mac80211: simplify RX PN/IV handling
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / rx.c
blobe6dccc70931d9b3bafca373c99c5ba81209f7e66
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
51 return skb;
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
75 int len;
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
91 return len;
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
121 pos = (unsigned char *)(rthdr+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
145 * MCS information is a separate field in radiotap,
146 * added below. The byte here is needed as padding
147 * for the channel though, so initialise it to 0.
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
154 pos++;
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
198 if (status->flag & RX_FLAG_HT) {
199 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
200 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
201 IEEE80211_RADIOTAP_MCS_HAVE_GI |
202 IEEE80211_RADIOTAP_MCS_HAVE_BW;
203 *pos = 0;
204 if (status->flag & RX_FLAG_SHORT_GI)
205 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
206 if (status->flag & RX_FLAG_40MHZ)
207 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
208 pos++;
209 *pos++ = status->rate_idx;
214 * This function copies a received frame to all monitor interfaces and
215 * returns a cleaned-up SKB that no longer includes the FCS nor the
216 * radiotap header the driver might have added.
218 static struct sk_buff *
219 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
220 struct ieee80211_rate *rate)
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
223 struct ieee80211_sub_if_data *sdata;
224 int needed_headroom = 0;
225 struct sk_buff *skb, *skb2;
226 struct net_device *prev_dev = NULL;
227 int present_fcs_len = 0;
230 * First, we may need to make a copy of the skb because
231 * (1) we need to modify it for radiotap (if not present), and
232 * (2) the other RX handlers will modify the skb we got.
234 * We don't need to, of course, if we aren't going to return
235 * the SKB because it has a bad FCS/PLCP checksum.
238 /* room for the radiotap header based on driver features */
239 needed_headroom = ieee80211_rx_radiotap_len(local, status);
241 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
242 present_fcs_len = FCS_LEN;
244 /* make sure hdr->frame_control is on the linear part */
245 if (!pskb_may_pull(origskb, 2)) {
246 dev_kfree_skb(origskb);
247 return NULL;
250 if (!local->monitors) {
251 if (should_drop_frame(origskb, present_fcs_len)) {
252 dev_kfree_skb(origskb);
253 return NULL;
256 return remove_monitor_info(local, origskb);
259 if (should_drop_frame(origskb, present_fcs_len)) {
260 /* only need to expand headroom if necessary */
261 skb = origskb;
262 origskb = NULL;
265 * This shouldn't trigger often because most devices have an
266 * RX header they pull before we get here, and that should
267 * be big enough for our radiotap information. We should
268 * probably export the length to drivers so that we can have
269 * them allocate enough headroom to start with.
271 if (skb_headroom(skb) < needed_headroom &&
272 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
273 dev_kfree_skb(skb);
274 return NULL;
276 } else {
278 * Need to make a copy and possibly remove radiotap header
279 * and FCS from the original.
281 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
283 origskb = remove_monitor_info(local, origskb);
285 if (!skb)
286 return origskb;
289 /* prepend radiotap information */
290 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
292 skb_reset_mac_header(skb);
293 skb->ip_summed = CHECKSUM_UNNECESSARY;
294 skb->pkt_type = PACKET_OTHERHOST;
295 skb->protocol = htons(ETH_P_802_2);
297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
298 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
299 continue;
301 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
302 continue;
304 if (!ieee80211_sdata_running(sdata))
305 continue;
307 if (prev_dev) {
308 skb2 = skb_clone(skb, GFP_ATOMIC);
309 if (skb2) {
310 skb2->dev = prev_dev;
311 netif_receive_skb(skb2);
315 prev_dev = sdata->dev;
316 sdata->dev->stats.rx_packets++;
317 sdata->dev->stats.rx_bytes += skb->len;
320 if (prev_dev) {
321 skb->dev = prev_dev;
322 netif_receive_skb(skb);
323 } else
324 dev_kfree_skb(skb);
326 return origskb;
330 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
333 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
334 int tid, seqno_idx, security_idx;
336 /* does the frame have a qos control field? */
337 if (ieee80211_is_data_qos(hdr->frame_control)) {
338 u8 *qc = ieee80211_get_qos_ctl(hdr);
339 /* frame has qos control */
340 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
341 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
342 status->rx_flags |= IEEE80211_RX_AMSDU;
344 seqno_idx = tid;
345 security_idx = tid;
346 } else {
348 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
350 * Sequence numbers for management frames, QoS data
351 * frames with a broadcast/multicast address in the
352 * Address 1 field, and all non-QoS data frames sent
353 * by QoS STAs are assigned using an additional single
354 * modulo-4096 counter, [...]
356 * We also use that counter for non-QoS STAs.
358 seqno_idx = NUM_RX_DATA_QUEUES;
359 security_idx = 0;
360 if (ieee80211_is_mgmt(hdr->frame_control))
361 security_idx = NUM_RX_DATA_QUEUES;
362 tid = 0;
365 rx->seqno_idx = seqno_idx;
366 rx->security_idx = security_idx;
367 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
368 * For now, set skb->priority to 0 for other cases. */
369 rx->skb->priority = (tid > 7) ? 0 : tid;
373 * DOC: Packet alignment
375 * Drivers always need to pass packets that are aligned to two-byte boundaries
376 * to the stack.
378 * Additionally, should, if possible, align the payload data in a way that
379 * guarantees that the contained IP header is aligned to a four-byte
380 * boundary. In the case of regular frames, this simply means aligning the
381 * payload to a four-byte boundary (because either the IP header is directly
382 * contained, or IV/RFC1042 headers that have a length divisible by four are
383 * in front of it). If the payload data is not properly aligned and the
384 * architecture doesn't support efficient unaligned operations, mac80211
385 * will align the data.
387 * With A-MSDU frames, however, the payload data address must yield two modulo
388 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
389 * push the IP header further back to a multiple of four again. Thankfully, the
390 * specs were sane enough this time around to require padding each A-MSDU
391 * subframe to a length that is a multiple of four.
393 * Padding like Atheros hardware adds which is between the 802.11 header and
394 * the payload is not supported, the driver is required to move the 802.11
395 * header to be directly in front of the payload in that case.
397 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
399 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
400 WARN_ONCE((unsigned long)rx->skb->data & 1,
401 "unaligned packet at 0x%p\n", rx->skb->data);
402 #endif
406 /* rx handlers */
408 static ieee80211_rx_result debug_noinline
409 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
411 struct ieee80211_local *local = rx->local;
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
413 struct sk_buff *skb = rx->skb;
415 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
416 !local->sched_scanning))
417 return RX_CONTINUE;
419 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
420 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
421 local->sched_scanning)
422 return ieee80211_scan_rx(rx->sdata, skb);
424 /* scanning finished during invoking of handlers */
425 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
426 return RX_DROP_UNUSABLE;
430 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
434 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
435 return 0;
437 return ieee80211_is_robust_mgmt_frame(hdr);
441 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
443 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
445 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
446 return 0;
448 return ieee80211_is_robust_mgmt_frame(hdr);
452 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
453 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
455 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
456 struct ieee80211_mmie *mmie;
458 if (skb->len < 24 + sizeof(*mmie) ||
459 !is_multicast_ether_addr(hdr->da))
460 return -1;
462 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
463 return -1; /* not a robust management frame */
465 mmie = (struct ieee80211_mmie *)
466 (skb->data + skb->len - sizeof(*mmie));
467 if (mmie->element_id != WLAN_EID_MMIE ||
468 mmie->length != sizeof(*mmie) - 2)
469 return -1;
471 return le16_to_cpu(mmie->key_id);
475 static ieee80211_rx_result
476 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
479 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
480 char *dev_addr = rx->sdata->vif.addr;
482 if (ieee80211_is_data(hdr->frame_control)) {
483 if (is_multicast_ether_addr(hdr->addr1)) {
484 if (ieee80211_has_tods(hdr->frame_control) ||
485 !ieee80211_has_fromds(hdr->frame_control))
486 return RX_DROP_MONITOR;
487 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
488 return RX_DROP_MONITOR;
489 } else {
490 if (!ieee80211_has_a4(hdr->frame_control))
491 return RX_DROP_MONITOR;
492 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
493 return RX_DROP_MONITOR;
497 /* If there is not an established peer link and this is not a peer link
498 * establisment frame, beacon or probe, drop the frame.
501 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
502 struct ieee80211_mgmt *mgmt;
504 if (!ieee80211_is_mgmt(hdr->frame_control))
505 return RX_DROP_MONITOR;
507 if (ieee80211_is_action(hdr->frame_control)) {
508 u8 category;
509 mgmt = (struct ieee80211_mgmt *)hdr;
510 category = mgmt->u.action.category;
511 if (category != WLAN_CATEGORY_MESH_ACTION &&
512 category != WLAN_CATEGORY_SELF_PROTECTED)
513 return RX_DROP_MONITOR;
514 return RX_CONTINUE;
517 if (ieee80211_is_probe_req(hdr->frame_control) ||
518 ieee80211_is_probe_resp(hdr->frame_control) ||
519 ieee80211_is_beacon(hdr->frame_control) ||
520 ieee80211_is_auth(hdr->frame_control))
521 return RX_CONTINUE;
523 return RX_DROP_MONITOR;
527 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
529 if (ieee80211_is_data(hdr->frame_control) &&
530 is_multicast_ether_addr(hdr->addr1) &&
531 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
532 return RX_DROP_MONITOR;
533 #undef msh_h_get
535 return RX_CONTINUE;
538 #define SEQ_MODULO 0x1000
539 #define SEQ_MASK 0xfff
541 static inline int seq_less(u16 sq1, u16 sq2)
543 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
546 static inline u16 seq_inc(u16 sq)
548 return (sq + 1) & SEQ_MASK;
551 static inline u16 seq_sub(u16 sq1, u16 sq2)
553 return (sq1 - sq2) & SEQ_MASK;
557 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
558 struct tid_ampdu_rx *tid_agg_rx,
559 int index)
561 struct ieee80211_local *local = hw_to_local(hw);
562 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
563 struct ieee80211_rx_status *status;
565 lockdep_assert_held(&tid_agg_rx->reorder_lock);
567 if (!skb)
568 goto no_frame;
570 /* release the frame from the reorder ring buffer */
571 tid_agg_rx->stored_mpdu_num--;
572 tid_agg_rx->reorder_buf[index] = NULL;
573 status = IEEE80211_SKB_RXCB(skb);
574 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
575 skb_queue_tail(&local->rx_skb_queue, skb);
577 no_frame:
578 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
581 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
582 struct tid_ampdu_rx *tid_agg_rx,
583 u16 head_seq_num)
585 int index;
587 lockdep_assert_held(&tid_agg_rx->reorder_lock);
589 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
590 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
591 tid_agg_rx->buf_size;
592 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
597 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
598 * the skb was added to the buffer longer than this time ago, the earlier
599 * frames that have not yet been received are assumed to be lost and the skb
600 * can be released for processing. This may also release other skb's from the
601 * reorder buffer if there are no additional gaps between the frames.
603 * Callers must hold tid_agg_rx->reorder_lock.
605 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
607 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
608 struct tid_ampdu_rx *tid_agg_rx)
610 int index, j;
612 lockdep_assert_held(&tid_agg_rx->reorder_lock);
614 /* release the buffer until next missing frame */
615 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
616 tid_agg_rx->buf_size;
617 if (!tid_agg_rx->reorder_buf[index] &&
618 tid_agg_rx->stored_mpdu_num > 1) {
620 * No buffers ready to be released, but check whether any
621 * frames in the reorder buffer have timed out.
623 int skipped = 1;
624 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
625 j = (j + 1) % tid_agg_rx->buf_size) {
626 if (!tid_agg_rx->reorder_buf[j]) {
627 skipped++;
628 continue;
630 if (skipped &&
631 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
632 HT_RX_REORDER_BUF_TIMEOUT))
633 goto set_release_timer;
635 #ifdef CONFIG_MAC80211_HT_DEBUG
636 if (net_ratelimit())
637 wiphy_debug(hw->wiphy,
638 "release an RX reorder frame due to timeout on earlier frames\n");
639 #endif
640 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
643 * Increment the head seq# also for the skipped slots.
645 tid_agg_rx->head_seq_num =
646 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
647 skipped = 0;
649 } else while (tid_agg_rx->reorder_buf[index]) {
650 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
651 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
652 tid_agg_rx->buf_size;
655 if (tid_agg_rx->stored_mpdu_num) {
656 j = index = seq_sub(tid_agg_rx->head_seq_num,
657 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
659 for (; j != (index - 1) % tid_agg_rx->buf_size;
660 j = (j + 1) % tid_agg_rx->buf_size) {
661 if (tid_agg_rx->reorder_buf[j])
662 break;
665 set_release_timer:
667 mod_timer(&tid_agg_rx->reorder_timer,
668 tid_agg_rx->reorder_time[j] + 1 +
669 HT_RX_REORDER_BUF_TIMEOUT);
670 } else {
671 del_timer(&tid_agg_rx->reorder_timer);
676 * As this function belongs to the RX path it must be under
677 * rcu_read_lock protection. It returns false if the frame
678 * can be processed immediately, true if it was consumed.
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681 struct tid_ampdu_rx *tid_agg_rx,
682 struct sk_buff *skb)
684 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685 u16 sc = le16_to_cpu(hdr->seq_ctrl);
686 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
687 u16 head_seq_num, buf_size;
688 int index;
689 bool ret = true;
691 spin_lock(&tid_agg_rx->reorder_lock);
693 buf_size = tid_agg_rx->buf_size;
694 head_seq_num = tid_agg_rx->head_seq_num;
696 /* frame with out of date sequence number */
697 if (seq_less(mpdu_seq_num, head_seq_num)) {
698 dev_kfree_skb(skb);
699 goto out;
703 * If frame the sequence number exceeds our buffering window
704 * size release some previous frames to make room for this one.
706 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
707 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
708 /* release stored frames up to new head to stack */
709 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
712 /* Now the new frame is always in the range of the reordering buffer */
714 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
716 /* check if we already stored this frame */
717 if (tid_agg_rx->reorder_buf[index]) {
718 dev_kfree_skb(skb);
719 goto out;
723 * If the current MPDU is in the right order and nothing else
724 * is stored we can process it directly, no need to buffer it.
725 * If it is first but there's something stored, we may be able
726 * to release frames after this one.
728 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729 tid_agg_rx->stored_mpdu_num == 0) {
730 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731 ret = false;
732 goto out;
735 /* put the frame in the reordering buffer */
736 tid_agg_rx->reorder_buf[index] = skb;
737 tid_agg_rx->reorder_time[index] = jiffies;
738 tid_agg_rx->stored_mpdu_num++;
739 ieee80211_sta_reorder_release(hw, tid_agg_rx);
741 out:
742 spin_unlock(&tid_agg_rx->reorder_lock);
743 return ret;
747 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748 * true if the MPDU was buffered, false if it should be processed.
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
752 struct sk_buff *skb = rx->skb;
753 struct ieee80211_local *local = rx->local;
754 struct ieee80211_hw *hw = &local->hw;
755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
756 struct sta_info *sta = rx->sta;
757 struct tid_ampdu_rx *tid_agg_rx;
758 u16 sc;
759 int tid;
761 if (!ieee80211_is_data_qos(hdr->frame_control))
762 goto dont_reorder;
765 * filter the QoS data rx stream according to
766 * STA/TID and check if this STA/TID is on aggregation
769 if (!sta)
770 goto dont_reorder;
772 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
774 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
775 if (!tid_agg_rx)
776 goto dont_reorder;
778 /* qos null data frames are excluded */
779 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
780 goto dont_reorder;
782 /* new, potentially un-ordered, ampdu frame - process it */
784 /* reset session timer */
785 if (tid_agg_rx->timeout)
786 mod_timer(&tid_agg_rx->session_timer,
787 TU_TO_EXP_TIME(tid_agg_rx->timeout));
789 /* if this mpdu is fragmented - terminate rx aggregation session */
790 sc = le16_to_cpu(hdr->seq_ctrl);
791 if (sc & IEEE80211_SCTL_FRAG) {
792 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
793 skb_queue_tail(&rx->sdata->skb_queue, skb);
794 ieee80211_queue_work(&local->hw, &rx->sdata->work);
795 return;
799 * No locking needed -- we will only ever process one
800 * RX packet at a time, and thus own tid_agg_rx. All
801 * other code manipulating it needs to (and does) make
802 * sure that we cannot get to it any more before doing
803 * anything with it.
805 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
806 return;
808 dont_reorder:
809 skb_queue_tail(&local->rx_skb_queue, skb);
812 static ieee80211_rx_result debug_noinline
813 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
815 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
816 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
818 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
819 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
820 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
821 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
822 hdr->seq_ctrl)) {
823 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
824 rx->local->dot11FrameDuplicateCount++;
825 rx->sta->num_duplicates++;
827 return RX_DROP_UNUSABLE;
828 } else
829 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
832 if (unlikely(rx->skb->len < 16)) {
833 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
834 return RX_DROP_MONITOR;
837 /* Drop disallowed frame classes based on STA auth/assoc state;
838 * IEEE 802.11, Chap 5.5.
840 * mac80211 filters only based on association state, i.e. it drops
841 * Class 3 frames from not associated stations. hostapd sends
842 * deauth/disassoc frames when needed. In addition, hostapd is
843 * responsible for filtering on both auth and assoc states.
846 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
847 return ieee80211_rx_mesh_check(rx);
849 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
850 ieee80211_is_pspoll(hdr->frame_control)) &&
851 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
852 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
853 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
854 return RX_DROP_MONITOR;
856 return RX_CONTINUE;
860 static ieee80211_rx_result debug_noinline
861 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
863 struct sk_buff *skb = rx->skb;
864 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
865 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
866 int keyidx;
867 int hdrlen;
868 ieee80211_rx_result result = RX_DROP_UNUSABLE;
869 struct ieee80211_key *sta_ptk = NULL;
870 int mmie_keyidx = -1;
871 __le16 fc;
874 * Key selection 101
876 * There are four types of keys:
877 * - GTK (group keys)
878 * - IGTK (group keys for management frames)
879 * - PTK (pairwise keys)
880 * - STK (station-to-station pairwise keys)
882 * When selecting a key, we have to distinguish between multicast
883 * (including broadcast) and unicast frames, the latter can only
884 * use PTKs and STKs while the former always use GTKs and IGTKs.
885 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
886 * unicast frames can also use key indices like GTKs. Hence, if we
887 * don't have a PTK/STK we check the key index for a WEP key.
889 * Note that in a regular BSS, multicast frames are sent by the
890 * AP only, associated stations unicast the frame to the AP first
891 * which then multicasts it on their behalf.
893 * There is also a slight problem in IBSS mode: GTKs are negotiated
894 * with each station, that is something we don't currently handle.
895 * The spec seems to expect that one negotiates the same key with
896 * every station but there's no such requirement; VLANs could be
897 * possible.
901 * No point in finding a key and decrypting if the frame is neither
902 * addressed to us nor a multicast frame.
904 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
905 return RX_CONTINUE;
907 /* start without a key */
908 rx->key = NULL;
910 if (rx->sta)
911 sta_ptk = rcu_dereference(rx->sta->ptk);
913 fc = hdr->frame_control;
915 if (!ieee80211_has_protected(fc))
916 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
918 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
919 rx->key = sta_ptk;
920 if ((status->flag & RX_FLAG_DECRYPTED) &&
921 (status->flag & RX_FLAG_IV_STRIPPED))
922 return RX_CONTINUE;
923 /* Skip decryption if the frame is not protected. */
924 if (!ieee80211_has_protected(fc))
925 return RX_CONTINUE;
926 } else if (mmie_keyidx >= 0) {
927 /* Broadcast/multicast robust management frame / BIP */
928 if ((status->flag & RX_FLAG_DECRYPTED) &&
929 (status->flag & RX_FLAG_IV_STRIPPED))
930 return RX_CONTINUE;
932 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
933 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
934 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
935 if (rx->sta)
936 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
937 if (!rx->key)
938 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
939 } else if (!ieee80211_has_protected(fc)) {
941 * The frame was not protected, so skip decryption. However, we
942 * need to set rx->key if there is a key that could have been
943 * used so that the frame may be dropped if encryption would
944 * have been expected.
946 struct ieee80211_key *key = NULL;
947 struct ieee80211_sub_if_data *sdata = rx->sdata;
948 int i;
950 if (ieee80211_is_mgmt(fc) &&
951 is_multicast_ether_addr(hdr->addr1) &&
952 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
953 rx->key = key;
954 else {
955 if (rx->sta) {
956 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
957 key = rcu_dereference(rx->sta->gtk[i]);
958 if (key)
959 break;
962 if (!key) {
963 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
964 key = rcu_dereference(sdata->keys[i]);
965 if (key)
966 break;
969 if (key)
970 rx->key = key;
972 return RX_CONTINUE;
973 } else {
974 u8 keyid;
976 * The device doesn't give us the IV so we won't be
977 * able to look up the key. That's ok though, we
978 * don't need to decrypt the frame, we just won't
979 * be able to keep statistics accurate.
980 * Except for key threshold notifications, should
981 * we somehow allow the driver to tell us which key
982 * the hardware used if this flag is set?
984 if ((status->flag & RX_FLAG_DECRYPTED) &&
985 (status->flag & RX_FLAG_IV_STRIPPED))
986 return RX_CONTINUE;
988 hdrlen = ieee80211_hdrlen(fc);
990 if (rx->skb->len < 8 + hdrlen)
991 return RX_DROP_UNUSABLE; /* TODO: count this? */
994 * no need to call ieee80211_wep_get_keyidx,
995 * it verifies a bunch of things we've done already
997 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
998 keyidx = keyid >> 6;
1000 /* check per-station GTK first, if multicast packet */
1001 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1002 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1004 /* if not found, try default key */
1005 if (!rx->key) {
1006 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1009 * RSNA-protected unicast frames should always be
1010 * sent with pairwise or station-to-station keys,
1011 * but for WEP we allow using a key index as well.
1013 if (rx->key &&
1014 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1015 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1016 !is_multicast_ether_addr(hdr->addr1))
1017 rx->key = NULL;
1021 if (rx->key) {
1022 rx->key->tx_rx_count++;
1023 /* TODO: add threshold stuff again */
1024 } else {
1025 return RX_DROP_MONITOR;
1028 if (skb_linearize(rx->skb))
1029 return RX_DROP_UNUSABLE;
1030 /* the hdr variable is invalid now! */
1032 switch (rx->key->conf.cipher) {
1033 case WLAN_CIPHER_SUITE_WEP40:
1034 case WLAN_CIPHER_SUITE_WEP104:
1035 /* Check for weak IVs if possible */
1036 if (rx->sta && ieee80211_is_data(fc) &&
1037 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1038 !(status->flag & RX_FLAG_DECRYPTED)) &&
1039 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1040 rx->sta->wep_weak_iv_count++;
1042 result = ieee80211_crypto_wep_decrypt(rx);
1043 break;
1044 case WLAN_CIPHER_SUITE_TKIP:
1045 result = ieee80211_crypto_tkip_decrypt(rx);
1046 break;
1047 case WLAN_CIPHER_SUITE_CCMP:
1048 result = ieee80211_crypto_ccmp_decrypt(rx);
1049 break;
1050 case WLAN_CIPHER_SUITE_AES_CMAC:
1051 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1052 break;
1053 default:
1055 * We can reach here only with HW-only algorithms
1056 * but why didn't it decrypt the frame?!
1058 return RX_DROP_UNUSABLE;
1061 /* either the frame has been decrypted or will be dropped */
1062 status->flag |= RX_FLAG_DECRYPTED;
1064 return result;
1067 static ieee80211_rx_result debug_noinline
1068 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1070 struct ieee80211_local *local;
1071 struct ieee80211_hdr *hdr;
1072 struct sk_buff *skb;
1074 local = rx->local;
1075 skb = rx->skb;
1076 hdr = (struct ieee80211_hdr *) skb->data;
1078 if (!local->pspolling)
1079 return RX_CONTINUE;
1081 if (!ieee80211_has_fromds(hdr->frame_control))
1082 /* this is not from AP */
1083 return RX_CONTINUE;
1085 if (!ieee80211_is_data(hdr->frame_control))
1086 return RX_CONTINUE;
1088 if (!ieee80211_has_moredata(hdr->frame_control)) {
1089 /* AP has no more frames buffered for us */
1090 local->pspolling = false;
1091 return RX_CONTINUE;
1094 /* more data bit is set, let's request a new frame from the AP */
1095 ieee80211_send_pspoll(local, rx->sdata);
1097 return RX_CONTINUE;
1100 static void ap_sta_ps_start(struct sta_info *sta)
1102 struct ieee80211_sub_if_data *sdata = sta->sdata;
1103 struct ieee80211_local *local = sdata->local;
1105 atomic_inc(&sdata->bss->num_sta_ps);
1106 set_sta_flags(sta, WLAN_STA_PS_STA);
1107 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1108 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1109 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1110 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1111 sdata->name, sta->sta.addr, sta->sta.aid);
1112 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1115 static void ap_sta_ps_end(struct sta_info *sta)
1117 struct ieee80211_sub_if_data *sdata = sta->sdata;
1119 atomic_dec(&sdata->bss->num_sta_ps);
1121 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1122 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1123 sdata->name, sta->sta.addr, sta->sta.aid);
1124 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1126 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1127 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1128 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1129 sdata->name, sta->sta.addr, sta->sta.aid);
1130 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1131 return;
1134 ieee80211_sta_ps_deliver_wakeup(sta);
1137 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1139 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1140 bool in_ps;
1142 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1144 /* Don't let the same PS state be set twice */
1145 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1146 if ((start && in_ps) || (!start && !in_ps))
1147 return -EINVAL;
1149 if (start)
1150 ap_sta_ps_start(sta_inf);
1151 else
1152 ap_sta_ps_end(sta_inf);
1154 return 0;
1156 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1158 static ieee80211_rx_result debug_noinline
1159 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1161 struct sta_info *sta = rx->sta;
1162 struct sk_buff *skb = rx->skb;
1163 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1164 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1166 if (!sta)
1167 return RX_CONTINUE;
1170 * Update last_rx only for IBSS packets which are for the current
1171 * BSSID to avoid keeping the current IBSS network alive in cases
1172 * where other STAs start using different BSSID.
1174 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1175 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1176 NL80211_IFTYPE_ADHOC);
1177 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1178 sta->last_rx = jiffies;
1179 if (ieee80211_is_data(hdr->frame_control)) {
1180 sta->last_rx_rate_idx = status->rate_idx;
1181 sta->last_rx_rate_flag = status->flag;
1184 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1186 * Mesh beacons will update last_rx when if they are found to
1187 * match the current local configuration when processed.
1189 sta->last_rx = jiffies;
1190 if (ieee80211_is_data(hdr->frame_control)) {
1191 sta->last_rx_rate_idx = status->rate_idx;
1192 sta->last_rx_rate_flag = status->flag;
1196 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1197 return RX_CONTINUE;
1199 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1200 ieee80211_sta_rx_notify(rx->sdata, hdr);
1202 sta->rx_fragments++;
1203 sta->rx_bytes += rx->skb->len;
1204 sta->last_signal = status->signal;
1205 ewma_add(&sta->avg_signal, -status->signal);
1208 * Change STA power saving mode only at the end of a frame
1209 * exchange sequence.
1211 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1212 !ieee80211_has_morefrags(hdr->frame_control) &&
1213 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1214 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1215 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1216 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1218 * Ignore doze->wake transitions that are
1219 * indicated by non-data frames, the standard
1220 * is unclear here, but for example going to
1221 * PS mode and then scanning would cause a
1222 * doze->wake transition for the probe request,
1223 * and that is clearly undesirable.
1225 if (ieee80211_is_data(hdr->frame_control) &&
1226 !ieee80211_has_pm(hdr->frame_control))
1227 ap_sta_ps_end(sta);
1228 } else {
1229 if (ieee80211_has_pm(hdr->frame_control))
1230 ap_sta_ps_start(sta);
1235 * Drop (qos-)data::nullfunc frames silently, since they
1236 * are used only to control station power saving mode.
1238 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1239 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1240 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1243 * If we receive a 4-addr nullfunc frame from a STA
1244 * that was not moved to a 4-addr STA vlan yet, drop
1245 * the frame to the monitor interface, to make sure
1246 * that hostapd sees it
1248 if (ieee80211_has_a4(hdr->frame_control) &&
1249 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1250 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1251 !rx->sdata->u.vlan.sta)))
1252 return RX_DROP_MONITOR;
1254 * Update counter and free packet here to avoid
1255 * counting this as a dropped packed.
1257 sta->rx_packets++;
1258 dev_kfree_skb(rx->skb);
1259 return RX_QUEUED;
1262 return RX_CONTINUE;
1263 } /* ieee80211_rx_h_sta_process */
1265 static inline struct ieee80211_fragment_entry *
1266 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1267 unsigned int frag, unsigned int seq, int rx_queue,
1268 struct sk_buff **skb)
1270 struct ieee80211_fragment_entry *entry;
1271 int idx;
1273 idx = sdata->fragment_next;
1274 entry = &sdata->fragments[sdata->fragment_next++];
1275 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1276 sdata->fragment_next = 0;
1278 if (!skb_queue_empty(&entry->skb_list)) {
1279 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1280 struct ieee80211_hdr *hdr =
1281 (struct ieee80211_hdr *) entry->skb_list.next->data;
1282 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1283 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1284 "addr1=%pM addr2=%pM\n",
1285 sdata->name, idx,
1286 jiffies - entry->first_frag_time, entry->seq,
1287 entry->last_frag, hdr->addr1, hdr->addr2);
1288 #endif
1289 __skb_queue_purge(&entry->skb_list);
1292 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1293 *skb = NULL;
1294 entry->first_frag_time = jiffies;
1295 entry->seq = seq;
1296 entry->rx_queue = rx_queue;
1297 entry->last_frag = frag;
1298 entry->ccmp = 0;
1299 entry->extra_len = 0;
1301 return entry;
1304 static inline struct ieee80211_fragment_entry *
1305 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1306 unsigned int frag, unsigned int seq,
1307 int rx_queue, struct ieee80211_hdr *hdr)
1309 struct ieee80211_fragment_entry *entry;
1310 int i, idx;
1312 idx = sdata->fragment_next;
1313 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1314 struct ieee80211_hdr *f_hdr;
1316 idx--;
1317 if (idx < 0)
1318 idx = IEEE80211_FRAGMENT_MAX - 1;
1320 entry = &sdata->fragments[idx];
1321 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1322 entry->rx_queue != rx_queue ||
1323 entry->last_frag + 1 != frag)
1324 continue;
1326 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1329 * Check ftype and addresses are equal, else check next fragment
1331 if (((hdr->frame_control ^ f_hdr->frame_control) &
1332 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1333 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1334 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1335 continue;
1337 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1338 __skb_queue_purge(&entry->skb_list);
1339 continue;
1341 return entry;
1344 return NULL;
1347 static ieee80211_rx_result debug_noinline
1348 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1350 struct ieee80211_hdr *hdr;
1351 u16 sc;
1352 __le16 fc;
1353 unsigned int frag, seq;
1354 struct ieee80211_fragment_entry *entry;
1355 struct sk_buff *skb;
1356 struct ieee80211_rx_status *status;
1358 hdr = (struct ieee80211_hdr *)rx->skb->data;
1359 fc = hdr->frame_control;
1360 sc = le16_to_cpu(hdr->seq_ctrl);
1361 frag = sc & IEEE80211_SCTL_FRAG;
1363 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1364 (rx->skb)->len < 24 ||
1365 is_multicast_ether_addr(hdr->addr1))) {
1366 /* not fragmented */
1367 goto out;
1369 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1371 if (skb_linearize(rx->skb))
1372 return RX_DROP_UNUSABLE;
1375 * skb_linearize() might change the skb->data and
1376 * previously cached variables (in this case, hdr) need to
1377 * be refreshed with the new data.
1379 hdr = (struct ieee80211_hdr *)rx->skb->data;
1380 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1382 if (frag == 0) {
1383 /* This is the first fragment of a new frame. */
1384 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1385 rx->seqno_idx, &(rx->skb));
1386 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1387 ieee80211_has_protected(fc)) {
1388 int queue = rx->security_idx;
1389 /* Store CCMP PN so that we can verify that the next
1390 * fragment has a sequential PN value. */
1391 entry->ccmp = 1;
1392 memcpy(entry->last_pn,
1393 rx->key->u.ccmp.rx_pn[queue],
1394 CCMP_PN_LEN);
1396 return RX_QUEUED;
1399 /* This is a fragment for a frame that should already be pending in
1400 * fragment cache. Add this fragment to the end of the pending entry.
1402 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1403 rx->seqno_idx, hdr);
1404 if (!entry) {
1405 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1406 return RX_DROP_MONITOR;
1409 /* Verify that MPDUs within one MSDU have sequential PN values.
1410 * (IEEE 802.11i, 8.3.3.4.5) */
1411 if (entry->ccmp) {
1412 int i;
1413 u8 pn[CCMP_PN_LEN], *rpn;
1414 int queue;
1415 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1416 return RX_DROP_UNUSABLE;
1417 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1418 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1419 pn[i]++;
1420 if (pn[i])
1421 break;
1423 queue = rx->security_idx;
1424 rpn = rx->key->u.ccmp.rx_pn[queue];
1425 if (memcmp(pn, rpn, CCMP_PN_LEN))
1426 return RX_DROP_UNUSABLE;
1427 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1430 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1431 __skb_queue_tail(&entry->skb_list, rx->skb);
1432 entry->last_frag = frag;
1433 entry->extra_len += rx->skb->len;
1434 if (ieee80211_has_morefrags(fc)) {
1435 rx->skb = NULL;
1436 return RX_QUEUED;
1439 rx->skb = __skb_dequeue(&entry->skb_list);
1440 if (skb_tailroom(rx->skb) < entry->extra_len) {
1441 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1442 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1443 GFP_ATOMIC))) {
1444 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1445 __skb_queue_purge(&entry->skb_list);
1446 return RX_DROP_UNUSABLE;
1449 while ((skb = __skb_dequeue(&entry->skb_list))) {
1450 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1451 dev_kfree_skb(skb);
1454 /* Complete frame has been reassembled - process it now */
1455 status = IEEE80211_SKB_RXCB(rx->skb);
1456 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1458 out:
1459 if (rx->sta)
1460 rx->sta->rx_packets++;
1461 if (is_multicast_ether_addr(hdr->addr1))
1462 rx->local->dot11MulticastReceivedFrameCount++;
1463 else
1464 ieee80211_led_rx(rx->local);
1465 return RX_CONTINUE;
1468 static ieee80211_rx_result debug_noinline
1469 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1471 struct ieee80211_sub_if_data *sdata = rx->sdata;
1472 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1473 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1475 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1476 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1477 return RX_CONTINUE;
1479 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1480 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1481 return RX_DROP_UNUSABLE;
1483 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1484 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1485 else
1486 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1488 /* Free PS Poll skb here instead of returning RX_DROP that would
1489 * count as an dropped frame. */
1490 dev_kfree_skb(rx->skb);
1492 return RX_QUEUED;
1495 static ieee80211_rx_result debug_noinline
1496 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1498 u8 *data = rx->skb->data;
1499 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1501 if (!ieee80211_is_data_qos(hdr->frame_control))
1502 return RX_CONTINUE;
1504 /* remove the qos control field, update frame type and meta-data */
1505 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1506 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1507 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1508 /* change frame type to non QOS */
1509 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1511 return RX_CONTINUE;
1514 static int
1515 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1517 if (unlikely(!rx->sta ||
1518 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1519 return -EACCES;
1521 return 0;
1524 static int
1525 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1527 struct sk_buff *skb = rx->skb;
1528 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1531 * Pass through unencrypted frames if the hardware has
1532 * decrypted them already.
1534 if (status->flag & RX_FLAG_DECRYPTED)
1535 return 0;
1537 /* Drop unencrypted frames if key is set. */
1538 if (unlikely(!ieee80211_has_protected(fc) &&
1539 !ieee80211_is_nullfunc(fc) &&
1540 ieee80211_is_data(fc) &&
1541 (rx->key || rx->sdata->drop_unencrypted)))
1542 return -EACCES;
1544 return 0;
1547 static int
1548 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1550 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1551 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1552 __le16 fc = hdr->frame_control;
1555 * Pass through unencrypted frames if the hardware has
1556 * decrypted them already.
1558 if (status->flag & RX_FLAG_DECRYPTED)
1559 return 0;
1561 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1562 if (unlikely(!ieee80211_has_protected(fc) &&
1563 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1564 rx->key)) {
1565 if (ieee80211_is_deauth(fc))
1566 cfg80211_send_unprot_deauth(rx->sdata->dev,
1567 rx->skb->data,
1568 rx->skb->len);
1569 else if (ieee80211_is_disassoc(fc))
1570 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1571 rx->skb->data,
1572 rx->skb->len);
1573 return -EACCES;
1575 /* BIP does not use Protected field, so need to check MMIE */
1576 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1577 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1578 if (ieee80211_is_deauth(fc))
1579 cfg80211_send_unprot_deauth(rx->sdata->dev,
1580 rx->skb->data,
1581 rx->skb->len);
1582 else if (ieee80211_is_disassoc(fc))
1583 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1584 rx->skb->data,
1585 rx->skb->len);
1586 return -EACCES;
1589 * When using MFP, Action frames are not allowed prior to
1590 * having configured keys.
1592 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1593 ieee80211_is_robust_mgmt_frame(
1594 (struct ieee80211_hdr *) rx->skb->data)))
1595 return -EACCES;
1598 return 0;
1601 static int
1602 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1604 struct ieee80211_sub_if_data *sdata = rx->sdata;
1605 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1606 bool check_port_control = false;
1607 struct ethhdr *ehdr;
1608 int ret;
1610 *port_control = false;
1611 if (ieee80211_has_a4(hdr->frame_control) &&
1612 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1613 return -1;
1615 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1616 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1618 if (!sdata->u.mgd.use_4addr)
1619 return -1;
1620 else
1621 check_port_control = true;
1624 if (is_multicast_ether_addr(hdr->addr1) &&
1625 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1626 return -1;
1628 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1629 if (ret < 0)
1630 return ret;
1632 ehdr = (struct ethhdr *) rx->skb->data;
1633 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1634 *port_control = true;
1635 else if (check_port_control)
1636 return -1;
1638 return 0;
1642 * requires that rx->skb is a frame with ethernet header
1644 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1646 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1647 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1648 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1651 * Allow EAPOL frames to us/the PAE group address regardless
1652 * of whether the frame was encrypted or not.
1654 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1655 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1656 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1657 return true;
1659 if (ieee80211_802_1x_port_control(rx) ||
1660 ieee80211_drop_unencrypted(rx, fc))
1661 return false;
1663 return true;
1667 * requires that rx->skb is a frame with ethernet header
1669 static void
1670 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1672 struct ieee80211_sub_if_data *sdata = rx->sdata;
1673 struct net_device *dev = sdata->dev;
1674 struct sk_buff *skb, *xmit_skb;
1675 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1676 struct sta_info *dsta;
1677 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1679 skb = rx->skb;
1680 xmit_skb = NULL;
1682 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1683 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1684 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1685 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1686 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1687 if (is_multicast_ether_addr(ehdr->h_dest)) {
1689 * send multicast frames both to higher layers in
1690 * local net stack and back to the wireless medium
1692 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1693 if (!xmit_skb && net_ratelimit())
1694 printk(KERN_DEBUG "%s: failed to clone "
1695 "multicast frame\n", dev->name);
1696 } else {
1697 dsta = sta_info_get(sdata, skb->data);
1698 if (dsta) {
1700 * The destination station is associated to
1701 * this AP (in this VLAN), so send the frame
1702 * directly to it and do not pass it to local
1703 * net stack.
1705 xmit_skb = skb;
1706 skb = NULL;
1711 if (skb) {
1712 int align __maybe_unused;
1714 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1716 * 'align' will only take the values 0 or 2 here
1717 * since all frames are required to be aligned
1718 * to 2-byte boundaries when being passed to
1719 * mac80211. That also explains the __skb_push()
1720 * below.
1722 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1723 if (align) {
1724 if (WARN_ON(skb_headroom(skb) < 3)) {
1725 dev_kfree_skb(skb);
1726 skb = NULL;
1727 } else {
1728 u8 *data = skb->data;
1729 size_t len = skb_headlen(skb);
1730 skb->data -= align;
1731 memmove(skb->data, data, len);
1732 skb_set_tail_pointer(skb, len);
1735 #endif
1737 if (skb) {
1738 /* deliver to local stack */
1739 skb->protocol = eth_type_trans(skb, dev);
1740 memset(skb->cb, 0, sizeof(skb->cb));
1741 netif_receive_skb(skb);
1745 if (xmit_skb) {
1746 /* send to wireless media */
1747 xmit_skb->protocol = htons(ETH_P_802_3);
1748 skb_reset_network_header(xmit_skb);
1749 skb_reset_mac_header(xmit_skb);
1750 dev_queue_xmit(xmit_skb);
1754 static ieee80211_rx_result debug_noinline
1755 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1757 struct net_device *dev = rx->sdata->dev;
1758 struct sk_buff *skb = rx->skb;
1759 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1760 __le16 fc = hdr->frame_control;
1761 struct sk_buff_head frame_list;
1762 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1764 if (unlikely(!ieee80211_is_data(fc)))
1765 return RX_CONTINUE;
1767 if (unlikely(!ieee80211_is_data_present(fc)))
1768 return RX_DROP_MONITOR;
1770 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1771 return RX_CONTINUE;
1773 if (ieee80211_has_a4(hdr->frame_control) &&
1774 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1775 !rx->sdata->u.vlan.sta)
1776 return RX_DROP_UNUSABLE;
1778 if (is_multicast_ether_addr(hdr->addr1) &&
1779 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1780 rx->sdata->u.vlan.sta) ||
1781 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1782 rx->sdata->u.mgd.use_4addr)))
1783 return RX_DROP_UNUSABLE;
1785 skb->dev = dev;
1786 __skb_queue_head_init(&frame_list);
1788 if (skb_linearize(skb))
1789 return RX_DROP_UNUSABLE;
1791 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1792 rx->sdata->vif.type,
1793 rx->local->hw.extra_tx_headroom, true);
1795 while (!skb_queue_empty(&frame_list)) {
1796 rx->skb = __skb_dequeue(&frame_list);
1798 if (!ieee80211_frame_allowed(rx, fc)) {
1799 dev_kfree_skb(rx->skb);
1800 continue;
1802 dev->stats.rx_packets++;
1803 dev->stats.rx_bytes += rx->skb->len;
1805 ieee80211_deliver_skb(rx);
1808 return RX_QUEUED;
1811 #ifdef CONFIG_MAC80211_MESH
1812 static ieee80211_rx_result
1813 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1815 struct ieee80211_hdr *hdr;
1816 struct ieee80211s_hdr *mesh_hdr;
1817 unsigned int hdrlen;
1818 struct sk_buff *skb = rx->skb, *fwd_skb;
1819 struct ieee80211_local *local = rx->local;
1820 struct ieee80211_sub_if_data *sdata = rx->sdata;
1821 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1823 hdr = (struct ieee80211_hdr *) skb->data;
1824 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1825 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1827 if (!ieee80211_is_data(hdr->frame_control))
1828 return RX_CONTINUE;
1830 if (!mesh_hdr->ttl)
1831 /* illegal frame */
1832 return RX_DROP_MONITOR;
1834 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1835 struct mesh_path *mppath;
1836 char *proxied_addr;
1837 char *mpp_addr;
1839 if (is_multicast_ether_addr(hdr->addr1)) {
1840 mpp_addr = hdr->addr3;
1841 proxied_addr = mesh_hdr->eaddr1;
1842 } else {
1843 mpp_addr = hdr->addr4;
1844 proxied_addr = mesh_hdr->eaddr2;
1847 rcu_read_lock();
1848 mppath = mpp_path_lookup(proxied_addr, sdata);
1849 if (!mppath) {
1850 mpp_path_add(proxied_addr, mpp_addr, sdata);
1851 } else {
1852 spin_lock_bh(&mppath->state_lock);
1853 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1854 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1855 spin_unlock_bh(&mppath->state_lock);
1857 rcu_read_unlock();
1860 /* Frame has reached destination. Don't forward */
1861 if (!is_multicast_ether_addr(hdr->addr1) &&
1862 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1863 return RX_CONTINUE;
1865 mesh_hdr->ttl--;
1867 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1868 if (!mesh_hdr->ttl)
1869 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1870 dropped_frames_ttl);
1871 else {
1872 struct ieee80211_hdr *fwd_hdr;
1873 struct ieee80211_tx_info *info;
1875 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1877 if (!fwd_skb && net_ratelimit())
1878 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1879 sdata->name);
1880 if (!fwd_skb)
1881 goto out;
1883 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1884 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1885 info = IEEE80211_SKB_CB(fwd_skb);
1886 memset(info, 0, sizeof(*info));
1887 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1888 info->control.vif = &rx->sdata->vif;
1889 skb_set_queue_mapping(skb,
1890 ieee80211_select_queue(rx->sdata, fwd_skb));
1891 ieee80211_set_qos_hdr(local, skb);
1892 if (is_multicast_ether_addr(fwd_hdr->addr1))
1893 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1894 fwded_mcast);
1895 else {
1896 int err;
1898 * Save TA to addr1 to send TA a path error if a
1899 * suitable next hop is not found
1901 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1902 ETH_ALEN);
1903 err = mesh_nexthop_lookup(fwd_skb, sdata);
1904 /* Failed to immediately resolve next hop:
1905 * fwded frame was dropped or will be added
1906 * later to the pending skb queue. */
1907 if (err)
1908 return RX_DROP_MONITOR;
1910 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1911 fwded_unicast);
1913 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1914 fwded_frames);
1915 ieee80211_add_pending_skb(local, fwd_skb);
1919 out:
1920 if (is_multicast_ether_addr(hdr->addr1) ||
1921 sdata->dev->flags & IFF_PROMISC)
1922 return RX_CONTINUE;
1923 else
1924 return RX_DROP_MONITOR;
1926 #endif
1928 static ieee80211_rx_result debug_noinline
1929 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1931 struct ieee80211_sub_if_data *sdata = rx->sdata;
1932 struct ieee80211_local *local = rx->local;
1933 struct net_device *dev = sdata->dev;
1934 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1935 __le16 fc = hdr->frame_control;
1936 bool port_control;
1937 int err;
1939 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1940 return RX_CONTINUE;
1942 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1943 return RX_DROP_MONITOR;
1946 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1947 * that a 4-addr station can be detected and moved into a separate VLAN
1949 if (ieee80211_has_a4(hdr->frame_control) &&
1950 sdata->vif.type == NL80211_IFTYPE_AP)
1951 return RX_DROP_MONITOR;
1953 err = __ieee80211_data_to_8023(rx, &port_control);
1954 if (unlikely(err))
1955 return RX_DROP_UNUSABLE;
1957 if (!ieee80211_frame_allowed(rx, fc))
1958 return RX_DROP_MONITOR;
1960 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1961 unlikely(port_control) && sdata->bss) {
1962 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1963 u.ap);
1964 dev = sdata->dev;
1965 rx->sdata = sdata;
1968 rx->skb->dev = dev;
1970 dev->stats.rx_packets++;
1971 dev->stats.rx_bytes += rx->skb->len;
1973 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1974 !is_multicast_ether_addr(
1975 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1976 (!local->scanning &&
1977 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1978 mod_timer(&local->dynamic_ps_timer, jiffies +
1979 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1982 ieee80211_deliver_skb(rx);
1984 return RX_QUEUED;
1987 static ieee80211_rx_result debug_noinline
1988 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1990 struct ieee80211_local *local = rx->local;
1991 struct ieee80211_hw *hw = &local->hw;
1992 struct sk_buff *skb = rx->skb;
1993 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1994 struct tid_ampdu_rx *tid_agg_rx;
1995 u16 start_seq_num;
1996 u16 tid;
1998 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1999 return RX_CONTINUE;
2001 if (ieee80211_is_back_req(bar->frame_control)) {
2002 struct {
2003 __le16 control, start_seq_num;
2004 } __packed bar_data;
2006 if (!rx->sta)
2007 return RX_DROP_MONITOR;
2009 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2010 &bar_data, sizeof(bar_data)))
2011 return RX_DROP_MONITOR;
2013 tid = le16_to_cpu(bar_data.control) >> 12;
2015 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2016 if (!tid_agg_rx)
2017 return RX_DROP_MONITOR;
2019 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2021 /* reset session timer */
2022 if (tid_agg_rx->timeout)
2023 mod_timer(&tid_agg_rx->session_timer,
2024 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2026 spin_lock(&tid_agg_rx->reorder_lock);
2027 /* release stored frames up to start of BAR */
2028 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2029 spin_unlock(&tid_agg_rx->reorder_lock);
2031 kfree_skb(skb);
2032 return RX_QUEUED;
2036 * After this point, we only want management frames,
2037 * so we can drop all remaining control frames to
2038 * cooked monitor interfaces.
2040 return RX_DROP_MONITOR;
2043 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2044 struct ieee80211_mgmt *mgmt,
2045 size_t len)
2047 struct ieee80211_local *local = sdata->local;
2048 struct sk_buff *skb;
2049 struct ieee80211_mgmt *resp;
2051 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2052 /* Not to own unicast address */
2053 return;
2056 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2057 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2058 /* Not from the current AP or not associated yet. */
2059 return;
2062 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2063 /* Too short SA Query request frame */
2064 return;
2067 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2068 if (skb == NULL)
2069 return;
2071 skb_reserve(skb, local->hw.extra_tx_headroom);
2072 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2073 memset(resp, 0, 24);
2074 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2075 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2076 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2077 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2078 IEEE80211_STYPE_ACTION);
2079 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2080 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2081 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2082 memcpy(resp->u.action.u.sa_query.trans_id,
2083 mgmt->u.action.u.sa_query.trans_id,
2084 WLAN_SA_QUERY_TR_ID_LEN);
2086 ieee80211_tx_skb(sdata, skb);
2089 static ieee80211_rx_result debug_noinline
2090 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2092 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2093 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2096 * From here on, look only at management frames.
2097 * Data and control frames are already handled,
2098 * and unknown (reserved) frames are useless.
2100 if (rx->skb->len < 24)
2101 return RX_DROP_MONITOR;
2103 if (!ieee80211_is_mgmt(mgmt->frame_control))
2104 return RX_DROP_MONITOR;
2106 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2107 return RX_DROP_MONITOR;
2109 if (ieee80211_drop_unencrypted_mgmt(rx))
2110 return RX_DROP_UNUSABLE;
2112 return RX_CONTINUE;
2115 static ieee80211_rx_result debug_noinline
2116 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2118 struct ieee80211_local *local = rx->local;
2119 struct ieee80211_sub_if_data *sdata = rx->sdata;
2120 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2122 int len = rx->skb->len;
2124 if (!ieee80211_is_action(mgmt->frame_control))
2125 return RX_CONTINUE;
2127 /* drop too small frames */
2128 if (len < IEEE80211_MIN_ACTION_SIZE)
2129 return RX_DROP_UNUSABLE;
2131 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2132 return RX_DROP_UNUSABLE;
2134 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2135 return RX_DROP_UNUSABLE;
2137 switch (mgmt->u.action.category) {
2138 case WLAN_CATEGORY_BACK:
2140 * The aggregation code is not prepared to handle
2141 * anything but STA/AP due to the BSSID handling;
2142 * IBSS could work in the code but isn't supported
2143 * by drivers or the standard.
2145 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2146 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2147 sdata->vif.type != NL80211_IFTYPE_AP)
2148 break;
2150 /* verify action_code is present */
2151 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2152 break;
2154 switch (mgmt->u.action.u.addba_req.action_code) {
2155 case WLAN_ACTION_ADDBA_REQ:
2156 if (len < (IEEE80211_MIN_ACTION_SIZE +
2157 sizeof(mgmt->u.action.u.addba_req)))
2158 goto invalid;
2159 break;
2160 case WLAN_ACTION_ADDBA_RESP:
2161 if (len < (IEEE80211_MIN_ACTION_SIZE +
2162 sizeof(mgmt->u.action.u.addba_resp)))
2163 goto invalid;
2164 break;
2165 case WLAN_ACTION_DELBA:
2166 if (len < (IEEE80211_MIN_ACTION_SIZE +
2167 sizeof(mgmt->u.action.u.delba)))
2168 goto invalid;
2169 break;
2170 default:
2171 goto invalid;
2174 goto queue;
2175 case WLAN_CATEGORY_SPECTRUM_MGMT:
2176 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2177 break;
2179 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2180 break;
2182 /* verify action_code is present */
2183 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2184 break;
2186 switch (mgmt->u.action.u.measurement.action_code) {
2187 case WLAN_ACTION_SPCT_MSR_REQ:
2188 if (len < (IEEE80211_MIN_ACTION_SIZE +
2189 sizeof(mgmt->u.action.u.measurement)))
2190 break;
2191 ieee80211_process_measurement_req(sdata, mgmt, len);
2192 goto handled;
2193 case WLAN_ACTION_SPCT_CHL_SWITCH:
2194 if (len < (IEEE80211_MIN_ACTION_SIZE +
2195 sizeof(mgmt->u.action.u.chan_switch)))
2196 break;
2198 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2199 break;
2201 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2202 break;
2204 goto queue;
2206 break;
2207 case WLAN_CATEGORY_SA_QUERY:
2208 if (len < (IEEE80211_MIN_ACTION_SIZE +
2209 sizeof(mgmt->u.action.u.sa_query)))
2210 break;
2212 switch (mgmt->u.action.u.sa_query.action) {
2213 case WLAN_ACTION_SA_QUERY_REQUEST:
2214 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2215 break;
2216 ieee80211_process_sa_query_req(sdata, mgmt, len);
2217 goto handled;
2219 break;
2220 case WLAN_CATEGORY_MESH_ACTION:
2221 if (!ieee80211_vif_is_mesh(&sdata->vif))
2222 break;
2223 goto queue;
2224 case WLAN_CATEGORY_MESH_PATH_SEL:
2225 if (!mesh_path_sel_is_hwmp(sdata))
2226 break;
2227 goto queue;
2230 return RX_CONTINUE;
2232 invalid:
2233 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2234 /* will return in the next handlers */
2235 return RX_CONTINUE;
2237 handled:
2238 if (rx->sta)
2239 rx->sta->rx_packets++;
2240 dev_kfree_skb(rx->skb);
2241 return RX_QUEUED;
2243 queue:
2244 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2245 skb_queue_tail(&sdata->skb_queue, rx->skb);
2246 ieee80211_queue_work(&local->hw, &sdata->work);
2247 if (rx->sta)
2248 rx->sta->rx_packets++;
2249 return RX_QUEUED;
2252 static ieee80211_rx_result debug_noinline
2253 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2257 /* skip known-bad action frames and return them in the next handler */
2258 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2259 return RX_CONTINUE;
2262 * Getting here means the kernel doesn't know how to handle
2263 * it, but maybe userspace does ... include returned frames
2264 * so userspace can register for those to know whether ones
2265 * it transmitted were processed or returned.
2268 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2269 rx->skb->data, rx->skb->len,
2270 GFP_ATOMIC)) {
2271 if (rx->sta)
2272 rx->sta->rx_packets++;
2273 dev_kfree_skb(rx->skb);
2274 return RX_QUEUED;
2278 return RX_CONTINUE;
2281 static ieee80211_rx_result debug_noinline
2282 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2284 struct ieee80211_local *local = rx->local;
2285 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2286 struct sk_buff *nskb;
2287 struct ieee80211_sub_if_data *sdata = rx->sdata;
2288 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2290 if (!ieee80211_is_action(mgmt->frame_control))
2291 return RX_CONTINUE;
2294 * For AP mode, hostapd is responsible for handling any action
2295 * frames that we didn't handle, including returning unknown
2296 * ones. For all other modes we will return them to the sender,
2297 * setting the 0x80 bit in the action category, as required by
2298 * 802.11-2007 7.3.1.11.
2299 * Newer versions of hostapd shall also use the management frame
2300 * registration mechanisms, but older ones still use cooked
2301 * monitor interfaces so push all frames there.
2303 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2304 (sdata->vif.type == NL80211_IFTYPE_AP ||
2305 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2306 return RX_DROP_MONITOR;
2308 /* do not return rejected action frames */
2309 if (mgmt->u.action.category & 0x80)
2310 return RX_DROP_UNUSABLE;
2312 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2313 GFP_ATOMIC);
2314 if (nskb) {
2315 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2317 nmgmt->u.action.category |= 0x80;
2318 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2319 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2321 memset(nskb->cb, 0, sizeof(nskb->cb));
2323 ieee80211_tx_skb(rx->sdata, nskb);
2325 dev_kfree_skb(rx->skb);
2326 return RX_QUEUED;
2329 static ieee80211_rx_result debug_noinline
2330 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2332 struct ieee80211_sub_if_data *sdata = rx->sdata;
2333 ieee80211_rx_result rxs;
2334 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2335 __le16 stype;
2337 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2338 if (rxs != RX_CONTINUE)
2339 return rxs;
2341 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2343 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2344 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2345 sdata->vif.type != NL80211_IFTYPE_STATION)
2346 return RX_DROP_MONITOR;
2348 switch (stype) {
2349 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2350 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2351 /* process for all: mesh, mlme, ibss */
2352 break;
2353 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2354 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2355 if (is_multicast_ether_addr(mgmt->da) &&
2356 !is_broadcast_ether_addr(mgmt->da))
2357 return RX_DROP_MONITOR;
2359 /* process only for station */
2360 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2361 return RX_DROP_MONITOR;
2362 break;
2363 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2364 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2365 /* process only for ibss */
2366 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2367 return RX_DROP_MONITOR;
2368 break;
2369 default:
2370 return RX_DROP_MONITOR;
2373 /* queue up frame and kick off work to process it */
2374 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2375 skb_queue_tail(&sdata->skb_queue, rx->skb);
2376 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2377 if (rx->sta)
2378 rx->sta->rx_packets++;
2380 return RX_QUEUED;
2383 /* TODO: use IEEE80211_RX_FRAGMENTED */
2384 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2385 struct ieee80211_rate *rate)
2387 struct ieee80211_sub_if_data *sdata;
2388 struct ieee80211_local *local = rx->local;
2389 struct ieee80211_rtap_hdr {
2390 struct ieee80211_radiotap_header hdr;
2391 u8 flags;
2392 u8 rate_or_pad;
2393 __le16 chan_freq;
2394 __le16 chan_flags;
2395 } __packed *rthdr;
2396 struct sk_buff *skb = rx->skb, *skb2;
2397 struct net_device *prev_dev = NULL;
2398 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2401 * If cooked monitor has been processed already, then
2402 * don't do it again. If not, set the flag.
2404 if (rx->flags & IEEE80211_RX_CMNTR)
2405 goto out_free_skb;
2406 rx->flags |= IEEE80211_RX_CMNTR;
2408 if (skb_headroom(skb) < sizeof(*rthdr) &&
2409 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2410 goto out_free_skb;
2412 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2413 memset(rthdr, 0, sizeof(*rthdr));
2414 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2415 rthdr->hdr.it_present =
2416 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2417 (1 << IEEE80211_RADIOTAP_CHANNEL));
2419 if (rate) {
2420 rthdr->rate_or_pad = rate->bitrate / 5;
2421 rthdr->hdr.it_present |=
2422 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2424 rthdr->chan_freq = cpu_to_le16(status->freq);
2426 if (status->band == IEEE80211_BAND_5GHZ)
2427 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2428 IEEE80211_CHAN_5GHZ);
2429 else
2430 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2431 IEEE80211_CHAN_2GHZ);
2433 skb_set_mac_header(skb, 0);
2434 skb->ip_summed = CHECKSUM_UNNECESSARY;
2435 skb->pkt_type = PACKET_OTHERHOST;
2436 skb->protocol = htons(ETH_P_802_2);
2438 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2439 if (!ieee80211_sdata_running(sdata))
2440 continue;
2442 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2443 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2444 continue;
2446 if (prev_dev) {
2447 skb2 = skb_clone(skb, GFP_ATOMIC);
2448 if (skb2) {
2449 skb2->dev = prev_dev;
2450 netif_receive_skb(skb2);
2454 prev_dev = sdata->dev;
2455 sdata->dev->stats.rx_packets++;
2456 sdata->dev->stats.rx_bytes += skb->len;
2459 if (prev_dev) {
2460 skb->dev = prev_dev;
2461 netif_receive_skb(skb);
2462 return;
2465 out_free_skb:
2466 dev_kfree_skb(skb);
2469 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2470 ieee80211_rx_result res)
2472 switch (res) {
2473 case RX_DROP_MONITOR:
2474 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2475 if (rx->sta)
2476 rx->sta->rx_dropped++;
2477 /* fall through */
2478 case RX_CONTINUE: {
2479 struct ieee80211_rate *rate = NULL;
2480 struct ieee80211_supported_band *sband;
2481 struct ieee80211_rx_status *status;
2483 status = IEEE80211_SKB_RXCB((rx->skb));
2485 sband = rx->local->hw.wiphy->bands[status->band];
2486 if (!(status->flag & RX_FLAG_HT))
2487 rate = &sband->bitrates[status->rate_idx];
2489 ieee80211_rx_cooked_monitor(rx, rate);
2490 break;
2492 case RX_DROP_UNUSABLE:
2493 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2494 if (rx->sta)
2495 rx->sta->rx_dropped++;
2496 dev_kfree_skb(rx->skb);
2497 break;
2498 case RX_QUEUED:
2499 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2500 break;
2504 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2506 ieee80211_rx_result res = RX_DROP_MONITOR;
2507 struct sk_buff *skb;
2509 #define CALL_RXH(rxh) \
2510 do { \
2511 res = rxh(rx); \
2512 if (res != RX_CONTINUE) \
2513 goto rxh_next; \
2514 } while (0);
2516 spin_lock(&rx->local->rx_skb_queue.lock);
2517 if (rx->local->running_rx_handler)
2518 goto unlock;
2520 rx->local->running_rx_handler = true;
2522 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2523 spin_unlock(&rx->local->rx_skb_queue.lock);
2526 * all the other fields are valid across frames
2527 * that belong to an aMPDU since they are on the
2528 * same TID from the same station
2530 rx->skb = skb;
2532 CALL_RXH(ieee80211_rx_h_decrypt)
2533 CALL_RXH(ieee80211_rx_h_check_more_data)
2534 CALL_RXH(ieee80211_rx_h_sta_process)
2535 CALL_RXH(ieee80211_rx_h_defragment)
2536 CALL_RXH(ieee80211_rx_h_ps_poll)
2537 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2538 /* must be after MMIC verify so header is counted in MPDU mic */
2539 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2540 CALL_RXH(ieee80211_rx_h_amsdu)
2541 #ifdef CONFIG_MAC80211_MESH
2542 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2543 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2544 #endif
2545 CALL_RXH(ieee80211_rx_h_data)
2546 CALL_RXH(ieee80211_rx_h_ctrl);
2547 CALL_RXH(ieee80211_rx_h_mgmt_check)
2548 CALL_RXH(ieee80211_rx_h_action)
2549 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2550 CALL_RXH(ieee80211_rx_h_action_return)
2551 CALL_RXH(ieee80211_rx_h_mgmt)
2553 rxh_next:
2554 ieee80211_rx_handlers_result(rx, res);
2555 spin_lock(&rx->local->rx_skb_queue.lock);
2556 #undef CALL_RXH
2559 rx->local->running_rx_handler = false;
2561 unlock:
2562 spin_unlock(&rx->local->rx_skb_queue.lock);
2565 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2567 ieee80211_rx_result res = RX_DROP_MONITOR;
2569 #define CALL_RXH(rxh) \
2570 do { \
2571 res = rxh(rx); \
2572 if (res != RX_CONTINUE) \
2573 goto rxh_next; \
2574 } while (0);
2576 CALL_RXH(ieee80211_rx_h_passive_scan)
2577 CALL_RXH(ieee80211_rx_h_check)
2579 ieee80211_rx_reorder_ampdu(rx);
2581 ieee80211_rx_handlers(rx);
2582 return;
2584 rxh_next:
2585 ieee80211_rx_handlers_result(rx, res);
2587 #undef CALL_RXH
2591 * This function makes calls into the RX path, therefore
2592 * it has to be invoked under RCU read lock.
2594 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2596 struct ieee80211_rx_data rx = {
2597 .sta = sta,
2598 .sdata = sta->sdata,
2599 .local = sta->local,
2600 /* This is OK -- must be QoS data frame */
2601 .security_idx = tid,
2602 .seqno_idx = tid,
2603 .flags = 0,
2605 struct tid_ampdu_rx *tid_agg_rx;
2607 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2608 if (!tid_agg_rx)
2609 return;
2611 spin_lock(&tid_agg_rx->reorder_lock);
2612 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2613 spin_unlock(&tid_agg_rx->reorder_lock);
2615 ieee80211_rx_handlers(&rx);
2618 /* main receive path */
2620 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2621 struct ieee80211_hdr *hdr)
2623 struct ieee80211_sub_if_data *sdata = rx->sdata;
2624 struct sk_buff *skb = rx->skb;
2625 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2626 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2627 int multicast = is_multicast_ether_addr(hdr->addr1);
2629 switch (sdata->vif.type) {
2630 case NL80211_IFTYPE_STATION:
2631 if (!bssid && !sdata->u.mgd.use_4addr)
2632 return 0;
2633 if (!multicast &&
2634 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2635 if (!(sdata->dev->flags & IFF_PROMISC) ||
2636 sdata->u.mgd.use_4addr)
2637 return 0;
2638 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2640 break;
2641 case NL80211_IFTYPE_ADHOC:
2642 if (!bssid)
2643 return 0;
2644 if (ieee80211_is_beacon(hdr->frame_control)) {
2645 return 1;
2647 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2648 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2649 return 0;
2650 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2651 } else if (!multicast &&
2652 compare_ether_addr(sdata->vif.addr,
2653 hdr->addr1) != 0) {
2654 if (!(sdata->dev->flags & IFF_PROMISC))
2655 return 0;
2656 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2657 } else if (!rx->sta) {
2658 int rate_idx;
2659 if (status->flag & RX_FLAG_HT)
2660 rate_idx = 0; /* TODO: HT rates */
2661 else
2662 rate_idx = status->rate_idx;
2663 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2664 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2666 break;
2667 case NL80211_IFTYPE_MESH_POINT:
2668 if (!multicast &&
2669 compare_ether_addr(sdata->vif.addr,
2670 hdr->addr1) != 0) {
2671 if (!(sdata->dev->flags & IFF_PROMISC))
2672 return 0;
2674 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2676 break;
2677 case NL80211_IFTYPE_AP_VLAN:
2678 case NL80211_IFTYPE_AP:
2679 if (!bssid) {
2680 if (compare_ether_addr(sdata->vif.addr,
2681 hdr->addr1))
2682 return 0;
2683 } else if (!ieee80211_bssid_match(bssid,
2684 sdata->vif.addr)) {
2685 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2686 !ieee80211_is_beacon(hdr->frame_control))
2687 return 0;
2688 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2690 break;
2691 case NL80211_IFTYPE_WDS:
2692 if (bssid || !ieee80211_is_data(hdr->frame_control))
2693 return 0;
2694 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2695 return 0;
2696 break;
2697 default:
2698 /* should never get here */
2699 WARN_ON(1);
2700 break;
2703 return 1;
2707 * This function returns whether or not the SKB
2708 * was destined for RX processing or not, which,
2709 * if consume is true, is equivalent to whether
2710 * or not the skb was consumed.
2712 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2713 struct sk_buff *skb, bool consume)
2715 struct ieee80211_local *local = rx->local;
2716 struct ieee80211_sub_if_data *sdata = rx->sdata;
2717 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2718 struct ieee80211_hdr *hdr = (void *)skb->data;
2719 int prepares;
2721 rx->skb = skb;
2722 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2723 prepares = prepare_for_handlers(rx, hdr);
2725 if (!prepares)
2726 return false;
2728 if (!consume) {
2729 skb = skb_copy(skb, GFP_ATOMIC);
2730 if (!skb) {
2731 if (net_ratelimit())
2732 wiphy_debug(local->hw.wiphy,
2733 "failed to copy skb for %s\n",
2734 sdata->name);
2735 return true;
2738 rx->skb = skb;
2741 ieee80211_invoke_rx_handlers(rx);
2742 return true;
2746 * This is the actual Rx frames handler. as it blongs to Rx path it must
2747 * be called with rcu_read_lock protection.
2749 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2750 struct sk_buff *skb)
2752 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2753 struct ieee80211_local *local = hw_to_local(hw);
2754 struct ieee80211_sub_if_data *sdata;
2755 struct ieee80211_hdr *hdr;
2756 __le16 fc;
2757 struct ieee80211_rx_data rx;
2758 struct ieee80211_sub_if_data *prev;
2759 struct sta_info *sta, *tmp, *prev_sta;
2760 int err = 0;
2762 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2763 memset(&rx, 0, sizeof(rx));
2764 rx.skb = skb;
2765 rx.local = local;
2767 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2768 local->dot11ReceivedFragmentCount++;
2770 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2771 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2772 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2774 if (ieee80211_is_mgmt(fc))
2775 err = skb_linearize(skb);
2776 else
2777 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2779 if (err) {
2780 dev_kfree_skb(skb);
2781 return;
2784 hdr = (struct ieee80211_hdr *)skb->data;
2785 ieee80211_parse_qos(&rx);
2786 ieee80211_verify_alignment(&rx);
2788 if (ieee80211_is_data(fc)) {
2789 prev_sta = NULL;
2791 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2792 if (!prev_sta) {
2793 prev_sta = sta;
2794 continue;
2797 rx.sta = prev_sta;
2798 rx.sdata = prev_sta->sdata;
2799 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2801 prev_sta = sta;
2804 if (prev_sta) {
2805 rx.sta = prev_sta;
2806 rx.sdata = prev_sta->sdata;
2808 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2809 return;
2810 goto out;
2814 prev = NULL;
2816 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2817 if (!ieee80211_sdata_running(sdata))
2818 continue;
2820 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2821 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2822 continue;
2825 * frame is destined for this interface, but if it's
2826 * not also for the previous one we handle that after
2827 * the loop to avoid copying the SKB once too much
2830 if (!prev) {
2831 prev = sdata;
2832 continue;
2835 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2836 rx.sdata = prev;
2837 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2839 prev = sdata;
2842 if (prev) {
2843 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2844 rx.sdata = prev;
2846 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2847 return;
2850 out:
2851 dev_kfree_skb(skb);
2855 * This is the receive path handler. It is called by a low level driver when an
2856 * 802.11 MPDU is received from the hardware.
2858 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2860 struct ieee80211_local *local = hw_to_local(hw);
2861 struct ieee80211_rate *rate = NULL;
2862 struct ieee80211_supported_band *sband;
2863 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2865 WARN_ON_ONCE(softirq_count() == 0);
2867 if (WARN_ON(status->band < 0 ||
2868 status->band >= IEEE80211_NUM_BANDS))
2869 goto drop;
2871 sband = local->hw.wiphy->bands[status->band];
2872 if (WARN_ON(!sband))
2873 goto drop;
2876 * If we're suspending, it is possible although not too likely
2877 * that we'd be receiving frames after having already partially
2878 * quiesced the stack. We can't process such frames then since
2879 * that might, for example, cause stations to be added or other
2880 * driver callbacks be invoked.
2882 if (unlikely(local->quiescing || local->suspended))
2883 goto drop;
2886 * The same happens when we're not even started,
2887 * but that's worth a warning.
2889 if (WARN_ON(!local->started))
2890 goto drop;
2892 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2894 * Validate the rate, unless a PLCP error means that
2895 * we probably can't have a valid rate here anyway.
2898 if (status->flag & RX_FLAG_HT) {
2900 * rate_idx is MCS index, which can be [0-76]
2901 * as documented on:
2903 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2905 * Anything else would be some sort of driver or
2906 * hardware error. The driver should catch hardware
2907 * errors.
2909 if (WARN((status->rate_idx < 0 ||
2910 status->rate_idx > 76),
2911 "Rate marked as an HT rate but passed "
2912 "status->rate_idx is not "
2913 "an MCS index [0-76]: %d (0x%02x)\n",
2914 status->rate_idx,
2915 status->rate_idx))
2916 goto drop;
2917 } else {
2918 if (WARN_ON(status->rate_idx < 0 ||
2919 status->rate_idx >= sband->n_bitrates))
2920 goto drop;
2921 rate = &sband->bitrates[status->rate_idx];
2925 status->rx_flags = 0;
2928 * key references and virtual interfaces are protected using RCU
2929 * and this requires that we are in a read-side RCU section during
2930 * receive processing
2932 rcu_read_lock();
2935 * Frames with failed FCS/PLCP checksum are not returned,
2936 * all other frames are returned without radiotap header
2937 * if it was previously present.
2938 * Also, frames with less than 16 bytes are dropped.
2940 skb = ieee80211_rx_monitor(local, skb, rate);
2941 if (!skb) {
2942 rcu_read_unlock();
2943 return;
2946 ieee80211_tpt_led_trig_rx(local,
2947 ((struct ieee80211_hdr *)skb->data)->frame_control,
2948 skb->len);
2949 __ieee80211_rx_handle_packet(hw, skb);
2951 rcu_read_unlock();
2953 return;
2954 drop:
2955 kfree_skb(skb);
2957 EXPORT_SYMBOL(ieee80211_rx);
2959 /* This is a version of the rx handler that can be called from hard irq
2960 * context. Post the skb on the queue and schedule the tasklet */
2961 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2963 struct ieee80211_local *local = hw_to_local(hw);
2965 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2967 skb->pkt_type = IEEE80211_RX_MSG;
2968 skb_queue_tail(&local->skb_queue, skb);
2969 tasklet_schedule(&local->tasklet);
2971 EXPORT_SYMBOL(ieee80211_rx_irqsafe);