mm: fix corruption of hibernation caused by reusing swap during image saving
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blob1d3db210b8e1db6b1d85d6672a9dfe2bc521a546
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
55 static struct swap_list_t swap_list = {-1, -1};
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 static DEFINE_MUTEX(swapon_mutex);
61 static inline unsigned char swap_count(unsigned char ent)
63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
70 swp_entry_t entry = swp_entry(si->type, offset);
71 struct page *page;
72 int ret = 0;
74 page = find_get_page(&swapper_space, entry.val);
75 if (!page)
76 return 0;
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
84 if (trylock_page(page)) {
85 ret = try_to_free_swap(page);
86 unlock_page(page);
88 page_cache_release(page);
89 return ret;
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
97 static DECLARE_RWSEM(swap_unplug_sem);
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
101 swp_entry_t entry;
103 down_read(&swap_unplug_sem);
104 entry.val = page_private(page);
105 if (PageSwapCache(page)) {
106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 struct backing_dev_info *bdi;
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
117 WARN_ON(page_count(page) <= 1);
119 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 blk_run_backing_dev(bdi, page);
122 up_read(&swap_unplug_sem);
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
129 static int discard_swap(struct swap_info_struct *si)
131 struct swap_extent *se;
132 sector_t start_block;
133 sector_t nr_blocks;
134 int err = 0;
136 /* Do not discard the swap header page! */
137 se = &si->first_swap_extent;
138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 if (nr_blocks) {
141 err = blkdev_issue_discard(si->bdev, start_block,
142 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143 if (err)
144 return err;
145 cond_resched();
148 list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 start_block = se->start_block << (PAGE_SHIFT - 9);
150 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 err = blkdev_issue_discard(si->bdev, start_block,
153 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154 if (err)
155 break;
157 cond_resched();
159 return err; /* That will often be -EOPNOTSUPP */
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
166 static void discard_swap_cluster(struct swap_info_struct *si,
167 pgoff_t start_page, pgoff_t nr_pages)
169 struct swap_extent *se = si->curr_swap_extent;
170 int found_extent = 0;
172 while (nr_pages) {
173 struct list_head *lh;
175 if (se->start_page <= start_page &&
176 start_page < se->start_page + se->nr_pages) {
177 pgoff_t offset = start_page - se->start_page;
178 sector_t start_block = se->start_block + offset;
179 sector_t nr_blocks = se->nr_pages - offset;
181 if (nr_blocks > nr_pages)
182 nr_blocks = nr_pages;
183 start_page += nr_blocks;
184 nr_pages -= nr_blocks;
186 if (!found_extent++)
187 si->curr_swap_extent = se;
189 start_block <<= PAGE_SHIFT - 9;
190 nr_blocks <<= PAGE_SHIFT - 9;
191 if (blkdev_issue_discard(si->bdev, start_block,
192 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193 break;
196 lh = se->list.next;
197 se = list_entry(lh, struct swap_extent, list);
201 static int wait_for_discard(void *word)
203 schedule();
204 return 0;
207 #define SWAPFILE_CLUSTER 256
208 #define LATENCY_LIMIT 256
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211 unsigned char usage)
213 unsigned long offset;
214 unsigned long scan_base;
215 unsigned long last_in_cluster = 0;
216 int latency_ration = LATENCY_LIMIT;
217 int found_free_cluster = 0;
220 * We try to cluster swap pages by allocating them sequentially
221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
222 * way, however, we resort to first-free allocation, starting
223 * a new cluster. This prevents us from scattering swap pages
224 * all over the entire swap partition, so that we reduce
225 * overall disk seek times between swap pages. -- sct
226 * But we do now try to find an empty cluster. -Andrea
227 * And we let swap pages go all over an SSD partition. Hugh
230 si->flags += SWP_SCANNING;
231 scan_base = offset = si->cluster_next;
233 if (unlikely(!si->cluster_nr--)) {
234 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 si->cluster_nr = SWAPFILE_CLUSTER - 1;
236 goto checks;
238 if (si->flags & SWP_DISCARDABLE) {
240 * Start range check on racing allocations, in case
241 * they overlap the cluster we eventually decide on
242 * (we scan without swap_lock to allow preemption).
243 * It's hardly conceivable that cluster_nr could be
244 * wrapped during our scan, but don't depend on it.
246 if (si->lowest_alloc)
247 goto checks;
248 si->lowest_alloc = si->max;
249 si->highest_alloc = 0;
251 spin_unlock(&swap_lock);
254 * If seek is expensive, start searching for new cluster from
255 * start of partition, to minimize the span of allocated swap.
256 * But if seek is cheap, search from our current position, so
257 * that swap is allocated from all over the partition: if the
258 * Flash Translation Layer only remaps within limited zones,
259 * we don't want to wear out the first zone too quickly.
261 if (!(si->flags & SWP_SOLIDSTATE))
262 scan_base = offset = si->lowest_bit;
263 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
265 /* Locate the first empty (unaligned) cluster */
266 for (; last_in_cluster <= si->highest_bit; offset++) {
267 if (si->swap_map[offset])
268 last_in_cluster = offset + SWAPFILE_CLUSTER;
269 else if (offset == last_in_cluster) {
270 spin_lock(&swap_lock);
271 offset -= SWAPFILE_CLUSTER - 1;
272 si->cluster_next = offset;
273 si->cluster_nr = SWAPFILE_CLUSTER - 1;
274 found_free_cluster = 1;
275 goto checks;
277 if (unlikely(--latency_ration < 0)) {
278 cond_resched();
279 latency_ration = LATENCY_LIMIT;
283 offset = si->lowest_bit;
284 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
286 /* Locate the first empty (unaligned) cluster */
287 for (; last_in_cluster < scan_base; offset++) {
288 if (si->swap_map[offset])
289 last_in_cluster = offset + SWAPFILE_CLUSTER;
290 else if (offset == last_in_cluster) {
291 spin_lock(&swap_lock);
292 offset -= SWAPFILE_CLUSTER - 1;
293 si->cluster_next = offset;
294 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 found_free_cluster = 1;
296 goto checks;
298 if (unlikely(--latency_ration < 0)) {
299 cond_resched();
300 latency_ration = LATENCY_LIMIT;
304 offset = scan_base;
305 spin_lock(&swap_lock);
306 si->cluster_nr = SWAPFILE_CLUSTER - 1;
307 si->lowest_alloc = 0;
310 checks:
311 if (!(si->flags & SWP_WRITEOK))
312 goto no_page;
313 if (!si->highest_bit)
314 goto no_page;
315 if (offset > si->highest_bit)
316 scan_base = offset = si->lowest_bit;
318 /* reuse swap entry of cache-only swap if not hibernation. */
319 if (vm_swap_full()
320 && usage == SWAP_HAS_CACHE
321 && si->swap_map[offset] == SWAP_HAS_CACHE) {
322 int swap_was_freed;
323 spin_unlock(&swap_lock);
324 swap_was_freed = __try_to_reclaim_swap(si, offset);
325 spin_lock(&swap_lock);
326 /* entry was freed successfully, try to use this again */
327 if (swap_was_freed)
328 goto checks;
329 goto scan; /* check next one */
332 if (si->swap_map[offset])
333 goto scan;
335 if (offset == si->lowest_bit)
336 si->lowest_bit++;
337 if (offset == si->highest_bit)
338 si->highest_bit--;
339 si->inuse_pages++;
340 if (si->inuse_pages == si->pages) {
341 si->lowest_bit = si->max;
342 si->highest_bit = 0;
344 si->swap_map[offset] = usage;
345 si->cluster_next = offset + 1;
346 si->flags -= SWP_SCANNING;
348 if (si->lowest_alloc) {
350 * Only set when SWP_DISCARDABLE, and there's a scan
351 * for a free cluster in progress or just completed.
353 if (found_free_cluster) {
355 * To optimize wear-levelling, discard the
356 * old data of the cluster, taking care not to
357 * discard any of its pages that have already
358 * been allocated by racing tasks (offset has
359 * already stepped over any at the beginning).
361 if (offset < si->highest_alloc &&
362 si->lowest_alloc <= last_in_cluster)
363 last_in_cluster = si->lowest_alloc - 1;
364 si->flags |= SWP_DISCARDING;
365 spin_unlock(&swap_lock);
367 if (offset < last_in_cluster)
368 discard_swap_cluster(si, offset,
369 last_in_cluster - offset + 1);
371 spin_lock(&swap_lock);
372 si->lowest_alloc = 0;
373 si->flags &= ~SWP_DISCARDING;
375 smp_mb(); /* wake_up_bit advises this */
376 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
378 } else if (si->flags & SWP_DISCARDING) {
380 * Delay using pages allocated by racing tasks
381 * until the whole discard has been issued. We
382 * could defer that delay until swap_writepage,
383 * but it's easier to keep this self-contained.
385 spin_unlock(&swap_lock);
386 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
387 wait_for_discard, TASK_UNINTERRUPTIBLE);
388 spin_lock(&swap_lock);
389 } else {
391 * Note pages allocated by racing tasks while
392 * scan for a free cluster is in progress, so
393 * that its final discard can exclude them.
395 if (offset < si->lowest_alloc)
396 si->lowest_alloc = offset;
397 if (offset > si->highest_alloc)
398 si->highest_alloc = offset;
401 return offset;
403 scan:
404 spin_unlock(&swap_lock);
405 while (++offset <= si->highest_bit) {
406 if (!si->swap_map[offset]) {
407 spin_lock(&swap_lock);
408 goto checks;
410 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
411 spin_lock(&swap_lock);
412 goto checks;
414 if (unlikely(--latency_ration < 0)) {
415 cond_resched();
416 latency_ration = LATENCY_LIMIT;
419 offset = si->lowest_bit;
420 while (++offset < scan_base) {
421 if (!si->swap_map[offset]) {
422 spin_lock(&swap_lock);
423 goto checks;
425 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
426 spin_lock(&swap_lock);
427 goto checks;
429 if (unlikely(--latency_ration < 0)) {
430 cond_resched();
431 latency_ration = LATENCY_LIMIT;
434 spin_lock(&swap_lock);
436 no_page:
437 si->flags -= SWP_SCANNING;
438 return 0;
441 swp_entry_t get_swap_page(void)
443 struct swap_info_struct *si;
444 pgoff_t offset;
445 int type, next;
446 int wrapped = 0;
448 spin_lock(&swap_lock);
449 if (nr_swap_pages <= 0)
450 goto noswap;
451 nr_swap_pages--;
453 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
454 si = swap_info[type];
455 next = si->next;
456 if (next < 0 ||
457 (!wrapped && si->prio != swap_info[next]->prio)) {
458 next = swap_list.head;
459 wrapped++;
462 if (!si->highest_bit)
463 continue;
464 if (!(si->flags & SWP_WRITEOK))
465 continue;
467 swap_list.next = next;
468 /* This is called for allocating swap entry for cache */
469 offset = scan_swap_map(si, SWAP_HAS_CACHE);
470 if (offset) {
471 spin_unlock(&swap_lock);
472 return swp_entry(type, offset);
474 next = swap_list.next;
477 nr_swap_pages++;
478 noswap:
479 spin_unlock(&swap_lock);
480 return (swp_entry_t) {0};
483 /* The only caller of this function is now susupend routine */
484 swp_entry_t get_swap_page_of_type(int type)
486 struct swap_info_struct *si;
487 pgoff_t offset;
489 spin_lock(&swap_lock);
490 si = swap_info[type];
491 if (si && (si->flags & SWP_WRITEOK)) {
492 nr_swap_pages--;
493 /* This is called for allocating swap entry, not cache */
494 offset = scan_swap_map(si, 1);
495 if (offset) {
496 spin_unlock(&swap_lock);
497 return swp_entry(type, offset);
499 nr_swap_pages++;
501 spin_unlock(&swap_lock);
502 return (swp_entry_t) {0};
505 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
507 struct swap_info_struct *p;
508 unsigned long offset, type;
510 if (!entry.val)
511 goto out;
512 type = swp_type(entry);
513 if (type >= nr_swapfiles)
514 goto bad_nofile;
515 p = swap_info[type];
516 if (!(p->flags & SWP_USED))
517 goto bad_device;
518 offset = swp_offset(entry);
519 if (offset >= p->max)
520 goto bad_offset;
521 if (!p->swap_map[offset])
522 goto bad_free;
523 spin_lock(&swap_lock);
524 return p;
526 bad_free:
527 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
528 goto out;
529 bad_offset:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
531 goto out;
532 bad_device:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
534 goto out;
535 bad_nofile:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
537 out:
538 return NULL;
541 static unsigned char swap_entry_free(struct swap_info_struct *p,
542 swp_entry_t entry, unsigned char usage)
544 unsigned long offset = swp_offset(entry);
545 unsigned char count;
546 unsigned char has_cache;
548 count = p->swap_map[offset];
549 has_cache = count & SWAP_HAS_CACHE;
550 count &= ~SWAP_HAS_CACHE;
552 if (usage == SWAP_HAS_CACHE) {
553 VM_BUG_ON(!has_cache);
554 has_cache = 0;
555 } else if (count == SWAP_MAP_SHMEM) {
557 * Or we could insist on shmem.c using a special
558 * swap_shmem_free() and free_shmem_swap_and_cache()...
560 count = 0;
561 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
562 if (count == COUNT_CONTINUED) {
563 if (swap_count_continued(p, offset, count))
564 count = SWAP_MAP_MAX | COUNT_CONTINUED;
565 else
566 count = SWAP_MAP_MAX;
567 } else
568 count--;
571 if (!count)
572 mem_cgroup_uncharge_swap(entry);
574 usage = count | has_cache;
575 p->swap_map[offset] = usage;
577 /* free if no reference */
578 if (!usage) {
579 if (offset < p->lowest_bit)
580 p->lowest_bit = offset;
581 if (offset > p->highest_bit)
582 p->highest_bit = offset;
583 if (swap_list.next >= 0 &&
584 p->prio > swap_info[swap_list.next]->prio)
585 swap_list.next = p->type;
586 nr_swap_pages++;
587 p->inuse_pages--;
590 return usage;
594 * Caller has made sure that the swapdevice corresponding to entry
595 * is still around or has not been recycled.
597 void swap_free(swp_entry_t entry)
599 struct swap_info_struct *p;
601 p = swap_info_get(entry);
602 if (p) {
603 swap_entry_free(p, entry, 1);
604 spin_unlock(&swap_lock);
609 * Called after dropping swapcache to decrease refcnt to swap entries.
611 void swapcache_free(swp_entry_t entry, struct page *page)
613 struct swap_info_struct *p;
614 unsigned char count;
616 p = swap_info_get(entry);
617 if (p) {
618 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
619 if (page)
620 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
621 spin_unlock(&swap_lock);
626 * How many references to page are currently swapped out?
627 * This does not give an exact answer when swap count is continued,
628 * but does include the high COUNT_CONTINUED flag to allow for that.
630 static inline int page_swapcount(struct page *page)
632 int count = 0;
633 struct swap_info_struct *p;
634 swp_entry_t entry;
636 entry.val = page_private(page);
637 p = swap_info_get(entry);
638 if (p) {
639 count = swap_count(p->swap_map[swp_offset(entry)]);
640 spin_unlock(&swap_lock);
642 return count;
646 * We can write to an anon page without COW if there are no other references
647 * to it. And as a side-effect, free up its swap: because the old content
648 * on disk will never be read, and seeking back there to write new content
649 * later would only waste time away from clustering.
651 int reuse_swap_page(struct page *page)
653 int count;
655 VM_BUG_ON(!PageLocked(page));
656 if (unlikely(PageKsm(page)))
657 return 0;
658 count = page_mapcount(page);
659 if (count <= 1 && PageSwapCache(page)) {
660 count += page_swapcount(page);
661 if (count == 1 && !PageWriteback(page)) {
662 delete_from_swap_cache(page);
663 SetPageDirty(page);
666 return count <= 1;
670 * If swap is getting full, or if there are no more mappings of this page,
671 * then try_to_free_swap is called to free its swap space.
673 int try_to_free_swap(struct page *page)
675 VM_BUG_ON(!PageLocked(page));
677 if (!PageSwapCache(page))
678 return 0;
679 if (PageWriteback(page))
680 return 0;
681 if (page_swapcount(page))
682 return 0;
684 delete_from_swap_cache(page);
685 SetPageDirty(page);
686 return 1;
690 * Free the swap entry like above, but also try to
691 * free the page cache entry if it is the last user.
693 int free_swap_and_cache(swp_entry_t entry)
695 struct swap_info_struct *p;
696 struct page *page = NULL;
698 if (non_swap_entry(entry))
699 return 1;
701 p = swap_info_get(entry);
702 if (p) {
703 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
704 page = find_get_page(&swapper_space, entry.val);
705 if (page && !trylock_page(page)) {
706 page_cache_release(page);
707 page = NULL;
710 spin_unlock(&swap_lock);
712 if (page) {
714 * Not mapped elsewhere, or swap space full? Free it!
715 * Also recheck PageSwapCache now page is locked (above).
717 if (PageSwapCache(page) && !PageWriteback(page) &&
718 (!page_mapped(page) || vm_swap_full())) {
719 delete_from_swap_cache(page);
720 SetPageDirty(page);
722 unlock_page(page);
723 page_cache_release(page);
725 return p != NULL;
728 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
730 * mem_cgroup_count_swap_user - count the user of a swap entry
731 * @ent: the swap entry to be checked
732 * @pagep: the pointer for the swap cache page of the entry to be stored
734 * Returns the number of the user of the swap entry. The number is valid only
735 * for swaps of anonymous pages.
736 * If the entry is found on swap cache, the page is stored to pagep with
737 * refcount of it being incremented.
739 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
741 struct page *page;
742 struct swap_info_struct *p;
743 int count = 0;
745 page = find_get_page(&swapper_space, ent.val);
746 if (page)
747 count += page_mapcount(page);
748 p = swap_info_get(ent);
749 if (p) {
750 count += swap_count(p->swap_map[swp_offset(ent)]);
751 spin_unlock(&swap_lock);
754 *pagep = page;
755 return count;
757 #endif
759 #ifdef CONFIG_HIBERNATION
761 * Find the swap type that corresponds to given device (if any).
763 * @offset - number of the PAGE_SIZE-sized block of the device, starting
764 * from 0, in which the swap header is expected to be located.
766 * This is needed for the suspend to disk (aka swsusp).
768 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
770 struct block_device *bdev = NULL;
771 int type;
773 if (device)
774 bdev = bdget(device);
776 spin_lock(&swap_lock);
777 for (type = 0; type < nr_swapfiles; type++) {
778 struct swap_info_struct *sis = swap_info[type];
780 if (!(sis->flags & SWP_WRITEOK))
781 continue;
783 if (!bdev) {
784 if (bdev_p)
785 *bdev_p = bdgrab(sis->bdev);
787 spin_unlock(&swap_lock);
788 return type;
790 if (bdev == sis->bdev) {
791 struct swap_extent *se = &sis->first_swap_extent;
793 if (se->start_block == offset) {
794 if (bdev_p)
795 *bdev_p = bdgrab(sis->bdev);
797 spin_unlock(&swap_lock);
798 bdput(bdev);
799 return type;
803 spin_unlock(&swap_lock);
804 if (bdev)
805 bdput(bdev);
807 return -ENODEV;
811 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
812 * corresponding to given index in swap_info (swap type).
814 sector_t swapdev_block(int type, pgoff_t offset)
816 struct block_device *bdev;
818 if ((unsigned int)type >= nr_swapfiles)
819 return 0;
820 if (!(swap_info[type]->flags & SWP_WRITEOK))
821 return 0;
822 return map_swap_entry(swp_entry(type, offset), &bdev);
826 * Return either the total number of swap pages of given type, or the number
827 * of free pages of that type (depending on @free)
829 * This is needed for software suspend
831 unsigned int count_swap_pages(int type, int free)
833 unsigned int n = 0;
835 spin_lock(&swap_lock);
836 if ((unsigned int)type < nr_swapfiles) {
837 struct swap_info_struct *sis = swap_info[type];
839 if (sis->flags & SWP_WRITEOK) {
840 n = sis->pages;
841 if (free)
842 n -= sis->inuse_pages;
845 spin_unlock(&swap_lock);
846 return n;
848 #endif /* CONFIG_HIBERNATION */
851 * No need to decide whether this PTE shares the swap entry with others,
852 * just let do_wp_page work it out if a write is requested later - to
853 * force COW, vm_page_prot omits write permission from any private vma.
855 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
856 unsigned long addr, swp_entry_t entry, struct page *page)
858 struct mem_cgroup *ptr = NULL;
859 spinlock_t *ptl;
860 pte_t *pte;
861 int ret = 1;
863 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
864 ret = -ENOMEM;
865 goto out_nolock;
868 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
869 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
870 if (ret > 0)
871 mem_cgroup_cancel_charge_swapin(ptr);
872 ret = 0;
873 goto out;
876 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
877 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
878 get_page(page);
879 set_pte_at(vma->vm_mm, addr, pte,
880 pte_mkold(mk_pte(page, vma->vm_page_prot)));
881 page_add_anon_rmap(page, vma, addr);
882 mem_cgroup_commit_charge_swapin(page, ptr);
883 swap_free(entry);
885 * Move the page to the active list so it is not
886 * immediately swapped out again after swapon.
888 activate_page(page);
889 out:
890 pte_unmap_unlock(pte, ptl);
891 out_nolock:
892 return ret;
895 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
896 unsigned long addr, unsigned long end,
897 swp_entry_t entry, struct page *page)
899 pte_t swp_pte = swp_entry_to_pte(entry);
900 pte_t *pte;
901 int ret = 0;
904 * We don't actually need pte lock while scanning for swp_pte: since
905 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
906 * page table while we're scanning; though it could get zapped, and on
907 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
908 * of unmatched parts which look like swp_pte, so unuse_pte must
909 * recheck under pte lock. Scanning without pte lock lets it be
910 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
912 pte = pte_offset_map(pmd, addr);
913 do {
915 * swapoff spends a _lot_ of time in this loop!
916 * Test inline before going to call unuse_pte.
918 if (unlikely(pte_same(*pte, swp_pte))) {
919 pte_unmap(pte);
920 ret = unuse_pte(vma, pmd, addr, entry, page);
921 if (ret)
922 goto out;
923 pte = pte_offset_map(pmd, addr);
925 } while (pte++, addr += PAGE_SIZE, addr != end);
926 pte_unmap(pte - 1);
927 out:
928 return ret;
931 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
932 unsigned long addr, unsigned long end,
933 swp_entry_t entry, struct page *page)
935 pmd_t *pmd;
936 unsigned long next;
937 int ret;
939 pmd = pmd_offset(pud, addr);
940 do {
941 next = pmd_addr_end(addr, end);
942 if (pmd_none_or_clear_bad(pmd))
943 continue;
944 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
945 if (ret)
946 return ret;
947 } while (pmd++, addr = next, addr != end);
948 return 0;
951 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
952 unsigned long addr, unsigned long end,
953 swp_entry_t entry, struct page *page)
955 pud_t *pud;
956 unsigned long next;
957 int ret;
959 pud = pud_offset(pgd, addr);
960 do {
961 next = pud_addr_end(addr, end);
962 if (pud_none_or_clear_bad(pud))
963 continue;
964 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
965 if (ret)
966 return ret;
967 } while (pud++, addr = next, addr != end);
968 return 0;
971 static int unuse_vma(struct vm_area_struct *vma,
972 swp_entry_t entry, struct page *page)
974 pgd_t *pgd;
975 unsigned long addr, end, next;
976 int ret;
978 if (page_anon_vma(page)) {
979 addr = page_address_in_vma(page, vma);
980 if (addr == -EFAULT)
981 return 0;
982 else
983 end = addr + PAGE_SIZE;
984 } else {
985 addr = vma->vm_start;
986 end = vma->vm_end;
989 pgd = pgd_offset(vma->vm_mm, addr);
990 do {
991 next = pgd_addr_end(addr, end);
992 if (pgd_none_or_clear_bad(pgd))
993 continue;
994 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
995 if (ret)
996 return ret;
997 } while (pgd++, addr = next, addr != end);
998 return 0;
1001 static int unuse_mm(struct mm_struct *mm,
1002 swp_entry_t entry, struct page *page)
1004 struct vm_area_struct *vma;
1005 int ret = 0;
1007 if (!down_read_trylock(&mm->mmap_sem)) {
1009 * Activate page so shrink_inactive_list is unlikely to unmap
1010 * its ptes while lock is dropped, so swapoff can make progress.
1012 activate_page(page);
1013 unlock_page(page);
1014 down_read(&mm->mmap_sem);
1015 lock_page(page);
1017 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1018 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1019 break;
1021 up_read(&mm->mmap_sem);
1022 return (ret < 0)? ret: 0;
1026 * Scan swap_map from current position to next entry still in use.
1027 * Recycle to start on reaching the end, returning 0 when empty.
1029 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1030 unsigned int prev)
1032 unsigned int max = si->max;
1033 unsigned int i = prev;
1034 unsigned char count;
1037 * No need for swap_lock here: we're just looking
1038 * for whether an entry is in use, not modifying it; false
1039 * hits are okay, and sys_swapoff() has already prevented new
1040 * allocations from this area (while holding swap_lock).
1042 for (;;) {
1043 if (++i >= max) {
1044 if (!prev) {
1045 i = 0;
1046 break;
1049 * No entries in use at top of swap_map,
1050 * loop back to start and recheck there.
1052 max = prev + 1;
1053 prev = 0;
1054 i = 1;
1056 count = si->swap_map[i];
1057 if (count && swap_count(count) != SWAP_MAP_BAD)
1058 break;
1060 return i;
1064 * We completely avoid races by reading each swap page in advance,
1065 * and then search for the process using it. All the necessary
1066 * page table adjustments can then be made atomically.
1068 static int try_to_unuse(unsigned int type)
1070 struct swap_info_struct *si = swap_info[type];
1071 struct mm_struct *start_mm;
1072 unsigned char *swap_map;
1073 unsigned char swcount;
1074 struct page *page;
1075 swp_entry_t entry;
1076 unsigned int i = 0;
1077 int retval = 0;
1080 * When searching mms for an entry, a good strategy is to
1081 * start at the first mm we freed the previous entry from
1082 * (though actually we don't notice whether we or coincidence
1083 * freed the entry). Initialize this start_mm with a hold.
1085 * A simpler strategy would be to start at the last mm we
1086 * freed the previous entry from; but that would take less
1087 * advantage of mmlist ordering, which clusters forked mms
1088 * together, child after parent. If we race with dup_mmap(), we
1089 * prefer to resolve parent before child, lest we miss entries
1090 * duplicated after we scanned child: using last mm would invert
1091 * that.
1093 start_mm = &init_mm;
1094 atomic_inc(&init_mm.mm_users);
1097 * Keep on scanning until all entries have gone. Usually,
1098 * one pass through swap_map is enough, but not necessarily:
1099 * there are races when an instance of an entry might be missed.
1101 while ((i = find_next_to_unuse(si, i)) != 0) {
1102 if (signal_pending(current)) {
1103 retval = -EINTR;
1104 break;
1108 * Get a page for the entry, using the existing swap
1109 * cache page if there is one. Otherwise, get a clean
1110 * page and read the swap into it.
1112 swap_map = &si->swap_map[i];
1113 entry = swp_entry(type, i);
1114 page = read_swap_cache_async(entry,
1115 GFP_HIGHUSER_MOVABLE, NULL, 0);
1116 if (!page) {
1118 * Either swap_duplicate() failed because entry
1119 * has been freed independently, and will not be
1120 * reused since sys_swapoff() already disabled
1121 * allocation from here, or alloc_page() failed.
1123 if (!*swap_map)
1124 continue;
1125 retval = -ENOMEM;
1126 break;
1130 * Don't hold on to start_mm if it looks like exiting.
1132 if (atomic_read(&start_mm->mm_users) == 1) {
1133 mmput(start_mm);
1134 start_mm = &init_mm;
1135 atomic_inc(&init_mm.mm_users);
1139 * Wait for and lock page. When do_swap_page races with
1140 * try_to_unuse, do_swap_page can handle the fault much
1141 * faster than try_to_unuse can locate the entry. This
1142 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1143 * defer to do_swap_page in such a case - in some tests,
1144 * do_swap_page and try_to_unuse repeatedly compete.
1146 wait_on_page_locked(page);
1147 wait_on_page_writeback(page);
1148 lock_page(page);
1149 wait_on_page_writeback(page);
1152 * Remove all references to entry.
1154 swcount = *swap_map;
1155 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1156 retval = shmem_unuse(entry, page);
1157 /* page has already been unlocked and released */
1158 if (retval < 0)
1159 break;
1160 continue;
1162 if (swap_count(swcount) && start_mm != &init_mm)
1163 retval = unuse_mm(start_mm, entry, page);
1165 if (swap_count(*swap_map)) {
1166 int set_start_mm = (*swap_map >= swcount);
1167 struct list_head *p = &start_mm->mmlist;
1168 struct mm_struct *new_start_mm = start_mm;
1169 struct mm_struct *prev_mm = start_mm;
1170 struct mm_struct *mm;
1172 atomic_inc(&new_start_mm->mm_users);
1173 atomic_inc(&prev_mm->mm_users);
1174 spin_lock(&mmlist_lock);
1175 while (swap_count(*swap_map) && !retval &&
1176 (p = p->next) != &start_mm->mmlist) {
1177 mm = list_entry(p, struct mm_struct, mmlist);
1178 if (!atomic_inc_not_zero(&mm->mm_users))
1179 continue;
1180 spin_unlock(&mmlist_lock);
1181 mmput(prev_mm);
1182 prev_mm = mm;
1184 cond_resched();
1186 swcount = *swap_map;
1187 if (!swap_count(swcount)) /* any usage ? */
1189 else if (mm == &init_mm)
1190 set_start_mm = 1;
1191 else
1192 retval = unuse_mm(mm, entry, page);
1194 if (set_start_mm && *swap_map < swcount) {
1195 mmput(new_start_mm);
1196 atomic_inc(&mm->mm_users);
1197 new_start_mm = mm;
1198 set_start_mm = 0;
1200 spin_lock(&mmlist_lock);
1202 spin_unlock(&mmlist_lock);
1203 mmput(prev_mm);
1204 mmput(start_mm);
1205 start_mm = new_start_mm;
1207 if (retval) {
1208 unlock_page(page);
1209 page_cache_release(page);
1210 break;
1214 * If a reference remains (rare), we would like to leave
1215 * the page in the swap cache; but try_to_unmap could
1216 * then re-duplicate the entry once we drop page lock,
1217 * so we might loop indefinitely; also, that page could
1218 * not be swapped out to other storage meanwhile. So:
1219 * delete from cache even if there's another reference,
1220 * after ensuring that the data has been saved to disk -
1221 * since if the reference remains (rarer), it will be
1222 * read from disk into another page. Splitting into two
1223 * pages would be incorrect if swap supported "shared
1224 * private" pages, but they are handled by tmpfs files.
1226 * Given how unuse_vma() targets one particular offset
1227 * in an anon_vma, once the anon_vma has been determined,
1228 * this splitting happens to be just what is needed to
1229 * handle where KSM pages have been swapped out: re-reading
1230 * is unnecessarily slow, but we can fix that later on.
1232 if (swap_count(*swap_map) &&
1233 PageDirty(page) && PageSwapCache(page)) {
1234 struct writeback_control wbc = {
1235 .sync_mode = WB_SYNC_NONE,
1238 swap_writepage(page, &wbc);
1239 lock_page(page);
1240 wait_on_page_writeback(page);
1244 * It is conceivable that a racing task removed this page from
1245 * swap cache just before we acquired the page lock at the top,
1246 * or while we dropped it in unuse_mm(). The page might even
1247 * be back in swap cache on another swap area: that we must not
1248 * delete, since it may not have been written out to swap yet.
1250 if (PageSwapCache(page) &&
1251 likely(page_private(page) == entry.val))
1252 delete_from_swap_cache(page);
1255 * So we could skip searching mms once swap count went
1256 * to 1, we did not mark any present ptes as dirty: must
1257 * mark page dirty so shrink_page_list will preserve it.
1259 SetPageDirty(page);
1260 unlock_page(page);
1261 page_cache_release(page);
1264 * Make sure that we aren't completely killing
1265 * interactive performance.
1267 cond_resched();
1270 mmput(start_mm);
1271 return retval;
1275 * After a successful try_to_unuse, if no swap is now in use, we know
1276 * we can empty the mmlist. swap_lock must be held on entry and exit.
1277 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1278 * added to the mmlist just after page_duplicate - before would be racy.
1280 static void drain_mmlist(void)
1282 struct list_head *p, *next;
1283 unsigned int type;
1285 for (type = 0; type < nr_swapfiles; type++)
1286 if (swap_info[type]->inuse_pages)
1287 return;
1288 spin_lock(&mmlist_lock);
1289 list_for_each_safe(p, next, &init_mm.mmlist)
1290 list_del_init(p);
1291 spin_unlock(&mmlist_lock);
1295 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1296 * corresponds to page offset for the specified swap entry.
1297 * Note that the type of this function is sector_t, but it returns page offset
1298 * into the bdev, not sector offset.
1300 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1302 struct swap_info_struct *sis;
1303 struct swap_extent *start_se;
1304 struct swap_extent *se;
1305 pgoff_t offset;
1307 sis = swap_info[swp_type(entry)];
1308 *bdev = sis->bdev;
1310 offset = swp_offset(entry);
1311 start_se = sis->curr_swap_extent;
1312 se = start_se;
1314 for ( ; ; ) {
1315 struct list_head *lh;
1317 if (se->start_page <= offset &&
1318 offset < (se->start_page + se->nr_pages)) {
1319 return se->start_block + (offset - se->start_page);
1321 lh = se->list.next;
1322 se = list_entry(lh, struct swap_extent, list);
1323 sis->curr_swap_extent = se;
1324 BUG_ON(se == start_se); /* It *must* be present */
1329 * Returns the page offset into bdev for the specified page's swap entry.
1331 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1333 swp_entry_t entry;
1334 entry.val = page_private(page);
1335 return map_swap_entry(entry, bdev);
1339 * Free all of a swapdev's extent information
1341 static void destroy_swap_extents(struct swap_info_struct *sis)
1343 while (!list_empty(&sis->first_swap_extent.list)) {
1344 struct swap_extent *se;
1346 se = list_entry(sis->first_swap_extent.list.next,
1347 struct swap_extent, list);
1348 list_del(&se->list);
1349 kfree(se);
1354 * Add a block range (and the corresponding page range) into this swapdev's
1355 * extent list. The extent list is kept sorted in page order.
1357 * This function rather assumes that it is called in ascending page order.
1359 static int
1360 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1361 unsigned long nr_pages, sector_t start_block)
1363 struct swap_extent *se;
1364 struct swap_extent *new_se;
1365 struct list_head *lh;
1367 if (start_page == 0) {
1368 se = &sis->first_swap_extent;
1369 sis->curr_swap_extent = se;
1370 se->start_page = 0;
1371 se->nr_pages = nr_pages;
1372 se->start_block = start_block;
1373 return 1;
1374 } else {
1375 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1376 se = list_entry(lh, struct swap_extent, list);
1377 BUG_ON(se->start_page + se->nr_pages != start_page);
1378 if (se->start_block + se->nr_pages == start_block) {
1379 /* Merge it */
1380 se->nr_pages += nr_pages;
1381 return 0;
1386 * No merge. Insert a new extent, preserving ordering.
1388 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1389 if (new_se == NULL)
1390 return -ENOMEM;
1391 new_se->start_page = start_page;
1392 new_se->nr_pages = nr_pages;
1393 new_se->start_block = start_block;
1395 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1396 return 1;
1400 * A `swap extent' is a simple thing which maps a contiguous range of pages
1401 * onto a contiguous range of disk blocks. An ordered list of swap extents
1402 * is built at swapon time and is then used at swap_writepage/swap_readpage
1403 * time for locating where on disk a page belongs.
1405 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1406 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1407 * swap files identically.
1409 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1410 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1411 * swapfiles are handled *identically* after swapon time.
1413 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1414 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1415 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1416 * requirements, they are simply tossed out - we will never use those blocks
1417 * for swapping.
1419 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1420 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1421 * which will scribble on the fs.
1423 * The amount of disk space which a single swap extent represents varies.
1424 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1425 * extents in the list. To avoid much list walking, we cache the previous
1426 * search location in `curr_swap_extent', and start new searches from there.
1427 * This is extremely effective. The average number of iterations in
1428 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1430 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1432 struct inode *inode;
1433 unsigned blocks_per_page;
1434 unsigned long page_no;
1435 unsigned blkbits;
1436 sector_t probe_block;
1437 sector_t last_block;
1438 sector_t lowest_block = -1;
1439 sector_t highest_block = 0;
1440 int nr_extents = 0;
1441 int ret;
1443 inode = sis->swap_file->f_mapping->host;
1444 if (S_ISBLK(inode->i_mode)) {
1445 ret = add_swap_extent(sis, 0, sis->max, 0);
1446 *span = sis->pages;
1447 goto out;
1450 blkbits = inode->i_blkbits;
1451 blocks_per_page = PAGE_SIZE >> blkbits;
1454 * Map all the blocks into the extent list. This code doesn't try
1455 * to be very smart.
1457 probe_block = 0;
1458 page_no = 0;
1459 last_block = i_size_read(inode) >> blkbits;
1460 while ((probe_block + blocks_per_page) <= last_block &&
1461 page_no < sis->max) {
1462 unsigned block_in_page;
1463 sector_t first_block;
1465 first_block = bmap(inode, probe_block);
1466 if (first_block == 0)
1467 goto bad_bmap;
1470 * It must be PAGE_SIZE aligned on-disk
1472 if (first_block & (blocks_per_page - 1)) {
1473 probe_block++;
1474 goto reprobe;
1477 for (block_in_page = 1; block_in_page < blocks_per_page;
1478 block_in_page++) {
1479 sector_t block;
1481 block = bmap(inode, probe_block + block_in_page);
1482 if (block == 0)
1483 goto bad_bmap;
1484 if (block != first_block + block_in_page) {
1485 /* Discontiguity */
1486 probe_block++;
1487 goto reprobe;
1491 first_block >>= (PAGE_SHIFT - blkbits);
1492 if (page_no) { /* exclude the header page */
1493 if (first_block < lowest_block)
1494 lowest_block = first_block;
1495 if (first_block > highest_block)
1496 highest_block = first_block;
1500 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1502 ret = add_swap_extent(sis, page_no, 1, first_block);
1503 if (ret < 0)
1504 goto out;
1505 nr_extents += ret;
1506 page_no++;
1507 probe_block += blocks_per_page;
1508 reprobe:
1509 continue;
1511 ret = nr_extents;
1512 *span = 1 + highest_block - lowest_block;
1513 if (page_no == 0)
1514 page_no = 1; /* force Empty message */
1515 sis->max = page_no;
1516 sis->pages = page_no - 1;
1517 sis->highest_bit = page_no - 1;
1518 out:
1519 return ret;
1520 bad_bmap:
1521 printk(KERN_ERR "swapon: swapfile has holes\n");
1522 ret = -EINVAL;
1523 goto out;
1526 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1528 struct swap_info_struct *p = NULL;
1529 unsigned char *swap_map;
1530 struct file *swap_file, *victim;
1531 struct address_space *mapping;
1532 struct inode *inode;
1533 char *pathname;
1534 int i, type, prev;
1535 int err;
1537 if (!capable(CAP_SYS_ADMIN))
1538 return -EPERM;
1540 pathname = getname(specialfile);
1541 err = PTR_ERR(pathname);
1542 if (IS_ERR(pathname))
1543 goto out;
1545 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1546 putname(pathname);
1547 err = PTR_ERR(victim);
1548 if (IS_ERR(victim))
1549 goto out;
1551 mapping = victim->f_mapping;
1552 prev = -1;
1553 spin_lock(&swap_lock);
1554 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1555 p = swap_info[type];
1556 if (p->flags & SWP_WRITEOK) {
1557 if (p->swap_file->f_mapping == mapping)
1558 break;
1560 prev = type;
1562 if (type < 0) {
1563 err = -EINVAL;
1564 spin_unlock(&swap_lock);
1565 goto out_dput;
1567 if (!security_vm_enough_memory(p->pages))
1568 vm_unacct_memory(p->pages);
1569 else {
1570 err = -ENOMEM;
1571 spin_unlock(&swap_lock);
1572 goto out_dput;
1574 if (prev < 0)
1575 swap_list.head = p->next;
1576 else
1577 swap_info[prev]->next = p->next;
1578 if (type == swap_list.next) {
1579 /* just pick something that's safe... */
1580 swap_list.next = swap_list.head;
1582 if (p->prio < 0) {
1583 for (i = p->next; i >= 0; i = swap_info[i]->next)
1584 swap_info[i]->prio = p->prio--;
1585 least_priority++;
1587 nr_swap_pages -= p->pages;
1588 total_swap_pages -= p->pages;
1589 p->flags &= ~SWP_WRITEOK;
1590 spin_unlock(&swap_lock);
1592 current->flags |= PF_OOM_ORIGIN;
1593 err = try_to_unuse(type);
1594 current->flags &= ~PF_OOM_ORIGIN;
1596 if (err) {
1597 /* re-insert swap space back into swap_list */
1598 spin_lock(&swap_lock);
1599 if (p->prio < 0)
1600 p->prio = --least_priority;
1601 prev = -1;
1602 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1603 if (p->prio >= swap_info[i]->prio)
1604 break;
1605 prev = i;
1607 p->next = i;
1608 if (prev < 0)
1609 swap_list.head = swap_list.next = type;
1610 else
1611 swap_info[prev]->next = type;
1612 nr_swap_pages += p->pages;
1613 total_swap_pages += p->pages;
1614 p->flags |= SWP_WRITEOK;
1615 spin_unlock(&swap_lock);
1616 goto out_dput;
1619 /* wait for any unplug function to finish */
1620 down_write(&swap_unplug_sem);
1621 up_write(&swap_unplug_sem);
1623 destroy_swap_extents(p);
1624 if (p->flags & SWP_CONTINUED)
1625 free_swap_count_continuations(p);
1627 mutex_lock(&swapon_mutex);
1628 spin_lock(&swap_lock);
1629 drain_mmlist();
1631 /* wait for anyone still in scan_swap_map */
1632 p->highest_bit = 0; /* cuts scans short */
1633 while (p->flags >= SWP_SCANNING) {
1634 spin_unlock(&swap_lock);
1635 schedule_timeout_uninterruptible(1);
1636 spin_lock(&swap_lock);
1639 swap_file = p->swap_file;
1640 p->swap_file = NULL;
1641 p->max = 0;
1642 swap_map = p->swap_map;
1643 p->swap_map = NULL;
1644 p->flags = 0;
1645 spin_unlock(&swap_lock);
1646 mutex_unlock(&swapon_mutex);
1647 vfree(swap_map);
1648 /* Destroy swap account informatin */
1649 swap_cgroup_swapoff(type);
1651 inode = mapping->host;
1652 if (S_ISBLK(inode->i_mode)) {
1653 struct block_device *bdev = I_BDEV(inode);
1654 set_blocksize(bdev, p->old_block_size);
1655 bd_release(bdev);
1656 } else {
1657 mutex_lock(&inode->i_mutex);
1658 inode->i_flags &= ~S_SWAPFILE;
1659 mutex_unlock(&inode->i_mutex);
1661 filp_close(swap_file, NULL);
1662 err = 0;
1664 out_dput:
1665 filp_close(victim, NULL);
1666 out:
1667 return err;
1670 #ifdef CONFIG_PROC_FS
1671 /* iterator */
1672 static void *swap_start(struct seq_file *swap, loff_t *pos)
1674 struct swap_info_struct *si;
1675 int type;
1676 loff_t l = *pos;
1678 mutex_lock(&swapon_mutex);
1680 if (!l)
1681 return SEQ_START_TOKEN;
1683 for (type = 0; type < nr_swapfiles; type++) {
1684 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1685 si = swap_info[type];
1686 if (!(si->flags & SWP_USED) || !si->swap_map)
1687 continue;
1688 if (!--l)
1689 return si;
1692 return NULL;
1695 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1697 struct swap_info_struct *si = v;
1698 int type;
1700 if (v == SEQ_START_TOKEN)
1701 type = 0;
1702 else
1703 type = si->type + 1;
1705 for (; type < nr_swapfiles; type++) {
1706 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1707 si = swap_info[type];
1708 if (!(si->flags & SWP_USED) || !si->swap_map)
1709 continue;
1710 ++*pos;
1711 return si;
1714 return NULL;
1717 static void swap_stop(struct seq_file *swap, void *v)
1719 mutex_unlock(&swapon_mutex);
1722 static int swap_show(struct seq_file *swap, void *v)
1724 struct swap_info_struct *si = v;
1725 struct file *file;
1726 int len;
1728 if (si == SEQ_START_TOKEN) {
1729 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1730 return 0;
1733 file = si->swap_file;
1734 len = seq_path(swap, &file->f_path, " \t\n\\");
1735 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1736 len < 40 ? 40 - len : 1, " ",
1737 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1738 "partition" : "file\t",
1739 si->pages << (PAGE_SHIFT - 10),
1740 si->inuse_pages << (PAGE_SHIFT - 10),
1741 si->prio);
1742 return 0;
1745 static const struct seq_operations swaps_op = {
1746 .start = swap_start,
1747 .next = swap_next,
1748 .stop = swap_stop,
1749 .show = swap_show
1752 static int swaps_open(struct inode *inode, struct file *file)
1754 return seq_open(file, &swaps_op);
1757 static const struct file_operations proc_swaps_operations = {
1758 .open = swaps_open,
1759 .read = seq_read,
1760 .llseek = seq_lseek,
1761 .release = seq_release,
1764 static int __init procswaps_init(void)
1766 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1767 return 0;
1769 __initcall(procswaps_init);
1770 #endif /* CONFIG_PROC_FS */
1772 #ifdef MAX_SWAPFILES_CHECK
1773 static int __init max_swapfiles_check(void)
1775 MAX_SWAPFILES_CHECK();
1776 return 0;
1778 late_initcall(max_swapfiles_check);
1779 #endif
1782 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1784 * The swapon system call
1786 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1788 struct swap_info_struct *p;
1789 char *name = NULL;
1790 struct block_device *bdev = NULL;
1791 struct file *swap_file = NULL;
1792 struct address_space *mapping;
1793 unsigned int type;
1794 int i, prev;
1795 int error;
1796 union swap_header *swap_header;
1797 unsigned int nr_good_pages;
1798 int nr_extents = 0;
1799 sector_t span;
1800 unsigned long maxpages;
1801 unsigned long swapfilepages;
1802 unsigned char *swap_map = NULL;
1803 struct page *page = NULL;
1804 struct inode *inode = NULL;
1805 int did_down = 0;
1807 if (!capable(CAP_SYS_ADMIN))
1808 return -EPERM;
1810 p = kzalloc(sizeof(*p), GFP_KERNEL);
1811 if (!p)
1812 return -ENOMEM;
1814 spin_lock(&swap_lock);
1815 for (type = 0; type < nr_swapfiles; type++) {
1816 if (!(swap_info[type]->flags & SWP_USED))
1817 break;
1819 error = -EPERM;
1820 if (type >= MAX_SWAPFILES) {
1821 spin_unlock(&swap_lock);
1822 kfree(p);
1823 goto out;
1825 if (type >= nr_swapfiles) {
1826 p->type = type;
1827 swap_info[type] = p;
1829 * Write swap_info[type] before nr_swapfiles, in case a
1830 * racing procfs swap_start() or swap_next() is reading them.
1831 * (We never shrink nr_swapfiles, we never free this entry.)
1833 smp_wmb();
1834 nr_swapfiles++;
1835 } else {
1836 kfree(p);
1837 p = swap_info[type];
1839 * Do not memset this entry: a racing procfs swap_next()
1840 * would be relying on p->type to remain valid.
1843 INIT_LIST_HEAD(&p->first_swap_extent.list);
1844 p->flags = SWP_USED;
1845 p->next = -1;
1846 spin_unlock(&swap_lock);
1848 name = getname(specialfile);
1849 error = PTR_ERR(name);
1850 if (IS_ERR(name)) {
1851 name = NULL;
1852 goto bad_swap_2;
1854 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1855 error = PTR_ERR(swap_file);
1856 if (IS_ERR(swap_file)) {
1857 swap_file = NULL;
1858 goto bad_swap_2;
1861 p->swap_file = swap_file;
1862 mapping = swap_file->f_mapping;
1863 inode = mapping->host;
1865 error = -EBUSY;
1866 for (i = 0; i < nr_swapfiles; i++) {
1867 struct swap_info_struct *q = swap_info[i];
1869 if (i == type || !q->swap_file)
1870 continue;
1871 if (mapping == q->swap_file->f_mapping)
1872 goto bad_swap;
1875 error = -EINVAL;
1876 if (S_ISBLK(inode->i_mode)) {
1877 bdev = I_BDEV(inode);
1878 error = bd_claim(bdev, sys_swapon);
1879 if (error < 0) {
1880 bdev = NULL;
1881 error = -EINVAL;
1882 goto bad_swap;
1884 p->old_block_size = block_size(bdev);
1885 error = set_blocksize(bdev, PAGE_SIZE);
1886 if (error < 0)
1887 goto bad_swap;
1888 p->bdev = bdev;
1889 } else if (S_ISREG(inode->i_mode)) {
1890 p->bdev = inode->i_sb->s_bdev;
1891 mutex_lock(&inode->i_mutex);
1892 did_down = 1;
1893 if (IS_SWAPFILE(inode)) {
1894 error = -EBUSY;
1895 goto bad_swap;
1897 } else {
1898 goto bad_swap;
1901 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1904 * Read the swap header.
1906 if (!mapping->a_ops->readpage) {
1907 error = -EINVAL;
1908 goto bad_swap;
1910 page = read_mapping_page(mapping, 0, swap_file);
1911 if (IS_ERR(page)) {
1912 error = PTR_ERR(page);
1913 goto bad_swap;
1915 swap_header = kmap(page);
1917 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1918 printk(KERN_ERR "Unable to find swap-space signature\n");
1919 error = -EINVAL;
1920 goto bad_swap;
1923 /* swap partition endianess hack... */
1924 if (swab32(swap_header->info.version) == 1) {
1925 swab32s(&swap_header->info.version);
1926 swab32s(&swap_header->info.last_page);
1927 swab32s(&swap_header->info.nr_badpages);
1928 for (i = 0; i < swap_header->info.nr_badpages; i++)
1929 swab32s(&swap_header->info.badpages[i]);
1931 /* Check the swap header's sub-version */
1932 if (swap_header->info.version != 1) {
1933 printk(KERN_WARNING
1934 "Unable to handle swap header version %d\n",
1935 swap_header->info.version);
1936 error = -EINVAL;
1937 goto bad_swap;
1940 p->lowest_bit = 1;
1941 p->cluster_next = 1;
1942 p->cluster_nr = 0;
1945 * Find out how many pages are allowed for a single swap
1946 * device. There are two limiting factors: 1) the number of
1947 * bits for the swap offset in the swp_entry_t type and
1948 * 2) the number of bits in the a swap pte as defined by
1949 * the different architectures. In order to find the
1950 * largest possible bit mask a swap entry with swap type 0
1951 * and swap offset ~0UL is created, encoded to a swap pte,
1952 * decoded to a swp_entry_t again and finally the swap
1953 * offset is extracted. This will mask all the bits from
1954 * the initial ~0UL mask that can't be encoded in either
1955 * the swp_entry_t or the architecture definition of a
1956 * swap pte.
1958 maxpages = swp_offset(pte_to_swp_entry(
1959 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1960 if (maxpages > swap_header->info.last_page) {
1961 maxpages = swap_header->info.last_page + 1;
1962 /* p->max is an unsigned int: don't overflow it */
1963 if ((unsigned int)maxpages == 0)
1964 maxpages = UINT_MAX;
1966 p->highest_bit = maxpages - 1;
1968 error = -EINVAL;
1969 if (!maxpages)
1970 goto bad_swap;
1971 if (swapfilepages && maxpages > swapfilepages) {
1972 printk(KERN_WARNING
1973 "Swap area shorter than signature indicates\n");
1974 goto bad_swap;
1976 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1977 goto bad_swap;
1978 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1979 goto bad_swap;
1981 /* OK, set up the swap map and apply the bad block list */
1982 swap_map = vmalloc(maxpages);
1983 if (!swap_map) {
1984 error = -ENOMEM;
1985 goto bad_swap;
1988 memset(swap_map, 0, maxpages);
1989 nr_good_pages = maxpages - 1; /* omit header page */
1991 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1992 unsigned int page_nr = swap_header->info.badpages[i];
1993 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
1994 error = -EINVAL;
1995 goto bad_swap;
1997 if (page_nr < maxpages) {
1998 swap_map[page_nr] = SWAP_MAP_BAD;
1999 nr_good_pages--;
2003 error = swap_cgroup_swapon(type, maxpages);
2004 if (error)
2005 goto bad_swap;
2007 if (nr_good_pages) {
2008 swap_map[0] = SWAP_MAP_BAD;
2009 p->max = maxpages;
2010 p->pages = nr_good_pages;
2011 nr_extents = setup_swap_extents(p, &span);
2012 if (nr_extents < 0) {
2013 error = nr_extents;
2014 goto bad_swap;
2016 nr_good_pages = p->pages;
2018 if (!nr_good_pages) {
2019 printk(KERN_WARNING "Empty swap-file\n");
2020 error = -EINVAL;
2021 goto bad_swap;
2024 if (p->bdev) {
2025 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2026 p->flags |= SWP_SOLIDSTATE;
2027 p->cluster_next = 1 + (random32() % p->highest_bit);
2029 if (discard_swap(p) == 0)
2030 p->flags |= SWP_DISCARDABLE;
2033 mutex_lock(&swapon_mutex);
2034 spin_lock(&swap_lock);
2035 if (swap_flags & SWAP_FLAG_PREFER)
2036 p->prio =
2037 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2038 else
2039 p->prio = --least_priority;
2040 p->swap_map = swap_map;
2041 p->flags |= SWP_WRITEOK;
2042 nr_swap_pages += nr_good_pages;
2043 total_swap_pages += nr_good_pages;
2045 printk(KERN_INFO "Adding %uk swap on %s. "
2046 "Priority:%d extents:%d across:%lluk %s%s\n",
2047 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2048 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2049 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2050 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2052 /* insert swap space into swap_list: */
2053 prev = -1;
2054 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2055 if (p->prio >= swap_info[i]->prio)
2056 break;
2057 prev = i;
2059 p->next = i;
2060 if (prev < 0)
2061 swap_list.head = swap_list.next = type;
2062 else
2063 swap_info[prev]->next = type;
2064 spin_unlock(&swap_lock);
2065 mutex_unlock(&swapon_mutex);
2066 error = 0;
2067 goto out;
2068 bad_swap:
2069 if (bdev) {
2070 set_blocksize(bdev, p->old_block_size);
2071 bd_release(bdev);
2073 destroy_swap_extents(p);
2074 swap_cgroup_swapoff(type);
2075 bad_swap_2:
2076 spin_lock(&swap_lock);
2077 p->swap_file = NULL;
2078 p->flags = 0;
2079 spin_unlock(&swap_lock);
2080 vfree(swap_map);
2081 if (swap_file)
2082 filp_close(swap_file, NULL);
2083 out:
2084 if (page && !IS_ERR(page)) {
2085 kunmap(page);
2086 page_cache_release(page);
2088 if (name)
2089 putname(name);
2090 if (did_down) {
2091 if (!error)
2092 inode->i_flags |= S_SWAPFILE;
2093 mutex_unlock(&inode->i_mutex);
2095 return error;
2098 void si_swapinfo(struct sysinfo *val)
2100 unsigned int type;
2101 unsigned long nr_to_be_unused = 0;
2103 spin_lock(&swap_lock);
2104 for (type = 0; type < nr_swapfiles; type++) {
2105 struct swap_info_struct *si = swap_info[type];
2107 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2108 nr_to_be_unused += si->inuse_pages;
2110 val->freeswap = nr_swap_pages + nr_to_be_unused;
2111 val->totalswap = total_swap_pages + nr_to_be_unused;
2112 spin_unlock(&swap_lock);
2116 * Verify that a swap entry is valid and increment its swap map count.
2118 * Returns error code in following case.
2119 * - success -> 0
2120 * - swp_entry is invalid -> EINVAL
2121 * - swp_entry is migration entry -> EINVAL
2122 * - swap-cache reference is requested but there is already one. -> EEXIST
2123 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2124 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2126 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2128 struct swap_info_struct *p;
2129 unsigned long offset, type;
2130 unsigned char count;
2131 unsigned char has_cache;
2132 int err = -EINVAL;
2134 if (non_swap_entry(entry))
2135 goto out;
2137 type = swp_type(entry);
2138 if (type >= nr_swapfiles)
2139 goto bad_file;
2140 p = swap_info[type];
2141 offset = swp_offset(entry);
2143 spin_lock(&swap_lock);
2144 if (unlikely(offset >= p->max))
2145 goto unlock_out;
2147 count = p->swap_map[offset];
2148 has_cache = count & SWAP_HAS_CACHE;
2149 count &= ~SWAP_HAS_CACHE;
2150 err = 0;
2152 if (usage == SWAP_HAS_CACHE) {
2154 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2155 if (!has_cache && count)
2156 has_cache = SWAP_HAS_CACHE;
2157 else if (has_cache) /* someone else added cache */
2158 err = -EEXIST;
2159 else /* no users remaining */
2160 err = -ENOENT;
2162 } else if (count || has_cache) {
2164 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2165 count += usage;
2166 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2167 err = -EINVAL;
2168 else if (swap_count_continued(p, offset, count))
2169 count = COUNT_CONTINUED;
2170 else
2171 err = -ENOMEM;
2172 } else
2173 err = -ENOENT; /* unused swap entry */
2175 p->swap_map[offset] = count | has_cache;
2177 unlock_out:
2178 spin_unlock(&swap_lock);
2179 out:
2180 return err;
2182 bad_file:
2183 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2184 goto out;
2188 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2189 * (in which case its reference count is never incremented).
2191 void swap_shmem_alloc(swp_entry_t entry)
2193 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2197 * Increase reference count of swap entry by 1.
2198 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2199 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2200 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2201 * might occur if a page table entry has got corrupted.
2203 int swap_duplicate(swp_entry_t entry)
2205 int err = 0;
2207 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2208 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2209 return err;
2213 * @entry: swap entry for which we allocate swap cache.
2215 * Called when allocating swap cache for existing swap entry,
2216 * This can return error codes. Returns 0 at success.
2217 * -EBUSY means there is a swap cache.
2218 * Note: return code is different from swap_duplicate().
2220 int swapcache_prepare(swp_entry_t entry)
2222 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2226 * swap_lock prevents swap_map being freed. Don't grab an extra
2227 * reference on the swaphandle, it doesn't matter if it becomes unused.
2229 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2231 struct swap_info_struct *si;
2232 int our_page_cluster = page_cluster;
2233 pgoff_t target, toff;
2234 pgoff_t base, end;
2235 int nr_pages = 0;
2237 if (!our_page_cluster) /* no readahead */
2238 return 0;
2240 si = swap_info[swp_type(entry)];
2241 target = swp_offset(entry);
2242 base = (target >> our_page_cluster) << our_page_cluster;
2243 end = base + (1 << our_page_cluster);
2244 if (!base) /* first page is swap header */
2245 base++;
2247 spin_lock(&swap_lock);
2248 if (end > si->max) /* don't go beyond end of map */
2249 end = si->max;
2251 /* Count contiguous allocated slots above our target */
2252 for (toff = target; ++toff < end; nr_pages++) {
2253 /* Don't read in free or bad pages */
2254 if (!si->swap_map[toff])
2255 break;
2256 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2257 break;
2259 /* Count contiguous allocated slots below our target */
2260 for (toff = target; --toff >= base; nr_pages++) {
2261 /* Don't read in free or bad pages */
2262 if (!si->swap_map[toff])
2263 break;
2264 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2265 break;
2267 spin_unlock(&swap_lock);
2270 * Indicate starting offset, and return number of pages to get:
2271 * if only 1, say 0, since there's then no readahead to be done.
2273 *offset = ++toff;
2274 return nr_pages? ++nr_pages: 0;
2278 * add_swap_count_continuation - called when a swap count is duplicated
2279 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2280 * page of the original vmalloc'ed swap_map, to hold the continuation count
2281 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2282 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2284 * These continuation pages are seldom referenced: the common paths all work
2285 * on the original swap_map, only referring to a continuation page when the
2286 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2288 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2289 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2290 * can be called after dropping locks.
2292 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2294 struct swap_info_struct *si;
2295 struct page *head;
2296 struct page *page;
2297 struct page *list_page;
2298 pgoff_t offset;
2299 unsigned char count;
2302 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2303 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2305 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2307 si = swap_info_get(entry);
2308 if (!si) {
2310 * An acceptable race has occurred since the failing
2311 * __swap_duplicate(): the swap entry has been freed,
2312 * perhaps even the whole swap_map cleared for swapoff.
2314 goto outer;
2317 offset = swp_offset(entry);
2318 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2320 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2322 * The higher the swap count, the more likely it is that tasks
2323 * will race to add swap count continuation: we need to avoid
2324 * over-provisioning.
2326 goto out;
2329 if (!page) {
2330 spin_unlock(&swap_lock);
2331 return -ENOMEM;
2335 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2336 * no architecture is using highmem pages for kernel pagetables: so it
2337 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2339 head = vmalloc_to_page(si->swap_map + offset);
2340 offset &= ~PAGE_MASK;
2343 * Page allocation does not initialize the page's lru field,
2344 * but it does always reset its private field.
2346 if (!page_private(head)) {
2347 BUG_ON(count & COUNT_CONTINUED);
2348 INIT_LIST_HEAD(&head->lru);
2349 set_page_private(head, SWP_CONTINUED);
2350 si->flags |= SWP_CONTINUED;
2353 list_for_each_entry(list_page, &head->lru, lru) {
2354 unsigned char *map;
2357 * If the previous map said no continuation, but we've found
2358 * a continuation page, free our allocation and use this one.
2360 if (!(count & COUNT_CONTINUED))
2361 goto out;
2363 map = kmap_atomic(list_page, KM_USER0) + offset;
2364 count = *map;
2365 kunmap_atomic(map, KM_USER0);
2368 * If this continuation count now has some space in it,
2369 * free our allocation and use this one.
2371 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2372 goto out;
2375 list_add_tail(&page->lru, &head->lru);
2376 page = NULL; /* now it's attached, don't free it */
2377 out:
2378 spin_unlock(&swap_lock);
2379 outer:
2380 if (page)
2381 __free_page(page);
2382 return 0;
2386 * swap_count_continued - when the original swap_map count is incremented
2387 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2388 * into, carry if so, or else fail until a new continuation page is allocated;
2389 * when the original swap_map count is decremented from 0 with continuation,
2390 * borrow from the continuation and report whether it still holds more.
2391 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2393 static bool swap_count_continued(struct swap_info_struct *si,
2394 pgoff_t offset, unsigned char count)
2396 struct page *head;
2397 struct page *page;
2398 unsigned char *map;
2400 head = vmalloc_to_page(si->swap_map + offset);
2401 if (page_private(head) != SWP_CONTINUED) {
2402 BUG_ON(count & COUNT_CONTINUED);
2403 return false; /* need to add count continuation */
2406 offset &= ~PAGE_MASK;
2407 page = list_entry(head->lru.next, struct page, lru);
2408 map = kmap_atomic(page, KM_USER0) + offset;
2410 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2411 goto init_map; /* jump over SWAP_CONT_MAX checks */
2413 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2415 * Think of how you add 1 to 999
2417 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2418 kunmap_atomic(map, KM_USER0);
2419 page = list_entry(page->lru.next, struct page, lru);
2420 BUG_ON(page == head);
2421 map = kmap_atomic(page, KM_USER0) + offset;
2423 if (*map == SWAP_CONT_MAX) {
2424 kunmap_atomic(map, KM_USER0);
2425 page = list_entry(page->lru.next, struct page, lru);
2426 if (page == head)
2427 return false; /* add count continuation */
2428 map = kmap_atomic(page, KM_USER0) + offset;
2429 init_map: *map = 0; /* we didn't zero the page */
2431 *map += 1;
2432 kunmap_atomic(map, KM_USER0);
2433 page = list_entry(page->lru.prev, struct page, lru);
2434 while (page != head) {
2435 map = kmap_atomic(page, KM_USER0) + offset;
2436 *map = COUNT_CONTINUED;
2437 kunmap_atomic(map, KM_USER0);
2438 page = list_entry(page->lru.prev, struct page, lru);
2440 return true; /* incremented */
2442 } else { /* decrementing */
2444 * Think of how you subtract 1 from 1000
2446 BUG_ON(count != COUNT_CONTINUED);
2447 while (*map == COUNT_CONTINUED) {
2448 kunmap_atomic(map, KM_USER0);
2449 page = list_entry(page->lru.next, struct page, lru);
2450 BUG_ON(page == head);
2451 map = kmap_atomic(page, KM_USER0) + offset;
2453 BUG_ON(*map == 0);
2454 *map -= 1;
2455 if (*map == 0)
2456 count = 0;
2457 kunmap_atomic(map, KM_USER0);
2458 page = list_entry(page->lru.prev, struct page, lru);
2459 while (page != head) {
2460 map = kmap_atomic(page, KM_USER0) + offset;
2461 *map = SWAP_CONT_MAX | count;
2462 count = COUNT_CONTINUED;
2463 kunmap_atomic(map, KM_USER0);
2464 page = list_entry(page->lru.prev, struct page, lru);
2466 return count == COUNT_CONTINUED;
2471 * free_swap_count_continuations - swapoff free all the continuation pages
2472 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2474 static void free_swap_count_continuations(struct swap_info_struct *si)
2476 pgoff_t offset;
2478 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2479 struct page *head;
2480 head = vmalloc_to_page(si->swap_map + offset);
2481 if (page_private(head)) {
2482 struct list_head *this, *next;
2483 list_for_each_safe(this, next, &head->lru) {
2484 struct page *page;
2485 page = list_entry(this, struct page, lru);
2486 list_del(this);
2487 __free_page(page);