USB: ftdi_sio: Add more identifiers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swap.c
bloba91caf754d9badb5f0b1f3c54b8e86be4723ff84
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
35 #include "internal.h"
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs. But it gets used by networking.
48 static void __page_cache_release(struct page *page)
50 if (PageLRU(page)) {
51 unsigned long flags;
52 struct zone *zone = page_zone(page);
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 VM_BUG_ON(!PageLRU(page));
56 __ClearPageLRU(page);
57 del_page_from_lru(zone, page);
58 spin_unlock_irqrestore(&zone->lru_lock, flags);
62 static void __put_single_page(struct page *page)
64 __page_cache_release(page);
65 free_hot_cold_page(page, 0);
68 static void __put_compound_page(struct page *page)
70 compound_page_dtor *dtor;
72 __page_cache_release(page);
73 dtor = get_compound_page_dtor(page);
74 (*dtor)(page);
77 static void put_compound_page(struct page *page)
79 if (unlikely(PageTail(page))) {
80 /* __split_huge_page_refcount can run under us */
81 struct page *page_head = compound_trans_head(page);
83 if (likely(page != page_head &&
84 get_page_unless_zero(page_head))) {
85 unsigned long flags;
87 * page_head wasn't a dangling pointer but it
88 * may not be a head page anymore by the time
89 * we obtain the lock. That is ok as long as it
90 * can't be freed from under us.
92 flags = compound_lock_irqsave(page_head);
93 if (unlikely(!PageTail(page))) {
94 /* __split_huge_page_refcount run before us */
95 compound_unlock_irqrestore(page_head, flags);
96 VM_BUG_ON(PageHead(page_head));
97 if (put_page_testzero(page_head))
98 __put_single_page(page_head);
99 out_put_single:
100 if (put_page_testzero(page))
101 __put_single_page(page);
102 return;
104 VM_BUG_ON(page_head != page->first_page);
106 * We can release the refcount taken by
107 * get_page_unless_zero() now that
108 * __split_huge_page_refcount() is blocked on
109 * the compound_lock.
111 if (put_page_testzero(page_head))
112 VM_BUG_ON(1);
113 /* __split_huge_page_refcount will wait now */
114 VM_BUG_ON(page_mapcount(page) <= 0);
115 atomic_dec(&page->_mapcount);
116 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
117 VM_BUG_ON(atomic_read(&page->_count) != 0);
118 compound_unlock_irqrestore(page_head, flags);
119 if (put_page_testzero(page_head)) {
120 if (PageHead(page_head))
121 __put_compound_page(page_head);
122 else
123 __put_single_page(page_head);
125 } else {
126 /* page_head is a dangling pointer */
127 VM_BUG_ON(PageTail(page));
128 goto out_put_single;
130 } else if (put_page_testzero(page)) {
131 if (PageHead(page))
132 __put_compound_page(page);
133 else
134 __put_single_page(page);
138 void put_page(struct page *page)
140 if (unlikely(PageCompound(page)))
141 put_compound_page(page);
142 else if (put_page_testzero(page))
143 __put_single_page(page);
145 EXPORT_SYMBOL(put_page);
148 * This function is exported but must not be called by anything other
149 * than get_page(). It implements the slow path of get_page().
151 bool __get_page_tail(struct page *page)
154 * This takes care of get_page() if run on a tail page
155 * returned by one of the get_user_pages/follow_page variants.
156 * get_user_pages/follow_page itself doesn't need the compound
157 * lock because it runs __get_page_tail_foll() under the
158 * proper PT lock that already serializes against
159 * split_huge_page().
161 unsigned long flags;
162 bool got = false;
163 struct page *page_head = compound_trans_head(page);
165 if (likely(page != page_head && get_page_unless_zero(page_head))) {
167 * page_head wasn't a dangling pointer but it
168 * may not be a head page anymore by the time
169 * we obtain the lock. That is ok as long as it
170 * can't be freed from under us.
172 flags = compound_lock_irqsave(page_head);
173 /* here __split_huge_page_refcount won't run anymore */
174 if (likely(PageTail(page))) {
175 __get_page_tail_foll(page, false);
176 got = true;
178 compound_unlock_irqrestore(page_head, flags);
179 if (unlikely(!got))
180 put_page(page_head);
182 return got;
184 EXPORT_SYMBOL(__get_page_tail);
187 * put_pages_list() - release a list of pages
188 * @pages: list of pages threaded on page->lru
190 * Release a list of pages which are strung together on page.lru. Currently
191 * used by read_cache_pages() and related error recovery code.
193 void put_pages_list(struct list_head *pages)
195 while (!list_empty(pages)) {
196 struct page *victim;
198 victim = list_entry(pages->prev, struct page, lru);
199 list_del(&victim->lru);
200 page_cache_release(victim);
203 EXPORT_SYMBOL(put_pages_list);
205 static void pagevec_lru_move_fn(struct pagevec *pvec,
206 void (*move_fn)(struct page *page, void *arg),
207 void *arg)
209 int i;
210 struct zone *zone = NULL;
211 unsigned long flags = 0;
213 for (i = 0; i < pagevec_count(pvec); i++) {
214 struct page *page = pvec->pages[i];
215 struct zone *pagezone = page_zone(page);
217 if (pagezone != zone) {
218 if (zone)
219 spin_unlock_irqrestore(&zone->lru_lock, flags);
220 zone = pagezone;
221 spin_lock_irqsave(&zone->lru_lock, flags);
224 (*move_fn)(page, arg);
226 if (zone)
227 spin_unlock_irqrestore(&zone->lru_lock, flags);
228 release_pages(pvec->pages, pvec->nr, pvec->cold);
229 pagevec_reinit(pvec);
232 static void pagevec_move_tail_fn(struct page *page, void *arg)
234 int *pgmoved = arg;
235 struct zone *zone = page_zone(page);
237 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
238 enum lru_list lru = page_lru_base_type(page);
239 list_move_tail(&page->lru, &zone->lru[lru].list);
240 mem_cgroup_rotate_reclaimable_page(page);
241 (*pgmoved)++;
246 * pagevec_move_tail() must be called with IRQ disabled.
247 * Otherwise this may cause nasty races.
249 static void pagevec_move_tail(struct pagevec *pvec)
251 int pgmoved = 0;
253 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
254 __count_vm_events(PGROTATED, pgmoved);
258 * Writeback is about to end against a page which has been marked for immediate
259 * reclaim. If it still appears to be reclaimable, move it to the tail of the
260 * inactive list.
262 void rotate_reclaimable_page(struct page *page)
264 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
265 !PageUnevictable(page) && PageLRU(page)) {
266 struct pagevec *pvec;
267 unsigned long flags;
269 page_cache_get(page);
270 local_irq_save(flags);
271 pvec = &__get_cpu_var(lru_rotate_pvecs);
272 if (!pagevec_add(pvec, page))
273 pagevec_move_tail(pvec);
274 local_irq_restore(flags);
278 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
279 int file, int rotated)
281 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
282 struct zone_reclaim_stat *memcg_reclaim_stat;
284 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
286 reclaim_stat->recent_scanned[file]++;
287 if (rotated)
288 reclaim_stat->recent_rotated[file]++;
290 if (!memcg_reclaim_stat)
291 return;
293 memcg_reclaim_stat->recent_scanned[file]++;
294 if (rotated)
295 memcg_reclaim_stat->recent_rotated[file]++;
298 static void __activate_page(struct page *page, void *arg)
300 struct zone *zone = page_zone(page);
302 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
303 int file = page_is_file_cache(page);
304 int lru = page_lru_base_type(page);
305 del_page_from_lru_list(zone, page, lru);
307 SetPageActive(page);
308 lru += LRU_ACTIVE;
309 add_page_to_lru_list(zone, page, lru);
310 __count_vm_event(PGACTIVATE);
312 update_page_reclaim_stat(zone, page, file, 1);
316 #ifdef CONFIG_SMP
317 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
319 static void activate_page_drain(int cpu)
321 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
323 if (pagevec_count(pvec))
324 pagevec_lru_move_fn(pvec, __activate_page, NULL);
327 void activate_page(struct page *page)
329 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
332 page_cache_get(page);
333 if (!pagevec_add(pvec, page))
334 pagevec_lru_move_fn(pvec, __activate_page, NULL);
335 put_cpu_var(activate_page_pvecs);
339 #else
340 static inline void activate_page_drain(int cpu)
344 void activate_page(struct page *page)
346 struct zone *zone = page_zone(page);
348 spin_lock_irq(&zone->lru_lock);
349 __activate_page(page, NULL);
350 spin_unlock_irq(&zone->lru_lock);
352 #endif
355 * Mark a page as having seen activity.
357 * inactive,unreferenced -> inactive,referenced
358 * inactive,referenced -> active,unreferenced
359 * active,unreferenced -> active,referenced
361 void mark_page_accessed(struct page *page)
363 if (!PageActive(page) && !PageUnevictable(page) &&
364 PageReferenced(page) && PageLRU(page)) {
365 activate_page(page);
366 ClearPageReferenced(page);
367 } else if (!PageReferenced(page)) {
368 SetPageReferenced(page);
372 EXPORT_SYMBOL(mark_page_accessed);
374 void __lru_cache_add(struct page *page, enum lru_list lru)
376 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
378 page_cache_get(page);
379 if (!pagevec_add(pvec, page))
380 ____pagevec_lru_add(pvec, lru);
381 put_cpu_var(lru_add_pvecs);
383 EXPORT_SYMBOL(__lru_cache_add);
386 * lru_cache_add_lru - add a page to a page list
387 * @page: the page to be added to the LRU.
388 * @lru: the LRU list to which the page is added.
390 void lru_cache_add_lru(struct page *page, enum lru_list lru)
392 if (PageActive(page)) {
393 VM_BUG_ON(PageUnevictable(page));
394 ClearPageActive(page);
395 } else if (PageUnevictable(page)) {
396 VM_BUG_ON(PageActive(page));
397 ClearPageUnevictable(page);
400 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
401 __lru_cache_add(page, lru);
405 * add_page_to_unevictable_list - add a page to the unevictable list
406 * @page: the page to be added to the unevictable list
408 * Add page directly to its zone's unevictable list. To avoid races with
409 * tasks that might be making the page evictable, through eg. munlock,
410 * munmap or exit, while it's not on the lru, we want to add the page
411 * while it's locked or otherwise "invisible" to other tasks. This is
412 * difficult to do when using the pagevec cache, so bypass that.
414 void add_page_to_unevictable_list(struct page *page)
416 struct zone *zone = page_zone(page);
418 spin_lock_irq(&zone->lru_lock);
419 SetPageUnevictable(page);
420 SetPageLRU(page);
421 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
422 spin_unlock_irq(&zone->lru_lock);
426 * If the page can not be invalidated, it is moved to the
427 * inactive list to speed up its reclaim. It is moved to the
428 * head of the list, rather than the tail, to give the flusher
429 * threads some time to write it out, as this is much more
430 * effective than the single-page writeout from reclaim.
432 * If the page isn't page_mapped and dirty/writeback, the page
433 * could reclaim asap using PG_reclaim.
435 * 1. active, mapped page -> none
436 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
437 * 3. inactive, mapped page -> none
438 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
439 * 5. inactive, clean -> inactive, tail
440 * 6. Others -> none
442 * In 4, why it moves inactive's head, the VM expects the page would
443 * be write it out by flusher threads as this is much more effective
444 * than the single-page writeout from reclaim.
446 static void lru_deactivate_fn(struct page *page, void *arg)
448 int lru, file;
449 bool active;
450 struct zone *zone = page_zone(page);
452 if (!PageLRU(page))
453 return;
455 if (PageUnevictable(page))
456 return;
458 /* Some processes are using the page */
459 if (page_mapped(page))
460 return;
462 active = PageActive(page);
464 file = page_is_file_cache(page);
465 lru = page_lru_base_type(page);
466 del_page_from_lru_list(zone, page, lru + active);
467 ClearPageActive(page);
468 ClearPageReferenced(page);
469 add_page_to_lru_list(zone, page, lru);
471 if (PageWriteback(page) || PageDirty(page)) {
473 * PG_reclaim could be raced with end_page_writeback
474 * It can make readahead confusing. But race window
475 * is _really_ small and it's non-critical problem.
477 SetPageReclaim(page);
478 } else {
480 * The page's writeback ends up during pagevec
481 * We moves tha page into tail of inactive.
483 list_move_tail(&page->lru, &zone->lru[lru].list);
484 mem_cgroup_rotate_reclaimable_page(page);
485 __count_vm_event(PGROTATED);
488 if (active)
489 __count_vm_event(PGDEACTIVATE);
490 update_page_reclaim_stat(zone, page, file, 0);
494 * Drain pages out of the cpu's pagevecs.
495 * Either "cpu" is the current CPU, and preemption has already been
496 * disabled; or "cpu" is being hot-unplugged, and is already dead.
498 static void drain_cpu_pagevecs(int cpu)
500 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
501 struct pagevec *pvec;
502 int lru;
504 for_each_lru(lru) {
505 pvec = &pvecs[lru - LRU_BASE];
506 if (pagevec_count(pvec))
507 ____pagevec_lru_add(pvec, lru);
510 pvec = &per_cpu(lru_rotate_pvecs, cpu);
511 if (pagevec_count(pvec)) {
512 unsigned long flags;
514 /* No harm done if a racing interrupt already did this */
515 local_irq_save(flags);
516 pagevec_move_tail(pvec);
517 local_irq_restore(flags);
520 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
521 if (pagevec_count(pvec))
522 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
524 activate_page_drain(cpu);
528 * deactivate_page - forcefully deactivate a page
529 * @page: page to deactivate
531 * This function hints the VM that @page is a good reclaim candidate,
532 * for example if its invalidation fails due to the page being dirty
533 * or under writeback.
535 void deactivate_page(struct page *page)
538 * In a workload with many unevictable page such as mprotect, unevictable
539 * page deactivation for accelerating reclaim is pointless.
541 if (PageUnevictable(page))
542 return;
544 if (likely(get_page_unless_zero(page))) {
545 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
547 if (!pagevec_add(pvec, page))
548 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
549 put_cpu_var(lru_deactivate_pvecs);
553 void lru_add_drain(void)
555 drain_cpu_pagevecs(get_cpu());
556 put_cpu();
559 static void lru_add_drain_per_cpu(struct work_struct *dummy)
561 lru_add_drain();
565 * Returns 0 for success
567 int lru_add_drain_all(void)
569 return schedule_on_each_cpu(lru_add_drain_per_cpu);
573 * Batched page_cache_release(). Decrement the reference count on all the
574 * passed pages. If it fell to zero then remove the page from the LRU and
575 * free it.
577 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
578 * for the remainder of the operation.
580 * The locking in this function is against shrink_inactive_list(): we recheck
581 * the page count inside the lock to see whether shrink_inactive_list()
582 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
583 * will free it.
585 void release_pages(struct page **pages, int nr, int cold)
587 int i;
588 struct pagevec pages_to_free;
589 struct zone *zone = NULL;
590 unsigned long uninitialized_var(flags);
592 pagevec_init(&pages_to_free, cold);
593 for (i = 0; i < nr; i++) {
594 struct page *page = pages[i];
596 if (unlikely(PageCompound(page))) {
597 if (zone) {
598 spin_unlock_irqrestore(&zone->lru_lock, flags);
599 zone = NULL;
601 put_compound_page(page);
602 continue;
605 if (!put_page_testzero(page))
606 continue;
608 if (PageLRU(page)) {
609 struct zone *pagezone = page_zone(page);
611 if (pagezone != zone) {
612 if (zone)
613 spin_unlock_irqrestore(&zone->lru_lock,
614 flags);
615 zone = pagezone;
616 spin_lock_irqsave(&zone->lru_lock, flags);
618 VM_BUG_ON(!PageLRU(page));
619 __ClearPageLRU(page);
620 del_page_from_lru(zone, page);
623 if (!pagevec_add(&pages_to_free, page)) {
624 if (zone) {
625 spin_unlock_irqrestore(&zone->lru_lock, flags);
626 zone = NULL;
628 __pagevec_free(&pages_to_free);
629 pagevec_reinit(&pages_to_free);
632 if (zone)
633 spin_unlock_irqrestore(&zone->lru_lock, flags);
635 pagevec_free(&pages_to_free);
637 EXPORT_SYMBOL(release_pages);
640 * The pages which we're about to release may be in the deferred lru-addition
641 * queues. That would prevent them from really being freed right now. That's
642 * OK from a correctness point of view but is inefficient - those pages may be
643 * cache-warm and we want to give them back to the page allocator ASAP.
645 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
646 * and __pagevec_lru_add_active() call release_pages() directly to avoid
647 * mutual recursion.
649 void __pagevec_release(struct pagevec *pvec)
651 lru_add_drain();
652 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
653 pagevec_reinit(pvec);
656 EXPORT_SYMBOL(__pagevec_release);
658 /* used by __split_huge_page_refcount() */
659 void lru_add_page_tail(struct zone* zone,
660 struct page *page, struct page *page_tail)
662 int active;
663 enum lru_list lru;
664 const int file = 0;
665 struct list_head *head;
667 VM_BUG_ON(!PageHead(page));
668 VM_BUG_ON(PageCompound(page_tail));
669 VM_BUG_ON(PageLRU(page_tail));
670 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
672 SetPageLRU(page_tail);
674 if (page_evictable(page_tail, NULL)) {
675 if (PageActive(page)) {
676 SetPageActive(page_tail);
677 active = 1;
678 lru = LRU_ACTIVE_ANON;
679 } else {
680 active = 0;
681 lru = LRU_INACTIVE_ANON;
683 update_page_reclaim_stat(zone, page_tail, file, active);
684 if (likely(PageLRU(page)))
685 head = page->lru.prev;
686 else
687 head = &zone->lru[lru].list;
688 __add_page_to_lru_list(zone, page_tail, lru, head);
689 } else {
690 SetPageUnevictable(page_tail);
691 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
695 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
697 enum lru_list lru = (enum lru_list)arg;
698 struct zone *zone = page_zone(page);
699 int file = is_file_lru(lru);
700 int active = is_active_lru(lru);
702 VM_BUG_ON(PageActive(page));
703 VM_BUG_ON(PageUnevictable(page));
704 VM_BUG_ON(PageLRU(page));
706 SetPageLRU(page);
707 if (active)
708 SetPageActive(page);
709 update_page_reclaim_stat(zone, page, file, active);
710 add_page_to_lru_list(zone, page, lru);
714 * Add the passed pages to the LRU, then drop the caller's refcount
715 * on them. Reinitialises the caller's pagevec.
717 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
719 VM_BUG_ON(is_unevictable_lru(lru));
721 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
724 EXPORT_SYMBOL(____pagevec_lru_add);
727 * Try to drop buffers from the pages in a pagevec
729 void pagevec_strip(struct pagevec *pvec)
731 int i;
733 for (i = 0; i < pagevec_count(pvec); i++) {
734 struct page *page = pvec->pages[i];
736 if (page_has_private(page) && trylock_page(page)) {
737 if (page_has_private(page))
738 try_to_release_page(page, 0);
739 unlock_page(page);
745 * pagevec_lookup - gang pagecache lookup
746 * @pvec: Where the resulting pages are placed
747 * @mapping: The address_space to search
748 * @start: The starting page index
749 * @nr_pages: The maximum number of pages
751 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
752 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
753 * reference against the pages in @pvec.
755 * The search returns a group of mapping-contiguous pages with ascending
756 * indexes. There may be holes in the indices due to not-present pages.
758 * pagevec_lookup() returns the number of pages which were found.
760 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
761 pgoff_t start, unsigned nr_pages)
763 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
764 return pagevec_count(pvec);
767 EXPORT_SYMBOL(pagevec_lookup);
769 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
770 pgoff_t *index, int tag, unsigned nr_pages)
772 pvec->nr = find_get_pages_tag(mapping, index, tag,
773 nr_pages, pvec->pages);
774 return pagevec_count(pvec);
777 EXPORT_SYMBOL(pagevec_lookup_tag);
780 * Perform any setup for the swap system
782 void __init swap_setup(void)
784 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
786 #ifdef CONFIG_SWAP
787 bdi_init(swapper_space.backing_dev_info);
788 #endif
790 /* Use a smaller cluster for small-memory machines */
791 if (megs < 16)
792 page_cluster = 2;
793 else
794 page_cluster = 3;
796 * Right now other parts of the system means that we
797 * _really_ don't want to cluster much more