, int len)
82 len = 25 + sizeof(void*) * 6 - len;
83 if (len < 1)
84 len = 1;
85 seq_printf(m, "%*c", len, ' ');
88 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
90 if (vma && vma != priv->tail_vma) {
91 struct mm_struct *mm = vma->vm_mm;
92 up_read(&mm->mmap_sem);
93 mmput(mm);
97 static void *m_start(struct seq_file *m, loff_t *pos)
99 struct proc_maps_private *priv = m->private;
100 unsigned long last_addr = m->version;
101 struct mm_struct *mm;
102 struct vm_area_struct *vma, *tail_vma = NULL;
103 loff_t l = *pos;
105 /* Clear the per syscall fields in priv */
106 priv->task = NULL;
107 priv->tail_vma = NULL;
110 * We remember last_addr rather than next_addr to hit with
111 * mmap_cache most of the time. We have zero last_addr at
112 * the beginning and also after lseek. We will have -1 last_addr
113 * after the end of the vmas.
116 if (last_addr == -1UL)
117 return NULL;
119 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
120 if (!priv->task)
121 return NULL;
123 mm = mm_for_maps(priv->task);
124 if (!mm)
125 return NULL;
126 down_read(&mm->mmap_sem);
128 tail_vma = get_gate_vma(priv->task);
129 priv->tail_vma = tail_vma;
131 /* Start with last addr hint */
132 vma = find_vma(mm, last_addr);
133 if (last_addr && vma) {
134 vma = vma->vm_next;
135 goto out;
139 * Check the vma index is within the range and do
140 * sequential scan until m_index.
142 vma = NULL;
143 if ((unsigned long)l < mm->map_count) {
144 vma = mm->mmap;
145 while (l-- && vma)
146 vma = vma->vm_next;
147 goto out;
150 if (l != mm->map_count)
151 tail_vma = NULL; /* After gate vma */
153 out:
154 if (vma)
155 return vma;
157 /* End of vmas has been reached */
158 m->version = (tail_vma != NULL)? 0: -1UL;
159 up_read(&mm->mmap_sem);
160 mmput(mm);
161 return tail_vma;
164 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
166 struct proc_maps_private *priv = m->private;
167 struct vm_area_struct *vma = v;
168 struct vm_area_struct *tail_vma = priv->tail_vma;
170 (*pos)++;
171 if (vma && (vma != tail_vma) && vma->vm_next)
172 return vma->vm_next;
173 vma_stop(priv, vma);
174 return (vma != tail_vma)? tail_vma: NULL;
177 static void m_stop(struct seq_file *m, void *v)
179 struct proc_maps_private *priv = m->private;
180 struct vm_area_struct *vma = v;
182 vma_stop(priv, vma);
183 if (priv->task)
184 put_task_struct(priv->task);
187 static int do_maps_open(struct inode *inode, struct file *file,
188 const struct seq_operations *ops)
190 struct proc_maps_private *priv;
191 int ret = -ENOMEM;
192 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
193 if (priv) {
194 priv->pid = proc_pid(inode);
195 ret = seq_open(file, ops);
196 if (!ret) {
197 struct seq_file *m = file->private_data;
198 m->private = priv;
199 } else {
200 kfree(priv);
203 return ret;
206 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
208 struct mm_struct *mm = vma->vm_mm;
209 struct file *file = vma->vm_file;
210 int flags = vma->vm_flags;
211 unsigned long ino = 0;
212 unsigned long long pgoff = 0;
213 unsigned long start;
214 dev_t dev = 0;
215 int len;
217 if (file) {
218 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
219 dev = inode->i_sb->s_dev;
220 ino = inode->i_ino;
221 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
224 /* We don't show the stack guard page in /proc/maps */
225 start = vma->vm_start;
226 if (vma->vm_flags & VM_GROWSDOWN)
227 start += PAGE_SIZE;
229 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
230 start,
231 vma->vm_end,
232 flags & VM_READ ? 'r' : '-',
233 flags & VM_WRITE ? 'w' : '-',
234 flags & VM_EXEC ? 'x' : '-',
235 flags & VM_MAYSHARE ? 's' : 'p',
236 pgoff,
237 MAJOR(dev), MINOR(dev), ino, &len);
240 * Print the dentry name for named mappings, and a
241 * special [heap] marker for the heap:
243 if (file) {
244 pad_len_spaces(m, len);
245 seq_path(m, &file->f_path, "\n");
246 } else {
247 const char *name = arch_vma_name(vma);
248 if (!name) {
249 if (mm) {
250 if (vma->vm_start <= mm->start_brk &&
251 vma->vm_end >= mm->brk) {
252 name = "[heap]";
253 } else if (vma->vm_start <= mm->start_stack &&
254 vma->vm_end >= mm->start_stack) {
255 name = "[stack]";
257 } else {
258 name = "[vdso]";
261 if (name) {
262 pad_len_spaces(m, len);
263 seq_puts(m, name);
266 seq_putc(m, '\n');
269 static int show_map(struct seq_file *m, void *v)
271 struct vm_area_struct *vma = v;
272 struct proc_maps_private *priv = m->private;
273 struct task_struct *task = priv->task;
275 show_map_vma(m, vma);
277 if (m->count < m->size) /* vma is copied successfully */
278 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
279 return 0;
282 static const struct seq_operations proc_pid_maps_op = {
283 .start = m_start,
284 .next = m_next,
285 .stop = m_stop,
286 .show = show_map
289 static int maps_open(struct inode *inode, struct file *file)
291 return do_maps_open(inode, file, &proc_pid_maps_op);
294 const struct file_operations proc_maps_operations = {
295 .open = maps_open,
296 .read = seq_read,
297 .llseek = seq_lseek,
298 .release = seq_release_private,
302 * Proportional Set Size(PSS): my share of RSS.
304 * PSS of a process is the count of pages it has in memory, where each
305 * page is divided by the number of processes sharing it. So if a
306 * process has 1000 pages all to itself, and 1000 shared with one other
307 * process, its PSS will be 1500.
309 * To keep (accumulated) division errors low, we adopt a 64bit
310 * fixed-point pss counter to minimize division errors. So (pss >>
311 * PSS_SHIFT) would be the real byte count.
313 * A shift of 12 before division means (assuming 4K page size):
314 * - 1M 3-user-pages add up to 8KB errors;
315 * - supports mapcount up to 2^24, or 16M;
316 * - supports PSS up to 2^52 bytes, or 4PB.
318 #define PSS_SHIFT 12
320 #ifdef CONFIG_PROC_PAGE_MONITOR
321 struct mem_size_stats {
322 struct vm_area_struct *vma;
323 unsigned long resident;
324 unsigned long shared_clean;
325 unsigned long shared_dirty;
326 unsigned long private_clean;
327 unsigned long private_dirty;
328 unsigned long referenced;
329 unsigned long swap;
330 u64 pss;
333 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
334 struct mm_walk *walk)
336 struct mem_size_stats *mss = walk->private;
337 struct vm_area_struct *vma = mss->vma;
338 pte_t *pte, ptent;
339 spinlock_t *ptl;
340 struct page *page;
341 int mapcount;
343 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
344 for (; addr != end; pte++, addr += PAGE_SIZE) {
345 ptent = *pte;
347 if (is_swap_pte(ptent)) {
348 mss->swap += PAGE_SIZE;
349 continue;
352 if (!pte_present(ptent))
353 continue;
355 page = vm_normal_page(vma, addr, ptent);
356 if (!page)
357 continue;
359 mss->resident += PAGE_SIZE;
360 /* Accumulate the size in pages that have been accessed. */
361 if (pte_young(ptent) || PageReferenced(page))
362 mss->referenced += PAGE_SIZE;
363 mapcount = page_mapcount(page);
364 if (mapcount >= 2) {
365 if (pte_dirty(ptent))
366 mss->shared_dirty += PAGE_SIZE;
367 else
368 mss->shared_clean += PAGE_SIZE;
369 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
370 } else {
371 if (pte_dirty(ptent))
372 mss->private_dirty += PAGE_SIZE;
373 else
374 mss->private_clean += PAGE_SIZE;
375 mss->pss += (PAGE_SIZE << PSS_SHIFT);
378 pte_unmap_unlock(pte - 1, ptl);
379 cond_resched();
380 return 0;
383 static int show_smap(struct seq_file *m, void *v)
385 struct proc_maps_private *priv = m->private;
386 struct task_struct *task = priv->task;
387 struct vm_area_struct *vma = v;
388 struct mem_size_stats mss;
389 struct mm_walk smaps_walk = {
390 .pmd_entry = smaps_pte_range,
391 .mm = vma->vm_mm,
392 .private = &mss,
395 memset(&mss, 0, sizeof mss);
396 mss.vma = vma;
397 /* mmap_sem is held in m_start */
398 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
399 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
401 show_map_vma(m, vma);
403 seq_printf(m,
404 "Size: %8lu kB\n"
405 "Rss: %8lu kB\n"
406 "Pss: %8lu kB\n"
407 "Shared_Clean: %8lu kB\n"
408 "Shared_Dirty: %8lu kB\n"
409 "Private_Clean: %8lu kB\n"
410 "Private_Dirty: %8lu kB\n"
411 "Referenced: %8lu kB\n"
412 "Swap: %8lu kB\n"
413 "KernelPageSize: %8lu kB\n"
414 "MMUPageSize: %8lu kB\n",
415 (vma->vm_end - vma->vm_start) >> 10,
416 mss.resident >> 10,
417 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
418 mss.shared_clean >> 10,
419 mss.shared_dirty >> 10,
420 mss.private_clean >> 10,
421 mss.private_dirty >> 10,
422 mss.referenced >> 10,
423 mss.swap >> 10,
424 vma_kernel_pagesize(vma) >> 10,
425 vma_mmu_pagesize(vma) >> 10);
427 if (m->count < m->size) /* vma is copied successfully */
428 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
429 return 0;
432 static const struct seq_operations proc_pid_smaps_op = {
433 .start = m_start,
434 .next = m_next,
435 .stop = m_stop,
436 .show = show_smap
439 static int smaps_open(struct inode *inode, struct file *file)
441 return do_maps_open(inode, file, &proc_pid_smaps_op);
444 const struct file_operations proc_smaps_operations = {
445 .open = smaps_open,
446 .read = seq_read,
447 .llseek = seq_lseek,
448 .release = seq_release_private,
451 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
452 unsigned long end, struct mm_walk *walk)
454 struct vm_area_struct *vma = walk->private;
455 pte_t *pte, ptent;
456 spinlock_t *ptl;
457 struct page *page;
459 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
460 for (; addr != end; pte++, addr += PAGE_SIZE) {
461 ptent = *pte;
462 if (!pte_present(ptent))
463 continue;
465 page = vm_normal_page(vma, addr, ptent);
466 if (!page)
467 continue;
469 /* Clear accessed and referenced bits. */
470 ptep_test_and_clear_young(vma, addr, pte);
471 ClearPageReferenced(page);
473 pte_unmap_unlock(pte - 1, ptl);
474 cond_resched();
475 return 0;
478 #define CLEAR_REFS_ALL 1
479 #define CLEAR_REFS_ANON 2
480 #define CLEAR_REFS_MAPPED 3
482 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
483 size_t count, loff_t *ppos)
485 struct task_struct *task;
486 char buffer[PROC_NUMBUF];
487 struct mm_struct *mm;
488 struct vm_area_struct *vma;
489 long type;
491 memset(buffer, 0, sizeof(buffer));
492 if (count > sizeof(buffer) - 1)
493 count = sizeof(buffer) - 1;
494 if (copy_from_user(buffer, buf, count))
495 return -EFAULT;
496 if (strict_strtol(strstrip(buffer), 10, &type))
497 return -EINVAL;
498 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
499 return -EINVAL;
500 task = get_proc_task(file->f_path.dentry->d_inode);
501 if (!task)
502 return -ESRCH;
503 mm = get_task_mm(task);
504 if (mm) {
505 struct mm_walk clear_refs_walk = {
506 .pmd_entry = clear_refs_pte_range,
507 .mm = mm,
509 down_read(&mm->mmap_sem);
510 for (vma = mm->mmap; vma; vma = vma->vm_next) {
511 clear_refs_walk.private = vma;
512 if (is_vm_hugetlb_page(vma))
513 continue;
515 * Writing 1 to /proc/pid/clear_refs affects all pages.
517 * Writing 2 to /proc/pid/clear_refs only affects
518 * Anonymous pages.
520 * Writing 3 to /proc/pid/clear_refs only affects file
521 * mapped pages.
523 if (type == CLEAR_REFS_ANON && vma->vm_file)
524 continue;
525 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
526 continue;
527 walk_page_range(vma->vm_start, vma->vm_end,
528 &clear_refs_walk);
530 flush_tlb_mm(mm);
531 up_read(&mm->mmap_sem);
532 mmput(mm);
534 put_task_struct(task);
536 return count;
539 const struct file_operations proc_clear_refs_operations = {
540 .write = clear_refs_write,
543 struct pagemapread {
544 int pos, len;
545 u64 *buffer;
548 #define PM_ENTRY_BYTES sizeof(u64)
549 #define PM_STATUS_BITS 3
550 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
551 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
552 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
553 #define PM_PSHIFT_BITS 6
554 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
555 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
556 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
557 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
558 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
560 #define PM_PRESENT PM_STATUS(4LL)
561 #define PM_SWAP PM_STATUS(2LL)
562 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
563 #define PM_END_OF_BUFFER 1
565 static int add_to_pagemap(unsigned long addr, u64 pfn,
566 struct pagemapread *pm)
568 pm->buffer[pm->pos++] = pfn;
569 if (pm->pos >= pm->len)
570 return PM_END_OF_BUFFER;
571 return 0;
574 static int pagemap_pte_hole(unsigned long start, unsigned long end,
575 struct mm_walk *walk)
577 struct pagemapread *pm = walk->private;
578 unsigned long addr;
579 int err = 0;
580 for (addr = start; addr < end; addr += PAGE_SIZE) {
581 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
582 if (err)
583 break;
585 return err;
588 static u64 swap_pte_to_pagemap_entry(pte_t pte)
590 swp_entry_t e = pte_to_swp_entry(pte);
591 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
594 static u64 pte_to_pagemap_entry(pte_t pte)
596 u64 pme = 0;
597 if (is_swap_pte(pte))
598 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
599 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
600 else if (pte_present(pte))
601 pme = PM_PFRAME(pte_pfn(pte))
602 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
603 return pme;
606 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
607 struct mm_walk *walk)
609 struct vm_area_struct *vma;
610 struct pagemapread *pm = walk->private;
611 pte_t *pte;
612 int err = 0;
614 /* find the first VMA at or above 'addr' */
615 vma = find_vma(walk->mm, addr);
616 for (; addr != end; addr += PAGE_SIZE) {
617 u64 pfn = PM_NOT_PRESENT;
619 /* check to see if we've left 'vma' behind
620 * and need a new, higher one */
621 if (vma && (addr >= vma->vm_end))
622 vma = find_vma(walk->mm, addr);
624 /* check that 'vma' actually covers this address,
625 * and that it isn't a huge page vma */
626 if (vma && (vma->vm_start <= addr) &&
627 !is_vm_hugetlb_page(vma)) {
628 pte = pte_offset_map(pmd, addr);
629 pfn = pte_to_pagemap_entry(*pte);
630 /* unmap before userspace copy */
631 pte_unmap(pte);
633 err = add_to_pagemap(addr, pfn, pm);
634 if (err)
635 return err;
638 cond_resched();
640 return err;
643 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
645 u64 pme = 0;
646 if (pte_present(pte))
647 pme = PM_PFRAME(pte_pfn(pte) + offset)
648 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
649 return pme;
652 /* This function walks within one hugetlb entry in the single call */
653 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
654 unsigned long addr, unsigned long end,
655 struct mm_walk *walk)
657 struct pagemapread *pm = walk->private;
658 int err = 0;
659 u64 pfn;
661 for (; addr != end; addr += PAGE_SIZE) {
662 int offset = (addr & ~hmask) >> PAGE_SHIFT;
663 pfn = huge_pte_to_pagemap_entry(*pte, offset);
664 err = add_to_pagemap(addr, pfn, pm);
665 if (err)
666 return err;
669 cond_resched();
671 return err;
675 * /proc/pid/pagemap - an array mapping virtual pages to pfns
677 * For each page in the address space, this file contains one 64-bit entry
678 * consisting of the following:
680 * Bits 0-55 page frame number (PFN) if present
681 * Bits 0-4 swap type if swapped
682 * Bits 5-55 swap offset if swapped
683 * Bits 55-60 page shift (page size = 1<<page shift)
684 * Bit 61 reserved for future use
685 * Bit 62 page swapped
686 * Bit 63 page present
688 * If the page is not present but in swap, then the PFN contains an
689 * encoding of the swap file number and the page's offset into the
690 * swap. Unmapped pages return a null PFN. This allows determining
691 * precisely which pages are mapped (or in swap) and comparing mapped
692 * pages between processes.
694 * Efficient users of this interface will use /proc/pid/maps to
695 * determine which areas of memory are actually mapped and llseek to
696 * skip over unmapped regions.
698 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
699 static ssize_t pagemap_read(struct file *file, char __user *buf,
700 size_t count, loff_t *ppos)
702 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
703 struct mm_struct *mm;
704 struct pagemapread pm;
705 int ret = -ESRCH;
706 struct mm_walk pagemap_walk = {};
707 unsigned long src;
708 unsigned long svpfn;
709 unsigned long start_vaddr;
710 unsigned long end_vaddr;
711 int copied = 0;
713 if (!task)
714 goto out;
716 ret = -EACCES;
717 if (!ptrace_may_access(task, PTRACE_MODE_READ))
718 goto out_task;
720 ret = -EINVAL;
721 /* file position must be aligned */
722 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
723 goto out_task;
725 ret = 0;
727 if (!count)
728 goto out_task;
730 mm = get_task_mm(task);
731 if (!mm)
732 goto out_task;
734 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
735 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
736 ret = -ENOMEM;
737 if (!pm.buffer)
738 goto out_mm;
740 pagemap_walk.pmd_entry = pagemap_pte_range;
741 pagemap_walk.pte_hole = pagemap_pte_hole;
742 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
743 pagemap_walk.mm = mm;
744 pagemap_walk.private = &pm;
746 src = *ppos;
747 svpfn = src / PM_ENTRY_BYTES;
748 start_vaddr = svpfn << PAGE_SHIFT;
749 end_vaddr = TASK_SIZE_OF(task);
751 /* watch out for wraparound */
752 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
753 start_vaddr = end_vaddr;
756 * The odds are that this will stop walking way
757 * before end_vaddr, because the length of the
758 * user buffer is tracked in "pm", and the walk
759 * will stop when we hit the end of the buffer.
761 ret = 0;
762 while (count && (start_vaddr < end_vaddr)) {
763 int len;
764 unsigned long end;
766 pm.pos = 0;
767 end = start_vaddr + PAGEMAP_WALK_SIZE;
768 /* overflow ? */
769 if (end < start_vaddr || end > end_vaddr)
770 end = end_vaddr;
771 down_read(&mm->mmap_sem);
772 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
773 up_read(&mm->mmap_sem);
774 start_vaddr = end;
776 len = min(count, PM_ENTRY_BYTES * pm.pos);
777 if (copy_to_user(buf, pm.buffer, len)) {
778 ret = -EFAULT;
779 goto out_free;
781 copied += len;
782 buf += len;
783 count -= len;
785 *ppos += copied;
786 if (!ret || ret == PM_END_OF_BUFFER)
787 ret = copied;
789 out_free:
790 kfree(pm.buffer);
791 out_mm:
792 mmput(mm);
793 out_task:
794 put_task_struct(task);
795 out:
796 return ret;
799 const struct file_operations proc_pagemap_operations = {
800 .llseek = mem_lseek, /* borrow this */
801 .read = pagemap_read,
803 #endif /* CONFIG_PROC_PAGE_MONITOR */
805 #ifdef CONFIG_NUMA
806 extern int show_numa_map(struct seq_file *m, void *v);
808 static const struct seq_operations proc_pid_numa_maps_op = {
809 .start = m_start,
810 .next = m_next,
811 .stop = m_stop,
812 .show = show_numa_map,
815 static int numa_maps_open(struct inode *inode, struct file *file)
817 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
820 const struct file_operations proc_numa_maps_operations = {
821 .open = numa_maps_open,
822 .read = seq_read,
823 .llseek = seq_lseek,
824 .release = seq_release_private,
826 #endif