drm: Fix authentication kernel crash
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / rx.c
blob5c516078028039d4ed88f87ab24b3c87819f6f14
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "led.h"
26 #include "mesh.h"
27 #include "wep.h"
28 #include "wpa.h"
29 #include "tkip.h"
30 #include "wme.h"
33 * monitor mode reception
35 * This function cleans up the SKB, i.e. it removes all the stuff
36 * only useful for monitoring.
38 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
39 struct sk_buff *skb)
41 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
42 if (likely(skb->len > FCS_LEN))
43 __pskb_trim(skb, skb->len - FCS_LEN);
44 else {
45 /* driver bug */
46 WARN_ON(1);
47 dev_kfree_skb(skb);
48 skb = NULL;
52 return skb;
55 static inline int should_drop_frame(struct sk_buff *skb,
56 int present_fcs_len)
58 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
59 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
61 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
62 return 1;
63 if (unlikely(skb->len < 16 + present_fcs_len))
64 return 1;
65 if (ieee80211_is_ctl(hdr->frame_control) &&
66 !ieee80211_is_pspoll(hdr->frame_control) &&
67 !ieee80211_is_back_req(hdr->frame_control))
68 return 1;
69 return 0;
72 static int
73 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
74 struct ieee80211_rx_status *status)
76 int len;
78 /* always present fields */
79 len = sizeof(struct ieee80211_radiotap_header) + 9;
81 if (status->flag & RX_FLAG_MACTIME_MPDU)
82 len += 8;
83 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
84 len += 1;
86 if (len & 1) /* padding for RX_FLAGS if necessary */
87 len++;
89 if (status->flag & RX_FLAG_HT) /* HT info */
90 len += 3;
92 return len;
96 * ieee80211_add_rx_radiotap_header - add radiotap header
98 * add a radiotap header containing all the fields which the hardware provided.
100 static void
101 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
102 struct sk_buff *skb,
103 struct ieee80211_rate *rate,
104 int rtap_len)
106 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
107 struct ieee80211_radiotap_header *rthdr;
108 unsigned char *pos;
109 u16 rx_flags = 0;
111 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
112 memset(rthdr, 0, rtap_len);
114 /* radiotap header, set always present flags */
115 rthdr->it_present =
116 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
117 (1 << IEEE80211_RADIOTAP_CHANNEL) |
118 (1 << IEEE80211_RADIOTAP_ANTENNA) |
119 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
120 rthdr->it_len = cpu_to_le16(rtap_len);
122 pos = (unsigned char *)(rthdr+1);
124 /* the order of the following fields is important */
126 /* IEEE80211_RADIOTAP_TSFT */
127 if (status->flag & RX_FLAG_MACTIME_MPDU) {
128 put_unaligned_le64(status->mactime, pos);
129 rthdr->it_present |=
130 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
131 pos += 8;
134 /* IEEE80211_RADIOTAP_FLAGS */
135 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
136 *pos |= IEEE80211_RADIOTAP_F_FCS;
137 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
138 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
139 if (status->flag & RX_FLAG_SHORTPRE)
140 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
141 pos++;
143 /* IEEE80211_RADIOTAP_RATE */
144 if (!rate || status->flag & RX_FLAG_HT) {
146 * Without rate information don't add it. If we have,
147 * MCS information is a separate field in radiotap,
148 * added below. The byte here is needed as padding
149 * for the channel though, so initialise it to 0.
151 *pos = 0;
152 } else {
153 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
154 *pos = rate->bitrate / 5;
156 pos++;
158 /* IEEE80211_RADIOTAP_CHANNEL */
159 put_unaligned_le16(status->freq, pos);
160 pos += 2;
161 if (status->band == IEEE80211_BAND_5GHZ)
162 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
163 pos);
164 else if (status->flag & RX_FLAG_HT)
165 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
166 pos);
167 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
168 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
169 pos);
170 else if (rate)
171 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
172 pos);
173 else
174 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
175 pos += 2;
177 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
178 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
179 *pos = status->signal;
180 rthdr->it_present |=
181 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
182 pos++;
185 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
187 /* IEEE80211_RADIOTAP_ANTENNA */
188 *pos = status->antenna;
189 pos++;
191 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
193 /* IEEE80211_RADIOTAP_RX_FLAGS */
194 /* ensure 2 byte alignment for the 2 byte field as required */
195 if ((pos - (u8 *)rthdr) & 1)
196 pos++;
197 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
198 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
199 put_unaligned_le16(rx_flags, pos);
200 pos += 2;
202 if (status->flag & RX_FLAG_HT) {
203 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
204 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
205 IEEE80211_RADIOTAP_MCS_HAVE_GI |
206 IEEE80211_RADIOTAP_MCS_HAVE_BW;
207 *pos = 0;
208 if (status->flag & RX_FLAG_SHORT_GI)
209 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
210 if (status->flag & RX_FLAG_40MHZ)
211 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
212 pos++;
213 *pos++ = status->rate_idx;
218 * This function copies a received frame to all monitor interfaces and
219 * returns a cleaned-up SKB that no longer includes the FCS nor the
220 * radiotap header the driver might have added.
222 static struct sk_buff *
223 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
224 struct ieee80211_rate *rate)
226 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
227 struct ieee80211_sub_if_data *sdata;
228 int needed_headroom = 0;
229 struct sk_buff *skb, *skb2;
230 struct net_device *prev_dev = NULL;
231 int present_fcs_len = 0;
234 * First, we may need to make a copy of the skb because
235 * (1) we need to modify it for radiotap (if not present), and
236 * (2) the other RX handlers will modify the skb we got.
238 * We don't need to, of course, if we aren't going to return
239 * the SKB because it has a bad FCS/PLCP checksum.
242 /* room for the radiotap header based on driver features */
243 needed_headroom = ieee80211_rx_radiotap_len(local, status);
245 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
246 present_fcs_len = FCS_LEN;
248 /* make sure hdr->frame_control is on the linear part */
249 if (!pskb_may_pull(origskb, 2)) {
250 dev_kfree_skb(origskb);
251 return NULL;
254 if (!local->monitors) {
255 if (should_drop_frame(origskb, present_fcs_len)) {
256 dev_kfree_skb(origskb);
257 return NULL;
260 return remove_monitor_info(local, origskb);
263 if (should_drop_frame(origskb, present_fcs_len)) {
264 /* only need to expand headroom if necessary */
265 skb = origskb;
266 origskb = NULL;
269 * This shouldn't trigger often because most devices have an
270 * RX header they pull before we get here, and that should
271 * be big enough for our radiotap information. We should
272 * probably export the length to drivers so that we can have
273 * them allocate enough headroom to start with.
275 if (skb_headroom(skb) < needed_headroom &&
276 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
277 dev_kfree_skb(skb);
278 return NULL;
280 } else {
282 * Need to make a copy and possibly remove radiotap header
283 * and FCS from the original.
285 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
287 origskb = remove_monitor_info(local, origskb);
289 if (!skb)
290 return origskb;
293 /* prepend radiotap information */
294 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
296 skb_reset_mac_header(skb);
297 skb->ip_summed = CHECKSUM_UNNECESSARY;
298 skb->pkt_type = PACKET_OTHERHOST;
299 skb->protocol = htons(ETH_P_802_2);
301 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
302 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
303 continue;
305 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
306 continue;
308 if (!ieee80211_sdata_running(sdata))
309 continue;
311 if (prev_dev) {
312 skb2 = skb_clone(skb, GFP_ATOMIC);
313 if (skb2) {
314 skb2->dev = prev_dev;
315 netif_receive_skb(skb2);
319 prev_dev = sdata->dev;
320 sdata->dev->stats.rx_packets++;
321 sdata->dev->stats.rx_bytes += skb->len;
324 if (prev_dev) {
325 skb->dev = prev_dev;
326 netif_receive_skb(skb);
327 } else
328 dev_kfree_skb(skb);
330 return origskb;
334 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
336 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
337 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
338 int tid, seqno_idx, security_idx;
340 /* does the frame have a qos control field? */
341 if (ieee80211_is_data_qos(hdr->frame_control)) {
342 u8 *qc = ieee80211_get_qos_ctl(hdr);
343 /* frame has qos control */
344 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
345 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
346 status->rx_flags |= IEEE80211_RX_AMSDU;
348 seqno_idx = tid;
349 security_idx = tid;
350 } else {
352 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
354 * Sequence numbers for management frames, QoS data
355 * frames with a broadcast/multicast address in the
356 * Address 1 field, and all non-QoS data frames sent
357 * by QoS STAs are assigned using an additional single
358 * modulo-4096 counter, [...]
360 * We also use that counter for non-QoS STAs.
362 seqno_idx = NUM_RX_DATA_QUEUES;
363 security_idx = 0;
364 if (ieee80211_is_mgmt(hdr->frame_control))
365 security_idx = NUM_RX_DATA_QUEUES;
366 tid = 0;
369 rx->seqno_idx = seqno_idx;
370 rx->security_idx = security_idx;
371 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
372 * For now, set skb->priority to 0 for other cases. */
373 rx->skb->priority = (tid > 7) ? 0 : tid;
377 * DOC: Packet alignment
379 * Drivers always need to pass packets that are aligned to two-byte boundaries
380 * to the stack.
382 * Additionally, should, if possible, align the payload data in a way that
383 * guarantees that the contained IP header is aligned to a four-byte
384 * boundary. In the case of regular frames, this simply means aligning the
385 * payload to a four-byte boundary (because either the IP header is directly
386 * contained, or IV/RFC1042 headers that have a length divisible by four are
387 * in front of it). If the payload data is not properly aligned and the
388 * architecture doesn't support efficient unaligned operations, mac80211
389 * will align the data.
391 * With A-MSDU frames, however, the payload data address must yield two modulo
392 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
393 * push the IP header further back to a multiple of four again. Thankfully, the
394 * specs were sane enough this time around to require padding each A-MSDU
395 * subframe to a length that is a multiple of four.
397 * Padding like Atheros hardware adds which is between the 802.11 header and
398 * the payload is not supported, the driver is required to move the 802.11
399 * header to be directly in front of the payload in that case.
401 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
403 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
404 WARN_ONCE((unsigned long)rx->skb->data & 1,
405 "unaligned packet at 0x%p\n", rx->skb->data);
406 #endif
410 /* rx handlers */
412 static ieee80211_rx_result debug_noinline
413 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
415 struct ieee80211_local *local = rx->local;
416 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
417 struct sk_buff *skb = rx->skb;
419 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
420 !local->sched_scanning))
421 return RX_CONTINUE;
423 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
424 local->sched_scanning)
425 return ieee80211_scan_rx(rx->sdata, skb);
427 if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
428 /* drop all the other packets during a software scan anyway */
429 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
430 dev_kfree_skb(skb);
431 return RX_QUEUED;
434 /* scanning finished during invoking of handlers */
435 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
436 return RX_DROP_UNUSABLE;
440 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
444 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
445 return 0;
447 return ieee80211_is_robust_mgmt_frame(hdr);
451 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
453 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
455 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
456 return 0;
458 return ieee80211_is_robust_mgmt_frame(hdr);
462 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
463 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
465 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
466 struct ieee80211_mmie *mmie;
468 if (skb->len < 24 + sizeof(*mmie) ||
469 !is_multicast_ether_addr(hdr->da))
470 return -1;
472 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
473 return -1; /* not a robust management frame */
475 mmie = (struct ieee80211_mmie *)
476 (skb->data + skb->len - sizeof(*mmie));
477 if (mmie->element_id != WLAN_EID_MMIE ||
478 mmie->length != sizeof(*mmie) - 2)
479 return -1;
481 return le16_to_cpu(mmie->key_id);
485 static ieee80211_rx_result
486 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
488 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
489 char *dev_addr = rx->sdata->vif.addr;
491 if (ieee80211_is_data(hdr->frame_control)) {
492 if (is_multicast_ether_addr(hdr->addr1)) {
493 if (ieee80211_has_tods(hdr->frame_control) ||
494 !ieee80211_has_fromds(hdr->frame_control))
495 return RX_DROP_MONITOR;
496 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
497 return RX_DROP_MONITOR;
498 } else {
499 if (!ieee80211_has_a4(hdr->frame_control))
500 return RX_DROP_MONITOR;
501 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
502 return RX_DROP_MONITOR;
506 /* If there is not an established peer link and this is not a peer link
507 * establisment frame, beacon or probe, drop the frame.
510 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
511 struct ieee80211_mgmt *mgmt;
513 if (!ieee80211_is_mgmt(hdr->frame_control))
514 return RX_DROP_MONITOR;
516 if (ieee80211_is_action(hdr->frame_control)) {
517 u8 category;
518 mgmt = (struct ieee80211_mgmt *)hdr;
519 category = mgmt->u.action.category;
520 if (category != WLAN_CATEGORY_MESH_ACTION &&
521 category != WLAN_CATEGORY_SELF_PROTECTED)
522 return RX_DROP_MONITOR;
523 return RX_CONTINUE;
526 if (ieee80211_is_probe_req(hdr->frame_control) ||
527 ieee80211_is_probe_resp(hdr->frame_control) ||
528 ieee80211_is_beacon(hdr->frame_control) ||
529 ieee80211_is_auth(hdr->frame_control))
530 return RX_CONTINUE;
532 return RX_DROP_MONITOR;
536 return RX_CONTINUE;
539 #define SEQ_MODULO 0x1000
540 #define SEQ_MASK 0xfff
542 static inline int seq_less(u16 sq1, u16 sq2)
544 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
547 static inline u16 seq_inc(u16 sq)
549 return (sq + 1) & SEQ_MASK;
552 static inline u16 seq_sub(u16 sq1, u16 sq2)
554 return (sq1 - sq2) & SEQ_MASK;
558 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
559 struct tid_ampdu_rx *tid_agg_rx,
560 int index)
562 struct ieee80211_local *local = hw_to_local(hw);
563 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
564 struct ieee80211_rx_status *status;
566 lockdep_assert_held(&tid_agg_rx->reorder_lock);
568 if (!skb)
569 goto no_frame;
571 /* release the frame from the reorder ring buffer */
572 tid_agg_rx->stored_mpdu_num--;
573 tid_agg_rx->reorder_buf[index] = NULL;
574 status = IEEE80211_SKB_RXCB(skb);
575 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
576 skb_queue_tail(&local->rx_skb_queue, skb);
578 no_frame:
579 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
582 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
583 struct tid_ampdu_rx *tid_agg_rx,
584 u16 head_seq_num)
586 int index;
588 lockdep_assert_held(&tid_agg_rx->reorder_lock);
590 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
591 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
592 tid_agg_rx->buf_size;
593 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
598 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
599 * the skb was added to the buffer longer than this time ago, the earlier
600 * frames that have not yet been received are assumed to be lost and the skb
601 * can be released for processing. This may also release other skb's from the
602 * reorder buffer if there are no additional gaps between the frames.
604 * Callers must hold tid_agg_rx->reorder_lock.
606 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
608 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
609 struct tid_ampdu_rx *tid_agg_rx)
611 int index, j;
613 lockdep_assert_held(&tid_agg_rx->reorder_lock);
615 /* release the buffer until next missing frame */
616 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
617 tid_agg_rx->buf_size;
618 if (!tid_agg_rx->reorder_buf[index] &&
619 tid_agg_rx->stored_mpdu_num > 1) {
621 * No buffers ready to be released, but check whether any
622 * frames in the reorder buffer have timed out.
624 int skipped = 1;
625 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
626 j = (j + 1) % tid_agg_rx->buf_size) {
627 if (!tid_agg_rx->reorder_buf[j]) {
628 skipped++;
629 continue;
631 if (skipped &&
632 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
633 HT_RX_REORDER_BUF_TIMEOUT))
634 goto set_release_timer;
636 #ifdef CONFIG_MAC80211_HT_DEBUG
637 if (net_ratelimit())
638 wiphy_debug(hw->wiphy,
639 "release an RX reorder frame due to timeout on earlier frames\n");
640 #endif
641 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
644 * Increment the head seq# also for the skipped slots.
646 tid_agg_rx->head_seq_num =
647 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
648 skipped = 0;
650 } else while (tid_agg_rx->reorder_buf[index]) {
651 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
652 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
653 tid_agg_rx->buf_size;
656 if (tid_agg_rx->stored_mpdu_num) {
657 j = index = seq_sub(tid_agg_rx->head_seq_num,
658 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
660 for (; j != (index - 1) % tid_agg_rx->buf_size;
661 j = (j + 1) % tid_agg_rx->buf_size) {
662 if (tid_agg_rx->reorder_buf[j])
663 break;
666 set_release_timer:
668 mod_timer(&tid_agg_rx->reorder_timer,
669 tid_agg_rx->reorder_time[j] + 1 +
670 HT_RX_REORDER_BUF_TIMEOUT);
671 } else {
672 del_timer(&tid_agg_rx->reorder_timer);
677 * As this function belongs to the RX path it must be under
678 * rcu_read_lock protection. It returns false if the frame
679 * can be processed immediately, true if it was consumed.
681 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
682 struct tid_ampdu_rx *tid_agg_rx,
683 struct sk_buff *skb)
685 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
686 u16 sc = le16_to_cpu(hdr->seq_ctrl);
687 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
688 u16 head_seq_num, buf_size;
689 int index;
690 bool ret = true;
692 spin_lock(&tid_agg_rx->reorder_lock);
694 buf_size = tid_agg_rx->buf_size;
695 head_seq_num = tid_agg_rx->head_seq_num;
697 /* frame with out of date sequence number */
698 if (seq_less(mpdu_seq_num, head_seq_num)) {
699 dev_kfree_skb(skb);
700 goto out;
704 * If frame the sequence number exceeds our buffering window
705 * size release some previous frames to make room for this one.
707 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
708 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
709 /* release stored frames up to new head to stack */
710 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
713 /* Now the new frame is always in the range of the reordering buffer */
715 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
717 /* check if we already stored this frame */
718 if (tid_agg_rx->reorder_buf[index]) {
719 dev_kfree_skb(skb);
720 goto out;
724 * If the current MPDU is in the right order and nothing else
725 * is stored we can process it directly, no need to buffer it.
726 * If it is first but there's something stored, we may be able
727 * to release frames after this one.
729 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
730 tid_agg_rx->stored_mpdu_num == 0) {
731 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
732 ret = false;
733 goto out;
736 /* put the frame in the reordering buffer */
737 tid_agg_rx->reorder_buf[index] = skb;
738 tid_agg_rx->reorder_time[index] = jiffies;
739 tid_agg_rx->stored_mpdu_num++;
740 ieee80211_sta_reorder_release(hw, tid_agg_rx);
742 out:
743 spin_unlock(&tid_agg_rx->reorder_lock);
744 return ret;
748 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
749 * true if the MPDU was buffered, false if it should be processed.
751 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
753 struct sk_buff *skb = rx->skb;
754 struct ieee80211_local *local = rx->local;
755 struct ieee80211_hw *hw = &local->hw;
756 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
757 struct sta_info *sta = rx->sta;
758 struct tid_ampdu_rx *tid_agg_rx;
759 u16 sc;
760 int tid;
762 if (!ieee80211_is_data_qos(hdr->frame_control))
763 goto dont_reorder;
766 * filter the QoS data rx stream according to
767 * STA/TID and check if this STA/TID is on aggregation
770 if (!sta)
771 goto dont_reorder;
773 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
775 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
776 if (!tid_agg_rx)
777 goto dont_reorder;
779 /* qos null data frames are excluded */
780 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
781 goto dont_reorder;
783 /* new, potentially un-ordered, ampdu frame - process it */
785 /* reset session timer */
786 if (tid_agg_rx->timeout)
787 mod_timer(&tid_agg_rx->session_timer,
788 TU_TO_EXP_TIME(tid_agg_rx->timeout));
790 /* if this mpdu is fragmented - terminate rx aggregation session */
791 sc = le16_to_cpu(hdr->seq_ctrl);
792 if (sc & IEEE80211_SCTL_FRAG) {
793 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
794 skb_queue_tail(&rx->sdata->skb_queue, skb);
795 ieee80211_queue_work(&local->hw, &rx->sdata->work);
796 return;
800 * No locking needed -- we will only ever process one
801 * RX packet at a time, and thus own tid_agg_rx. All
802 * other code manipulating it needs to (and does) make
803 * sure that we cannot get to it any more before doing
804 * anything with it.
806 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
807 return;
809 dont_reorder:
810 skb_queue_tail(&local->rx_skb_queue, skb);
813 static ieee80211_rx_result debug_noinline
814 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
816 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
817 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
819 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
820 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
821 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
822 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
823 hdr->seq_ctrl)) {
824 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
825 rx->local->dot11FrameDuplicateCount++;
826 rx->sta->num_duplicates++;
828 return RX_DROP_UNUSABLE;
829 } else
830 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
833 if (unlikely(rx->skb->len < 16)) {
834 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
835 return RX_DROP_MONITOR;
838 /* Drop disallowed frame classes based on STA auth/assoc state;
839 * IEEE 802.11, Chap 5.5.
841 * mac80211 filters only based on association state, i.e. it drops
842 * Class 3 frames from not associated stations. hostapd sends
843 * deauth/disassoc frames when needed. In addition, hostapd is
844 * responsible for filtering on both auth and assoc states.
847 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
848 return ieee80211_rx_mesh_check(rx);
850 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
851 ieee80211_is_pspoll(hdr->frame_control)) &&
852 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
853 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
854 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
855 if (rx->sta && rx->sta->dummy &&
856 ieee80211_is_data_present(hdr->frame_control)) {
857 u16 ethertype;
858 u8 *payload;
860 payload = rx->skb->data +
861 ieee80211_hdrlen(hdr->frame_control);
862 ethertype = (payload[6] << 8) | payload[7];
863 if (cpu_to_be16(ethertype) ==
864 rx->sdata->control_port_protocol)
865 return RX_CONTINUE;
867 return RX_DROP_MONITOR;
870 return RX_CONTINUE;
874 static ieee80211_rx_result debug_noinline
875 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
877 struct sk_buff *skb = rx->skb;
878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
880 int keyidx;
881 int hdrlen;
882 ieee80211_rx_result result = RX_DROP_UNUSABLE;
883 struct ieee80211_key *sta_ptk = NULL;
884 int mmie_keyidx = -1;
885 __le16 fc;
888 * Key selection 101
890 * There are four types of keys:
891 * - GTK (group keys)
892 * - IGTK (group keys for management frames)
893 * - PTK (pairwise keys)
894 * - STK (station-to-station pairwise keys)
896 * When selecting a key, we have to distinguish between multicast
897 * (including broadcast) and unicast frames, the latter can only
898 * use PTKs and STKs while the former always use GTKs and IGTKs.
899 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
900 * unicast frames can also use key indices like GTKs. Hence, if we
901 * don't have a PTK/STK we check the key index for a WEP key.
903 * Note that in a regular BSS, multicast frames are sent by the
904 * AP only, associated stations unicast the frame to the AP first
905 * which then multicasts it on their behalf.
907 * There is also a slight problem in IBSS mode: GTKs are negotiated
908 * with each station, that is something we don't currently handle.
909 * The spec seems to expect that one negotiates the same key with
910 * every station but there's no such requirement; VLANs could be
911 * possible.
915 * No point in finding a key and decrypting if the frame is neither
916 * addressed to us nor a multicast frame.
918 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
919 return RX_CONTINUE;
921 /* start without a key */
922 rx->key = NULL;
924 if (rx->sta)
925 sta_ptk = rcu_dereference(rx->sta->ptk);
927 fc = hdr->frame_control;
929 if (!ieee80211_has_protected(fc))
930 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
932 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
933 rx->key = sta_ptk;
934 if ((status->flag & RX_FLAG_DECRYPTED) &&
935 (status->flag & RX_FLAG_IV_STRIPPED))
936 return RX_CONTINUE;
937 /* Skip decryption if the frame is not protected. */
938 if (!ieee80211_has_protected(fc))
939 return RX_CONTINUE;
940 } else if (mmie_keyidx >= 0) {
941 /* Broadcast/multicast robust management frame / BIP */
942 if ((status->flag & RX_FLAG_DECRYPTED) &&
943 (status->flag & RX_FLAG_IV_STRIPPED))
944 return RX_CONTINUE;
946 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
947 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
948 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
949 if (rx->sta)
950 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
951 if (!rx->key)
952 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
953 } else if (!ieee80211_has_protected(fc)) {
955 * The frame was not protected, so skip decryption. However, we
956 * need to set rx->key if there is a key that could have been
957 * used so that the frame may be dropped if encryption would
958 * have been expected.
960 struct ieee80211_key *key = NULL;
961 struct ieee80211_sub_if_data *sdata = rx->sdata;
962 int i;
964 if (ieee80211_is_mgmt(fc) &&
965 is_multicast_ether_addr(hdr->addr1) &&
966 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
967 rx->key = key;
968 else {
969 if (rx->sta) {
970 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
971 key = rcu_dereference(rx->sta->gtk[i]);
972 if (key)
973 break;
976 if (!key) {
977 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
978 key = rcu_dereference(sdata->keys[i]);
979 if (key)
980 break;
983 if (key)
984 rx->key = key;
986 return RX_CONTINUE;
987 } else {
988 u8 keyid;
990 * The device doesn't give us the IV so we won't be
991 * able to look up the key. That's ok though, we
992 * don't need to decrypt the frame, we just won't
993 * be able to keep statistics accurate.
994 * Except for key threshold notifications, should
995 * we somehow allow the driver to tell us which key
996 * the hardware used if this flag is set?
998 if ((status->flag & RX_FLAG_DECRYPTED) &&
999 (status->flag & RX_FLAG_IV_STRIPPED))
1000 return RX_CONTINUE;
1002 hdrlen = ieee80211_hdrlen(fc);
1004 if (rx->skb->len < 8 + hdrlen)
1005 return RX_DROP_UNUSABLE; /* TODO: count this? */
1008 * no need to call ieee80211_wep_get_keyidx,
1009 * it verifies a bunch of things we've done already
1011 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1012 keyidx = keyid >> 6;
1014 /* check per-station GTK first, if multicast packet */
1015 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1016 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1018 /* if not found, try default key */
1019 if (!rx->key) {
1020 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1023 * RSNA-protected unicast frames should always be
1024 * sent with pairwise or station-to-station keys,
1025 * but for WEP we allow using a key index as well.
1027 if (rx->key &&
1028 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1029 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1030 !is_multicast_ether_addr(hdr->addr1))
1031 rx->key = NULL;
1035 if (rx->key) {
1036 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1037 return RX_DROP_MONITOR;
1039 rx->key->tx_rx_count++;
1040 /* TODO: add threshold stuff again */
1041 } else {
1042 return RX_DROP_MONITOR;
1045 if (skb_linearize(rx->skb))
1046 return RX_DROP_UNUSABLE;
1047 /* the hdr variable is invalid now! */
1049 switch (rx->key->conf.cipher) {
1050 case WLAN_CIPHER_SUITE_WEP40:
1051 case WLAN_CIPHER_SUITE_WEP104:
1052 /* Check for weak IVs if possible */
1053 if (rx->sta && ieee80211_is_data(fc) &&
1054 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1055 !(status->flag & RX_FLAG_DECRYPTED)) &&
1056 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1057 rx->sta->wep_weak_iv_count++;
1059 result = ieee80211_crypto_wep_decrypt(rx);
1060 break;
1061 case WLAN_CIPHER_SUITE_TKIP:
1062 result = ieee80211_crypto_tkip_decrypt(rx);
1063 break;
1064 case WLAN_CIPHER_SUITE_CCMP:
1065 result = ieee80211_crypto_ccmp_decrypt(rx);
1066 break;
1067 case WLAN_CIPHER_SUITE_AES_CMAC:
1068 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1069 break;
1070 default:
1072 * We can reach here only with HW-only algorithms
1073 * but why didn't it decrypt the frame?!
1075 return RX_DROP_UNUSABLE;
1078 /* either the frame has been decrypted or will be dropped */
1079 status->flag |= RX_FLAG_DECRYPTED;
1081 return result;
1084 static ieee80211_rx_result debug_noinline
1085 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1087 struct ieee80211_local *local;
1088 struct ieee80211_hdr *hdr;
1089 struct sk_buff *skb;
1091 local = rx->local;
1092 skb = rx->skb;
1093 hdr = (struct ieee80211_hdr *) skb->data;
1095 if (!local->pspolling)
1096 return RX_CONTINUE;
1098 if (!ieee80211_has_fromds(hdr->frame_control))
1099 /* this is not from AP */
1100 return RX_CONTINUE;
1102 if (!ieee80211_is_data(hdr->frame_control))
1103 return RX_CONTINUE;
1105 if (!ieee80211_has_moredata(hdr->frame_control)) {
1106 /* AP has no more frames buffered for us */
1107 local->pspolling = false;
1108 return RX_CONTINUE;
1111 /* more data bit is set, let's request a new frame from the AP */
1112 ieee80211_send_pspoll(local, rx->sdata);
1114 return RX_CONTINUE;
1117 static void ap_sta_ps_start(struct sta_info *sta)
1119 struct ieee80211_sub_if_data *sdata = sta->sdata;
1120 struct ieee80211_local *local = sdata->local;
1122 atomic_inc(&sdata->bss->num_sta_ps);
1123 set_sta_flag(sta, WLAN_STA_PS_STA);
1124 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1125 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1126 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1127 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1128 sdata->name, sta->sta.addr, sta->sta.aid);
1129 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1132 static void ap_sta_ps_end(struct sta_info *sta)
1134 struct ieee80211_sub_if_data *sdata = sta->sdata;
1136 atomic_dec(&sdata->bss->num_sta_ps);
1138 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1139 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1140 sdata->name, sta->sta.addr, sta->sta.aid);
1141 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1143 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1144 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1145 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1146 sdata->name, sta->sta.addr, sta->sta.aid);
1147 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1148 return;
1151 ieee80211_sta_ps_deliver_wakeup(sta);
1154 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1156 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1157 bool in_ps;
1159 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1161 /* Don't let the same PS state be set twice */
1162 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1163 if ((start && in_ps) || (!start && !in_ps))
1164 return -EINVAL;
1166 if (start)
1167 ap_sta_ps_start(sta_inf);
1168 else
1169 ap_sta_ps_end(sta_inf);
1171 return 0;
1173 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1175 static ieee80211_rx_result debug_noinline
1176 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1178 struct ieee80211_sub_if_data *sdata = rx->sdata;
1179 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1180 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1181 int tid, ac;
1183 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1184 return RX_CONTINUE;
1186 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1187 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1188 return RX_CONTINUE;
1191 * The device handles station powersave, so don't do anything about
1192 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1193 * it to mac80211 since they're handled.)
1195 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1196 return RX_CONTINUE;
1199 * Don't do anything if the station isn't already asleep. In
1200 * the uAPSD case, the station will probably be marked asleep,
1201 * in the PS-Poll case the station must be confused ...
1203 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1204 return RX_CONTINUE;
1206 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1207 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1208 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1209 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1210 else
1211 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1214 /* Free PS Poll skb here instead of returning RX_DROP that would
1215 * count as an dropped frame. */
1216 dev_kfree_skb(rx->skb);
1218 return RX_QUEUED;
1219 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1220 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1221 ieee80211_has_pm(hdr->frame_control) &&
1222 (ieee80211_is_data_qos(hdr->frame_control) ||
1223 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1224 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1225 ac = ieee802_1d_to_ac[tid & 7];
1228 * If this AC is not trigger-enabled do nothing.
1230 * NB: This could/should check a separate bitmap of trigger-
1231 * enabled queues, but for now we only implement uAPSD w/o
1232 * TSPEC changes to the ACs, so they're always the same.
1234 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1235 return RX_CONTINUE;
1237 /* if we are in a service period, do nothing */
1238 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1239 return RX_CONTINUE;
1241 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1242 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1243 else
1244 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1247 return RX_CONTINUE;
1250 static ieee80211_rx_result debug_noinline
1251 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1253 struct sta_info *sta = rx->sta;
1254 struct sk_buff *skb = rx->skb;
1255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1256 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1258 if (!sta)
1259 return RX_CONTINUE;
1262 * Update last_rx only for IBSS packets which are for the current
1263 * BSSID to avoid keeping the current IBSS network alive in cases
1264 * where other STAs start using different BSSID.
1266 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1267 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1268 NL80211_IFTYPE_ADHOC);
1269 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1270 sta->last_rx = jiffies;
1271 if (ieee80211_is_data(hdr->frame_control)) {
1272 sta->last_rx_rate_idx = status->rate_idx;
1273 sta->last_rx_rate_flag = status->flag;
1276 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1278 * Mesh beacons will update last_rx when if they are found to
1279 * match the current local configuration when processed.
1281 sta->last_rx = jiffies;
1282 if (ieee80211_is_data(hdr->frame_control)) {
1283 sta->last_rx_rate_idx = status->rate_idx;
1284 sta->last_rx_rate_flag = status->flag;
1288 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1289 return RX_CONTINUE;
1291 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1292 ieee80211_sta_rx_notify(rx->sdata, hdr);
1294 sta->rx_fragments++;
1295 sta->rx_bytes += rx->skb->len;
1296 sta->last_signal = status->signal;
1297 ewma_add(&sta->avg_signal, -status->signal);
1300 * Change STA power saving mode only at the end of a frame
1301 * exchange sequence.
1303 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1304 !ieee80211_has_morefrags(hdr->frame_control) &&
1305 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1306 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1307 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1308 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1310 * Ignore doze->wake transitions that are
1311 * indicated by non-data frames, the standard
1312 * is unclear here, but for example going to
1313 * PS mode and then scanning would cause a
1314 * doze->wake transition for the probe request,
1315 * and that is clearly undesirable.
1317 if (ieee80211_is_data(hdr->frame_control) &&
1318 !ieee80211_has_pm(hdr->frame_control))
1319 ap_sta_ps_end(sta);
1320 } else {
1321 if (ieee80211_has_pm(hdr->frame_control))
1322 ap_sta_ps_start(sta);
1327 * Drop (qos-)data::nullfunc frames silently, since they
1328 * are used only to control station power saving mode.
1330 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1331 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1332 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1335 * If we receive a 4-addr nullfunc frame from a STA
1336 * that was not moved to a 4-addr STA vlan yet, drop
1337 * the frame to the monitor interface, to make sure
1338 * that hostapd sees it
1340 if (ieee80211_has_a4(hdr->frame_control) &&
1341 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1342 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1343 !rx->sdata->u.vlan.sta)))
1344 return RX_DROP_MONITOR;
1346 * Update counter and free packet here to avoid
1347 * counting this as a dropped packed.
1349 sta->rx_packets++;
1350 dev_kfree_skb(rx->skb);
1351 return RX_QUEUED;
1354 return RX_CONTINUE;
1355 } /* ieee80211_rx_h_sta_process */
1357 static inline struct ieee80211_fragment_entry *
1358 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1359 unsigned int frag, unsigned int seq, int rx_queue,
1360 struct sk_buff **skb)
1362 struct ieee80211_fragment_entry *entry;
1363 int idx;
1365 idx = sdata->fragment_next;
1366 entry = &sdata->fragments[sdata->fragment_next++];
1367 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1368 sdata->fragment_next = 0;
1370 if (!skb_queue_empty(&entry->skb_list)) {
1371 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1372 struct ieee80211_hdr *hdr =
1373 (struct ieee80211_hdr *) entry->skb_list.next->data;
1374 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1375 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1376 "addr1=%pM addr2=%pM\n",
1377 sdata->name, idx,
1378 jiffies - entry->first_frag_time, entry->seq,
1379 entry->last_frag, hdr->addr1, hdr->addr2);
1380 #endif
1381 __skb_queue_purge(&entry->skb_list);
1384 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1385 *skb = NULL;
1386 entry->first_frag_time = jiffies;
1387 entry->seq = seq;
1388 entry->rx_queue = rx_queue;
1389 entry->last_frag = frag;
1390 entry->ccmp = 0;
1391 entry->extra_len = 0;
1393 return entry;
1396 static inline struct ieee80211_fragment_entry *
1397 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1398 unsigned int frag, unsigned int seq,
1399 int rx_queue, struct ieee80211_hdr *hdr)
1401 struct ieee80211_fragment_entry *entry;
1402 int i, idx;
1404 idx = sdata->fragment_next;
1405 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1406 struct ieee80211_hdr *f_hdr;
1408 idx--;
1409 if (idx < 0)
1410 idx = IEEE80211_FRAGMENT_MAX - 1;
1412 entry = &sdata->fragments[idx];
1413 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1414 entry->rx_queue != rx_queue ||
1415 entry->last_frag + 1 != frag)
1416 continue;
1418 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1421 * Check ftype and addresses are equal, else check next fragment
1423 if (((hdr->frame_control ^ f_hdr->frame_control) &
1424 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1425 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1426 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1427 continue;
1429 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1430 __skb_queue_purge(&entry->skb_list);
1431 continue;
1433 return entry;
1436 return NULL;
1439 static ieee80211_rx_result debug_noinline
1440 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1442 struct ieee80211_hdr *hdr;
1443 u16 sc;
1444 __le16 fc;
1445 unsigned int frag, seq;
1446 struct ieee80211_fragment_entry *entry;
1447 struct sk_buff *skb;
1448 struct ieee80211_rx_status *status;
1450 hdr = (struct ieee80211_hdr *)rx->skb->data;
1451 fc = hdr->frame_control;
1452 sc = le16_to_cpu(hdr->seq_ctrl);
1453 frag = sc & IEEE80211_SCTL_FRAG;
1455 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1456 (rx->skb)->len < 24 ||
1457 is_multicast_ether_addr(hdr->addr1))) {
1458 /* not fragmented */
1459 goto out;
1461 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1463 if (skb_linearize(rx->skb))
1464 return RX_DROP_UNUSABLE;
1467 * skb_linearize() might change the skb->data and
1468 * previously cached variables (in this case, hdr) need to
1469 * be refreshed with the new data.
1471 hdr = (struct ieee80211_hdr *)rx->skb->data;
1472 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1474 if (frag == 0) {
1475 /* This is the first fragment of a new frame. */
1476 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1477 rx->seqno_idx, &(rx->skb));
1478 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1479 ieee80211_has_protected(fc)) {
1480 int queue = rx->security_idx;
1481 /* Store CCMP PN so that we can verify that the next
1482 * fragment has a sequential PN value. */
1483 entry->ccmp = 1;
1484 memcpy(entry->last_pn,
1485 rx->key->u.ccmp.rx_pn[queue],
1486 CCMP_PN_LEN);
1488 return RX_QUEUED;
1491 /* This is a fragment for a frame that should already be pending in
1492 * fragment cache. Add this fragment to the end of the pending entry.
1494 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1495 rx->seqno_idx, hdr);
1496 if (!entry) {
1497 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1498 return RX_DROP_MONITOR;
1501 /* Verify that MPDUs within one MSDU have sequential PN values.
1502 * (IEEE 802.11i, 8.3.3.4.5) */
1503 if (entry->ccmp) {
1504 int i;
1505 u8 pn[CCMP_PN_LEN], *rpn;
1506 int queue;
1507 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1508 return RX_DROP_UNUSABLE;
1509 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1510 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1511 pn[i]++;
1512 if (pn[i])
1513 break;
1515 queue = rx->security_idx;
1516 rpn = rx->key->u.ccmp.rx_pn[queue];
1517 if (memcmp(pn, rpn, CCMP_PN_LEN))
1518 return RX_DROP_UNUSABLE;
1519 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1522 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1523 __skb_queue_tail(&entry->skb_list, rx->skb);
1524 entry->last_frag = frag;
1525 entry->extra_len += rx->skb->len;
1526 if (ieee80211_has_morefrags(fc)) {
1527 rx->skb = NULL;
1528 return RX_QUEUED;
1531 rx->skb = __skb_dequeue(&entry->skb_list);
1532 if (skb_tailroom(rx->skb) < entry->extra_len) {
1533 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1534 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1535 GFP_ATOMIC))) {
1536 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1537 __skb_queue_purge(&entry->skb_list);
1538 return RX_DROP_UNUSABLE;
1541 while ((skb = __skb_dequeue(&entry->skb_list))) {
1542 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1543 dev_kfree_skb(skb);
1546 /* Complete frame has been reassembled - process it now */
1547 status = IEEE80211_SKB_RXCB(rx->skb);
1548 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1550 out:
1551 if (rx->sta)
1552 rx->sta->rx_packets++;
1553 if (is_multicast_ether_addr(hdr->addr1))
1554 rx->local->dot11MulticastReceivedFrameCount++;
1555 else
1556 ieee80211_led_rx(rx->local);
1557 return RX_CONTINUE;
1560 static ieee80211_rx_result debug_noinline
1561 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1563 u8 *data = rx->skb->data;
1564 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1566 if (!ieee80211_is_data_qos(hdr->frame_control))
1567 return RX_CONTINUE;
1569 /* remove the qos control field, update frame type and meta-data */
1570 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1571 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1572 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1573 /* change frame type to non QOS */
1574 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1576 return RX_CONTINUE;
1579 static int
1580 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1582 if (unlikely(!rx->sta ||
1583 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1584 return -EACCES;
1586 return 0;
1589 static int
1590 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1592 struct sk_buff *skb = rx->skb;
1593 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1596 * Pass through unencrypted frames if the hardware has
1597 * decrypted them already.
1599 if (status->flag & RX_FLAG_DECRYPTED)
1600 return 0;
1602 /* Drop unencrypted frames if key is set. */
1603 if (unlikely(!ieee80211_has_protected(fc) &&
1604 !ieee80211_is_nullfunc(fc) &&
1605 ieee80211_is_data(fc) &&
1606 (rx->key || rx->sdata->drop_unencrypted)))
1607 return -EACCES;
1609 return 0;
1612 static int
1613 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1615 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1616 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1617 __le16 fc = hdr->frame_control;
1620 * Pass through unencrypted frames if the hardware has
1621 * decrypted them already.
1623 if (status->flag & RX_FLAG_DECRYPTED)
1624 return 0;
1626 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1627 if (unlikely(!ieee80211_has_protected(fc) &&
1628 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1629 rx->key)) {
1630 if (ieee80211_is_deauth(fc))
1631 cfg80211_send_unprot_deauth(rx->sdata->dev,
1632 rx->skb->data,
1633 rx->skb->len);
1634 else if (ieee80211_is_disassoc(fc))
1635 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1636 rx->skb->data,
1637 rx->skb->len);
1638 return -EACCES;
1640 /* BIP does not use Protected field, so need to check MMIE */
1641 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1642 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1643 if (ieee80211_is_deauth(fc))
1644 cfg80211_send_unprot_deauth(rx->sdata->dev,
1645 rx->skb->data,
1646 rx->skb->len);
1647 else if (ieee80211_is_disassoc(fc))
1648 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1649 rx->skb->data,
1650 rx->skb->len);
1651 return -EACCES;
1654 * When using MFP, Action frames are not allowed prior to
1655 * having configured keys.
1657 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1658 ieee80211_is_robust_mgmt_frame(
1659 (struct ieee80211_hdr *) rx->skb->data)))
1660 return -EACCES;
1663 return 0;
1666 static int
1667 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1669 struct ieee80211_sub_if_data *sdata = rx->sdata;
1670 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1671 bool check_port_control = false;
1672 struct ethhdr *ehdr;
1673 int ret;
1675 *port_control = false;
1676 if (ieee80211_has_a4(hdr->frame_control) &&
1677 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1678 return -1;
1680 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1681 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1683 if (!sdata->u.mgd.use_4addr)
1684 return -1;
1685 else
1686 check_port_control = true;
1689 if (is_multicast_ether_addr(hdr->addr1) &&
1690 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1691 return -1;
1693 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1694 if (ret < 0)
1695 return ret;
1697 ehdr = (struct ethhdr *) rx->skb->data;
1698 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1699 *port_control = true;
1700 else if (check_port_control)
1701 return -1;
1703 return 0;
1707 * requires that rx->skb is a frame with ethernet header
1709 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1711 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1712 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1713 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1716 * Allow EAPOL frames to us/the PAE group address regardless
1717 * of whether the frame was encrypted or not.
1719 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1720 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1721 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1722 return true;
1724 if (ieee80211_802_1x_port_control(rx) ||
1725 ieee80211_drop_unencrypted(rx, fc))
1726 return false;
1728 return true;
1732 * requires that rx->skb is a frame with ethernet header
1734 static void
1735 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1737 struct ieee80211_sub_if_data *sdata = rx->sdata;
1738 struct net_device *dev = sdata->dev;
1739 struct sk_buff *skb, *xmit_skb;
1740 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1741 struct sta_info *dsta;
1742 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1744 skb = rx->skb;
1745 xmit_skb = NULL;
1747 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1748 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1749 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1750 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1751 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1752 if (is_multicast_ether_addr(ehdr->h_dest)) {
1754 * send multicast frames both to higher layers in
1755 * local net stack and back to the wireless medium
1757 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1758 if (!xmit_skb && net_ratelimit())
1759 printk(KERN_DEBUG "%s: failed to clone "
1760 "multicast frame\n", dev->name);
1761 } else {
1762 dsta = sta_info_get(sdata, skb->data);
1763 if (dsta) {
1765 * The destination station is associated to
1766 * this AP (in this VLAN), so send the frame
1767 * directly to it and do not pass it to local
1768 * net stack.
1770 xmit_skb = skb;
1771 skb = NULL;
1776 if (skb) {
1777 int align __maybe_unused;
1779 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1781 * 'align' will only take the values 0 or 2 here
1782 * since all frames are required to be aligned
1783 * to 2-byte boundaries when being passed to
1784 * mac80211. That also explains the __skb_push()
1785 * below.
1787 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1788 if (align) {
1789 if (WARN_ON(skb_headroom(skb) < 3)) {
1790 dev_kfree_skb(skb);
1791 skb = NULL;
1792 } else {
1793 u8 *data = skb->data;
1794 size_t len = skb_headlen(skb);
1795 skb->data -= align;
1796 memmove(skb->data, data, len);
1797 skb_set_tail_pointer(skb, len);
1800 #endif
1802 if (skb) {
1803 /* deliver to local stack */
1804 skb->protocol = eth_type_trans(skb, dev);
1805 memset(skb->cb, 0, sizeof(skb->cb));
1806 netif_receive_skb(skb);
1810 if (xmit_skb) {
1811 /* send to wireless media */
1812 xmit_skb->protocol = htons(ETH_P_802_3);
1813 skb_reset_network_header(xmit_skb);
1814 skb_reset_mac_header(xmit_skb);
1815 dev_queue_xmit(xmit_skb);
1819 static ieee80211_rx_result debug_noinline
1820 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1822 struct net_device *dev = rx->sdata->dev;
1823 struct sk_buff *skb = rx->skb;
1824 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1825 __le16 fc = hdr->frame_control;
1826 struct sk_buff_head frame_list;
1827 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1829 if (unlikely(!ieee80211_is_data(fc)))
1830 return RX_CONTINUE;
1832 if (unlikely(!ieee80211_is_data_present(fc)))
1833 return RX_DROP_MONITOR;
1835 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1836 return RX_CONTINUE;
1838 if (ieee80211_has_a4(hdr->frame_control) &&
1839 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1840 !rx->sdata->u.vlan.sta)
1841 return RX_DROP_UNUSABLE;
1843 if (is_multicast_ether_addr(hdr->addr1) &&
1844 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1845 rx->sdata->u.vlan.sta) ||
1846 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1847 rx->sdata->u.mgd.use_4addr)))
1848 return RX_DROP_UNUSABLE;
1850 skb->dev = dev;
1851 __skb_queue_head_init(&frame_list);
1853 if (skb_linearize(skb))
1854 return RX_DROP_UNUSABLE;
1856 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1857 rx->sdata->vif.type,
1858 rx->local->hw.extra_tx_headroom, true);
1860 while (!skb_queue_empty(&frame_list)) {
1861 rx->skb = __skb_dequeue(&frame_list);
1863 if (!ieee80211_frame_allowed(rx, fc)) {
1864 dev_kfree_skb(rx->skb);
1865 continue;
1867 dev->stats.rx_packets++;
1868 dev->stats.rx_bytes += rx->skb->len;
1870 ieee80211_deliver_skb(rx);
1873 return RX_QUEUED;
1876 #ifdef CONFIG_MAC80211_MESH
1877 static ieee80211_rx_result
1878 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1880 struct ieee80211_hdr *hdr;
1881 struct ieee80211s_hdr *mesh_hdr;
1882 unsigned int hdrlen;
1883 struct sk_buff *skb = rx->skb, *fwd_skb;
1884 struct ieee80211_local *local = rx->local;
1885 struct ieee80211_sub_if_data *sdata = rx->sdata;
1886 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1888 hdr = (struct ieee80211_hdr *) skb->data;
1889 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1890 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1892 /* frame is in RMC, don't forward */
1893 if (ieee80211_is_data(hdr->frame_control) &&
1894 is_multicast_ether_addr(hdr->addr1) &&
1895 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1896 return RX_DROP_MONITOR;
1898 if (!ieee80211_is_data(hdr->frame_control))
1899 return RX_CONTINUE;
1901 if (!mesh_hdr->ttl)
1902 /* illegal frame */
1903 return RX_DROP_MONITOR;
1905 if (ieee80211_queue_stopped(&local->hw, skb_get_queue_mapping(skb))) {
1906 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1907 dropped_frames_congestion);
1908 return RX_DROP_MONITOR;
1911 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1912 struct mesh_path *mppath;
1913 char *proxied_addr;
1914 char *mpp_addr;
1916 if (is_multicast_ether_addr(hdr->addr1)) {
1917 mpp_addr = hdr->addr3;
1918 proxied_addr = mesh_hdr->eaddr1;
1919 } else {
1920 mpp_addr = hdr->addr4;
1921 proxied_addr = mesh_hdr->eaddr2;
1924 rcu_read_lock();
1925 mppath = mpp_path_lookup(proxied_addr, sdata);
1926 if (!mppath) {
1927 mpp_path_add(proxied_addr, mpp_addr, sdata);
1928 } else {
1929 spin_lock_bh(&mppath->state_lock);
1930 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1931 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1932 spin_unlock_bh(&mppath->state_lock);
1934 rcu_read_unlock();
1937 /* Frame has reached destination. Don't forward */
1938 if (!is_multicast_ether_addr(hdr->addr1) &&
1939 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1940 return RX_CONTINUE;
1942 mesh_hdr->ttl--;
1944 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1945 if (!mesh_hdr->ttl)
1946 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1947 dropped_frames_ttl);
1948 else {
1949 struct ieee80211_hdr *fwd_hdr;
1950 struct ieee80211_tx_info *info;
1952 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1954 if (!fwd_skb && net_ratelimit())
1955 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1956 sdata->name);
1957 if (!fwd_skb)
1958 goto out;
1960 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1961 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1962 info = IEEE80211_SKB_CB(fwd_skb);
1963 memset(info, 0, sizeof(*info));
1964 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1965 info->control.vif = &rx->sdata->vif;
1966 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1967 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1968 fwded_mcast);
1969 skb_set_queue_mapping(fwd_skb,
1970 ieee80211_select_queue(sdata, fwd_skb));
1971 ieee80211_set_qos_hdr(sdata, fwd_skb);
1972 } else {
1973 int err;
1975 * Save TA to addr1 to send TA a path error if a
1976 * suitable next hop is not found
1978 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1979 ETH_ALEN);
1980 err = mesh_nexthop_lookup(fwd_skb, sdata);
1981 /* Failed to immediately resolve next hop:
1982 * fwded frame was dropped or will be added
1983 * later to the pending skb queue. */
1984 if (err)
1985 return RX_DROP_MONITOR;
1987 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1988 fwded_unicast);
1990 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1991 fwded_frames);
1992 ieee80211_add_pending_skb(local, fwd_skb);
1996 out:
1997 if (is_multicast_ether_addr(hdr->addr1) ||
1998 sdata->dev->flags & IFF_PROMISC)
1999 return RX_CONTINUE;
2000 else
2001 return RX_DROP_MONITOR;
2003 #endif
2005 static ieee80211_rx_result debug_noinline
2006 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2008 struct ieee80211_sub_if_data *sdata = rx->sdata;
2009 struct ieee80211_local *local = rx->local;
2010 struct net_device *dev = sdata->dev;
2011 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2012 __le16 fc = hdr->frame_control;
2013 bool port_control;
2014 int err;
2016 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2017 return RX_CONTINUE;
2019 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2020 return RX_DROP_MONITOR;
2023 * Allow the cooked monitor interface of an AP to see 4-addr frames so
2024 * that a 4-addr station can be detected and moved into a separate VLAN
2026 if (ieee80211_has_a4(hdr->frame_control) &&
2027 sdata->vif.type == NL80211_IFTYPE_AP)
2028 return RX_DROP_MONITOR;
2030 err = __ieee80211_data_to_8023(rx, &port_control);
2031 if (unlikely(err))
2032 return RX_DROP_UNUSABLE;
2034 if (!ieee80211_frame_allowed(rx, fc))
2035 return RX_DROP_MONITOR;
2037 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2038 unlikely(port_control) && sdata->bss) {
2039 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2040 u.ap);
2041 dev = sdata->dev;
2042 rx->sdata = sdata;
2045 rx->skb->dev = dev;
2047 dev->stats.rx_packets++;
2048 dev->stats.rx_bytes += rx->skb->len;
2050 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2051 !is_multicast_ether_addr(
2052 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2053 (!local->scanning &&
2054 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2055 mod_timer(&local->dynamic_ps_timer, jiffies +
2056 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2059 ieee80211_deliver_skb(rx);
2061 return RX_QUEUED;
2064 static ieee80211_rx_result debug_noinline
2065 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2067 struct ieee80211_local *local = rx->local;
2068 struct ieee80211_hw *hw = &local->hw;
2069 struct sk_buff *skb = rx->skb;
2070 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2071 struct tid_ampdu_rx *tid_agg_rx;
2072 u16 start_seq_num;
2073 u16 tid;
2075 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2076 return RX_CONTINUE;
2078 if (ieee80211_is_back_req(bar->frame_control)) {
2079 struct {
2080 __le16 control, start_seq_num;
2081 } __packed bar_data;
2083 if (!rx->sta)
2084 return RX_DROP_MONITOR;
2086 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2087 &bar_data, sizeof(bar_data)))
2088 return RX_DROP_MONITOR;
2090 tid = le16_to_cpu(bar_data.control) >> 12;
2092 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2093 if (!tid_agg_rx)
2094 return RX_DROP_MONITOR;
2096 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2098 /* reset session timer */
2099 if (tid_agg_rx->timeout)
2100 mod_timer(&tid_agg_rx->session_timer,
2101 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2103 spin_lock(&tid_agg_rx->reorder_lock);
2104 /* release stored frames up to start of BAR */
2105 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2106 spin_unlock(&tid_agg_rx->reorder_lock);
2108 kfree_skb(skb);
2109 return RX_QUEUED;
2113 * After this point, we only want management frames,
2114 * so we can drop all remaining control frames to
2115 * cooked monitor interfaces.
2117 return RX_DROP_MONITOR;
2120 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2121 struct ieee80211_mgmt *mgmt,
2122 size_t len)
2124 struct ieee80211_local *local = sdata->local;
2125 struct sk_buff *skb;
2126 struct ieee80211_mgmt *resp;
2128 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2129 /* Not to own unicast address */
2130 return;
2133 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2134 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2135 /* Not from the current AP or not associated yet. */
2136 return;
2139 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2140 /* Too short SA Query request frame */
2141 return;
2144 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2145 if (skb == NULL)
2146 return;
2148 skb_reserve(skb, local->hw.extra_tx_headroom);
2149 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2150 memset(resp, 0, 24);
2151 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2152 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2153 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2154 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2155 IEEE80211_STYPE_ACTION);
2156 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2157 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2158 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2159 memcpy(resp->u.action.u.sa_query.trans_id,
2160 mgmt->u.action.u.sa_query.trans_id,
2161 WLAN_SA_QUERY_TR_ID_LEN);
2163 ieee80211_tx_skb(sdata, skb);
2166 static ieee80211_rx_result debug_noinline
2167 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2169 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2170 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2173 * From here on, look only at management frames.
2174 * Data and control frames are already handled,
2175 * and unknown (reserved) frames are useless.
2177 if (rx->skb->len < 24)
2178 return RX_DROP_MONITOR;
2180 if (!ieee80211_is_mgmt(mgmt->frame_control))
2181 return RX_DROP_MONITOR;
2183 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2184 return RX_DROP_MONITOR;
2186 if (ieee80211_drop_unencrypted_mgmt(rx))
2187 return RX_DROP_UNUSABLE;
2189 return RX_CONTINUE;
2192 static ieee80211_rx_result debug_noinline
2193 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2195 struct ieee80211_local *local = rx->local;
2196 struct ieee80211_sub_if_data *sdata = rx->sdata;
2197 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2198 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2199 int len = rx->skb->len;
2201 if (!ieee80211_is_action(mgmt->frame_control))
2202 return RX_CONTINUE;
2204 /* drop too small frames */
2205 if (len < IEEE80211_MIN_ACTION_SIZE)
2206 return RX_DROP_UNUSABLE;
2208 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2209 return RX_DROP_UNUSABLE;
2211 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2212 return RX_DROP_UNUSABLE;
2214 switch (mgmt->u.action.category) {
2215 case WLAN_CATEGORY_BACK:
2217 * The aggregation code is not prepared to handle
2218 * anything but STA/AP due to the BSSID handling;
2219 * IBSS could work in the code but isn't supported
2220 * by drivers or the standard.
2222 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2223 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2224 sdata->vif.type != NL80211_IFTYPE_AP)
2225 break;
2227 /* verify action_code is present */
2228 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2229 break;
2231 switch (mgmt->u.action.u.addba_req.action_code) {
2232 case WLAN_ACTION_ADDBA_REQ:
2233 if (len < (IEEE80211_MIN_ACTION_SIZE +
2234 sizeof(mgmt->u.action.u.addba_req)))
2235 goto invalid;
2236 break;
2237 case WLAN_ACTION_ADDBA_RESP:
2238 if (len < (IEEE80211_MIN_ACTION_SIZE +
2239 sizeof(mgmt->u.action.u.addba_resp)))
2240 goto invalid;
2241 break;
2242 case WLAN_ACTION_DELBA:
2243 if (len < (IEEE80211_MIN_ACTION_SIZE +
2244 sizeof(mgmt->u.action.u.delba)))
2245 goto invalid;
2246 break;
2247 default:
2248 goto invalid;
2251 goto queue;
2252 case WLAN_CATEGORY_SPECTRUM_MGMT:
2253 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2254 break;
2256 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2257 break;
2259 /* verify action_code is present */
2260 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2261 break;
2263 switch (mgmt->u.action.u.measurement.action_code) {
2264 case WLAN_ACTION_SPCT_MSR_REQ:
2265 if (len < (IEEE80211_MIN_ACTION_SIZE +
2266 sizeof(mgmt->u.action.u.measurement)))
2267 break;
2268 ieee80211_process_measurement_req(sdata, mgmt, len);
2269 goto handled;
2270 case WLAN_ACTION_SPCT_CHL_SWITCH:
2271 if (len < (IEEE80211_MIN_ACTION_SIZE +
2272 sizeof(mgmt->u.action.u.chan_switch)))
2273 break;
2275 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2276 break;
2278 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2279 break;
2281 goto queue;
2283 break;
2284 case WLAN_CATEGORY_SA_QUERY:
2285 if (len < (IEEE80211_MIN_ACTION_SIZE +
2286 sizeof(mgmt->u.action.u.sa_query)))
2287 break;
2289 switch (mgmt->u.action.u.sa_query.action) {
2290 case WLAN_ACTION_SA_QUERY_REQUEST:
2291 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2292 break;
2293 ieee80211_process_sa_query_req(sdata, mgmt, len);
2294 goto handled;
2296 break;
2297 case WLAN_CATEGORY_SELF_PROTECTED:
2298 switch (mgmt->u.action.u.self_prot.action_code) {
2299 case WLAN_SP_MESH_PEERING_OPEN:
2300 case WLAN_SP_MESH_PEERING_CLOSE:
2301 case WLAN_SP_MESH_PEERING_CONFIRM:
2302 if (!ieee80211_vif_is_mesh(&sdata->vif))
2303 goto invalid;
2304 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2305 /* userspace handles this frame */
2306 break;
2307 goto queue;
2308 case WLAN_SP_MGK_INFORM:
2309 case WLAN_SP_MGK_ACK:
2310 if (!ieee80211_vif_is_mesh(&sdata->vif))
2311 goto invalid;
2312 break;
2314 break;
2315 case WLAN_CATEGORY_MESH_ACTION:
2316 if (!ieee80211_vif_is_mesh(&sdata->vif))
2317 break;
2318 if (mesh_action_is_path_sel(mgmt) &&
2319 (!mesh_path_sel_is_hwmp(sdata)))
2320 break;
2321 goto queue;
2324 return RX_CONTINUE;
2326 invalid:
2327 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2328 /* will return in the next handlers */
2329 return RX_CONTINUE;
2331 handled:
2332 if (rx->sta)
2333 rx->sta->rx_packets++;
2334 dev_kfree_skb(rx->skb);
2335 return RX_QUEUED;
2337 queue:
2338 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2339 skb_queue_tail(&sdata->skb_queue, rx->skb);
2340 ieee80211_queue_work(&local->hw, &sdata->work);
2341 if (rx->sta)
2342 rx->sta->rx_packets++;
2343 return RX_QUEUED;
2346 static ieee80211_rx_result debug_noinline
2347 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2349 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2351 /* skip known-bad action frames and return them in the next handler */
2352 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2353 return RX_CONTINUE;
2356 * Getting here means the kernel doesn't know how to handle
2357 * it, but maybe userspace does ... include returned frames
2358 * so userspace can register for those to know whether ones
2359 * it transmitted were processed or returned.
2362 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2363 rx->skb->data, rx->skb->len,
2364 GFP_ATOMIC)) {
2365 if (rx->sta)
2366 rx->sta->rx_packets++;
2367 dev_kfree_skb(rx->skb);
2368 return RX_QUEUED;
2372 return RX_CONTINUE;
2375 static ieee80211_rx_result debug_noinline
2376 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2378 struct ieee80211_local *local = rx->local;
2379 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2380 struct sk_buff *nskb;
2381 struct ieee80211_sub_if_data *sdata = rx->sdata;
2382 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2384 if (!ieee80211_is_action(mgmt->frame_control))
2385 return RX_CONTINUE;
2388 * For AP mode, hostapd is responsible for handling any action
2389 * frames that we didn't handle, including returning unknown
2390 * ones. For all other modes we will return them to the sender,
2391 * setting the 0x80 bit in the action category, as required by
2392 * 802.11-2007 7.3.1.11.
2393 * Newer versions of hostapd shall also use the management frame
2394 * registration mechanisms, but older ones still use cooked
2395 * monitor interfaces so push all frames there.
2397 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2398 (sdata->vif.type == NL80211_IFTYPE_AP ||
2399 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2400 return RX_DROP_MONITOR;
2402 /* do not return rejected action frames */
2403 if (mgmt->u.action.category & 0x80)
2404 return RX_DROP_UNUSABLE;
2406 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2407 GFP_ATOMIC);
2408 if (nskb) {
2409 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2411 nmgmt->u.action.category |= 0x80;
2412 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2413 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2415 memset(nskb->cb, 0, sizeof(nskb->cb));
2417 ieee80211_tx_skb(rx->sdata, nskb);
2419 dev_kfree_skb(rx->skb);
2420 return RX_QUEUED;
2423 static ieee80211_rx_result debug_noinline
2424 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2426 struct ieee80211_sub_if_data *sdata = rx->sdata;
2427 ieee80211_rx_result rxs;
2428 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2429 __le16 stype;
2431 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2432 if (rxs != RX_CONTINUE)
2433 return rxs;
2435 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2437 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2438 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2439 sdata->vif.type != NL80211_IFTYPE_STATION)
2440 return RX_DROP_MONITOR;
2442 switch (stype) {
2443 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2444 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2445 /* process for all: mesh, mlme, ibss */
2446 break;
2447 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2448 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2449 if (is_multicast_ether_addr(mgmt->da) &&
2450 !is_broadcast_ether_addr(mgmt->da))
2451 return RX_DROP_MONITOR;
2453 /* process only for station */
2454 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2455 return RX_DROP_MONITOR;
2456 break;
2457 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2458 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2459 /* process only for ibss */
2460 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2461 return RX_DROP_MONITOR;
2462 break;
2463 default:
2464 return RX_DROP_MONITOR;
2467 /* queue up frame and kick off work to process it */
2468 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2469 skb_queue_tail(&sdata->skb_queue, rx->skb);
2470 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2471 if (rx->sta)
2472 rx->sta->rx_packets++;
2474 return RX_QUEUED;
2477 /* TODO: use IEEE80211_RX_FRAGMENTED */
2478 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2479 struct ieee80211_rate *rate)
2481 struct ieee80211_sub_if_data *sdata;
2482 struct ieee80211_local *local = rx->local;
2483 struct ieee80211_rtap_hdr {
2484 struct ieee80211_radiotap_header hdr;
2485 u8 flags;
2486 u8 rate_or_pad;
2487 __le16 chan_freq;
2488 __le16 chan_flags;
2489 } __packed *rthdr;
2490 struct sk_buff *skb = rx->skb, *skb2;
2491 struct net_device *prev_dev = NULL;
2492 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2495 * If cooked monitor has been processed already, then
2496 * don't do it again. If not, set the flag.
2498 if (rx->flags & IEEE80211_RX_CMNTR)
2499 goto out_free_skb;
2500 rx->flags |= IEEE80211_RX_CMNTR;
2502 if (skb_headroom(skb) < sizeof(*rthdr) &&
2503 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2504 goto out_free_skb;
2506 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2507 memset(rthdr, 0, sizeof(*rthdr));
2508 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2509 rthdr->hdr.it_present =
2510 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2511 (1 << IEEE80211_RADIOTAP_CHANNEL));
2513 if (rate) {
2514 rthdr->rate_or_pad = rate->bitrate / 5;
2515 rthdr->hdr.it_present |=
2516 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2518 rthdr->chan_freq = cpu_to_le16(status->freq);
2520 if (status->band == IEEE80211_BAND_5GHZ)
2521 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2522 IEEE80211_CHAN_5GHZ);
2523 else
2524 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2525 IEEE80211_CHAN_2GHZ);
2527 skb_set_mac_header(skb, 0);
2528 skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 skb->pkt_type = PACKET_OTHERHOST;
2530 skb->protocol = htons(ETH_P_802_2);
2532 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2533 if (!ieee80211_sdata_running(sdata))
2534 continue;
2536 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2537 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2538 continue;
2540 if (prev_dev) {
2541 skb2 = skb_clone(skb, GFP_ATOMIC);
2542 if (skb2) {
2543 skb2->dev = prev_dev;
2544 netif_receive_skb(skb2);
2548 prev_dev = sdata->dev;
2549 sdata->dev->stats.rx_packets++;
2550 sdata->dev->stats.rx_bytes += skb->len;
2553 if (prev_dev) {
2554 skb->dev = prev_dev;
2555 netif_receive_skb(skb);
2556 return;
2559 out_free_skb:
2560 dev_kfree_skb(skb);
2563 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2564 ieee80211_rx_result res)
2566 switch (res) {
2567 case RX_DROP_MONITOR:
2568 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2569 if (rx->sta)
2570 rx->sta->rx_dropped++;
2571 /* fall through */
2572 case RX_CONTINUE: {
2573 struct ieee80211_rate *rate = NULL;
2574 struct ieee80211_supported_band *sband;
2575 struct ieee80211_rx_status *status;
2577 status = IEEE80211_SKB_RXCB((rx->skb));
2579 sband = rx->local->hw.wiphy->bands[status->band];
2580 if (!(status->flag & RX_FLAG_HT))
2581 rate = &sband->bitrates[status->rate_idx];
2583 ieee80211_rx_cooked_monitor(rx, rate);
2584 break;
2586 case RX_DROP_UNUSABLE:
2587 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2588 if (rx->sta)
2589 rx->sta->rx_dropped++;
2590 dev_kfree_skb(rx->skb);
2591 break;
2592 case RX_QUEUED:
2593 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2594 break;
2598 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2600 ieee80211_rx_result res = RX_DROP_MONITOR;
2601 struct sk_buff *skb;
2603 #define CALL_RXH(rxh) \
2604 do { \
2605 res = rxh(rx); \
2606 if (res != RX_CONTINUE) \
2607 goto rxh_next; \
2608 } while (0);
2610 spin_lock(&rx->local->rx_skb_queue.lock);
2611 if (rx->local->running_rx_handler)
2612 goto unlock;
2614 rx->local->running_rx_handler = true;
2616 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2617 spin_unlock(&rx->local->rx_skb_queue.lock);
2620 * all the other fields are valid across frames
2621 * that belong to an aMPDU since they are on the
2622 * same TID from the same station
2624 rx->skb = skb;
2626 CALL_RXH(ieee80211_rx_h_decrypt)
2627 CALL_RXH(ieee80211_rx_h_check_more_data)
2628 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2629 CALL_RXH(ieee80211_rx_h_sta_process)
2630 CALL_RXH(ieee80211_rx_h_defragment)
2631 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2632 /* must be after MMIC verify so header is counted in MPDU mic */
2633 #ifdef CONFIG_MAC80211_MESH
2634 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2635 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2636 #endif
2637 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2638 CALL_RXH(ieee80211_rx_h_amsdu)
2639 CALL_RXH(ieee80211_rx_h_data)
2640 CALL_RXH(ieee80211_rx_h_ctrl);
2641 CALL_RXH(ieee80211_rx_h_mgmt_check)
2642 CALL_RXH(ieee80211_rx_h_action)
2643 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2644 CALL_RXH(ieee80211_rx_h_action_return)
2645 CALL_RXH(ieee80211_rx_h_mgmt)
2647 rxh_next:
2648 ieee80211_rx_handlers_result(rx, res);
2649 spin_lock(&rx->local->rx_skb_queue.lock);
2650 #undef CALL_RXH
2653 rx->local->running_rx_handler = false;
2655 unlock:
2656 spin_unlock(&rx->local->rx_skb_queue.lock);
2659 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2661 ieee80211_rx_result res = RX_DROP_MONITOR;
2663 #define CALL_RXH(rxh) \
2664 do { \
2665 res = rxh(rx); \
2666 if (res != RX_CONTINUE) \
2667 goto rxh_next; \
2668 } while (0);
2670 CALL_RXH(ieee80211_rx_h_passive_scan)
2671 CALL_RXH(ieee80211_rx_h_check)
2673 ieee80211_rx_reorder_ampdu(rx);
2675 ieee80211_rx_handlers(rx);
2676 return;
2678 rxh_next:
2679 ieee80211_rx_handlers_result(rx, res);
2681 #undef CALL_RXH
2685 * This function makes calls into the RX path, therefore
2686 * it has to be invoked under RCU read lock.
2688 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2690 struct ieee80211_rx_data rx = {
2691 .sta = sta,
2692 .sdata = sta->sdata,
2693 .local = sta->local,
2694 /* This is OK -- must be QoS data frame */
2695 .security_idx = tid,
2696 .seqno_idx = tid,
2697 .flags = 0,
2699 struct tid_ampdu_rx *tid_agg_rx;
2701 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2702 if (!tid_agg_rx)
2703 return;
2705 spin_lock(&tid_agg_rx->reorder_lock);
2706 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2707 spin_unlock(&tid_agg_rx->reorder_lock);
2709 ieee80211_rx_handlers(&rx);
2712 /* main receive path */
2714 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2715 struct ieee80211_hdr *hdr)
2717 struct ieee80211_sub_if_data *sdata = rx->sdata;
2718 struct sk_buff *skb = rx->skb;
2719 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2720 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2721 int multicast = is_multicast_ether_addr(hdr->addr1);
2723 switch (sdata->vif.type) {
2724 case NL80211_IFTYPE_STATION:
2725 if (!bssid && !sdata->u.mgd.use_4addr)
2726 return 0;
2727 if (!multicast &&
2728 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2729 if (!(sdata->dev->flags & IFF_PROMISC) ||
2730 sdata->u.mgd.use_4addr)
2731 return 0;
2732 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2734 break;
2735 case NL80211_IFTYPE_ADHOC:
2736 if (!bssid)
2737 return 0;
2738 if (ieee80211_is_beacon(hdr->frame_control)) {
2739 return 1;
2741 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2742 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2743 return 0;
2744 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2745 } else if (!multicast &&
2746 compare_ether_addr(sdata->vif.addr,
2747 hdr->addr1) != 0) {
2748 if (!(sdata->dev->flags & IFF_PROMISC))
2749 return 0;
2750 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2751 } else if (!rx->sta) {
2752 int rate_idx;
2753 if (status->flag & RX_FLAG_HT)
2754 rate_idx = 0; /* TODO: HT rates */
2755 else
2756 rate_idx = status->rate_idx;
2757 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2758 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2760 break;
2761 case NL80211_IFTYPE_MESH_POINT:
2762 if (!multicast &&
2763 compare_ether_addr(sdata->vif.addr,
2764 hdr->addr1) != 0) {
2765 if (!(sdata->dev->flags & IFF_PROMISC))
2766 return 0;
2768 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2770 break;
2771 case NL80211_IFTYPE_AP_VLAN:
2772 case NL80211_IFTYPE_AP:
2773 if (!bssid) {
2774 if (compare_ether_addr(sdata->vif.addr,
2775 hdr->addr1))
2776 return 0;
2777 } else if (!ieee80211_bssid_match(bssid,
2778 sdata->vif.addr)) {
2779 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2780 !ieee80211_is_beacon(hdr->frame_control) &&
2781 !(ieee80211_is_action(hdr->frame_control) &&
2782 sdata->vif.p2p))
2783 return 0;
2784 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2786 break;
2787 case NL80211_IFTYPE_WDS:
2788 if (bssid || !ieee80211_is_data(hdr->frame_control))
2789 return 0;
2790 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2791 return 0;
2792 break;
2793 default:
2794 /* should never get here */
2795 WARN_ON(1);
2796 break;
2799 return 1;
2803 * This function returns whether or not the SKB
2804 * was destined for RX processing or not, which,
2805 * if consume is true, is equivalent to whether
2806 * or not the skb was consumed.
2808 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2809 struct sk_buff *skb, bool consume)
2811 struct ieee80211_local *local = rx->local;
2812 struct ieee80211_sub_if_data *sdata = rx->sdata;
2813 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2814 struct ieee80211_hdr *hdr = (void *)skb->data;
2815 int prepares;
2817 rx->skb = skb;
2818 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2819 prepares = prepare_for_handlers(rx, hdr);
2821 if (!prepares)
2822 return false;
2824 if (!consume) {
2825 skb = skb_copy(skb, GFP_ATOMIC);
2826 if (!skb) {
2827 if (net_ratelimit())
2828 wiphy_debug(local->hw.wiphy,
2829 "failed to copy skb for %s\n",
2830 sdata->name);
2831 return true;
2834 rx->skb = skb;
2837 ieee80211_invoke_rx_handlers(rx);
2838 return true;
2842 * This is the actual Rx frames handler. as it blongs to Rx path it must
2843 * be called with rcu_read_lock protection.
2845 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2846 struct sk_buff *skb)
2848 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2849 struct ieee80211_local *local = hw_to_local(hw);
2850 struct ieee80211_sub_if_data *sdata;
2851 struct ieee80211_hdr *hdr;
2852 __le16 fc;
2853 struct ieee80211_rx_data rx;
2854 struct ieee80211_sub_if_data *prev;
2855 struct sta_info *sta, *tmp, *prev_sta;
2856 int err = 0;
2858 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2859 memset(&rx, 0, sizeof(rx));
2860 rx.skb = skb;
2861 rx.local = local;
2863 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2864 local->dot11ReceivedFragmentCount++;
2866 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2867 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2868 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2870 if (ieee80211_is_mgmt(fc))
2871 err = skb_linearize(skb);
2872 else
2873 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2875 if (err) {
2876 dev_kfree_skb(skb);
2877 return;
2880 hdr = (struct ieee80211_hdr *)skb->data;
2881 ieee80211_parse_qos(&rx);
2882 ieee80211_verify_alignment(&rx);
2884 if (ieee80211_is_data(fc)) {
2885 prev_sta = NULL;
2887 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2888 if (!prev_sta) {
2889 prev_sta = sta;
2890 continue;
2893 rx.sta = prev_sta;
2894 rx.sdata = prev_sta->sdata;
2895 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2897 prev_sta = sta;
2900 if (prev_sta) {
2901 rx.sta = prev_sta;
2902 rx.sdata = prev_sta->sdata;
2904 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2905 return;
2906 goto out;
2910 prev = NULL;
2912 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2913 if (!ieee80211_sdata_running(sdata))
2914 continue;
2916 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2917 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2918 continue;
2921 * frame is destined for this interface, but if it's
2922 * not also for the previous one we handle that after
2923 * the loop to avoid copying the SKB once too much
2926 if (!prev) {
2927 prev = sdata;
2928 continue;
2931 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2932 rx.sdata = prev;
2933 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2935 prev = sdata;
2938 if (prev) {
2939 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2940 rx.sdata = prev;
2942 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2943 return;
2946 out:
2947 dev_kfree_skb(skb);
2951 * This is the receive path handler. It is called by a low level driver when an
2952 * 802.11 MPDU is received from the hardware.
2954 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2956 struct ieee80211_local *local = hw_to_local(hw);
2957 struct ieee80211_rate *rate = NULL;
2958 struct ieee80211_supported_band *sband;
2959 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2961 WARN_ON_ONCE(softirq_count() == 0);
2963 if (WARN_ON(status->band < 0 ||
2964 status->band >= IEEE80211_NUM_BANDS))
2965 goto drop;
2967 sband = local->hw.wiphy->bands[status->band];
2968 if (WARN_ON(!sband))
2969 goto drop;
2972 * If we're suspending, it is possible although not too likely
2973 * that we'd be receiving frames after having already partially
2974 * quiesced the stack. We can't process such frames then since
2975 * that might, for example, cause stations to be added or other
2976 * driver callbacks be invoked.
2978 if (unlikely(local->quiescing || local->suspended))
2979 goto drop;
2982 * The same happens when we're not even started,
2983 * but that's worth a warning.
2985 if (WARN_ON(!local->started))
2986 goto drop;
2988 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2990 * Validate the rate, unless a PLCP error means that
2991 * we probably can't have a valid rate here anyway.
2994 if (status->flag & RX_FLAG_HT) {
2996 * rate_idx is MCS index, which can be [0-76]
2997 * as documented on:
2999 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3001 * Anything else would be some sort of driver or
3002 * hardware error. The driver should catch hardware
3003 * errors.
3005 if (WARN((status->rate_idx < 0 ||
3006 status->rate_idx > 76),
3007 "Rate marked as an HT rate but passed "
3008 "status->rate_idx is not "
3009 "an MCS index [0-76]: %d (0x%02x)\n",
3010 status->rate_idx,
3011 status->rate_idx))
3012 goto drop;
3013 } else {
3014 if (WARN_ON(status->rate_idx < 0 ||
3015 status->rate_idx >= sband->n_bitrates))
3016 goto drop;
3017 rate = &sband->bitrates[status->rate_idx];
3021 status->rx_flags = 0;
3024 * key references and virtual interfaces are protected using RCU
3025 * and this requires that we are in a read-side RCU section during
3026 * receive processing
3028 rcu_read_lock();
3031 * Frames with failed FCS/PLCP checksum are not returned,
3032 * all other frames are returned without radiotap header
3033 * if it was previously present.
3034 * Also, frames with less than 16 bytes are dropped.
3036 skb = ieee80211_rx_monitor(local, skb, rate);
3037 if (!skb) {
3038 rcu_read_unlock();
3039 return;
3042 ieee80211_tpt_led_trig_rx(local,
3043 ((struct ieee80211_hdr *)skb->data)->frame_control,
3044 skb->len);
3045 __ieee80211_rx_handle_packet(hw, skb);
3047 rcu_read_unlock();
3049 return;
3050 drop:
3051 kfree_skb(skb);
3053 EXPORT_SYMBOL(ieee80211_rx);
3055 /* This is a version of the rx handler that can be called from hard irq
3056 * context. Post the skb on the queue and schedule the tasklet */
3057 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3059 struct ieee80211_local *local = hw_to_local(hw);
3061 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3063 skb->pkt_type = IEEE80211_RX_MSG;
3064 skb_queue_tail(&local->skb_queue, skb);
3065 tasklet_schedule(&local->tasklet);
3067 EXPORT_SYMBOL(ieee80211_rx_irqsafe);