SUNRPC: Ensure we always bump the backlog queue in xprt_free_slot
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / bluetooth / hci_core.c
blob56943add45cc44707167f4877e27fe5630b00c95
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI core. */
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <linux/crypto.h>
46 #include <net/sock.h>
48 #include <asm/system.h>
49 #include <linux/uaccess.h>
50 #include <asm/unaligned.h>
52 #include <net/bluetooth/bluetooth.h>
53 #include <net/bluetooth/hci_core.h>
55 #define AUTO_OFF_TIMEOUT 2000
57 static void hci_cmd_task(unsigned long arg);
58 static void hci_rx_task(unsigned long arg);
59 static void hci_tx_task(unsigned long arg);
61 static DEFINE_RWLOCK(hci_task_lock);
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
71 /* HCI protocols */
72 #define HCI_MAX_PROTO 2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
78 /* ---- HCI notifications ---- */
80 int hci_register_notifier(struct notifier_block *nb)
82 return atomic_notifier_chain_register(&hci_notifier, nb);
85 int hci_unregister_notifier(struct notifier_block *nb)
87 return atomic_notifier_chain_unregister(&hci_notifier, nb);
90 static void hci_notify(struct hci_dev *hdev, int event)
92 atomic_notifier_call_chain(&hci_notifier, event, hdev);
95 /* ---- HCI requests ---- */
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
99 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
101 /* If this is the init phase check if the completed command matches
102 * the last init command, and if not just return.
104 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105 return;
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 wake_up_interruptible(&hdev->req_wait_q);
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
116 BT_DBG("%s err 0x%2.2x", hdev->name, err);
118 if (hdev->req_status == HCI_REQ_PEND) {
119 hdev->req_result = err;
120 hdev->req_status = HCI_REQ_CANCELED;
121 wake_up_interruptible(&hdev->req_wait_q);
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127 unsigned long opt, __u32 timeout)
129 DECLARE_WAITQUEUE(wait, current);
130 int err = 0;
132 BT_DBG("%s start", hdev->name);
134 hdev->req_status = HCI_REQ_PEND;
136 add_wait_queue(&hdev->req_wait_q, &wait);
137 set_current_state(TASK_INTERRUPTIBLE);
139 req(hdev, opt);
140 schedule_timeout(timeout);
142 remove_wait_queue(&hdev->req_wait_q, &wait);
144 if (signal_pending(current))
145 return -EINTR;
147 switch (hdev->req_status) {
148 case HCI_REQ_DONE:
149 err = -bt_to_errno(hdev->req_result);
150 break;
152 case HCI_REQ_CANCELED:
153 err = -hdev->req_result;
154 break;
156 default:
157 err = -ETIMEDOUT;
158 break;
161 hdev->req_status = hdev->req_result = 0;
163 BT_DBG("%s end: err %d", hdev->name, err);
165 return err;
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169 unsigned long opt, __u32 timeout)
171 int ret;
173 if (!test_bit(HCI_UP, &hdev->flags))
174 return -ENETDOWN;
176 /* Serialize all requests */
177 hci_req_lock(hdev);
178 ret = __hci_request(hdev, req, opt, timeout);
179 hci_req_unlock(hdev);
181 return ret;
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
186 BT_DBG("%s %ld", hdev->name, opt);
188 /* Reset device */
189 set_bit(HCI_RESET, &hdev->flags);
190 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
195 struct hci_cp_delete_stored_link_key cp;
196 struct sk_buff *skb;
197 __le16 param;
198 __u8 flt_type;
200 BT_DBG("%s %ld", hdev->name, opt);
202 /* Driver initialization */
204 /* Special commands */
205 while ((skb = skb_dequeue(&hdev->driver_init))) {
206 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207 skb->dev = (void *) hdev;
209 skb_queue_tail(&hdev->cmd_q, skb);
210 tasklet_schedule(&hdev->cmd_task);
212 skb_queue_purge(&hdev->driver_init);
214 /* Mandatory initialization */
216 /* Reset */
217 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218 set_bit(HCI_RESET, &hdev->flags);
219 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
222 /* Read Local Supported Features */
223 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
225 /* Read Local Version */
226 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
228 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
231 #if 0
232 /* Host buffer size */
234 struct hci_cp_host_buffer_size cp;
235 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237 cp.acl_max_pkt = cpu_to_le16(0xffff);
238 cp.sco_max_pkt = cpu_to_le16(0xffff);
239 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
241 #endif
243 /* Read BD Address */
244 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
246 /* Read Class of Device */
247 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
249 /* Read Local Name */
250 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
252 /* Read Voice Setting */
253 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
255 /* Optional initialization */
257 /* Clear Event Filters */
258 flt_type = HCI_FLT_CLEAR_ALL;
259 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
261 /* Connection accept timeout ~20 secs */
262 param = cpu_to_le16(0x7d00);
263 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
265 bacpy(&cp.bdaddr, BDADDR_ANY);
266 cp.delete_all = 1;
267 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
272 BT_DBG("%s", hdev->name);
274 /* Read LE buffer size */
275 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
280 __u8 scan = opt;
282 BT_DBG("%s %x", hdev->name, scan);
284 /* Inquiry and Page scans */
285 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
290 __u8 auth = opt;
292 BT_DBG("%s %x", hdev->name, auth);
294 /* Authentication */
295 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
300 __u8 encrypt = opt;
302 BT_DBG("%s %x", hdev->name, encrypt);
304 /* Encryption */
305 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
310 __le16 policy = cpu_to_le16(opt);
312 BT_DBG("%s %x", hdev->name, policy);
314 /* Default link policy */
315 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
318 /* Get HCI device by index.
319 * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
322 struct hci_dev *hdev = NULL;
323 struct list_head *p;
325 BT_DBG("%d", index);
327 if (index < 0)
328 return NULL;
330 read_lock(&hci_dev_list_lock);
331 list_for_each(p, &hci_dev_list) {
332 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333 if (d->id == index) {
334 hdev = hci_dev_hold(d);
335 break;
338 read_unlock(&hci_dev_list_lock);
339 return hdev;
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
345 struct inquiry_cache *cache = &hdev->inq_cache;
346 struct inquiry_entry *next = cache->list, *e;
348 BT_DBG("cache %p", cache);
350 cache->list = NULL;
351 while ((e = next)) {
352 next = e->next;
353 kfree(e);
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
359 struct inquiry_cache *cache = &hdev->inq_cache;
360 struct inquiry_entry *e;
362 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
364 for (e = cache->list; e; e = e->next)
365 if (!bacmp(&e->data.bdaddr, bdaddr))
366 break;
367 return e;
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
372 struct inquiry_cache *cache = &hdev->inq_cache;
373 struct inquiry_entry *ie;
375 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
377 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378 if (!ie) {
379 /* Entry not in the cache. Add new one. */
380 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381 if (!ie)
382 return;
384 ie->next = cache->list;
385 cache->list = ie;
388 memcpy(&ie->data, data, sizeof(*data));
389 ie->timestamp = jiffies;
390 cache->timestamp = jiffies;
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
395 struct inquiry_cache *cache = &hdev->inq_cache;
396 struct inquiry_info *info = (struct inquiry_info *) buf;
397 struct inquiry_entry *e;
398 int copied = 0;
400 for (e = cache->list; e && copied < num; e = e->next, copied++) {
401 struct inquiry_data *data = &e->data;
402 bacpy(&info->bdaddr, &data->bdaddr);
403 info->pscan_rep_mode = data->pscan_rep_mode;
404 info->pscan_period_mode = data->pscan_period_mode;
405 info->pscan_mode = data->pscan_mode;
406 memcpy(info->dev_class, data->dev_class, 3);
407 info->clock_offset = data->clock_offset;
408 info++;
411 BT_DBG("cache %p, copied %d", cache, copied);
412 return copied;
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
417 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418 struct hci_cp_inquiry cp;
420 BT_DBG("%s", hdev->name);
422 if (test_bit(HCI_INQUIRY, &hdev->flags))
423 return;
425 /* Start Inquiry */
426 memcpy(&cp.lap, &ir->lap, 3);
427 cp.length = ir->length;
428 cp.num_rsp = ir->num_rsp;
429 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
432 int hci_inquiry(void __user *arg)
434 __u8 __user *ptr = arg;
435 struct hci_inquiry_req ir;
436 struct hci_dev *hdev;
437 int err = 0, do_inquiry = 0, max_rsp;
438 long timeo;
439 __u8 *buf;
441 if (copy_from_user(&ir, ptr, sizeof(ir)))
442 return -EFAULT;
444 hdev = hci_dev_get(ir.dev_id);
445 if (!hdev)
446 return -ENODEV;
448 hci_dev_lock_bh(hdev);
449 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450 inquiry_cache_empty(hdev) ||
451 ir.flags & IREQ_CACHE_FLUSH) {
452 inquiry_cache_flush(hdev);
453 do_inquiry = 1;
455 hci_dev_unlock_bh(hdev);
457 timeo = ir.length * msecs_to_jiffies(2000);
459 if (do_inquiry) {
460 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461 if (err < 0)
462 goto done;
465 /* for unlimited number of responses we will use buffer with 255 entries */
466 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
468 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469 * copy it to the user space.
471 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472 if (!buf) {
473 err = -ENOMEM;
474 goto done;
477 hci_dev_lock_bh(hdev);
478 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479 hci_dev_unlock_bh(hdev);
481 BT_DBG("num_rsp %d", ir.num_rsp);
483 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484 ptr += sizeof(ir);
485 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486 ir.num_rsp))
487 err = -EFAULT;
488 } else
489 err = -EFAULT;
491 kfree(buf);
493 done:
494 hci_dev_put(hdev);
495 return err;
498 /* ---- HCI ioctl helpers ---- */
500 int hci_dev_open(__u16 dev)
502 struct hci_dev *hdev;
503 int ret = 0;
505 hdev = hci_dev_get(dev);
506 if (!hdev)
507 return -ENODEV;
509 BT_DBG("%s %p", hdev->name, hdev);
511 hci_req_lock(hdev);
513 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514 ret = -ERFKILL;
515 goto done;
518 if (test_bit(HCI_UP, &hdev->flags)) {
519 ret = -EALREADY;
520 goto done;
523 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524 set_bit(HCI_RAW, &hdev->flags);
526 /* Treat all non BR/EDR controllers as raw devices for now */
527 if (hdev->dev_type != HCI_BREDR)
528 set_bit(HCI_RAW, &hdev->flags);
530 if (hdev->open(hdev)) {
531 ret = -EIO;
532 goto done;
535 if (!test_bit(HCI_RAW, &hdev->flags)) {
536 atomic_set(&hdev->cmd_cnt, 1);
537 set_bit(HCI_INIT, &hdev->flags);
538 hdev->init_last_cmd = 0;
540 ret = __hci_request(hdev, hci_init_req, 0,
541 msecs_to_jiffies(HCI_INIT_TIMEOUT));
543 if (lmp_host_le_capable(hdev))
544 ret = __hci_request(hdev, hci_le_init_req, 0,
545 msecs_to_jiffies(HCI_INIT_TIMEOUT));
547 clear_bit(HCI_INIT, &hdev->flags);
550 if (!ret) {
551 hci_dev_hold(hdev);
552 set_bit(HCI_UP, &hdev->flags);
553 hci_notify(hdev, HCI_DEV_UP);
554 if (!test_bit(HCI_SETUP, &hdev->flags))
555 mgmt_powered(hdev->id, 1);
556 } else {
557 /* Init failed, cleanup */
558 tasklet_kill(&hdev->rx_task);
559 tasklet_kill(&hdev->tx_task);
560 tasklet_kill(&hdev->cmd_task);
562 skb_queue_purge(&hdev->cmd_q);
563 skb_queue_purge(&hdev->rx_q);
565 if (hdev->flush)
566 hdev->flush(hdev);
568 if (hdev->sent_cmd) {
569 kfree_skb(hdev->sent_cmd);
570 hdev->sent_cmd = NULL;
573 hdev->close(hdev);
574 hdev->flags = 0;
577 done:
578 hci_req_unlock(hdev);
579 hci_dev_put(hdev);
580 return ret;
583 static int hci_dev_do_close(struct hci_dev *hdev)
585 BT_DBG("%s %p", hdev->name, hdev);
587 hci_req_cancel(hdev, ENODEV);
588 hci_req_lock(hdev);
590 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
591 del_timer_sync(&hdev->cmd_timer);
592 hci_req_unlock(hdev);
593 return 0;
596 /* Kill RX and TX tasks */
597 tasklet_kill(&hdev->rx_task);
598 tasklet_kill(&hdev->tx_task);
600 hci_dev_lock_bh(hdev);
601 inquiry_cache_flush(hdev);
602 hci_conn_hash_flush(hdev);
603 hci_dev_unlock_bh(hdev);
605 hci_notify(hdev, HCI_DEV_DOWN);
607 if (hdev->flush)
608 hdev->flush(hdev);
610 /* Reset device */
611 skb_queue_purge(&hdev->cmd_q);
612 atomic_set(&hdev->cmd_cnt, 1);
613 if (!test_bit(HCI_RAW, &hdev->flags)) {
614 set_bit(HCI_INIT, &hdev->flags);
615 __hci_request(hdev, hci_reset_req, 0,
616 msecs_to_jiffies(250));
617 clear_bit(HCI_INIT, &hdev->flags);
620 /* Kill cmd task */
621 tasklet_kill(&hdev->cmd_task);
623 /* Drop queues */
624 skb_queue_purge(&hdev->rx_q);
625 skb_queue_purge(&hdev->cmd_q);
626 skb_queue_purge(&hdev->raw_q);
628 /* Drop last sent command */
629 if (hdev->sent_cmd) {
630 del_timer_sync(&hdev->cmd_timer);
631 kfree_skb(hdev->sent_cmd);
632 hdev->sent_cmd = NULL;
635 /* After this point our queues are empty
636 * and no tasks are scheduled. */
637 hdev->close(hdev);
639 mgmt_powered(hdev->id, 0);
641 /* Clear flags */
642 hdev->flags = 0;
644 hci_req_unlock(hdev);
646 hci_dev_put(hdev);
647 return 0;
650 int hci_dev_close(__u16 dev)
652 struct hci_dev *hdev;
653 int err;
655 hdev = hci_dev_get(dev);
656 if (!hdev)
657 return -ENODEV;
658 err = hci_dev_do_close(hdev);
659 hci_dev_put(hdev);
660 return err;
663 int hci_dev_reset(__u16 dev)
665 struct hci_dev *hdev;
666 int ret = 0;
668 hdev = hci_dev_get(dev);
669 if (!hdev)
670 return -ENODEV;
672 hci_req_lock(hdev);
673 tasklet_disable(&hdev->tx_task);
675 if (!test_bit(HCI_UP, &hdev->flags))
676 goto done;
678 /* Drop queues */
679 skb_queue_purge(&hdev->rx_q);
680 skb_queue_purge(&hdev->cmd_q);
682 hci_dev_lock_bh(hdev);
683 inquiry_cache_flush(hdev);
684 hci_conn_hash_flush(hdev);
685 hci_dev_unlock_bh(hdev);
687 if (hdev->flush)
688 hdev->flush(hdev);
690 atomic_set(&hdev->cmd_cnt, 1);
691 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
693 if (!test_bit(HCI_RAW, &hdev->flags))
694 ret = __hci_request(hdev, hci_reset_req, 0,
695 msecs_to_jiffies(HCI_INIT_TIMEOUT));
697 done:
698 tasklet_enable(&hdev->tx_task);
699 hci_req_unlock(hdev);
700 hci_dev_put(hdev);
701 return ret;
704 int hci_dev_reset_stat(__u16 dev)
706 struct hci_dev *hdev;
707 int ret = 0;
709 hdev = hci_dev_get(dev);
710 if (!hdev)
711 return -ENODEV;
713 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
715 hci_dev_put(hdev);
717 return ret;
720 int hci_dev_cmd(unsigned int cmd, void __user *arg)
722 struct hci_dev *hdev;
723 struct hci_dev_req dr;
724 int err = 0;
726 if (copy_from_user(&dr, arg, sizeof(dr)))
727 return -EFAULT;
729 hdev = hci_dev_get(dr.dev_id);
730 if (!hdev)
731 return -ENODEV;
733 switch (cmd) {
734 case HCISETAUTH:
735 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
736 msecs_to_jiffies(HCI_INIT_TIMEOUT));
737 break;
739 case HCISETENCRYPT:
740 if (!lmp_encrypt_capable(hdev)) {
741 err = -EOPNOTSUPP;
742 break;
745 if (!test_bit(HCI_AUTH, &hdev->flags)) {
746 /* Auth must be enabled first */
747 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
748 msecs_to_jiffies(HCI_INIT_TIMEOUT));
749 if (err)
750 break;
753 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
754 msecs_to_jiffies(HCI_INIT_TIMEOUT));
755 break;
757 case HCISETSCAN:
758 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
759 msecs_to_jiffies(HCI_INIT_TIMEOUT));
760 break;
762 case HCISETLINKPOL:
763 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
764 msecs_to_jiffies(HCI_INIT_TIMEOUT));
765 break;
767 case HCISETLINKMODE:
768 hdev->link_mode = ((__u16) dr.dev_opt) &
769 (HCI_LM_MASTER | HCI_LM_ACCEPT);
770 break;
772 case HCISETPTYPE:
773 hdev->pkt_type = (__u16) dr.dev_opt;
774 break;
776 case HCISETACLMTU:
777 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
778 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
779 break;
781 case HCISETSCOMTU:
782 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
783 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
784 break;
786 default:
787 err = -EINVAL;
788 break;
791 hci_dev_put(hdev);
792 return err;
795 int hci_get_dev_list(void __user *arg)
797 struct hci_dev_list_req *dl;
798 struct hci_dev_req *dr;
799 struct list_head *p;
800 int n = 0, size, err;
801 __u16 dev_num;
803 if (get_user(dev_num, (__u16 __user *) arg))
804 return -EFAULT;
806 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
807 return -EINVAL;
809 size = sizeof(*dl) + dev_num * sizeof(*dr);
811 dl = kzalloc(size, GFP_KERNEL);
812 if (!dl)
813 return -ENOMEM;
815 dr = dl->dev_req;
817 read_lock_bh(&hci_dev_list_lock);
818 list_for_each(p, &hci_dev_list) {
819 struct hci_dev *hdev;
821 hdev = list_entry(p, struct hci_dev, list);
823 hci_del_off_timer(hdev);
825 if (!test_bit(HCI_MGMT, &hdev->flags))
826 set_bit(HCI_PAIRABLE, &hdev->flags);
828 (dr + n)->dev_id = hdev->id;
829 (dr + n)->dev_opt = hdev->flags;
831 if (++n >= dev_num)
832 break;
834 read_unlock_bh(&hci_dev_list_lock);
836 dl->dev_num = n;
837 size = sizeof(*dl) + n * sizeof(*dr);
839 err = copy_to_user(arg, dl, size);
840 kfree(dl);
842 return err ? -EFAULT : 0;
845 int hci_get_dev_info(void __user *arg)
847 struct hci_dev *hdev;
848 struct hci_dev_info di;
849 int err = 0;
851 if (copy_from_user(&di, arg, sizeof(di)))
852 return -EFAULT;
854 hdev = hci_dev_get(di.dev_id);
855 if (!hdev)
856 return -ENODEV;
858 hci_del_off_timer(hdev);
860 if (!test_bit(HCI_MGMT, &hdev->flags))
861 set_bit(HCI_PAIRABLE, &hdev->flags);
863 strcpy(di.name, hdev->name);
864 di.bdaddr = hdev->bdaddr;
865 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
866 di.flags = hdev->flags;
867 di.pkt_type = hdev->pkt_type;
868 di.acl_mtu = hdev->acl_mtu;
869 di.acl_pkts = hdev->acl_pkts;
870 di.sco_mtu = hdev->sco_mtu;
871 di.sco_pkts = hdev->sco_pkts;
872 di.link_policy = hdev->link_policy;
873 di.link_mode = hdev->link_mode;
875 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
876 memcpy(&di.features, &hdev->features, sizeof(di.features));
878 if (copy_to_user(arg, &di, sizeof(di)))
879 err = -EFAULT;
881 hci_dev_put(hdev);
883 return err;
886 /* ---- Interface to HCI drivers ---- */
888 static int hci_rfkill_set_block(void *data, bool blocked)
890 struct hci_dev *hdev = data;
892 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
894 if (!blocked)
895 return 0;
897 hci_dev_do_close(hdev);
899 return 0;
902 static const struct rfkill_ops hci_rfkill_ops = {
903 .set_block = hci_rfkill_set_block,
906 /* Alloc HCI device */
907 struct hci_dev *hci_alloc_dev(void)
909 struct hci_dev *hdev;
911 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
912 if (!hdev)
913 return NULL;
915 skb_queue_head_init(&hdev->driver_init);
917 return hdev;
919 EXPORT_SYMBOL(hci_alloc_dev);
921 /* Free HCI device */
922 void hci_free_dev(struct hci_dev *hdev)
924 skb_queue_purge(&hdev->driver_init);
926 /* will free via device release */
927 put_device(&hdev->dev);
929 EXPORT_SYMBOL(hci_free_dev);
931 static void hci_power_on(struct work_struct *work)
933 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
935 BT_DBG("%s", hdev->name);
937 if (hci_dev_open(hdev->id) < 0)
938 return;
940 if (test_bit(HCI_AUTO_OFF, &hdev->flags))
941 mod_timer(&hdev->off_timer,
942 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
944 if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
945 mgmt_index_added(hdev->id);
948 static void hci_power_off(struct work_struct *work)
950 struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
952 BT_DBG("%s", hdev->name);
954 hci_dev_close(hdev->id);
957 static void hci_auto_off(unsigned long data)
959 struct hci_dev *hdev = (struct hci_dev *) data;
961 BT_DBG("%s", hdev->name);
963 clear_bit(HCI_AUTO_OFF, &hdev->flags);
965 queue_work(hdev->workqueue, &hdev->power_off);
968 void hci_del_off_timer(struct hci_dev *hdev)
970 BT_DBG("%s", hdev->name);
972 clear_bit(HCI_AUTO_OFF, &hdev->flags);
973 del_timer(&hdev->off_timer);
976 int hci_uuids_clear(struct hci_dev *hdev)
978 struct list_head *p, *n;
980 list_for_each_safe(p, n, &hdev->uuids) {
981 struct bt_uuid *uuid;
983 uuid = list_entry(p, struct bt_uuid, list);
985 list_del(p);
986 kfree(uuid);
989 return 0;
992 int hci_link_keys_clear(struct hci_dev *hdev)
994 struct list_head *p, *n;
996 list_for_each_safe(p, n, &hdev->link_keys) {
997 struct link_key *key;
999 key = list_entry(p, struct link_key, list);
1001 list_del(p);
1002 kfree(key);
1005 return 0;
1008 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1010 struct list_head *p;
1012 list_for_each(p, &hdev->link_keys) {
1013 struct link_key *k;
1015 k = list_entry(p, struct link_key, list);
1017 if (bacmp(bdaddr, &k->bdaddr) == 0)
1018 return k;
1021 return NULL;
1024 static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025 u8 key_type, u8 old_key_type)
1027 /* Legacy key */
1028 if (key_type < 0x03)
1029 return 1;
1031 /* Debug keys are insecure so don't store them persistently */
1032 if (key_type == HCI_LK_DEBUG_COMBINATION)
1033 return 0;
1035 /* Changed combination key and there's no previous one */
1036 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037 return 0;
1039 /* Security mode 3 case */
1040 if (!conn)
1041 return 1;
1043 /* Neither local nor remote side had no-bonding as requirement */
1044 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045 return 1;
1047 /* Local side had dedicated bonding as requirement */
1048 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049 return 1;
1051 /* Remote side had dedicated bonding as requirement */
1052 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053 return 1;
1055 /* If none of the above criteria match, then don't store the key
1056 * persistently */
1057 return 0;
1060 struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1062 struct link_key *k;
1064 list_for_each_entry(k, &hdev->link_keys, list) {
1065 struct key_master_id *id;
1067 if (k->type != HCI_LK_SMP_LTK)
1068 continue;
1070 if (k->dlen != sizeof(*id))
1071 continue;
1073 id = (void *) &k->data;
1074 if (id->ediv == ediv &&
1075 (memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076 return k;
1079 return NULL;
1081 EXPORT_SYMBOL(hci_find_ltk);
1083 struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084 bdaddr_t *bdaddr, u8 type)
1086 struct link_key *k;
1088 list_for_each_entry(k, &hdev->link_keys, list)
1089 if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090 return k;
1092 return NULL;
1094 EXPORT_SYMBOL(hci_find_link_key_type);
1096 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1099 struct link_key *key, *old_key;
1100 u8 old_key_type, persistent;
1102 old_key = hci_find_link_key(hdev, bdaddr);
1103 if (old_key) {
1104 old_key_type = old_key->type;
1105 key = old_key;
1106 } else {
1107 old_key_type = conn ? conn->key_type : 0xff;
1108 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109 if (!key)
1110 return -ENOMEM;
1111 list_add(&key->list, &hdev->link_keys);
1114 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1116 /* Some buggy controller combinations generate a changed
1117 * combination key for legacy pairing even when there's no
1118 * previous key */
1119 if (type == HCI_LK_CHANGED_COMBINATION &&
1120 (!conn || conn->remote_auth == 0xff) &&
1121 old_key_type == 0xff) {
1122 type = HCI_LK_COMBINATION;
1123 if (conn)
1124 conn->key_type = type;
1127 bacpy(&key->bdaddr, bdaddr);
1128 memcpy(key->val, val, 16);
1129 key->pin_len = pin_len;
1131 if (type == HCI_LK_CHANGED_COMBINATION)
1132 key->type = old_key_type;
1133 else
1134 key->type = type;
1136 if (!new_key)
1137 return 0;
1139 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1141 mgmt_new_key(hdev->id, key, persistent);
1143 if (!persistent) {
1144 list_del(&key->list);
1145 kfree(key);
1148 return 0;
1151 int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152 u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1154 struct link_key *key, *old_key;
1155 struct key_master_id *id;
1156 u8 old_key_type;
1158 BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
1160 old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161 if (old_key) {
1162 key = old_key;
1163 old_key_type = old_key->type;
1164 } else {
1165 key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166 if (!key)
1167 return -ENOMEM;
1168 list_add(&key->list, &hdev->link_keys);
1169 old_key_type = 0xff;
1172 key->dlen = sizeof(*id);
1174 bacpy(&key->bdaddr, bdaddr);
1175 memcpy(key->val, ltk, sizeof(key->val));
1176 key->type = HCI_LK_SMP_LTK;
1177 key->pin_len = key_size;
1179 id = (void *) &key->data;
1180 id->ediv = ediv;
1181 memcpy(id->rand, rand, sizeof(id->rand));
1183 if (new_key)
1184 mgmt_new_key(hdev->id, key, old_key_type);
1186 return 0;
1189 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1191 struct link_key *key;
1193 key = hci_find_link_key(hdev, bdaddr);
1194 if (!key)
1195 return -ENOENT;
1197 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1199 list_del(&key->list);
1200 kfree(key);
1202 return 0;
1205 /* HCI command timer function */
1206 static void hci_cmd_timer(unsigned long arg)
1208 struct hci_dev *hdev = (void *) arg;
1210 BT_ERR("%s command tx timeout", hdev->name);
1211 atomic_set(&hdev->cmd_cnt, 1);
1212 tasklet_schedule(&hdev->cmd_task);
1215 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1216 bdaddr_t *bdaddr)
1218 struct oob_data *data;
1220 list_for_each_entry(data, &hdev->remote_oob_data, list)
1221 if (bacmp(bdaddr, &data->bdaddr) == 0)
1222 return data;
1224 return NULL;
1227 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1229 struct oob_data *data;
1231 data = hci_find_remote_oob_data(hdev, bdaddr);
1232 if (!data)
1233 return -ENOENT;
1235 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1237 list_del(&data->list);
1238 kfree(data);
1240 return 0;
1243 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1245 struct oob_data *data, *n;
1247 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1248 list_del(&data->list);
1249 kfree(data);
1252 return 0;
1255 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1256 u8 *randomizer)
1258 struct oob_data *data;
1260 data = hci_find_remote_oob_data(hdev, bdaddr);
1262 if (!data) {
1263 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1264 if (!data)
1265 return -ENOMEM;
1267 bacpy(&data->bdaddr, bdaddr);
1268 list_add(&data->list, &hdev->remote_oob_data);
1271 memcpy(data->hash, hash, sizeof(data->hash));
1272 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1274 BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
1276 return 0;
1279 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1280 bdaddr_t *bdaddr)
1282 struct list_head *p;
1284 list_for_each(p, &hdev->blacklist) {
1285 struct bdaddr_list *b;
1287 b = list_entry(p, struct bdaddr_list, list);
1289 if (bacmp(bdaddr, &b->bdaddr) == 0)
1290 return b;
1293 return NULL;
1296 int hci_blacklist_clear(struct hci_dev *hdev)
1298 struct list_head *p, *n;
1300 list_for_each_safe(p, n, &hdev->blacklist) {
1301 struct bdaddr_list *b;
1303 b = list_entry(p, struct bdaddr_list, list);
1305 list_del(p);
1306 kfree(b);
1309 return 0;
1312 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1314 struct bdaddr_list *entry;
1315 int err;
1317 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1318 return -EBADF;
1320 hci_dev_lock_bh(hdev);
1322 if (hci_blacklist_lookup(hdev, bdaddr)) {
1323 err = -EEXIST;
1324 goto err;
1327 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1328 if (!entry) {
1329 err = -ENOMEM;
1330 goto err;
1333 bacpy(&entry->bdaddr, bdaddr);
1335 list_add(&entry->list, &hdev->blacklist);
1337 err = 0;
1339 err:
1340 hci_dev_unlock_bh(hdev);
1341 return err;
1344 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
1346 struct bdaddr_list *entry;
1347 int err = 0;
1349 hci_dev_lock_bh(hdev);
1351 if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1352 hci_blacklist_clear(hdev);
1353 goto done;
1356 entry = hci_blacklist_lookup(hdev, bdaddr);
1357 if (!entry) {
1358 err = -ENOENT;
1359 goto done;
1362 list_del(&entry->list);
1363 kfree(entry);
1365 done:
1366 hci_dev_unlock_bh(hdev);
1367 return err;
1370 static void hci_clear_adv_cache(unsigned long arg)
1372 struct hci_dev *hdev = (void *) arg;
1374 hci_dev_lock(hdev);
1376 hci_adv_entries_clear(hdev);
1378 hci_dev_unlock(hdev);
1381 int hci_adv_entries_clear(struct hci_dev *hdev)
1383 struct adv_entry *entry, *tmp;
1385 list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1386 list_del(&entry->list);
1387 kfree(entry);
1390 BT_DBG("%s adv cache cleared", hdev->name);
1392 return 0;
1395 struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
1397 struct adv_entry *entry;
1399 list_for_each_entry(entry, &hdev->adv_entries, list)
1400 if (bacmp(bdaddr, &entry->bdaddr) == 0)
1401 return entry;
1403 return NULL;
1406 static inline int is_connectable_adv(u8 evt_type)
1408 if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1409 return 1;
1411 return 0;
1414 int hci_add_adv_entry(struct hci_dev *hdev,
1415 struct hci_ev_le_advertising_info *ev)
1417 struct adv_entry *entry;
1419 if (!is_connectable_adv(ev->evt_type))
1420 return -EINVAL;
1422 /* Only new entries should be added to adv_entries. So, if
1423 * bdaddr was found, don't add it. */
1424 if (hci_find_adv_entry(hdev, &ev->bdaddr))
1425 return 0;
1427 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1428 if (!entry)
1429 return -ENOMEM;
1431 bacpy(&entry->bdaddr, &ev->bdaddr);
1432 entry->bdaddr_type = ev->bdaddr_type;
1434 list_add(&entry->list, &hdev->adv_entries);
1436 BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1437 batostr(&entry->bdaddr), entry->bdaddr_type);
1439 return 0;
1442 /* Register HCI device */
1443 int hci_register_dev(struct hci_dev *hdev)
1445 struct list_head *head = &hci_dev_list, *p;
1446 int i, id = 0;
1448 BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1449 hdev->bus, hdev->owner);
1451 if (!hdev->open || !hdev->close || !hdev->destruct)
1452 return -EINVAL;
1454 write_lock_bh(&hci_dev_list_lock);
1456 /* Find first available device id */
1457 list_for_each(p, &hci_dev_list) {
1458 if (list_entry(p, struct hci_dev, list)->id != id)
1459 break;
1460 head = p; id++;
1463 sprintf(hdev->name, "hci%d", id);
1464 hdev->id = id;
1465 list_add(&hdev->list, head);
1467 atomic_set(&hdev->refcnt, 1);
1468 spin_lock_init(&hdev->lock);
1470 hdev->flags = 0;
1471 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1472 hdev->esco_type = (ESCO_HV1);
1473 hdev->link_mode = (HCI_LM_ACCEPT);
1474 hdev->io_capability = 0x03; /* No Input No Output */
1476 hdev->idle_timeout = 0;
1477 hdev->sniff_max_interval = 800;
1478 hdev->sniff_min_interval = 80;
1480 tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1481 tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1482 tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1484 skb_queue_head_init(&hdev->rx_q);
1485 skb_queue_head_init(&hdev->cmd_q);
1486 skb_queue_head_init(&hdev->raw_q);
1488 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1490 for (i = 0; i < NUM_REASSEMBLY; i++)
1491 hdev->reassembly[i] = NULL;
1493 init_waitqueue_head(&hdev->req_wait_q);
1494 mutex_init(&hdev->req_lock);
1496 inquiry_cache_init(hdev);
1498 hci_conn_hash_init(hdev);
1500 INIT_LIST_HEAD(&hdev->blacklist);
1502 INIT_LIST_HEAD(&hdev->uuids);
1504 INIT_LIST_HEAD(&hdev->link_keys);
1506 INIT_LIST_HEAD(&hdev->remote_oob_data);
1508 INIT_LIST_HEAD(&hdev->adv_entries);
1509 setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1510 (unsigned long) hdev);
1512 INIT_WORK(&hdev->power_on, hci_power_on);
1513 INIT_WORK(&hdev->power_off, hci_power_off);
1514 setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1516 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1518 atomic_set(&hdev->promisc, 0);
1520 write_unlock_bh(&hci_dev_list_lock);
1522 hdev->workqueue = create_singlethread_workqueue(hdev->name);
1523 if (!hdev->workqueue)
1524 goto nomem;
1526 hdev->tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
1527 if (IS_ERR(hdev->tfm))
1528 BT_INFO("Failed to load transform for ecb(aes): %ld",
1529 PTR_ERR(hdev->tfm));
1531 hci_register_sysfs(hdev);
1533 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1534 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1535 if (hdev->rfkill) {
1536 if (rfkill_register(hdev->rfkill) < 0) {
1537 rfkill_destroy(hdev->rfkill);
1538 hdev->rfkill = NULL;
1542 set_bit(HCI_AUTO_OFF, &hdev->flags);
1543 set_bit(HCI_SETUP, &hdev->flags);
1544 queue_work(hdev->workqueue, &hdev->power_on);
1546 hci_notify(hdev, HCI_DEV_REG);
1548 return id;
1550 nomem:
1551 write_lock_bh(&hci_dev_list_lock);
1552 list_del(&hdev->list);
1553 write_unlock_bh(&hci_dev_list_lock);
1555 return -ENOMEM;
1557 EXPORT_SYMBOL(hci_register_dev);
1559 /* Unregister HCI device */
1560 int hci_unregister_dev(struct hci_dev *hdev)
1562 int i;
1564 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1566 write_lock_bh(&hci_dev_list_lock);
1567 list_del(&hdev->list);
1568 write_unlock_bh(&hci_dev_list_lock);
1570 hci_dev_do_close(hdev);
1572 for (i = 0; i < NUM_REASSEMBLY; i++)
1573 kfree_skb(hdev->reassembly[i]);
1575 if (!test_bit(HCI_INIT, &hdev->flags) &&
1576 !test_bit(HCI_SETUP, &hdev->flags))
1577 mgmt_index_removed(hdev->id);
1579 if (!IS_ERR(hdev->tfm))
1580 crypto_free_blkcipher(hdev->tfm);
1582 hci_notify(hdev, HCI_DEV_UNREG);
1584 if (hdev->rfkill) {
1585 rfkill_unregister(hdev->rfkill);
1586 rfkill_destroy(hdev->rfkill);
1589 hci_unregister_sysfs(hdev);
1591 hci_del_off_timer(hdev);
1592 del_timer(&hdev->adv_timer);
1594 destroy_workqueue(hdev->workqueue);
1596 hci_dev_lock_bh(hdev);
1597 hci_blacklist_clear(hdev);
1598 hci_uuids_clear(hdev);
1599 hci_link_keys_clear(hdev);
1600 hci_remote_oob_data_clear(hdev);
1601 hci_adv_entries_clear(hdev);
1602 hci_dev_unlock_bh(hdev);
1604 __hci_dev_put(hdev);
1606 return 0;
1608 EXPORT_SYMBOL(hci_unregister_dev);
1610 /* Suspend HCI device */
1611 int hci_suspend_dev(struct hci_dev *hdev)
1613 hci_notify(hdev, HCI_DEV_SUSPEND);
1614 return 0;
1616 EXPORT_SYMBOL(hci_suspend_dev);
1618 /* Resume HCI device */
1619 int hci_resume_dev(struct hci_dev *hdev)
1621 hci_notify(hdev, HCI_DEV_RESUME);
1622 return 0;
1624 EXPORT_SYMBOL(hci_resume_dev);
1626 /* Receive frame from HCI drivers */
1627 int hci_recv_frame(struct sk_buff *skb)
1629 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1630 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1631 && !test_bit(HCI_INIT, &hdev->flags))) {
1632 kfree_skb(skb);
1633 return -ENXIO;
1636 /* Incomming skb */
1637 bt_cb(skb)->incoming = 1;
1639 /* Time stamp */
1640 __net_timestamp(skb);
1642 /* Queue frame for rx task */
1643 skb_queue_tail(&hdev->rx_q, skb);
1644 tasklet_schedule(&hdev->rx_task);
1646 return 0;
1648 EXPORT_SYMBOL(hci_recv_frame);
1650 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1651 int count, __u8 index)
1653 int len = 0;
1654 int hlen = 0;
1655 int remain = count;
1656 struct sk_buff *skb;
1657 struct bt_skb_cb *scb;
1659 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1660 index >= NUM_REASSEMBLY)
1661 return -EILSEQ;
1663 skb = hdev->reassembly[index];
1665 if (!skb) {
1666 switch (type) {
1667 case HCI_ACLDATA_PKT:
1668 len = HCI_MAX_FRAME_SIZE;
1669 hlen = HCI_ACL_HDR_SIZE;
1670 break;
1671 case HCI_EVENT_PKT:
1672 len = HCI_MAX_EVENT_SIZE;
1673 hlen = HCI_EVENT_HDR_SIZE;
1674 break;
1675 case HCI_SCODATA_PKT:
1676 len = HCI_MAX_SCO_SIZE;
1677 hlen = HCI_SCO_HDR_SIZE;
1678 break;
1681 skb = bt_skb_alloc(len, GFP_ATOMIC);
1682 if (!skb)
1683 return -ENOMEM;
1685 scb = (void *) skb->cb;
1686 scb->expect = hlen;
1687 scb->pkt_type = type;
1689 skb->dev = (void *) hdev;
1690 hdev->reassembly[index] = skb;
1693 while (count) {
1694 scb = (void *) skb->cb;
1695 len = min(scb->expect, (__u16)count);
1697 memcpy(skb_put(skb, len), data, len);
1699 count -= len;
1700 data += len;
1701 scb->expect -= len;
1702 remain = count;
1704 switch (type) {
1705 case HCI_EVENT_PKT:
1706 if (skb->len == HCI_EVENT_HDR_SIZE) {
1707 struct hci_event_hdr *h = hci_event_hdr(skb);
1708 scb->expect = h->plen;
1710 if (skb_tailroom(skb) < scb->expect) {
1711 kfree_skb(skb);
1712 hdev->reassembly[index] = NULL;
1713 return -ENOMEM;
1716 break;
1718 case HCI_ACLDATA_PKT:
1719 if (skb->len == HCI_ACL_HDR_SIZE) {
1720 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1721 scb->expect = __le16_to_cpu(h->dlen);
1723 if (skb_tailroom(skb) < scb->expect) {
1724 kfree_skb(skb);
1725 hdev->reassembly[index] = NULL;
1726 return -ENOMEM;
1729 break;
1731 case HCI_SCODATA_PKT:
1732 if (skb->len == HCI_SCO_HDR_SIZE) {
1733 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1734 scb->expect = h->dlen;
1736 if (skb_tailroom(skb) < scb->expect) {
1737 kfree_skb(skb);
1738 hdev->reassembly[index] = NULL;
1739 return -ENOMEM;
1742 break;
1745 if (scb->expect == 0) {
1746 /* Complete frame */
1748 bt_cb(skb)->pkt_type = type;
1749 hci_recv_frame(skb);
1751 hdev->reassembly[index] = NULL;
1752 return remain;
1756 return remain;
1759 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1761 int rem = 0;
1763 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1764 return -EILSEQ;
1766 while (count) {
1767 rem = hci_reassembly(hdev, type, data, count, type - 1);
1768 if (rem < 0)
1769 return rem;
1771 data += (count - rem);
1772 count = rem;
1775 return rem;
1777 EXPORT_SYMBOL(hci_recv_fragment);
1779 #define STREAM_REASSEMBLY 0
1781 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1783 int type;
1784 int rem = 0;
1786 while (count) {
1787 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1789 if (!skb) {
1790 struct { char type; } *pkt;
1792 /* Start of the frame */
1793 pkt = data;
1794 type = pkt->type;
1796 data++;
1797 count--;
1798 } else
1799 type = bt_cb(skb)->pkt_type;
1801 rem = hci_reassembly(hdev, type, data, count,
1802 STREAM_REASSEMBLY);
1803 if (rem < 0)
1804 return rem;
1806 data += (count - rem);
1807 count = rem;
1810 return rem;
1812 EXPORT_SYMBOL(hci_recv_stream_fragment);
1814 /* ---- Interface to upper protocols ---- */
1816 /* Register/Unregister protocols.
1817 * hci_task_lock is used to ensure that no tasks are running. */
1818 int hci_register_proto(struct hci_proto *hp)
1820 int err = 0;
1822 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1824 if (hp->id >= HCI_MAX_PROTO)
1825 return -EINVAL;
1827 write_lock_bh(&hci_task_lock);
1829 if (!hci_proto[hp->id])
1830 hci_proto[hp->id] = hp;
1831 else
1832 err = -EEXIST;
1834 write_unlock_bh(&hci_task_lock);
1836 return err;
1838 EXPORT_SYMBOL(hci_register_proto);
1840 int hci_unregister_proto(struct hci_proto *hp)
1842 int err = 0;
1844 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1846 if (hp->id >= HCI_MAX_PROTO)
1847 return -EINVAL;
1849 write_lock_bh(&hci_task_lock);
1851 if (hci_proto[hp->id])
1852 hci_proto[hp->id] = NULL;
1853 else
1854 err = -ENOENT;
1856 write_unlock_bh(&hci_task_lock);
1858 return err;
1860 EXPORT_SYMBOL(hci_unregister_proto);
1862 int hci_register_cb(struct hci_cb *cb)
1864 BT_DBG("%p name %s", cb, cb->name);
1866 write_lock_bh(&hci_cb_list_lock);
1867 list_add(&cb->list, &hci_cb_list);
1868 write_unlock_bh(&hci_cb_list_lock);
1870 return 0;
1872 EXPORT_SYMBOL(hci_register_cb);
1874 int hci_unregister_cb(struct hci_cb *cb)
1876 BT_DBG("%p name %s", cb, cb->name);
1878 write_lock_bh(&hci_cb_list_lock);
1879 list_del(&cb->list);
1880 write_unlock_bh(&hci_cb_list_lock);
1882 return 0;
1884 EXPORT_SYMBOL(hci_unregister_cb);
1886 static int hci_send_frame(struct sk_buff *skb)
1888 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1890 if (!hdev) {
1891 kfree_skb(skb);
1892 return -ENODEV;
1895 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1897 if (atomic_read(&hdev->promisc)) {
1898 /* Time stamp */
1899 __net_timestamp(skb);
1901 hci_send_to_sock(hdev, skb, NULL);
1904 /* Get rid of skb owner, prior to sending to the driver. */
1905 skb_orphan(skb);
1907 return hdev->send(skb);
1910 /* Send HCI command */
1911 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1913 int len = HCI_COMMAND_HDR_SIZE + plen;
1914 struct hci_command_hdr *hdr;
1915 struct sk_buff *skb;
1917 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1919 skb = bt_skb_alloc(len, GFP_ATOMIC);
1920 if (!skb) {
1921 BT_ERR("%s no memory for command", hdev->name);
1922 return -ENOMEM;
1925 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1926 hdr->opcode = cpu_to_le16(opcode);
1927 hdr->plen = plen;
1929 if (plen)
1930 memcpy(skb_put(skb, plen), param, plen);
1932 BT_DBG("skb len %d", skb->len);
1934 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1935 skb->dev = (void *) hdev;
1937 if (test_bit(HCI_INIT, &hdev->flags))
1938 hdev->init_last_cmd = opcode;
1940 skb_queue_tail(&hdev->cmd_q, skb);
1941 tasklet_schedule(&hdev->cmd_task);
1943 return 0;
1946 /* Get data from the previously sent command */
1947 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1949 struct hci_command_hdr *hdr;
1951 if (!hdev->sent_cmd)
1952 return NULL;
1954 hdr = (void *) hdev->sent_cmd->data;
1956 if (hdr->opcode != cpu_to_le16(opcode))
1957 return NULL;
1959 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1961 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1964 /* Send ACL data */
1965 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1967 struct hci_acl_hdr *hdr;
1968 int len = skb->len;
1970 skb_push(skb, HCI_ACL_HDR_SIZE);
1971 skb_reset_transport_header(skb);
1972 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1973 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1974 hdr->dlen = cpu_to_le16(len);
1977 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1979 struct hci_dev *hdev = conn->hdev;
1980 struct sk_buff *list;
1982 BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1984 skb->dev = (void *) hdev;
1985 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1986 hci_add_acl_hdr(skb, conn->handle, flags);
1988 list = skb_shinfo(skb)->frag_list;
1989 if (!list) {
1990 /* Non fragmented */
1991 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1993 skb_queue_tail(&conn->data_q, skb);
1994 } else {
1995 /* Fragmented */
1996 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1998 skb_shinfo(skb)->frag_list = NULL;
2000 /* Queue all fragments atomically */
2001 spin_lock_bh(&conn->data_q.lock);
2003 __skb_queue_tail(&conn->data_q, skb);
2005 flags &= ~ACL_START;
2006 flags |= ACL_CONT;
2007 do {
2008 skb = list; list = list->next;
2010 skb->dev = (void *) hdev;
2011 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2012 hci_add_acl_hdr(skb, conn->handle, flags);
2014 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2016 __skb_queue_tail(&conn->data_q, skb);
2017 } while (list);
2019 spin_unlock_bh(&conn->data_q.lock);
2022 tasklet_schedule(&hdev->tx_task);
2024 EXPORT_SYMBOL(hci_send_acl);
2026 /* Send SCO data */
2027 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2029 struct hci_dev *hdev = conn->hdev;
2030 struct hci_sco_hdr hdr;
2032 BT_DBG("%s len %d", hdev->name, skb->len);
2034 hdr.handle = cpu_to_le16(conn->handle);
2035 hdr.dlen = skb->len;
2037 skb_push(skb, HCI_SCO_HDR_SIZE);
2038 skb_reset_transport_header(skb);
2039 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2041 skb->dev = (void *) hdev;
2042 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2044 skb_queue_tail(&conn->data_q, skb);
2045 tasklet_schedule(&hdev->tx_task);
2047 EXPORT_SYMBOL(hci_send_sco);
2049 /* ---- HCI TX task (outgoing data) ---- */
2051 /* HCI Connection scheduler */
2052 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
2054 struct hci_conn_hash *h = &hdev->conn_hash;
2055 struct hci_conn *conn = NULL;
2056 int num = 0, min = ~0;
2057 struct list_head *p;
2059 /* We don't have to lock device here. Connections are always
2060 * added and removed with TX task disabled. */
2061 list_for_each(p, &h->list) {
2062 struct hci_conn *c;
2063 c = list_entry(p, struct hci_conn, list);
2065 if (c->type != type || skb_queue_empty(&c->data_q))
2066 continue;
2068 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2069 continue;
2071 num++;
2073 if (c->sent < min) {
2074 min = c->sent;
2075 conn = c;
2079 if (conn) {
2080 int cnt, q;
2082 switch (conn->type) {
2083 case ACL_LINK:
2084 cnt = hdev->acl_cnt;
2085 break;
2086 case SCO_LINK:
2087 case ESCO_LINK:
2088 cnt = hdev->sco_cnt;
2089 break;
2090 case LE_LINK:
2091 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2092 break;
2093 default:
2094 cnt = 0;
2095 BT_ERR("Unknown link type");
2098 q = cnt / num;
2099 *quote = q ? q : 1;
2100 } else
2101 *quote = 0;
2103 BT_DBG("conn %p quote %d", conn, *quote);
2104 return conn;
2107 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2109 struct hci_conn_hash *h = &hdev->conn_hash;
2110 struct list_head *p;
2111 struct hci_conn *c;
2113 BT_ERR("%s link tx timeout", hdev->name);
2115 /* Kill stalled connections */
2116 list_for_each(p, &h->list) {
2117 c = list_entry(p, struct hci_conn, list);
2118 if (c->type == type && c->sent) {
2119 BT_ERR("%s killing stalled connection %s",
2120 hdev->name, batostr(&c->dst));
2121 hci_acl_disconn(c, 0x13);
2126 static inline void hci_sched_acl(struct hci_dev *hdev)
2128 struct hci_conn *conn;
2129 struct sk_buff *skb;
2130 int quote;
2132 BT_DBG("%s", hdev->name);
2134 if (!test_bit(HCI_RAW, &hdev->flags)) {
2135 /* ACL tx timeout must be longer than maximum
2136 * link supervision timeout (40.9 seconds) */
2137 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2138 hci_link_tx_to(hdev, ACL_LINK);
2141 while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2142 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2143 BT_DBG("skb %p len %d", skb, skb->len);
2145 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2147 hci_send_frame(skb);
2148 hdev->acl_last_tx = jiffies;
2150 hdev->acl_cnt--;
2151 conn->sent++;
2156 /* Schedule SCO */
2157 static inline void hci_sched_sco(struct hci_dev *hdev)
2159 struct hci_conn *conn;
2160 struct sk_buff *skb;
2161 int quote;
2163 BT_DBG("%s", hdev->name);
2165 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2166 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2167 BT_DBG("skb %p len %d", skb, skb->len);
2168 hci_send_frame(skb);
2170 conn->sent++;
2171 if (conn->sent == ~0)
2172 conn->sent = 0;
2177 static inline void hci_sched_esco(struct hci_dev *hdev)
2179 struct hci_conn *conn;
2180 struct sk_buff *skb;
2181 int quote;
2183 BT_DBG("%s", hdev->name);
2185 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
2186 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2187 BT_DBG("skb %p len %d", skb, skb->len);
2188 hci_send_frame(skb);
2190 conn->sent++;
2191 if (conn->sent == ~0)
2192 conn->sent = 0;
2197 static inline void hci_sched_le(struct hci_dev *hdev)
2199 struct hci_conn *conn;
2200 struct sk_buff *skb;
2201 int quote, cnt;
2203 BT_DBG("%s", hdev->name);
2205 if (!test_bit(HCI_RAW, &hdev->flags)) {
2206 /* LE tx timeout must be longer than maximum
2207 * link supervision timeout (40.9 seconds) */
2208 if (!hdev->le_cnt && hdev->le_pkts &&
2209 time_after(jiffies, hdev->le_last_tx + HZ * 45))
2210 hci_link_tx_to(hdev, LE_LINK);
2213 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2214 while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2215 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2216 BT_DBG("skb %p len %d", skb, skb->len);
2218 hci_send_frame(skb);
2219 hdev->le_last_tx = jiffies;
2221 cnt--;
2222 conn->sent++;
2225 if (hdev->le_pkts)
2226 hdev->le_cnt = cnt;
2227 else
2228 hdev->acl_cnt = cnt;
2231 static void hci_tx_task(unsigned long arg)
2233 struct hci_dev *hdev = (struct hci_dev *) arg;
2234 struct sk_buff *skb;
2236 read_lock(&hci_task_lock);
2238 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2239 hdev->sco_cnt, hdev->le_cnt);
2241 /* Schedule queues and send stuff to HCI driver */
2243 hci_sched_acl(hdev);
2245 hci_sched_sco(hdev);
2247 hci_sched_esco(hdev);
2249 hci_sched_le(hdev);
2251 /* Send next queued raw (unknown type) packet */
2252 while ((skb = skb_dequeue(&hdev->raw_q)))
2253 hci_send_frame(skb);
2255 read_unlock(&hci_task_lock);
2258 /* ----- HCI RX task (incoming data processing) ----- */
2260 /* ACL data packet */
2261 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2263 struct hci_acl_hdr *hdr = (void *) skb->data;
2264 struct hci_conn *conn;
2265 __u16 handle, flags;
2267 skb_pull(skb, HCI_ACL_HDR_SIZE);
2269 handle = __le16_to_cpu(hdr->handle);
2270 flags = hci_flags(handle);
2271 handle = hci_handle(handle);
2273 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
2275 hdev->stat.acl_rx++;
2277 hci_dev_lock(hdev);
2278 conn = hci_conn_hash_lookup_handle(hdev, handle);
2279 hci_dev_unlock(hdev);
2281 if (conn) {
2282 register struct hci_proto *hp;
2284 hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2286 /* Send to upper protocol */
2287 hp = hci_proto[HCI_PROTO_L2CAP];
2288 if (hp && hp->recv_acldata) {
2289 hp->recv_acldata(conn, skb, flags);
2290 return;
2292 } else {
2293 BT_ERR("%s ACL packet for unknown connection handle %d",
2294 hdev->name, handle);
2297 kfree_skb(skb);
2300 /* SCO data packet */
2301 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2303 struct hci_sco_hdr *hdr = (void *) skb->data;
2304 struct hci_conn *conn;
2305 __u16 handle;
2307 skb_pull(skb, HCI_SCO_HDR_SIZE);
2309 handle = __le16_to_cpu(hdr->handle);
2311 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
2313 hdev->stat.sco_rx++;
2315 hci_dev_lock(hdev);
2316 conn = hci_conn_hash_lookup_handle(hdev, handle);
2317 hci_dev_unlock(hdev);
2319 if (conn) {
2320 register struct hci_proto *hp;
2322 /* Send to upper protocol */
2323 hp = hci_proto[HCI_PROTO_SCO];
2324 if (hp && hp->recv_scodata) {
2325 hp->recv_scodata(conn, skb);
2326 return;
2328 } else {
2329 BT_ERR("%s SCO packet for unknown connection handle %d",
2330 hdev->name, handle);
2333 kfree_skb(skb);
2336 static void hci_rx_task(unsigned long arg)
2338 struct hci_dev *hdev = (struct hci_dev *) arg;
2339 struct sk_buff *skb;
2341 BT_DBG("%s", hdev->name);
2343 read_lock(&hci_task_lock);
2345 while ((skb = skb_dequeue(&hdev->rx_q))) {
2346 if (atomic_read(&hdev->promisc)) {
2347 /* Send copy to the sockets */
2348 hci_send_to_sock(hdev, skb, NULL);
2351 if (test_bit(HCI_RAW, &hdev->flags)) {
2352 kfree_skb(skb);
2353 continue;
2356 if (test_bit(HCI_INIT, &hdev->flags)) {
2357 /* Don't process data packets in this states. */
2358 switch (bt_cb(skb)->pkt_type) {
2359 case HCI_ACLDATA_PKT:
2360 case HCI_SCODATA_PKT:
2361 kfree_skb(skb);
2362 continue;
2366 /* Process frame */
2367 switch (bt_cb(skb)->pkt_type) {
2368 case HCI_EVENT_PKT:
2369 hci_event_packet(hdev, skb);
2370 break;
2372 case HCI_ACLDATA_PKT:
2373 BT_DBG("%s ACL data packet", hdev->name);
2374 hci_acldata_packet(hdev, skb);
2375 break;
2377 case HCI_SCODATA_PKT:
2378 BT_DBG("%s SCO data packet", hdev->name);
2379 hci_scodata_packet(hdev, skb);
2380 break;
2382 default:
2383 kfree_skb(skb);
2384 break;
2388 read_unlock(&hci_task_lock);
2391 static void hci_cmd_task(unsigned long arg)
2393 struct hci_dev *hdev = (struct hci_dev *) arg;
2394 struct sk_buff *skb;
2396 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2398 /* Send queued commands */
2399 if (atomic_read(&hdev->cmd_cnt)) {
2400 skb = skb_dequeue(&hdev->cmd_q);
2401 if (!skb)
2402 return;
2404 kfree_skb(hdev->sent_cmd);
2406 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2407 if (hdev->sent_cmd) {
2408 atomic_dec(&hdev->cmd_cnt);
2409 hci_send_frame(skb);
2410 if (test_bit(HCI_RESET, &hdev->flags))
2411 del_timer(&hdev->cmd_timer);
2412 else
2413 mod_timer(&hdev->cmd_timer,
2414 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2415 } else {
2416 skb_queue_head(&hdev->cmd_q, skb);
2417 tasklet_schedule(&hdev->cmd_task);