thinkpad-acpi: drop HKEY event 0x5010
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
blobd6ba14276bb1b0fda545cfab00367403d9b17408
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
44 * rate.
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct *work);
59 /* Sampling types */
60 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
62 struct cpu_dbs_info_s {
63 cputime64_t prev_cpu_idle;
64 cputime64_t prev_cpu_wall;
65 cputime64_t prev_cpu_nice;
66 struct cpufreq_policy *cur_policy;
67 struct delayed_work work;
68 struct cpufreq_frequency_table *freq_table;
69 unsigned int freq_lo;
70 unsigned int freq_lo_jiffies;
71 unsigned int freq_hi_jiffies;
72 int cpu;
73 unsigned int sample_type:1;
75 * percpu mutex that serializes governor limit change with
76 * do_dbs_timer invocation. We do not want do_dbs_timer to run
77 * when user is changing the governor or limits.
79 struct mutex timer_mutex;
81 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
83 static unsigned int dbs_enable; /* number of CPUs using this policy */
86 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
87 * different CPUs. It protects dbs_enable in governor start/stop.
89 static DEFINE_MUTEX(dbs_mutex);
91 static struct workqueue_struct *kondemand_wq;
93 static struct dbs_tuners {
94 unsigned int sampling_rate;
95 unsigned int up_threshold;
96 unsigned int down_differential;
97 unsigned int ignore_nice;
98 unsigned int powersave_bias;
99 } dbs_tuners_ins = {
100 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
101 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
102 .ignore_nice = 0,
103 .powersave_bias = 0,
106 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
107 cputime64_t *wall)
109 cputime64_t idle_time;
110 cputime64_t cur_wall_time;
111 cputime64_t busy_time;
113 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
114 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
115 kstat_cpu(cpu).cpustat.system);
117 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
118 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
119 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
120 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
122 idle_time = cputime64_sub(cur_wall_time, busy_time);
123 if (wall)
124 *wall = cur_wall_time;
126 return idle_time;
129 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
131 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
133 if (idle_time == -1ULL)
134 return get_cpu_idle_time_jiffy(cpu, wall);
136 return idle_time;
140 * Find right freq to be set now with powersave_bias on.
141 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
142 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
144 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
145 unsigned int freq_next,
146 unsigned int relation)
148 unsigned int freq_req, freq_reduc, freq_avg;
149 unsigned int freq_hi, freq_lo;
150 unsigned int index = 0;
151 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
152 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
154 if (!dbs_info->freq_table) {
155 dbs_info->freq_lo = 0;
156 dbs_info->freq_lo_jiffies = 0;
157 return freq_next;
160 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
161 relation, &index);
162 freq_req = dbs_info->freq_table[index].frequency;
163 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
164 freq_avg = freq_req - freq_reduc;
166 /* Find freq bounds for freq_avg in freq_table */
167 index = 0;
168 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
169 CPUFREQ_RELATION_H, &index);
170 freq_lo = dbs_info->freq_table[index].frequency;
171 index = 0;
172 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
173 CPUFREQ_RELATION_L, &index);
174 freq_hi = dbs_info->freq_table[index].frequency;
176 /* Find out how long we have to be in hi and lo freqs */
177 if (freq_hi == freq_lo) {
178 dbs_info->freq_lo = 0;
179 dbs_info->freq_lo_jiffies = 0;
180 return freq_lo;
182 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
183 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
184 jiffies_hi += ((freq_hi - freq_lo) / 2);
185 jiffies_hi /= (freq_hi - freq_lo);
186 jiffies_lo = jiffies_total - jiffies_hi;
187 dbs_info->freq_lo = freq_lo;
188 dbs_info->freq_lo_jiffies = jiffies_lo;
189 dbs_info->freq_hi_jiffies = jiffies_hi;
190 return freq_hi;
193 static void ondemand_powersave_bias_init_cpu(int cpu)
195 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
196 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
197 dbs_info->freq_lo = 0;
200 static void ondemand_powersave_bias_init(void)
202 int i;
203 for_each_online_cpu(i) {
204 ondemand_powersave_bias_init_cpu(i);
208 /************************** sysfs interface ************************/
209 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
211 printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
212 "sysfs file is deprecated - used by: %s\n", current->comm);
213 return sprintf(buf, "%u\n", -1U);
216 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
218 return sprintf(buf, "%u\n", min_sampling_rate);
221 #define define_one_ro(_name) \
222 static struct freq_attr _name = \
223 __ATTR(_name, 0444, show_##_name, NULL)
225 define_one_ro(sampling_rate_max);
226 define_one_ro(sampling_rate_min);
228 /* cpufreq_ondemand Governor Tunables */
229 #define show_one(file_name, object) \
230 static ssize_t show_##file_name \
231 (struct cpufreq_policy *unused, char *buf) \
233 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
235 show_one(sampling_rate, sampling_rate);
236 show_one(up_threshold, up_threshold);
237 show_one(ignore_nice_load, ignore_nice);
238 show_one(powersave_bias, powersave_bias);
240 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
241 const char *buf, size_t count)
243 unsigned int input;
244 int ret;
245 ret = sscanf(buf, "%u", &input);
246 if (ret != 1)
247 return -EINVAL;
249 mutex_lock(&dbs_mutex);
250 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
251 mutex_unlock(&dbs_mutex);
253 return count;
256 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
257 const char *buf, size_t count)
259 unsigned int input;
260 int ret;
261 ret = sscanf(buf, "%u", &input);
263 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
264 input < MIN_FREQUENCY_UP_THRESHOLD) {
265 return -EINVAL;
268 mutex_lock(&dbs_mutex);
269 dbs_tuners_ins.up_threshold = input;
270 mutex_unlock(&dbs_mutex);
272 return count;
275 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
276 const char *buf, size_t count)
278 unsigned int input;
279 int ret;
281 unsigned int j;
283 ret = sscanf(buf, "%u", &input);
284 if (ret != 1)
285 return -EINVAL;
287 if (input > 1)
288 input = 1;
290 mutex_lock(&dbs_mutex);
291 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
292 mutex_unlock(&dbs_mutex);
293 return count;
295 dbs_tuners_ins.ignore_nice = input;
297 /* we need to re-evaluate prev_cpu_idle */
298 for_each_online_cpu(j) {
299 struct cpu_dbs_info_s *dbs_info;
300 dbs_info = &per_cpu(cpu_dbs_info, j);
301 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
302 &dbs_info->prev_cpu_wall);
303 if (dbs_tuners_ins.ignore_nice)
304 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
307 mutex_unlock(&dbs_mutex);
309 return count;
312 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
313 const char *buf, size_t count)
315 unsigned int input;
316 int ret;
317 ret = sscanf(buf, "%u", &input);
319 if (ret != 1)
320 return -EINVAL;
322 if (input > 1000)
323 input = 1000;
325 mutex_lock(&dbs_mutex);
326 dbs_tuners_ins.powersave_bias = input;
327 ondemand_powersave_bias_init();
328 mutex_unlock(&dbs_mutex);
330 return count;
333 #define define_one_rw(_name) \
334 static struct freq_attr _name = \
335 __ATTR(_name, 0644, show_##_name, store_##_name)
337 define_one_rw(sampling_rate);
338 define_one_rw(up_threshold);
339 define_one_rw(ignore_nice_load);
340 define_one_rw(powersave_bias);
342 static struct attribute *dbs_attributes[] = {
343 &sampling_rate_max.attr,
344 &sampling_rate_min.attr,
345 &sampling_rate.attr,
346 &up_threshold.attr,
347 &ignore_nice_load.attr,
348 &powersave_bias.attr,
349 NULL
352 static struct attribute_group dbs_attr_group = {
353 .attrs = dbs_attributes,
354 .name = "ondemand",
357 /************************** sysfs end ************************/
359 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
361 unsigned int max_load_freq;
363 struct cpufreq_policy *policy;
364 unsigned int j;
366 this_dbs_info->freq_lo = 0;
367 policy = this_dbs_info->cur_policy;
370 * Every sampling_rate, we check, if current idle time is less
371 * than 20% (default), then we try to increase frequency
372 * Every sampling_rate, we look for a the lowest
373 * frequency which can sustain the load while keeping idle time over
374 * 30%. If such a frequency exist, we try to decrease to this frequency.
376 * Any frequency increase takes it to the maximum frequency.
377 * Frequency reduction happens at minimum steps of
378 * 5% (default) of current frequency
381 /* Get Absolute Load - in terms of freq */
382 max_load_freq = 0;
384 for_each_cpu(j, policy->cpus) {
385 struct cpu_dbs_info_s *j_dbs_info;
386 cputime64_t cur_wall_time, cur_idle_time;
387 unsigned int idle_time, wall_time;
388 unsigned int load, load_freq;
389 int freq_avg;
391 j_dbs_info = &per_cpu(cpu_dbs_info, j);
393 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
395 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
396 j_dbs_info->prev_cpu_wall);
397 j_dbs_info->prev_cpu_wall = cur_wall_time;
399 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
400 j_dbs_info->prev_cpu_idle);
401 j_dbs_info->prev_cpu_idle = cur_idle_time;
403 if (dbs_tuners_ins.ignore_nice) {
404 cputime64_t cur_nice;
405 unsigned long cur_nice_jiffies;
407 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
408 j_dbs_info->prev_cpu_nice);
410 * Assumption: nice time between sampling periods will
411 * be less than 2^32 jiffies for 32 bit sys
413 cur_nice_jiffies = (unsigned long)
414 cputime64_to_jiffies64(cur_nice);
416 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
417 idle_time += jiffies_to_usecs(cur_nice_jiffies);
420 if (unlikely(!wall_time || wall_time < idle_time))
421 continue;
423 load = 100 * (wall_time - idle_time) / wall_time;
425 freq_avg = __cpufreq_driver_getavg(policy, j);
426 if (freq_avg <= 0)
427 freq_avg = policy->cur;
429 load_freq = load * freq_avg;
430 if (load_freq > max_load_freq)
431 max_load_freq = load_freq;
434 /* Check for frequency increase */
435 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
436 /* if we are already at full speed then break out early */
437 if (!dbs_tuners_ins.powersave_bias) {
438 if (policy->cur == policy->max)
439 return;
441 __cpufreq_driver_target(policy, policy->max,
442 CPUFREQ_RELATION_H);
443 } else {
444 int freq = powersave_bias_target(policy, policy->max,
445 CPUFREQ_RELATION_H);
446 __cpufreq_driver_target(policy, freq,
447 CPUFREQ_RELATION_L);
449 return;
452 /* Check for frequency decrease */
453 /* if we cannot reduce the frequency anymore, break out early */
454 if (policy->cur == policy->min)
455 return;
458 * The optimal frequency is the frequency that is the lowest that
459 * can support the current CPU usage without triggering the up
460 * policy. To be safe, we focus 10 points under the threshold.
462 if (max_load_freq <
463 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
464 policy->cur) {
465 unsigned int freq_next;
466 freq_next = max_load_freq /
467 (dbs_tuners_ins.up_threshold -
468 dbs_tuners_ins.down_differential);
470 if (!dbs_tuners_ins.powersave_bias) {
471 __cpufreq_driver_target(policy, freq_next,
472 CPUFREQ_RELATION_L);
473 } else {
474 int freq = powersave_bias_target(policy, freq_next,
475 CPUFREQ_RELATION_L);
476 __cpufreq_driver_target(policy, freq,
477 CPUFREQ_RELATION_L);
482 static void do_dbs_timer(struct work_struct *work)
484 struct cpu_dbs_info_s *dbs_info =
485 container_of(work, struct cpu_dbs_info_s, work.work);
486 unsigned int cpu = dbs_info->cpu;
487 int sample_type = dbs_info->sample_type;
489 /* We want all CPUs to do sampling nearly on same jiffy */
490 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
492 delay -= jiffies % delay;
493 mutex_lock(&dbs_info->timer_mutex);
495 /* Common NORMAL_SAMPLE setup */
496 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
497 if (!dbs_tuners_ins.powersave_bias ||
498 sample_type == DBS_NORMAL_SAMPLE) {
499 dbs_check_cpu(dbs_info);
500 if (dbs_info->freq_lo) {
501 /* Setup timer for SUB_SAMPLE */
502 dbs_info->sample_type = DBS_SUB_SAMPLE;
503 delay = dbs_info->freq_hi_jiffies;
505 } else {
506 __cpufreq_driver_target(dbs_info->cur_policy,
507 dbs_info->freq_lo, CPUFREQ_RELATION_H);
509 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
510 mutex_unlock(&dbs_info->timer_mutex);
513 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
515 /* We want all CPUs to do sampling nearly on same jiffy */
516 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
517 delay -= jiffies % delay;
519 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
520 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
521 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
522 delay);
525 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
527 cancel_delayed_work_sync(&dbs_info->work);
530 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
531 unsigned int event)
533 unsigned int cpu = policy->cpu;
534 struct cpu_dbs_info_s *this_dbs_info;
535 unsigned int j;
536 int rc;
538 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
540 switch (event) {
541 case CPUFREQ_GOV_START:
542 if ((!cpu_online(cpu)) || (!policy->cur))
543 return -EINVAL;
545 mutex_lock(&dbs_mutex);
547 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
548 if (rc) {
549 mutex_unlock(&dbs_mutex);
550 return rc;
553 dbs_enable++;
554 for_each_cpu(j, policy->cpus) {
555 struct cpu_dbs_info_s *j_dbs_info;
556 j_dbs_info = &per_cpu(cpu_dbs_info, j);
557 j_dbs_info->cur_policy = policy;
559 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
560 &j_dbs_info->prev_cpu_wall);
561 if (dbs_tuners_ins.ignore_nice) {
562 j_dbs_info->prev_cpu_nice =
563 kstat_cpu(j).cpustat.nice;
566 this_dbs_info->cpu = cpu;
567 ondemand_powersave_bias_init_cpu(cpu);
568 mutex_init(&this_dbs_info->timer_mutex);
570 * Start the timerschedule work, when this governor
571 * is used for first time
573 if (dbs_enable == 1) {
574 unsigned int latency;
575 /* policy latency is in nS. Convert it to uS first */
576 latency = policy->cpuinfo.transition_latency / 1000;
577 if (latency == 0)
578 latency = 1;
579 /* Bring kernel and HW constraints together */
580 min_sampling_rate = max(min_sampling_rate,
581 MIN_LATENCY_MULTIPLIER * latency);
582 dbs_tuners_ins.sampling_rate =
583 max(min_sampling_rate,
584 latency * LATENCY_MULTIPLIER);
586 mutex_unlock(&dbs_mutex);
588 dbs_timer_init(this_dbs_info);
589 break;
591 case CPUFREQ_GOV_STOP:
592 dbs_timer_exit(this_dbs_info);
594 mutex_lock(&dbs_mutex);
595 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
596 mutex_destroy(&this_dbs_info->timer_mutex);
597 dbs_enable--;
598 mutex_unlock(&dbs_mutex);
600 break;
602 case CPUFREQ_GOV_LIMITS:
603 mutex_lock(&this_dbs_info->timer_mutex);
604 if (policy->max < this_dbs_info->cur_policy->cur)
605 __cpufreq_driver_target(this_dbs_info->cur_policy,
606 policy->max, CPUFREQ_RELATION_H);
607 else if (policy->min > this_dbs_info->cur_policy->cur)
608 __cpufreq_driver_target(this_dbs_info->cur_policy,
609 policy->min, CPUFREQ_RELATION_L);
610 mutex_unlock(&this_dbs_info->timer_mutex);
611 break;
613 return 0;
616 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
617 static
618 #endif
619 struct cpufreq_governor cpufreq_gov_ondemand = {
620 .name = "ondemand",
621 .governor = cpufreq_governor_dbs,
622 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
623 .owner = THIS_MODULE,
626 static int __init cpufreq_gov_dbs_init(void)
628 int err;
629 cputime64_t wall;
630 u64 idle_time;
631 int cpu = get_cpu();
633 idle_time = get_cpu_idle_time_us(cpu, &wall);
634 put_cpu();
635 if (idle_time != -1ULL) {
636 /* Idle micro accounting is supported. Use finer thresholds */
637 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
638 dbs_tuners_ins.down_differential =
639 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
641 * In no_hz/micro accounting case we set the minimum frequency
642 * not depending on HZ, but fixed (very low). The deferred
643 * timer might skip some samples if idle/sleeping as needed.
645 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
646 } else {
647 /* For correct statistics, we need 10 ticks for each measure */
648 min_sampling_rate =
649 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
652 kondemand_wq = create_workqueue("kondemand");
653 if (!kondemand_wq) {
654 printk(KERN_ERR "Creation of kondemand failed\n");
655 return -EFAULT;
657 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
658 if (err)
659 destroy_workqueue(kondemand_wq);
661 return err;
664 static void __exit cpufreq_gov_dbs_exit(void)
666 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
667 destroy_workqueue(kondemand_wq);
671 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
672 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
673 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
674 "Low Latency Frequency Transition capable processors");
675 MODULE_LICENSE("GPL");
677 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
678 fs_initcall(cpufreq_gov_dbs_init);
679 #else
680 module_init(cpufreq_gov_dbs_init);
681 #endif
682 module_exit(cpufreq_gov_dbs_exit);