drm: Fix authentication kernel crash
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / skbuff.c
blob3c30ee4a57105a2746b3e1b2bfab68af8ef0c917
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
63 #include <net/dst.h>
64 #include <net/sock.h>
65 #include <net/checksum.h>
66 #include <net/xfrm.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
72 #include "kmap_skb.h"
74 static struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
80 put_page(buf->page);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 get_page(buf->page);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185 prefetchw(skb);
187 /* We do our best to align skb_shared_info on a separate cache
188 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
189 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
190 * Both skb->head and skb_shared_info are cache line aligned.
192 size = SKB_DATA_ALIGN(size);
193 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
194 data = kmalloc_node_track_caller(size, gfp_mask, node);
195 if (!data)
196 goto nodata;
197 /* kmalloc(size) might give us more room than requested.
198 * Put skb_shared_info exactly at the end of allocated zone,
199 * to allow max possible filling before reallocation.
201 size = SKB_WITH_OVERHEAD(ksize(data));
202 prefetchw(data + size);
205 * Only clear those fields we need to clear, not those that we will
206 * actually initialise below. Hence, don't put any more fields after
207 * the tail pointer in struct sk_buff!
209 memset(skb, 0, offsetof(struct sk_buff, tail));
210 /* Account for allocated memory : skb + skb->head */
211 skb->truesize = SKB_TRUESIZE(size);
212 atomic_set(&skb->users, 1);
213 skb->head = data;
214 skb->data = data;
215 skb_reset_tail_pointer(skb);
216 skb->end = skb->tail + size;
217 #ifdef NET_SKBUFF_DATA_USES_OFFSET
218 skb->mac_header = ~0U;
219 #endif
221 /* make sure we initialize shinfo sequentially */
222 shinfo = skb_shinfo(skb);
223 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
224 atomic_set(&shinfo->dataref, 1);
225 kmemcheck_annotate_variable(shinfo->destructor_arg);
227 if (fclone) {
228 struct sk_buff *child = skb + 1;
229 atomic_t *fclone_ref = (atomic_t *) (child + 1);
231 kmemcheck_annotate_bitfield(child, flags1);
232 kmemcheck_annotate_bitfield(child, flags2);
233 skb->fclone = SKB_FCLONE_ORIG;
234 atomic_set(fclone_ref, 1);
236 child->fclone = SKB_FCLONE_UNAVAILABLE;
238 out:
239 return skb;
240 nodata:
241 kmem_cache_free(cache, skb);
242 skb = NULL;
243 goto out;
245 EXPORT_SYMBOL(__alloc_skb);
248 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
249 * @dev: network device to receive on
250 * @length: length to allocate
251 * @gfp_mask: get_free_pages mask, passed to alloc_skb
253 * Allocate a new &sk_buff and assign it a usage count of one. The
254 * buffer has unspecified headroom built in. Users should allocate
255 * the headroom they think they need without accounting for the
256 * built in space. The built in space is used for optimisations.
258 * %NULL is returned if there is no free memory.
260 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
261 unsigned int length, gfp_t gfp_mask)
263 struct sk_buff *skb;
265 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
266 if (likely(skb)) {
267 skb_reserve(skb, NET_SKB_PAD);
268 skb->dev = dev;
270 return skb;
272 EXPORT_SYMBOL(__netdev_alloc_skb);
274 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
275 int size)
277 skb_fill_page_desc(skb, i, page, off, size);
278 skb->len += size;
279 skb->data_len += size;
280 skb->truesize += size;
282 EXPORT_SYMBOL(skb_add_rx_frag);
285 * dev_alloc_skb - allocate an skbuff for receiving
286 * @length: length to allocate
288 * Allocate a new &sk_buff and assign it a usage count of one. The
289 * buffer has unspecified headroom built in. Users should allocate
290 * the headroom they think they need without accounting for the
291 * built in space. The built in space is used for optimisations.
293 * %NULL is returned if there is no free memory. Although this function
294 * allocates memory it can be called from an interrupt.
296 struct sk_buff *dev_alloc_skb(unsigned int length)
299 * There is more code here than it seems:
300 * __dev_alloc_skb is an inline
302 return __dev_alloc_skb(length, GFP_ATOMIC);
304 EXPORT_SYMBOL(dev_alloc_skb);
306 static void skb_drop_list(struct sk_buff **listp)
308 struct sk_buff *list = *listp;
310 *listp = NULL;
312 do {
313 struct sk_buff *this = list;
314 list = list->next;
315 kfree_skb(this);
316 } while (list);
319 static inline void skb_drop_fraglist(struct sk_buff *skb)
321 skb_drop_list(&skb_shinfo(skb)->frag_list);
324 static void skb_clone_fraglist(struct sk_buff *skb)
326 struct sk_buff *list;
328 skb_walk_frags(skb, list)
329 skb_get(list);
332 static void skb_release_data(struct sk_buff *skb)
334 if (!skb->cloned ||
335 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
336 &skb_shinfo(skb)->dataref)) {
337 if (skb_shinfo(skb)->nr_frags) {
338 int i;
339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
340 skb_frag_unref(skb, i);
344 * If skb buf is from userspace, we need to notify the caller
345 * the lower device DMA has done;
347 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
348 struct ubuf_info *uarg;
350 uarg = skb_shinfo(skb)->destructor_arg;
351 if (uarg->callback)
352 uarg->callback(uarg);
355 if (skb_has_frag_list(skb))
356 skb_drop_fraglist(skb);
358 kfree(skb->head);
363 * Free an skbuff by memory without cleaning the state.
365 static void kfree_skbmem(struct sk_buff *skb)
367 struct sk_buff *other;
368 atomic_t *fclone_ref;
370 switch (skb->fclone) {
371 case SKB_FCLONE_UNAVAILABLE:
372 kmem_cache_free(skbuff_head_cache, skb);
373 break;
375 case SKB_FCLONE_ORIG:
376 fclone_ref = (atomic_t *) (skb + 2);
377 if (atomic_dec_and_test(fclone_ref))
378 kmem_cache_free(skbuff_fclone_cache, skb);
379 break;
381 case SKB_FCLONE_CLONE:
382 fclone_ref = (atomic_t *) (skb + 1);
383 other = skb - 1;
385 /* The clone portion is available for
386 * fast-cloning again.
388 skb->fclone = SKB_FCLONE_UNAVAILABLE;
390 if (atomic_dec_and_test(fclone_ref))
391 kmem_cache_free(skbuff_fclone_cache, other);
392 break;
396 static void skb_release_head_state(struct sk_buff *skb)
398 skb_dst_drop(skb);
399 #ifdef CONFIG_XFRM
400 secpath_put(skb->sp);
401 #endif
402 if (skb->destructor) {
403 WARN_ON(in_irq());
404 skb->destructor(skb);
406 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
407 nf_conntrack_put(skb->nfct);
408 #endif
409 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
410 nf_conntrack_put_reasm(skb->nfct_reasm);
411 #endif
412 #ifdef CONFIG_BRIDGE_NETFILTER
413 nf_bridge_put(skb->nf_bridge);
414 #endif
415 /* XXX: IS this still necessary? - JHS */
416 #ifdef CONFIG_NET_SCHED
417 skb->tc_index = 0;
418 #ifdef CONFIG_NET_CLS_ACT
419 skb->tc_verd = 0;
420 #endif
421 #endif
424 /* Free everything but the sk_buff shell. */
425 static void skb_release_all(struct sk_buff *skb)
427 skb_release_head_state(skb);
428 skb_release_data(skb);
432 * __kfree_skb - private function
433 * @skb: buffer
435 * Free an sk_buff. Release anything attached to the buffer.
436 * Clean the state. This is an internal helper function. Users should
437 * always call kfree_skb
440 void __kfree_skb(struct sk_buff *skb)
442 skb_release_all(skb);
443 kfree_skbmem(skb);
445 EXPORT_SYMBOL(__kfree_skb);
448 * kfree_skb - free an sk_buff
449 * @skb: buffer to free
451 * Drop a reference to the buffer and free it if the usage count has
452 * hit zero.
454 void kfree_skb(struct sk_buff *skb)
456 if (unlikely(!skb))
457 return;
458 if (likely(atomic_read(&skb->users) == 1))
459 smp_rmb();
460 else if (likely(!atomic_dec_and_test(&skb->users)))
461 return;
462 trace_kfree_skb(skb, __builtin_return_address(0));
463 __kfree_skb(skb);
465 EXPORT_SYMBOL(kfree_skb);
468 * consume_skb - free an skbuff
469 * @skb: buffer to free
471 * Drop a ref to the buffer and free it if the usage count has hit zero
472 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
473 * is being dropped after a failure and notes that
475 void consume_skb(struct sk_buff *skb)
477 if (unlikely(!skb))
478 return;
479 if (likely(atomic_read(&skb->users) == 1))
480 smp_rmb();
481 else if (likely(!atomic_dec_and_test(&skb->users)))
482 return;
483 trace_consume_skb(skb);
484 __kfree_skb(skb);
486 EXPORT_SYMBOL(consume_skb);
489 * skb_recycle - clean up an skb for reuse
490 * @skb: buffer
492 * Recycles the skb to be reused as a receive buffer. This
493 * function does any necessary reference count dropping, and
494 * cleans up the skbuff as if it just came from __alloc_skb().
496 void skb_recycle(struct sk_buff *skb)
498 struct skb_shared_info *shinfo;
500 skb_release_head_state(skb);
502 shinfo = skb_shinfo(skb);
503 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
504 atomic_set(&shinfo->dataref, 1);
506 memset(skb, 0, offsetof(struct sk_buff, tail));
507 skb->data = skb->head + NET_SKB_PAD;
508 skb_reset_tail_pointer(skb);
510 EXPORT_SYMBOL(skb_recycle);
513 * skb_recycle_check - check if skb can be reused for receive
514 * @skb: buffer
515 * @skb_size: minimum receive buffer size
517 * Checks that the skb passed in is not shared or cloned, and
518 * that it is linear and its head portion at least as large as
519 * skb_size so that it can be recycled as a receive buffer.
520 * If these conditions are met, this function does any necessary
521 * reference count dropping and cleans up the skbuff as if it
522 * just came from __alloc_skb().
524 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
526 if (!skb_is_recycleable(skb, skb_size))
527 return false;
529 skb_recycle(skb);
531 return true;
533 EXPORT_SYMBOL(skb_recycle_check);
535 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
537 new->tstamp = old->tstamp;
538 new->dev = old->dev;
539 new->transport_header = old->transport_header;
540 new->network_header = old->network_header;
541 new->mac_header = old->mac_header;
542 skb_dst_copy(new, old);
543 new->rxhash = old->rxhash;
544 new->ooo_okay = old->ooo_okay;
545 new->l4_rxhash = old->l4_rxhash;
546 #ifdef CONFIG_XFRM
547 new->sp = secpath_get(old->sp);
548 #endif
549 memcpy(new->cb, old->cb, sizeof(old->cb));
550 new->csum = old->csum;
551 new->local_df = old->local_df;
552 new->pkt_type = old->pkt_type;
553 new->ip_summed = old->ip_summed;
554 skb_copy_queue_mapping(new, old);
555 new->priority = old->priority;
556 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
557 new->ipvs_property = old->ipvs_property;
558 #endif
559 new->protocol = old->protocol;
560 new->mark = old->mark;
561 new->skb_iif = old->skb_iif;
562 __nf_copy(new, old);
563 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
564 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
565 new->nf_trace = old->nf_trace;
566 #endif
567 #ifdef CONFIG_NET_SCHED
568 new->tc_index = old->tc_index;
569 #ifdef CONFIG_NET_CLS_ACT
570 new->tc_verd = old->tc_verd;
571 #endif
572 #endif
573 new->vlan_tci = old->vlan_tci;
575 skb_copy_secmark(new, old);
579 * You should not add any new code to this function. Add it to
580 * __copy_skb_header above instead.
582 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
584 #define C(x) n->x = skb->x
586 n->next = n->prev = NULL;
587 n->sk = NULL;
588 __copy_skb_header(n, skb);
590 C(len);
591 C(data_len);
592 C(mac_len);
593 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
594 n->cloned = 1;
595 n->nohdr = 0;
596 n->destructor = NULL;
597 C(tail);
598 C(end);
599 C(head);
600 C(data);
601 C(truesize);
602 atomic_set(&n->users, 1);
604 atomic_inc(&(skb_shinfo(skb)->dataref));
605 skb->cloned = 1;
607 return n;
608 #undef C
612 * skb_morph - morph one skb into another
613 * @dst: the skb to receive the contents
614 * @src: the skb to supply the contents
616 * This is identical to skb_clone except that the target skb is
617 * supplied by the user.
619 * The target skb is returned upon exit.
621 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
623 skb_release_all(dst);
624 return __skb_clone(dst, src);
626 EXPORT_SYMBOL_GPL(skb_morph);
628 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
629 * @skb: the skb to modify
630 * @gfp_mask: allocation priority
632 * This must be called on SKBTX_DEV_ZEROCOPY skb.
633 * It will copy all frags into kernel and drop the reference
634 * to userspace pages.
636 * If this function is called from an interrupt gfp_mask() must be
637 * %GFP_ATOMIC.
639 * Returns 0 on success or a negative error code on failure
640 * to allocate kernel memory to copy to.
642 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
644 int i;
645 int num_frags = skb_shinfo(skb)->nr_frags;
646 struct page *page, *head = NULL;
647 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
649 for (i = 0; i < num_frags; i++) {
650 u8 *vaddr;
651 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
653 page = alloc_page(GFP_ATOMIC);
654 if (!page) {
655 while (head) {
656 struct page *next = (struct page *)head->private;
657 put_page(head);
658 head = next;
660 return -ENOMEM;
662 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
663 memcpy(page_address(page),
664 vaddr + f->page_offset, skb_frag_size(f));
665 kunmap_skb_frag(vaddr);
666 page->private = (unsigned long)head;
667 head = page;
670 /* skb frags release userspace buffers */
671 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
672 skb_frag_unref(skb, i);
674 uarg->callback(uarg);
676 /* skb frags point to kernel buffers */
677 for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
678 __skb_fill_page_desc(skb, i-1, head, 0,
679 skb_shinfo(skb)->frags[i - 1].size);
680 head = (struct page *)head->private;
683 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
684 return 0;
689 * skb_clone - duplicate an sk_buff
690 * @skb: buffer to clone
691 * @gfp_mask: allocation priority
693 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
694 * copies share the same packet data but not structure. The new
695 * buffer has a reference count of 1. If the allocation fails the
696 * function returns %NULL otherwise the new buffer is returned.
698 * If this function is called from an interrupt gfp_mask() must be
699 * %GFP_ATOMIC.
702 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
704 struct sk_buff *n;
706 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
707 if (skb_copy_ubufs(skb, gfp_mask))
708 return NULL;
711 n = skb + 1;
712 if (skb->fclone == SKB_FCLONE_ORIG &&
713 n->fclone == SKB_FCLONE_UNAVAILABLE) {
714 atomic_t *fclone_ref = (atomic_t *) (n + 1);
715 n->fclone = SKB_FCLONE_CLONE;
716 atomic_inc(fclone_ref);
717 } else {
718 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
719 if (!n)
720 return NULL;
722 kmemcheck_annotate_bitfield(n, flags1);
723 kmemcheck_annotate_bitfield(n, flags2);
724 n->fclone = SKB_FCLONE_UNAVAILABLE;
727 return __skb_clone(n, skb);
729 EXPORT_SYMBOL(skb_clone);
731 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
733 #ifndef NET_SKBUFF_DATA_USES_OFFSET
735 * Shift between the two data areas in bytes
737 unsigned long offset = new->data - old->data;
738 #endif
740 __copy_skb_header(new, old);
742 #ifndef NET_SKBUFF_DATA_USES_OFFSET
743 /* {transport,network,mac}_header are relative to skb->head */
744 new->transport_header += offset;
745 new->network_header += offset;
746 if (skb_mac_header_was_set(new))
747 new->mac_header += offset;
748 #endif
749 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
750 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
751 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
755 * skb_copy - create private copy of an sk_buff
756 * @skb: buffer to copy
757 * @gfp_mask: allocation priority
759 * Make a copy of both an &sk_buff and its data. This is used when the
760 * caller wishes to modify the data and needs a private copy of the
761 * data to alter. Returns %NULL on failure or the pointer to the buffer
762 * on success. The returned buffer has a reference count of 1.
764 * As by-product this function converts non-linear &sk_buff to linear
765 * one, so that &sk_buff becomes completely private and caller is allowed
766 * to modify all the data of returned buffer. This means that this
767 * function is not recommended for use in circumstances when only
768 * header is going to be modified. Use pskb_copy() instead.
771 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
773 int headerlen = skb_headroom(skb);
774 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
775 struct sk_buff *n = alloc_skb(size, gfp_mask);
777 if (!n)
778 return NULL;
780 /* Set the data pointer */
781 skb_reserve(n, headerlen);
782 /* Set the tail pointer and length */
783 skb_put(n, skb->len);
785 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
786 BUG();
788 copy_skb_header(n, skb);
789 return n;
791 EXPORT_SYMBOL(skb_copy);
794 * pskb_copy - create copy of an sk_buff with private head.
795 * @skb: buffer to copy
796 * @gfp_mask: allocation priority
798 * Make a copy of both an &sk_buff and part of its data, located
799 * in header. Fragmented data remain shared. This is used when
800 * the caller wishes to modify only header of &sk_buff and needs
801 * private copy of the header to alter. Returns %NULL on failure
802 * or the pointer to the buffer on success.
803 * The returned buffer has a reference count of 1.
806 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
808 unsigned int size = skb_end_pointer(skb) - skb->head;
809 struct sk_buff *n = alloc_skb(size, gfp_mask);
811 if (!n)
812 goto out;
814 /* Set the data pointer */
815 skb_reserve(n, skb_headroom(skb));
816 /* Set the tail pointer and length */
817 skb_put(n, skb_headlen(skb));
818 /* Copy the bytes */
819 skb_copy_from_linear_data(skb, n->data, n->len);
821 n->truesize += skb->data_len;
822 n->data_len = skb->data_len;
823 n->len = skb->len;
825 if (skb_shinfo(skb)->nr_frags) {
826 int i;
828 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
829 if (skb_copy_ubufs(skb, gfp_mask)) {
830 kfree_skb(n);
831 n = NULL;
832 goto out;
835 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
836 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
837 skb_frag_ref(skb, i);
839 skb_shinfo(n)->nr_frags = i;
842 if (skb_has_frag_list(skb)) {
843 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
844 skb_clone_fraglist(n);
847 copy_skb_header(n, skb);
848 out:
849 return n;
851 EXPORT_SYMBOL(pskb_copy);
854 * pskb_expand_head - reallocate header of &sk_buff
855 * @skb: buffer to reallocate
856 * @nhead: room to add at head
857 * @ntail: room to add at tail
858 * @gfp_mask: allocation priority
860 * Expands (or creates identical copy, if &nhead and &ntail are zero)
861 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
862 * reference count of 1. Returns zero in the case of success or error,
863 * if expansion failed. In the last case, &sk_buff is not changed.
865 * All the pointers pointing into skb header may change and must be
866 * reloaded after call to this function.
869 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
870 gfp_t gfp_mask)
872 int i;
873 u8 *data;
874 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
875 long off;
876 bool fastpath;
878 BUG_ON(nhead < 0);
880 if (skb_shared(skb))
881 BUG();
883 size = SKB_DATA_ALIGN(size);
885 /* Check if we can avoid taking references on fragments if we own
886 * the last reference on skb->head. (see skb_release_data())
888 if (!skb->cloned)
889 fastpath = true;
890 else {
891 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
892 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
895 if (fastpath &&
896 size + sizeof(struct skb_shared_info) <= ksize(skb->head)) {
897 memmove(skb->head + size, skb_shinfo(skb),
898 offsetof(struct skb_shared_info,
899 frags[skb_shinfo(skb)->nr_frags]));
900 memmove(skb->head + nhead, skb->head,
901 skb_tail_pointer(skb) - skb->head);
902 off = nhead;
903 goto adjust_others;
906 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
907 if (!data)
908 goto nodata;
910 /* Copy only real data... and, alas, header. This should be
911 * optimized for the cases when header is void.
913 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
915 memcpy((struct skb_shared_info *)(data + size),
916 skb_shinfo(skb),
917 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
919 if (fastpath) {
920 kfree(skb->head);
921 } else {
922 /* copy this zero copy skb frags */
923 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
924 if (skb_copy_ubufs(skb, gfp_mask))
925 goto nofrags;
927 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
928 skb_frag_ref(skb, i);
930 if (skb_has_frag_list(skb))
931 skb_clone_fraglist(skb);
933 skb_release_data(skb);
935 off = (data + nhead) - skb->head;
937 skb->head = data;
938 adjust_others:
939 skb->data += off;
940 #ifdef NET_SKBUFF_DATA_USES_OFFSET
941 skb->end = size;
942 off = nhead;
943 #else
944 skb->end = skb->head + size;
945 #endif
946 /* {transport,network,mac}_header and tail are relative to skb->head */
947 skb->tail += off;
948 skb->transport_header += off;
949 skb->network_header += off;
950 if (skb_mac_header_was_set(skb))
951 skb->mac_header += off;
952 /* Only adjust this if it actually is csum_start rather than csum */
953 if (skb->ip_summed == CHECKSUM_PARTIAL)
954 skb->csum_start += nhead;
955 skb->cloned = 0;
956 skb->hdr_len = 0;
957 skb->nohdr = 0;
958 atomic_set(&skb_shinfo(skb)->dataref, 1);
959 return 0;
961 nofrags:
962 kfree(data);
963 nodata:
964 return -ENOMEM;
966 EXPORT_SYMBOL(pskb_expand_head);
968 /* Make private copy of skb with writable head and some headroom */
970 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
972 struct sk_buff *skb2;
973 int delta = headroom - skb_headroom(skb);
975 if (delta <= 0)
976 skb2 = pskb_copy(skb, GFP_ATOMIC);
977 else {
978 skb2 = skb_clone(skb, GFP_ATOMIC);
979 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
980 GFP_ATOMIC)) {
981 kfree_skb(skb2);
982 skb2 = NULL;
985 return skb2;
987 EXPORT_SYMBOL(skb_realloc_headroom);
990 * skb_copy_expand - copy and expand sk_buff
991 * @skb: buffer to copy
992 * @newheadroom: new free bytes at head
993 * @newtailroom: new free bytes at tail
994 * @gfp_mask: allocation priority
996 * Make a copy of both an &sk_buff and its data and while doing so
997 * allocate additional space.
999 * This is used when the caller wishes to modify the data and needs a
1000 * private copy of the data to alter as well as more space for new fields.
1001 * Returns %NULL on failure or the pointer to the buffer
1002 * on success. The returned buffer has a reference count of 1.
1004 * You must pass %GFP_ATOMIC as the allocation priority if this function
1005 * is called from an interrupt.
1007 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1008 int newheadroom, int newtailroom,
1009 gfp_t gfp_mask)
1012 * Allocate the copy buffer
1014 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1015 gfp_mask);
1016 int oldheadroom = skb_headroom(skb);
1017 int head_copy_len, head_copy_off;
1018 int off;
1020 if (!n)
1021 return NULL;
1023 skb_reserve(n, newheadroom);
1025 /* Set the tail pointer and length */
1026 skb_put(n, skb->len);
1028 head_copy_len = oldheadroom;
1029 head_copy_off = 0;
1030 if (newheadroom <= head_copy_len)
1031 head_copy_len = newheadroom;
1032 else
1033 head_copy_off = newheadroom - head_copy_len;
1035 /* Copy the linear header and data. */
1036 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1037 skb->len + head_copy_len))
1038 BUG();
1040 copy_skb_header(n, skb);
1042 off = newheadroom - oldheadroom;
1043 if (n->ip_summed == CHECKSUM_PARTIAL)
1044 n->csum_start += off;
1045 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1046 n->transport_header += off;
1047 n->network_header += off;
1048 if (skb_mac_header_was_set(skb))
1049 n->mac_header += off;
1050 #endif
1052 return n;
1054 EXPORT_SYMBOL(skb_copy_expand);
1057 * skb_pad - zero pad the tail of an skb
1058 * @skb: buffer to pad
1059 * @pad: space to pad
1061 * Ensure that a buffer is followed by a padding area that is zero
1062 * filled. Used by network drivers which may DMA or transfer data
1063 * beyond the buffer end onto the wire.
1065 * May return error in out of memory cases. The skb is freed on error.
1068 int skb_pad(struct sk_buff *skb, int pad)
1070 int err;
1071 int ntail;
1073 /* If the skbuff is non linear tailroom is always zero.. */
1074 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1075 memset(skb->data+skb->len, 0, pad);
1076 return 0;
1079 ntail = skb->data_len + pad - (skb->end - skb->tail);
1080 if (likely(skb_cloned(skb) || ntail > 0)) {
1081 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1082 if (unlikely(err))
1083 goto free_skb;
1086 /* FIXME: The use of this function with non-linear skb's really needs
1087 * to be audited.
1089 err = skb_linearize(skb);
1090 if (unlikely(err))
1091 goto free_skb;
1093 memset(skb->data + skb->len, 0, pad);
1094 return 0;
1096 free_skb:
1097 kfree_skb(skb);
1098 return err;
1100 EXPORT_SYMBOL(skb_pad);
1103 * skb_put - add data to a buffer
1104 * @skb: buffer to use
1105 * @len: amount of data to add
1107 * This function extends the used data area of the buffer. If this would
1108 * exceed the total buffer size the kernel will panic. A pointer to the
1109 * first byte of the extra data is returned.
1111 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1113 unsigned char *tmp = skb_tail_pointer(skb);
1114 SKB_LINEAR_ASSERT(skb);
1115 skb->tail += len;
1116 skb->len += len;
1117 if (unlikely(skb->tail > skb->end))
1118 skb_over_panic(skb, len, __builtin_return_address(0));
1119 return tmp;
1121 EXPORT_SYMBOL(skb_put);
1124 * skb_push - add data to the start of a buffer
1125 * @skb: buffer to use
1126 * @len: amount of data to add
1128 * This function extends the used data area of the buffer at the buffer
1129 * start. If this would exceed the total buffer headroom the kernel will
1130 * panic. A pointer to the first byte of the extra data is returned.
1132 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1134 skb->data -= len;
1135 skb->len += len;
1136 if (unlikely(skb->data<skb->head))
1137 skb_under_panic(skb, len, __builtin_return_address(0));
1138 return skb->data;
1140 EXPORT_SYMBOL(skb_push);
1143 * skb_pull - remove data from the start of a buffer
1144 * @skb: buffer to use
1145 * @len: amount of data to remove
1147 * This function removes data from the start of a buffer, returning
1148 * the memory to the headroom. A pointer to the next data in the buffer
1149 * is returned. Once the data has been pulled future pushes will overwrite
1150 * the old data.
1152 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1154 return skb_pull_inline(skb, len);
1156 EXPORT_SYMBOL(skb_pull);
1159 * skb_trim - remove end from a buffer
1160 * @skb: buffer to alter
1161 * @len: new length
1163 * Cut the length of a buffer down by removing data from the tail. If
1164 * the buffer is already under the length specified it is not modified.
1165 * The skb must be linear.
1167 void skb_trim(struct sk_buff *skb, unsigned int len)
1169 if (skb->len > len)
1170 __skb_trim(skb, len);
1172 EXPORT_SYMBOL(skb_trim);
1174 /* Trims skb to length len. It can change skb pointers.
1177 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1179 struct sk_buff **fragp;
1180 struct sk_buff *frag;
1181 int offset = skb_headlen(skb);
1182 int nfrags = skb_shinfo(skb)->nr_frags;
1183 int i;
1184 int err;
1186 if (skb_cloned(skb) &&
1187 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1188 return err;
1190 i = 0;
1191 if (offset >= len)
1192 goto drop_pages;
1194 for (; i < nfrags; i++) {
1195 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1197 if (end < len) {
1198 offset = end;
1199 continue;
1202 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1204 drop_pages:
1205 skb_shinfo(skb)->nr_frags = i;
1207 for (; i < nfrags; i++)
1208 skb_frag_unref(skb, i);
1210 if (skb_has_frag_list(skb))
1211 skb_drop_fraglist(skb);
1212 goto done;
1215 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1216 fragp = &frag->next) {
1217 int end = offset + frag->len;
1219 if (skb_shared(frag)) {
1220 struct sk_buff *nfrag;
1222 nfrag = skb_clone(frag, GFP_ATOMIC);
1223 if (unlikely(!nfrag))
1224 return -ENOMEM;
1226 nfrag->next = frag->next;
1227 kfree_skb(frag);
1228 frag = nfrag;
1229 *fragp = frag;
1232 if (end < len) {
1233 offset = end;
1234 continue;
1237 if (end > len &&
1238 unlikely((err = pskb_trim(frag, len - offset))))
1239 return err;
1241 if (frag->next)
1242 skb_drop_list(&frag->next);
1243 break;
1246 done:
1247 if (len > skb_headlen(skb)) {
1248 skb->data_len -= skb->len - len;
1249 skb->len = len;
1250 } else {
1251 skb->len = len;
1252 skb->data_len = 0;
1253 skb_set_tail_pointer(skb, len);
1256 return 0;
1258 EXPORT_SYMBOL(___pskb_trim);
1261 * __pskb_pull_tail - advance tail of skb header
1262 * @skb: buffer to reallocate
1263 * @delta: number of bytes to advance tail
1265 * The function makes a sense only on a fragmented &sk_buff,
1266 * it expands header moving its tail forward and copying necessary
1267 * data from fragmented part.
1269 * &sk_buff MUST have reference count of 1.
1271 * Returns %NULL (and &sk_buff does not change) if pull failed
1272 * or value of new tail of skb in the case of success.
1274 * All the pointers pointing into skb header may change and must be
1275 * reloaded after call to this function.
1278 /* Moves tail of skb head forward, copying data from fragmented part,
1279 * when it is necessary.
1280 * 1. It may fail due to malloc failure.
1281 * 2. It may change skb pointers.
1283 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1285 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1287 /* If skb has not enough free space at tail, get new one
1288 * plus 128 bytes for future expansions. If we have enough
1289 * room at tail, reallocate without expansion only if skb is cloned.
1291 int i, k, eat = (skb->tail + delta) - skb->end;
1293 if (eat > 0 || skb_cloned(skb)) {
1294 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1295 GFP_ATOMIC))
1296 return NULL;
1299 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1300 BUG();
1302 /* Optimization: no fragments, no reasons to preestimate
1303 * size of pulled pages. Superb.
1305 if (!skb_has_frag_list(skb))
1306 goto pull_pages;
1308 /* Estimate size of pulled pages. */
1309 eat = delta;
1310 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1311 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1313 if (size >= eat)
1314 goto pull_pages;
1315 eat -= size;
1318 /* If we need update frag list, we are in troubles.
1319 * Certainly, it possible to add an offset to skb data,
1320 * but taking into account that pulling is expected to
1321 * be very rare operation, it is worth to fight against
1322 * further bloating skb head and crucify ourselves here instead.
1323 * Pure masohism, indeed. 8)8)
1325 if (eat) {
1326 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1327 struct sk_buff *clone = NULL;
1328 struct sk_buff *insp = NULL;
1330 do {
1331 BUG_ON(!list);
1333 if (list->len <= eat) {
1334 /* Eaten as whole. */
1335 eat -= list->len;
1336 list = list->next;
1337 insp = list;
1338 } else {
1339 /* Eaten partially. */
1341 if (skb_shared(list)) {
1342 /* Sucks! We need to fork list. :-( */
1343 clone = skb_clone(list, GFP_ATOMIC);
1344 if (!clone)
1345 return NULL;
1346 insp = list->next;
1347 list = clone;
1348 } else {
1349 /* This may be pulled without
1350 * problems. */
1351 insp = list;
1353 if (!pskb_pull(list, eat)) {
1354 kfree_skb(clone);
1355 return NULL;
1357 break;
1359 } while (eat);
1361 /* Free pulled out fragments. */
1362 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1363 skb_shinfo(skb)->frag_list = list->next;
1364 kfree_skb(list);
1366 /* And insert new clone at head. */
1367 if (clone) {
1368 clone->next = list;
1369 skb_shinfo(skb)->frag_list = clone;
1372 /* Success! Now we may commit changes to skb data. */
1374 pull_pages:
1375 eat = delta;
1376 k = 0;
1377 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1378 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1380 if (size <= eat) {
1381 skb_frag_unref(skb, i);
1382 eat -= size;
1383 } else {
1384 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1385 if (eat) {
1386 skb_shinfo(skb)->frags[k].page_offset += eat;
1387 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1388 eat = 0;
1390 k++;
1393 skb_shinfo(skb)->nr_frags = k;
1395 skb->tail += delta;
1396 skb->data_len -= delta;
1398 return skb_tail_pointer(skb);
1400 EXPORT_SYMBOL(__pskb_pull_tail);
1403 * skb_copy_bits - copy bits from skb to kernel buffer
1404 * @skb: source skb
1405 * @offset: offset in source
1406 * @to: destination buffer
1407 * @len: number of bytes to copy
1409 * Copy the specified number of bytes from the source skb to the
1410 * destination buffer.
1412 * CAUTION ! :
1413 * If its prototype is ever changed,
1414 * check arch/{*}/net/{*}.S files,
1415 * since it is called from BPF assembly code.
1417 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1419 int start = skb_headlen(skb);
1420 struct sk_buff *frag_iter;
1421 int i, copy;
1423 if (offset > (int)skb->len - len)
1424 goto fault;
1426 /* Copy header. */
1427 if ((copy = start - offset) > 0) {
1428 if (copy > len)
1429 copy = len;
1430 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1431 if ((len -= copy) == 0)
1432 return 0;
1433 offset += copy;
1434 to += copy;
1437 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1438 int end;
1440 WARN_ON(start > offset + len);
1442 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1443 if ((copy = end - offset) > 0) {
1444 u8 *vaddr;
1446 if (copy > len)
1447 copy = len;
1449 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1450 memcpy(to,
1451 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1452 offset - start, copy);
1453 kunmap_skb_frag(vaddr);
1455 if ((len -= copy) == 0)
1456 return 0;
1457 offset += copy;
1458 to += copy;
1460 start = end;
1463 skb_walk_frags(skb, frag_iter) {
1464 int end;
1466 WARN_ON(start > offset + len);
1468 end = start + frag_iter->len;
1469 if ((copy = end - offset) > 0) {
1470 if (copy > len)
1471 copy = len;
1472 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1473 goto fault;
1474 if ((len -= copy) == 0)
1475 return 0;
1476 offset += copy;
1477 to += copy;
1479 start = end;
1482 if (!len)
1483 return 0;
1485 fault:
1486 return -EFAULT;
1488 EXPORT_SYMBOL(skb_copy_bits);
1491 * Callback from splice_to_pipe(), if we need to release some pages
1492 * at the end of the spd in case we error'ed out in filling the pipe.
1494 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1496 put_page(spd->pages[i]);
1499 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1500 unsigned int *offset,
1501 struct sk_buff *skb, struct sock *sk)
1503 struct page *p = sk->sk_sndmsg_page;
1504 unsigned int off;
1506 if (!p) {
1507 new_page:
1508 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1509 if (!p)
1510 return NULL;
1512 off = sk->sk_sndmsg_off = 0;
1513 /* hold one ref to this page until it's full */
1514 } else {
1515 unsigned int mlen;
1517 off = sk->sk_sndmsg_off;
1518 mlen = PAGE_SIZE - off;
1519 if (mlen < 64 && mlen < *len) {
1520 put_page(p);
1521 goto new_page;
1524 *len = min_t(unsigned int, *len, mlen);
1527 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1528 sk->sk_sndmsg_off += *len;
1529 *offset = off;
1530 get_page(p);
1532 return p;
1536 * Fill page/offset/length into spd, if it can hold more pages.
1538 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1539 struct pipe_inode_info *pipe, struct page *page,
1540 unsigned int *len, unsigned int offset,
1541 struct sk_buff *skb, int linear,
1542 struct sock *sk)
1544 if (unlikely(spd->nr_pages == pipe->buffers))
1545 return 1;
1547 if (linear) {
1548 page = linear_to_page(page, len, &offset, skb, sk);
1549 if (!page)
1550 return 1;
1551 } else
1552 get_page(page);
1554 spd->pages[spd->nr_pages] = page;
1555 spd->partial[spd->nr_pages].len = *len;
1556 spd->partial[spd->nr_pages].offset = offset;
1557 spd->nr_pages++;
1559 return 0;
1562 static inline void __segment_seek(struct page **page, unsigned int *poff,
1563 unsigned int *plen, unsigned int off)
1565 unsigned long n;
1567 *poff += off;
1568 n = *poff / PAGE_SIZE;
1569 if (n)
1570 *page = nth_page(*page, n);
1572 *poff = *poff % PAGE_SIZE;
1573 *plen -= off;
1576 static inline int __splice_segment(struct page *page, unsigned int poff,
1577 unsigned int plen, unsigned int *off,
1578 unsigned int *len, struct sk_buff *skb,
1579 struct splice_pipe_desc *spd, int linear,
1580 struct sock *sk,
1581 struct pipe_inode_info *pipe)
1583 if (!*len)
1584 return 1;
1586 /* skip this segment if already processed */
1587 if (*off >= plen) {
1588 *off -= plen;
1589 return 0;
1592 /* ignore any bits we already processed */
1593 if (*off) {
1594 __segment_seek(&page, &poff, &plen, *off);
1595 *off = 0;
1598 do {
1599 unsigned int flen = min(*len, plen);
1601 /* the linear region may spread across several pages */
1602 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1604 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1605 return 1;
1607 __segment_seek(&page, &poff, &plen, flen);
1608 *len -= flen;
1610 } while (*len && plen);
1612 return 0;
1616 * Map linear and fragment data from the skb to spd. It reports failure if the
1617 * pipe is full or if we already spliced the requested length.
1619 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1620 unsigned int *offset, unsigned int *len,
1621 struct splice_pipe_desc *spd, struct sock *sk)
1623 int seg;
1626 * map the linear part
1628 if (__splice_segment(virt_to_page(skb->data),
1629 (unsigned long) skb->data & (PAGE_SIZE - 1),
1630 skb_headlen(skb),
1631 offset, len, skb, spd, 1, sk, pipe))
1632 return 1;
1635 * then map the fragments
1637 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1638 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1640 if (__splice_segment(skb_frag_page(f),
1641 f->page_offset, skb_frag_size(f),
1642 offset, len, skb, spd, 0, sk, pipe))
1643 return 1;
1646 return 0;
1650 * Map data from the skb to a pipe. Should handle both the linear part,
1651 * the fragments, and the frag list. It does NOT handle frag lists within
1652 * the frag list, if such a thing exists. We'd probably need to recurse to
1653 * handle that cleanly.
1655 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1656 struct pipe_inode_info *pipe, unsigned int tlen,
1657 unsigned int flags)
1659 struct partial_page partial[PIPE_DEF_BUFFERS];
1660 struct page *pages[PIPE_DEF_BUFFERS];
1661 struct splice_pipe_desc spd = {
1662 .pages = pages,
1663 .partial = partial,
1664 .flags = flags,
1665 .ops = &sock_pipe_buf_ops,
1666 .spd_release = sock_spd_release,
1668 struct sk_buff *frag_iter;
1669 struct sock *sk = skb->sk;
1670 int ret = 0;
1672 if (splice_grow_spd(pipe, &spd))
1673 return -ENOMEM;
1676 * __skb_splice_bits() only fails if the output has no room left,
1677 * so no point in going over the frag_list for the error case.
1679 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1680 goto done;
1681 else if (!tlen)
1682 goto done;
1685 * now see if we have a frag_list to map
1687 skb_walk_frags(skb, frag_iter) {
1688 if (!tlen)
1689 break;
1690 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1691 break;
1694 done:
1695 if (spd.nr_pages) {
1697 * Drop the socket lock, otherwise we have reverse
1698 * locking dependencies between sk_lock and i_mutex
1699 * here as compared to sendfile(). We enter here
1700 * with the socket lock held, and splice_to_pipe() will
1701 * grab the pipe inode lock. For sendfile() emulation,
1702 * we call into ->sendpage() with the i_mutex lock held
1703 * and networking will grab the socket lock.
1705 release_sock(sk);
1706 ret = splice_to_pipe(pipe, &spd);
1707 lock_sock(sk);
1710 splice_shrink_spd(pipe, &spd);
1711 return ret;
1715 * skb_store_bits - store bits from kernel buffer to skb
1716 * @skb: destination buffer
1717 * @offset: offset in destination
1718 * @from: source buffer
1719 * @len: number of bytes to copy
1721 * Copy the specified number of bytes from the source buffer to the
1722 * destination skb. This function handles all the messy bits of
1723 * traversing fragment lists and such.
1726 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1728 int start = skb_headlen(skb);
1729 struct sk_buff *frag_iter;
1730 int i, copy;
1732 if (offset > (int)skb->len - len)
1733 goto fault;
1735 if ((copy = start - offset) > 0) {
1736 if (copy > len)
1737 copy = len;
1738 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1739 if ((len -= copy) == 0)
1740 return 0;
1741 offset += copy;
1742 from += copy;
1745 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1746 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1747 int end;
1749 WARN_ON(start > offset + len);
1751 end = start + skb_frag_size(frag);
1752 if ((copy = end - offset) > 0) {
1753 u8 *vaddr;
1755 if (copy > len)
1756 copy = len;
1758 vaddr = kmap_skb_frag(frag);
1759 memcpy(vaddr + frag->page_offset + offset - start,
1760 from, copy);
1761 kunmap_skb_frag(vaddr);
1763 if ((len -= copy) == 0)
1764 return 0;
1765 offset += copy;
1766 from += copy;
1768 start = end;
1771 skb_walk_frags(skb, frag_iter) {
1772 int end;
1774 WARN_ON(start > offset + len);
1776 end = start + frag_iter->len;
1777 if ((copy = end - offset) > 0) {
1778 if (copy > len)
1779 copy = len;
1780 if (skb_store_bits(frag_iter, offset - start,
1781 from, copy))
1782 goto fault;
1783 if ((len -= copy) == 0)
1784 return 0;
1785 offset += copy;
1786 from += copy;
1788 start = end;
1790 if (!len)
1791 return 0;
1793 fault:
1794 return -EFAULT;
1796 EXPORT_SYMBOL(skb_store_bits);
1798 /* Checksum skb data. */
1800 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1801 int len, __wsum csum)
1803 int start = skb_headlen(skb);
1804 int i, copy = start - offset;
1805 struct sk_buff *frag_iter;
1806 int pos = 0;
1808 /* Checksum header. */
1809 if (copy > 0) {
1810 if (copy > len)
1811 copy = len;
1812 csum = csum_partial(skb->data + offset, copy, csum);
1813 if ((len -= copy) == 0)
1814 return csum;
1815 offset += copy;
1816 pos = copy;
1819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1820 int end;
1822 WARN_ON(start > offset + len);
1824 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1825 if ((copy = end - offset) > 0) {
1826 __wsum csum2;
1827 u8 *vaddr;
1828 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1830 if (copy > len)
1831 copy = len;
1832 vaddr = kmap_skb_frag(frag);
1833 csum2 = csum_partial(vaddr + frag->page_offset +
1834 offset - start, copy, 0);
1835 kunmap_skb_frag(vaddr);
1836 csum = csum_block_add(csum, csum2, pos);
1837 if (!(len -= copy))
1838 return csum;
1839 offset += copy;
1840 pos += copy;
1842 start = end;
1845 skb_walk_frags(skb, frag_iter) {
1846 int end;
1848 WARN_ON(start > offset + len);
1850 end = start + frag_iter->len;
1851 if ((copy = end - offset) > 0) {
1852 __wsum csum2;
1853 if (copy > len)
1854 copy = len;
1855 csum2 = skb_checksum(frag_iter, offset - start,
1856 copy, 0);
1857 csum = csum_block_add(csum, csum2, pos);
1858 if ((len -= copy) == 0)
1859 return csum;
1860 offset += copy;
1861 pos += copy;
1863 start = end;
1865 BUG_ON(len);
1867 return csum;
1869 EXPORT_SYMBOL(skb_checksum);
1871 /* Both of above in one bottle. */
1873 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1874 u8 *to, int len, __wsum csum)
1876 int start = skb_headlen(skb);
1877 int i, copy = start - offset;
1878 struct sk_buff *frag_iter;
1879 int pos = 0;
1881 /* Copy header. */
1882 if (copy > 0) {
1883 if (copy > len)
1884 copy = len;
1885 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1886 copy, csum);
1887 if ((len -= copy) == 0)
1888 return csum;
1889 offset += copy;
1890 to += copy;
1891 pos = copy;
1894 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1895 int end;
1897 WARN_ON(start > offset + len);
1899 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1900 if ((copy = end - offset) > 0) {
1901 __wsum csum2;
1902 u8 *vaddr;
1903 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1905 if (copy > len)
1906 copy = len;
1907 vaddr = kmap_skb_frag(frag);
1908 csum2 = csum_partial_copy_nocheck(vaddr +
1909 frag->page_offset +
1910 offset - start, to,
1911 copy, 0);
1912 kunmap_skb_frag(vaddr);
1913 csum = csum_block_add(csum, csum2, pos);
1914 if (!(len -= copy))
1915 return csum;
1916 offset += copy;
1917 to += copy;
1918 pos += copy;
1920 start = end;
1923 skb_walk_frags(skb, frag_iter) {
1924 __wsum csum2;
1925 int end;
1927 WARN_ON(start > offset + len);
1929 end = start + frag_iter->len;
1930 if ((copy = end - offset) > 0) {
1931 if (copy > len)
1932 copy = len;
1933 csum2 = skb_copy_and_csum_bits(frag_iter,
1934 offset - start,
1935 to, copy, 0);
1936 csum = csum_block_add(csum, csum2, pos);
1937 if ((len -= copy) == 0)
1938 return csum;
1939 offset += copy;
1940 to += copy;
1941 pos += copy;
1943 start = end;
1945 BUG_ON(len);
1946 return csum;
1948 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1950 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1952 __wsum csum;
1953 long csstart;
1955 if (skb->ip_summed == CHECKSUM_PARTIAL)
1956 csstart = skb_checksum_start_offset(skb);
1957 else
1958 csstart = skb_headlen(skb);
1960 BUG_ON(csstart > skb_headlen(skb));
1962 skb_copy_from_linear_data(skb, to, csstart);
1964 csum = 0;
1965 if (csstart != skb->len)
1966 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1967 skb->len - csstart, 0);
1969 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1970 long csstuff = csstart + skb->csum_offset;
1972 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1975 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1978 * skb_dequeue - remove from the head of the queue
1979 * @list: list to dequeue from
1981 * Remove the head of the list. The list lock is taken so the function
1982 * may be used safely with other locking list functions. The head item is
1983 * returned or %NULL if the list is empty.
1986 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1988 unsigned long flags;
1989 struct sk_buff *result;
1991 spin_lock_irqsave(&list->lock, flags);
1992 result = __skb_dequeue(list);
1993 spin_unlock_irqrestore(&list->lock, flags);
1994 return result;
1996 EXPORT_SYMBOL(skb_dequeue);
1999 * skb_dequeue_tail - remove from the tail of the queue
2000 * @list: list to dequeue from
2002 * Remove the tail of the list. The list lock is taken so the function
2003 * may be used safely with other locking list functions. The tail item is
2004 * returned or %NULL if the list is empty.
2006 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2008 unsigned long flags;
2009 struct sk_buff *result;
2011 spin_lock_irqsave(&list->lock, flags);
2012 result = __skb_dequeue_tail(list);
2013 spin_unlock_irqrestore(&list->lock, flags);
2014 return result;
2016 EXPORT_SYMBOL(skb_dequeue_tail);
2019 * skb_queue_purge - empty a list
2020 * @list: list to empty
2022 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2023 * the list and one reference dropped. This function takes the list
2024 * lock and is atomic with respect to other list locking functions.
2026 void skb_queue_purge(struct sk_buff_head *list)
2028 struct sk_buff *skb;
2029 while ((skb = skb_dequeue(list)) != NULL)
2030 kfree_skb(skb);
2032 EXPORT_SYMBOL(skb_queue_purge);
2035 * skb_queue_head - queue a buffer at the list head
2036 * @list: list to use
2037 * @newsk: buffer to queue
2039 * Queue a buffer at the start of the list. This function takes the
2040 * list lock and can be used safely with other locking &sk_buff functions
2041 * safely.
2043 * A buffer cannot be placed on two lists at the same time.
2045 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2047 unsigned long flags;
2049 spin_lock_irqsave(&list->lock, flags);
2050 __skb_queue_head(list, newsk);
2051 spin_unlock_irqrestore(&list->lock, flags);
2053 EXPORT_SYMBOL(skb_queue_head);
2056 * skb_queue_tail - queue a buffer at the list tail
2057 * @list: list to use
2058 * @newsk: buffer to queue
2060 * Queue a buffer at the tail of the list. This function takes the
2061 * list lock and can be used safely with other locking &sk_buff functions
2062 * safely.
2064 * A buffer cannot be placed on two lists at the same time.
2066 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2068 unsigned long flags;
2070 spin_lock_irqsave(&list->lock, flags);
2071 __skb_queue_tail(list, newsk);
2072 spin_unlock_irqrestore(&list->lock, flags);
2074 EXPORT_SYMBOL(skb_queue_tail);
2077 * skb_unlink - remove a buffer from a list
2078 * @skb: buffer to remove
2079 * @list: list to use
2081 * Remove a packet from a list. The list locks are taken and this
2082 * function is atomic with respect to other list locked calls
2084 * You must know what list the SKB is on.
2086 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2088 unsigned long flags;
2090 spin_lock_irqsave(&list->lock, flags);
2091 __skb_unlink(skb, list);
2092 spin_unlock_irqrestore(&list->lock, flags);
2094 EXPORT_SYMBOL(skb_unlink);
2097 * skb_append - append a buffer
2098 * @old: buffer to insert after
2099 * @newsk: buffer to insert
2100 * @list: list to use
2102 * Place a packet after a given packet in a list. The list locks are taken
2103 * and this function is atomic with respect to other list locked calls.
2104 * A buffer cannot be placed on two lists at the same time.
2106 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2108 unsigned long flags;
2110 spin_lock_irqsave(&list->lock, flags);
2111 __skb_queue_after(list, old, newsk);
2112 spin_unlock_irqrestore(&list->lock, flags);
2114 EXPORT_SYMBOL(skb_append);
2117 * skb_insert - insert a buffer
2118 * @old: buffer to insert before
2119 * @newsk: buffer to insert
2120 * @list: list to use
2122 * Place a packet before a given packet in a list. The list locks are
2123 * taken and this function is atomic with respect to other list locked
2124 * calls.
2126 * A buffer cannot be placed on two lists at the same time.
2128 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2130 unsigned long flags;
2132 spin_lock_irqsave(&list->lock, flags);
2133 __skb_insert(newsk, old->prev, old, list);
2134 spin_unlock_irqrestore(&list->lock, flags);
2136 EXPORT_SYMBOL(skb_insert);
2138 static inline void skb_split_inside_header(struct sk_buff *skb,
2139 struct sk_buff* skb1,
2140 const u32 len, const int pos)
2142 int i;
2144 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2145 pos - len);
2146 /* And move data appendix as is. */
2147 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2148 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2150 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2151 skb_shinfo(skb)->nr_frags = 0;
2152 skb1->data_len = skb->data_len;
2153 skb1->len += skb1->data_len;
2154 skb->data_len = 0;
2155 skb->len = len;
2156 skb_set_tail_pointer(skb, len);
2159 static inline void skb_split_no_header(struct sk_buff *skb,
2160 struct sk_buff* skb1,
2161 const u32 len, int pos)
2163 int i, k = 0;
2164 const int nfrags = skb_shinfo(skb)->nr_frags;
2166 skb_shinfo(skb)->nr_frags = 0;
2167 skb1->len = skb1->data_len = skb->len - len;
2168 skb->len = len;
2169 skb->data_len = len - pos;
2171 for (i = 0; i < nfrags; i++) {
2172 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2174 if (pos + size > len) {
2175 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2177 if (pos < len) {
2178 /* Split frag.
2179 * We have two variants in this case:
2180 * 1. Move all the frag to the second
2181 * part, if it is possible. F.e.
2182 * this approach is mandatory for TUX,
2183 * where splitting is expensive.
2184 * 2. Split is accurately. We make this.
2186 skb_frag_ref(skb, i);
2187 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2188 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2189 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2190 skb_shinfo(skb)->nr_frags++;
2192 k++;
2193 } else
2194 skb_shinfo(skb)->nr_frags++;
2195 pos += size;
2197 skb_shinfo(skb1)->nr_frags = k;
2201 * skb_split - Split fragmented skb to two parts at length len.
2202 * @skb: the buffer to split
2203 * @skb1: the buffer to receive the second part
2204 * @len: new length for skb
2206 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2208 int pos = skb_headlen(skb);
2210 if (len < pos) /* Split line is inside header. */
2211 skb_split_inside_header(skb, skb1, len, pos);
2212 else /* Second chunk has no header, nothing to copy. */
2213 skb_split_no_header(skb, skb1, len, pos);
2215 EXPORT_SYMBOL(skb_split);
2217 /* Shifting from/to a cloned skb is a no-go.
2219 * Caller cannot keep skb_shinfo related pointers past calling here!
2221 static int skb_prepare_for_shift(struct sk_buff *skb)
2223 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2227 * skb_shift - Shifts paged data partially from skb to another
2228 * @tgt: buffer into which tail data gets added
2229 * @skb: buffer from which the paged data comes from
2230 * @shiftlen: shift up to this many bytes
2232 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2233 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2234 * It's up to caller to free skb if everything was shifted.
2236 * If @tgt runs out of frags, the whole operation is aborted.
2238 * Skb cannot include anything else but paged data while tgt is allowed
2239 * to have non-paged data as well.
2241 * TODO: full sized shift could be optimized but that would need
2242 * specialized skb free'er to handle frags without up-to-date nr_frags.
2244 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2246 int from, to, merge, todo;
2247 struct skb_frag_struct *fragfrom, *fragto;
2249 BUG_ON(shiftlen > skb->len);
2250 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2252 todo = shiftlen;
2253 from = 0;
2254 to = skb_shinfo(tgt)->nr_frags;
2255 fragfrom = &skb_shinfo(skb)->frags[from];
2257 /* Actual merge is delayed until the point when we know we can
2258 * commit all, so that we don't have to undo partial changes
2260 if (!to ||
2261 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2262 fragfrom->page_offset)) {
2263 merge = -1;
2264 } else {
2265 merge = to - 1;
2267 todo -= skb_frag_size(fragfrom);
2268 if (todo < 0) {
2269 if (skb_prepare_for_shift(skb) ||
2270 skb_prepare_for_shift(tgt))
2271 return 0;
2273 /* All previous frag pointers might be stale! */
2274 fragfrom = &skb_shinfo(skb)->frags[from];
2275 fragto = &skb_shinfo(tgt)->frags[merge];
2277 skb_frag_size_add(fragto, shiftlen);
2278 skb_frag_size_sub(fragfrom, shiftlen);
2279 fragfrom->page_offset += shiftlen;
2281 goto onlymerged;
2284 from++;
2287 /* Skip full, not-fitting skb to avoid expensive operations */
2288 if ((shiftlen == skb->len) &&
2289 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2290 return 0;
2292 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2293 return 0;
2295 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2296 if (to == MAX_SKB_FRAGS)
2297 return 0;
2299 fragfrom = &skb_shinfo(skb)->frags[from];
2300 fragto = &skb_shinfo(tgt)->frags[to];
2302 if (todo >= skb_frag_size(fragfrom)) {
2303 *fragto = *fragfrom;
2304 todo -= skb_frag_size(fragfrom);
2305 from++;
2306 to++;
2308 } else {
2309 __skb_frag_ref(fragfrom);
2310 fragto->page = fragfrom->page;
2311 fragto->page_offset = fragfrom->page_offset;
2312 skb_frag_size_set(fragto, todo);
2314 fragfrom->page_offset += todo;
2315 skb_frag_size_sub(fragfrom, todo);
2316 todo = 0;
2318 to++;
2319 break;
2323 /* Ready to "commit" this state change to tgt */
2324 skb_shinfo(tgt)->nr_frags = to;
2326 if (merge >= 0) {
2327 fragfrom = &skb_shinfo(skb)->frags[0];
2328 fragto = &skb_shinfo(tgt)->frags[merge];
2330 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2331 __skb_frag_unref(fragfrom);
2334 /* Reposition in the original skb */
2335 to = 0;
2336 while (from < skb_shinfo(skb)->nr_frags)
2337 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2338 skb_shinfo(skb)->nr_frags = to;
2340 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2342 onlymerged:
2343 /* Most likely the tgt won't ever need its checksum anymore, skb on
2344 * the other hand might need it if it needs to be resent
2346 tgt->ip_summed = CHECKSUM_PARTIAL;
2347 skb->ip_summed = CHECKSUM_PARTIAL;
2349 /* Yak, is it really working this way? Some helper please? */
2350 skb->len -= shiftlen;
2351 skb->data_len -= shiftlen;
2352 skb->truesize -= shiftlen;
2353 tgt->len += shiftlen;
2354 tgt->data_len += shiftlen;
2355 tgt->truesize += shiftlen;
2357 return shiftlen;
2361 * skb_prepare_seq_read - Prepare a sequential read of skb data
2362 * @skb: the buffer to read
2363 * @from: lower offset of data to be read
2364 * @to: upper offset of data to be read
2365 * @st: state variable
2367 * Initializes the specified state variable. Must be called before
2368 * invoking skb_seq_read() for the first time.
2370 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2371 unsigned int to, struct skb_seq_state *st)
2373 st->lower_offset = from;
2374 st->upper_offset = to;
2375 st->root_skb = st->cur_skb = skb;
2376 st->frag_idx = st->stepped_offset = 0;
2377 st->frag_data = NULL;
2379 EXPORT_SYMBOL(skb_prepare_seq_read);
2382 * skb_seq_read - Sequentially read skb data
2383 * @consumed: number of bytes consumed by the caller so far
2384 * @data: destination pointer for data to be returned
2385 * @st: state variable
2387 * Reads a block of skb data at &consumed relative to the
2388 * lower offset specified to skb_prepare_seq_read(). Assigns
2389 * the head of the data block to &data and returns the length
2390 * of the block or 0 if the end of the skb data or the upper
2391 * offset has been reached.
2393 * The caller is not required to consume all of the data
2394 * returned, i.e. &consumed is typically set to the number
2395 * of bytes already consumed and the next call to
2396 * skb_seq_read() will return the remaining part of the block.
2398 * Note 1: The size of each block of data returned can be arbitrary,
2399 * this limitation is the cost for zerocopy seqeuental
2400 * reads of potentially non linear data.
2402 * Note 2: Fragment lists within fragments are not implemented
2403 * at the moment, state->root_skb could be replaced with
2404 * a stack for this purpose.
2406 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2407 struct skb_seq_state *st)
2409 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2410 skb_frag_t *frag;
2412 if (unlikely(abs_offset >= st->upper_offset))
2413 return 0;
2415 next_skb:
2416 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2418 if (abs_offset < block_limit && !st->frag_data) {
2419 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2420 return block_limit - abs_offset;
2423 if (st->frag_idx == 0 && !st->frag_data)
2424 st->stepped_offset += skb_headlen(st->cur_skb);
2426 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2427 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2428 block_limit = skb_frag_size(frag) + st->stepped_offset;
2430 if (abs_offset < block_limit) {
2431 if (!st->frag_data)
2432 st->frag_data = kmap_skb_frag(frag);
2434 *data = (u8 *) st->frag_data + frag->page_offset +
2435 (abs_offset - st->stepped_offset);
2437 return block_limit - abs_offset;
2440 if (st->frag_data) {
2441 kunmap_skb_frag(st->frag_data);
2442 st->frag_data = NULL;
2445 st->frag_idx++;
2446 st->stepped_offset += skb_frag_size(frag);
2449 if (st->frag_data) {
2450 kunmap_skb_frag(st->frag_data);
2451 st->frag_data = NULL;
2454 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2455 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2456 st->frag_idx = 0;
2457 goto next_skb;
2458 } else if (st->cur_skb->next) {
2459 st->cur_skb = st->cur_skb->next;
2460 st->frag_idx = 0;
2461 goto next_skb;
2464 return 0;
2466 EXPORT_SYMBOL(skb_seq_read);
2469 * skb_abort_seq_read - Abort a sequential read of skb data
2470 * @st: state variable
2472 * Must be called if skb_seq_read() was not called until it
2473 * returned 0.
2475 void skb_abort_seq_read(struct skb_seq_state *st)
2477 if (st->frag_data)
2478 kunmap_skb_frag(st->frag_data);
2480 EXPORT_SYMBOL(skb_abort_seq_read);
2482 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2484 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2485 struct ts_config *conf,
2486 struct ts_state *state)
2488 return skb_seq_read(offset, text, TS_SKB_CB(state));
2491 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2493 skb_abort_seq_read(TS_SKB_CB(state));
2497 * skb_find_text - Find a text pattern in skb data
2498 * @skb: the buffer to look in
2499 * @from: search offset
2500 * @to: search limit
2501 * @config: textsearch configuration
2502 * @state: uninitialized textsearch state variable
2504 * Finds a pattern in the skb data according to the specified
2505 * textsearch configuration. Use textsearch_next() to retrieve
2506 * subsequent occurrences of the pattern. Returns the offset
2507 * to the first occurrence or UINT_MAX if no match was found.
2509 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2510 unsigned int to, struct ts_config *config,
2511 struct ts_state *state)
2513 unsigned int ret;
2515 config->get_next_block = skb_ts_get_next_block;
2516 config->finish = skb_ts_finish;
2518 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2520 ret = textsearch_find(config, state);
2521 return (ret <= to - from ? ret : UINT_MAX);
2523 EXPORT_SYMBOL(skb_find_text);
2526 * skb_append_datato_frags: - append the user data to a skb
2527 * @sk: sock structure
2528 * @skb: skb structure to be appened with user data.
2529 * @getfrag: call back function to be used for getting the user data
2530 * @from: pointer to user message iov
2531 * @length: length of the iov message
2533 * Description: This procedure append the user data in the fragment part
2534 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2536 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2537 int (*getfrag)(void *from, char *to, int offset,
2538 int len, int odd, struct sk_buff *skb),
2539 void *from, int length)
2541 int frg_cnt = 0;
2542 skb_frag_t *frag = NULL;
2543 struct page *page = NULL;
2544 int copy, left;
2545 int offset = 0;
2546 int ret;
2548 do {
2549 /* Return error if we don't have space for new frag */
2550 frg_cnt = skb_shinfo(skb)->nr_frags;
2551 if (frg_cnt >= MAX_SKB_FRAGS)
2552 return -EFAULT;
2554 /* allocate a new page for next frag */
2555 page = alloc_pages(sk->sk_allocation, 0);
2557 /* If alloc_page fails just return failure and caller will
2558 * free previous allocated pages by doing kfree_skb()
2560 if (page == NULL)
2561 return -ENOMEM;
2563 /* initialize the next frag */
2564 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2565 skb->truesize += PAGE_SIZE;
2566 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2568 /* get the new initialized frag */
2569 frg_cnt = skb_shinfo(skb)->nr_frags;
2570 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2572 /* copy the user data to page */
2573 left = PAGE_SIZE - frag->page_offset;
2574 copy = (length > left)? left : length;
2576 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2577 offset, copy, 0, skb);
2578 if (ret < 0)
2579 return -EFAULT;
2581 /* copy was successful so update the size parameters */
2582 skb_frag_size_add(frag, copy);
2583 skb->len += copy;
2584 skb->data_len += copy;
2585 offset += copy;
2586 length -= copy;
2588 } while (length > 0);
2590 return 0;
2592 EXPORT_SYMBOL(skb_append_datato_frags);
2595 * skb_pull_rcsum - pull skb and update receive checksum
2596 * @skb: buffer to update
2597 * @len: length of data pulled
2599 * This function performs an skb_pull on the packet and updates
2600 * the CHECKSUM_COMPLETE checksum. It should be used on
2601 * receive path processing instead of skb_pull unless you know
2602 * that the checksum difference is zero (e.g., a valid IP header)
2603 * or you are setting ip_summed to CHECKSUM_NONE.
2605 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2607 BUG_ON(len > skb->len);
2608 skb->len -= len;
2609 BUG_ON(skb->len < skb->data_len);
2610 skb_postpull_rcsum(skb, skb->data, len);
2611 return skb->data += len;
2613 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2616 * skb_segment - Perform protocol segmentation on skb.
2617 * @skb: buffer to segment
2618 * @features: features for the output path (see dev->features)
2620 * This function performs segmentation on the given skb. It returns
2621 * a pointer to the first in a list of new skbs for the segments.
2622 * In case of error it returns ERR_PTR(err).
2624 struct sk_buff *skb_segment(struct sk_buff *skb, u32 features)
2626 struct sk_buff *segs = NULL;
2627 struct sk_buff *tail = NULL;
2628 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2629 unsigned int mss = skb_shinfo(skb)->gso_size;
2630 unsigned int doffset = skb->data - skb_mac_header(skb);
2631 unsigned int offset = doffset;
2632 unsigned int headroom;
2633 unsigned int len;
2634 int sg = !!(features & NETIF_F_SG);
2635 int nfrags = skb_shinfo(skb)->nr_frags;
2636 int err = -ENOMEM;
2637 int i = 0;
2638 int pos;
2640 __skb_push(skb, doffset);
2641 headroom = skb_headroom(skb);
2642 pos = skb_headlen(skb);
2644 do {
2645 struct sk_buff *nskb;
2646 skb_frag_t *frag;
2647 int hsize;
2648 int size;
2650 len = skb->len - offset;
2651 if (len > mss)
2652 len = mss;
2654 hsize = skb_headlen(skb) - offset;
2655 if (hsize < 0)
2656 hsize = 0;
2657 if (hsize > len || !sg)
2658 hsize = len;
2660 if (!hsize && i >= nfrags) {
2661 BUG_ON(fskb->len != len);
2663 pos += len;
2664 nskb = skb_clone(fskb, GFP_ATOMIC);
2665 fskb = fskb->next;
2667 if (unlikely(!nskb))
2668 goto err;
2670 hsize = skb_end_pointer(nskb) - nskb->head;
2671 if (skb_cow_head(nskb, doffset + headroom)) {
2672 kfree_skb(nskb);
2673 goto err;
2676 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2677 hsize;
2678 skb_release_head_state(nskb);
2679 __skb_push(nskb, doffset);
2680 } else {
2681 nskb = alloc_skb(hsize + doffset + headroom,
2682 GFP_ATOMIC);
2684 if (unlikely(!nskb))
2685 goto err;
2687 skb_reserve(nskb, headroom);
2688 __skb_put(nskb, doffset);
2691 if (segs)
2692 tail->next = nskb;
2693 else
2694 segs = nskb;
2695 tail = nskb;
2697 __copy_skb_header(nskb, skb);
2698 nskb->mac_len = skb->mac_len;
2700 /* nskb and skb might have different headroom */
2701 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2702 nskb->csum_start += skb_headroom(nskb) - headroom;
2704 skb_reset_mac_header(nskb);
2705 skb_set_network_header(nskb, skb->mac_len);
2706 nskb->transport_header = (nskb->network_header +
2707 skb_network_header_len(skb));
2708 skb_copy_from_linear_data(skb, nskb->data, doffset);
2710 if (fskb != skb_shinfo(skb)->frag_list)
2711 continue;
2713 if (!sg) {
2714 nskb->ip_summed = CHECKSUM_NONE;
2715 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2716 skb_put(nskb, len),
2717 len, 0);
2718 continue;
2721 frag = skb_shinfo(nskb)->frags;
2723 skb_copy_from_linear_data_offset(skb, offset,
2724 skb_put(nskb, hsize), hsize);
2726 while (pos < offset + len && i < nfrags) {
2727 *frag = skb_shinfo(skb)->frags[i];
2728 __skb_frag_ref(frag);
2729 size = skb_frag_size(frag);
2731 if (pos < offset) {
2732 frag->page_offset += offset - pos;
2733 skb_frag_size_sub(frag, offset - pos);
2736 skb_shinfo(nskb)->nr_frags++;
2738 if (pos + size <= offset + len) {
2739 i++;
2740 pos += size;
2741 } else {
2742 skb_frag_size_sub(frag, pos + size - (offset + len));
2743 goto skip_fraglist;
2746 frag++;
2749 if (pos < offset + len) {
2750 struct sk_buff *fskb2 = fskb;
2752 BUG_ON(pos + fskb->len != offset + len);
2754 pos += fskb->len;
2755 fskb = fskb->next;
2757 if (fskb2->next) {
2758 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2759 if (!fskb2)
2760 goto err;
2761 } else
2762 skb_get(fskb2);
2764 SKB_FRAG_ASSERT(nskb);
2765 skb_shinfo(nskb)->frag_list = fskb2;
2768 skip_fraglist:
2769 nskb->data_len = len - hsize;
2770 nskb->len += nskb->data_len;
2771 nskb->truesize += nskb->data_len;
2772 } while ((offset += len) < skb->len);
2774 return segs;
2776 err:
2777 while ((skb = segs)) {
2778 segs = skb->next;
2779 kfree_skb(skb);
2781 return ERR_PTR(err);
2783 EXPORT_SYMBOL_GPL(skb_segment);
2785 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2787 struct sk_buff *p = *head;
2788 struct sk_buff *nskb;
2789 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2790 struct skb_shared_info *pinfo = skb_shinfo(p);
2791 unsigned int headroom;
2792 unsigned int len = skb_gro_len(skb);
2793 unsigned int offset = skb_gro_offset(skb);
2794 unsigned int headlen = skb_headlen(skb);
2796 if (p->len + len >= 65536)
2797 return -E2BIG;
2799 if (pinfo->frag_list)
2800 goto merge;
2801 else if (headlen <= offset) {
2802 skb_frag_t *frag;
2803 skb_frag_t *frag2;
2804 int i = skbinfo->nr_frags;
2805 int nr_frags = pinfo->nr_frags + i;
2807 offset -= headlen;
2809 if (nr_frags > MAX_SKB_FRAGS)
2810 return -E2BIG;
2812 pinfo->nr_frags = nr_frags;
2813 skbinfo->nr_frags = 0;
2815 frag = pinfo->frags + nr_frags;
2816 frag2 = skbinfo->frags + i;
2817 do {
2818 *--frag = *--frag2;
2819 } while (--i);
2821 frag->page_offset += offset;
2822 skb_frag_size_sub(frag, offset);
2824 skb->truesize -= skb->data_len;
2825 skb->len -= skb->data_len;
2826 skb->data_len = 0;
2828 NAPI_GRO_CB(skb)->free = 1;
2829 goto done;
2830 } else if (skb_gro_len(p) != pinfo->gso_size)
2831 return -E2BIG;
2833 headroom = skb_headroom(p);
2834 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2835 if (unlikely(!nskb))
2836 return -ENOMEM;
2838 __copy_skb_header(nskb, p);
2839 nskb->mac_len = p->mac_len;
2841 skb_reserve(nskb, headroom);
2842 __skb_put(nskb, skb_gro_offset(p));
2844 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2845 skb_set_network_header(nskb, skb_network_offset(p));
2846 skb_set_transport_header(nskb, skb_transport_offset(p));
2848 __skb_pull(p, skb_gro_offset(p));
2849 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2850 p->data - skb_mac_header(p));
2852 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2853 skb_shinfo(nskb)->frag_list = p;
2854 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2855 pinfo->gso_size = 0;
2856 skb_header_release(p);
2857 nskb->prev = p;
2859 nskb->data_len += p->len;
2860 nskb->truesize += p->len;
2861 nskb->len += p->len;
2863 *head = nskb;
2864 nskb->next = p->next;
2865 p->next = NULL;
2867 p = nskb;
2869 merge:
2870 if (offset > headlen) {
2871 unsigned int eat = offset - headlen;
2873 skbinfo->frags[0].page_offset += eat;
2874 skb_frag_size_sub(&skbinfo->frags[0], eat);
2875 skb->data_len -= eat;
2876 skb->len -= eat;
2877 offset = headlen;
2880 __skb_pull(skb, offset);
2882 p->prev->next = skb;
2883 p->prev = skb;
2884 skb_header_release(skb);
2886 done:
2887 NAPI_GRO_CB(p)->count++;
2888 p->data_len += len;
2889 p->truesize += len;
2890 p->len += len;
2892 NAPI_GRO_CB(skb)->same_flow = 1;
2893 return 0;
2895 EXPORT_SYMBOL_GPL(skb_gro_receive);
2897 void __init skb_init(void)
2899 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2900 sizeof(struct sk_buff),
2902 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2903 NULL);
2904 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2905 (2*sizeof(struct sk_buff)) +
2906 sizeof(atomic_t),
2908 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2909 NULL);
2913 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2914 * @skb: Socket buffer containing the buffers to be mapped
2915 * @sg: The scatter-gather list to map into
2916 * @offset: The offset into the buffer's contents to start mapping
2917 * @len: Length of buffer space to be mapped
2919 * Fill the specified scatter-gather list with mappings/pointers into a
2920 * region of the buffer space attached to a socket buffer.
2922 static int
2923 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2925 int start = skb_headlen(skb);
2926 int i, copy = start - offset;
2927 struct sk_buff *frag_iter;
2928 int elt = 0;
2930 if (copy > 0) {
2931 if (copy > len)
2932 copy = len;
2933 sg_set_buf(sg, skb->data + offset, copy);
2934 elt++;
2935 if ((len -= copy) == 0)
2936 return elt;
2937 offset += copy;
2940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2941 int end;
2943 WARN_ON(start > offset + len);
2945 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2946 if ((copy = end - offset) > 0) {
2947 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2949 if (copy > len)
2950 copy = len;
2951 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
2952 frag->page_offset+offset-start);
2953 elt++;
2954 if (!(len -= copy))
2955 return elt;
2956 offset += copy;
2958 start = end;
2961 skb_walk_frags(skb, frag_iter) {
2962 int end;
2964 WARN_ON(start > offset + len);
2966 end = start + frag_iter->len;
2967 if ((copy = end - offset) > 0) {
2968 if (copy > len)
2969 copy = len;
2970 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2971 copy);
2972 if ((len -= copy) == 0)
2973 return elt;
2974 offset += copy;
2976 start = end;
2978 BUG_ON(len);
2979 return elt;
2982 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2984 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2986 sg_mark_end(&sg[nsg - 1]);
2988 return nsg;
2990 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2993 * skb_cow_data - Check that a socket buffer's data buffers are writable
2994 * @skb: The socket buffer to check.
2995 * @tailbits: Amount of trailing space to be added
2996 * @trailer: Returned pointer to the skb where the @tailbits space begins
2998 * Make sure that the data buffers attached to a socket buffer are
2999 * writable. If they are not, private copies are made of the data buffers
3000 * and the socket buffer is set to use these instead.
3002 * If @tailbits is given, make sure that there is space to write @tailbits
3003 * bytes of data beyond current end of socket buffer. @trailer will be
3004 * set to point to the skb in which this space begins.
3006 * The number of scatterlist elements required to completely map the
3007 * COW'd and extended socket buffer will be returned.
3009 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3011 int copyflag;
3012 int elt;
3013 struct sk_buff *skb1, **skb_p;
3015 /* If skb is cloned or its head is paged, reallocate
3016 * head pulling out all the pages (pages are considered not writable
3017 * at the moment even if they are anonymous).
3019 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3020 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3021 return -ENOMEM;
3023 /* Easy case. Most of packets will go this way. */
3024 if (!skb_has_frag_list(skb)) {
3025 /* A little of trouble, not enough of space for trailer.
3026 * This should not happen, when stack is tuned to generate
3027 * good frames. OK, on miss we reallocate and reserve even more
3028 * space, 128 bytes is fair. */
3030 if (skb_tailroom(skb) < tailbits &&
3031 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3032 return -ENOMEM;
3034 /* Voila! */
3035 *trailer = skb;
3036 return 1;
3039 /* Misery. We are in troubles, going to mincer fragments... */
3041 elt = 1;
3042 skb_p = &skb_shinfo(skb)->frag_list;
3043 copyflag = 0;
3045 while ((skb1 = *skb_p) != NULL) {
3046 int ntail = 0;
3048 /* The fragment is partially pulled by someone,
3049 * this can happen on input. Copy it and everything
3050 * after it. */
3052 if (skb_shared(skb1))
3053 copyflag = 1;
3055 /* If the skb is the last, worry about trailer. */
3057 if (skb1->next == NULL && tailbits) {
3058 if (skb_shinfo(skb1)->nr_frags ||
3059 skb_has_frag_list(skb1) ||
3060 skb_tailroom(skb1) < tailbits)
3061 ntail = tailbits + 128;
3064 if (copyflag ||
3065 skb_cloned(skb1) ||
3066 ntail ||
3067 skb_shinfo(skb1)->nr_frags ||
3068 skb_has_frag_list(skb1)) {
3069 struct sk_buff *skb2;
3071 /* Fuck, we are miserable poor guys... */
3072 if (ntail == 0)
3073 skb2 = skb_copy(skb1, GFP_ATOMIC);
3074 else
3075 skb2 = skb_copy_expand(skb1,
3076 skb_headroom(skb1),
3077 ntail,
3078 GFP_ATOMIC);
3079 if (unlikely(skb2 == NULL))
3080 return -ENOMEM;
3082 if (skb1->sk)
3083 skb_set_owner_w(skb2, skb1->sk);
3085 /* Looking around. Are we still alive?
3086 * OK, link new skb, drop old one */
3088 skb2->next = skb1->next;
3089 *skb_p = skb2;
3090 kfree_skb(skb1);
3091 skb1 = skb2;
3093 elt++;
3094 *trailer = skb1;
3095 skb_p = &skb1->next;
3098 return elt;
3100 EXPORT_SYMBOL_GPL(skb_cow_data);
3102 static void sock_rmem_free(struct sk_buff *skb)
3104 struct sock *sk = skb->sk;
3106 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3110 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3112 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3114 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3115 (unsigned)sk->sk_rcvbuf)
3116 return -ENOMEM;
3118 skb_orphan(skb);
3119 skb->sk = sk;
3120 skb->destructor = sock_rmem_free;
3121 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3123 /* before exiting rcu section, make sure dst is refcounted */
3124 skb_dst_force(skb);
3126 skb_queue_tail(&sk->sk_error_queue, skb);
3127 if (!sock_flag(sk, SOCK_DEAD))
3128 sk->sk_data_ready(sk, skb->len);
3129 return 0;
3131 EXPORT_SYMBOL(sock_queue_err_skb);
3133 void skb_tstamp_tx(struct sk_buff *orig_skb,
3134 struct skb_shared_hwtstamps *hwtstamps)
3136 struct sock *sk = orig_skb->sk;
3137 struct sock_exterr_skb *serr;
3138 struct sk_buff *skb;
3139 int err;
3141 if (!sk)
3142 return;
3144 skb = skb_clone(orig_skb, GFP_ATOMIC);
3145 if (!skb)
3146 return;
3148 if (hwtstamps) {
3149 *skb_hwtstamps(skb) =
3150 *hwtstamps;
3151 } else {
3153 * no hardware time stamps available,
3154 * so keep the shared tx_flags and only
3155 * store software time stamp
3157 skb->tstamp = ktime_get_real();
3160 serr = SKB_EXT_ERR(skb);
3161 memset(serr, 0, sizeof(*serr));
3162 serr->ee.ee_errno = ENOMSG;
3163 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3165 err = sock_queue_err_skb(sk, skb);
3167 if (err)
3168 kfree_skb(skb);
3170 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3174 * skb_partial_csum_set - set up and verify partial csum values for packet
3175 * @skb: the skb to set
3176 * @start: the number of bytes after skb->data to start checksumming.
3177 * @off: the offset from start to place the checksum.
3179 * For untrusted partially-checksummed packets, we need to make sure the values
3180 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3182 * This function checks and sets those values and skb->ip_summed: if this
3183 * returns false you should drop the packet.
3185 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3187 if (unlikely(start > skb_headlen(skb)) ||
3188 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3189 if (net_ratelimit())
3190 printk(KERN_WARNING
3191 "bad partial csum: csum=%u/%u len=%u\n",
3192 start, off, skb_headlen(skb));
3193 return false;
3195 skb->ip_summed = CHECKSUM_PARTIAL;
3196 skb->csum_start = skb_headroom(skb) + start;
3197 skb->csum_offset = off;
3198 return true;
3200 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3202 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3204 if (net_ratelimit())
3205 pr_warning("%s: received packets cannot be forwarded"
3206 " while LRO is enabled\n", skb->dev->name);
3208 EXPORT_SYMBOL(__skb_warn_lro_forwarding);