ACPI: thinkpad-acpi: preserve radio state across shutdown
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / migrate.c
blob96178f4c1215c4ba4f16ec696fa77f20568b004c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
35 #include "internal.h"
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 * Isolate one page from the LRU lists. If successful put it onto
41 * the indicated list with elevated page count.
43 * Result:
44 * -EBUSY: page not on LRU list
45 * 0: page removed from LRU list and added to the specified list.
47 int isolate_lru_page(struct page *page, struct list_head *pagelist)
49 int ret = -EBUSY;
51 if (PageLRU(page)) {
52 struct zone *zone = page_zone(page);
54 spin_lock_irq(&zone->lru_lock);
55 if (PageLRU(page) && get_page_unless_zero(page)) {
56 ret = 0;
57 ClearPageLRU(page);
58 if (PageActive(page))
59 del_page_from_active_list(zone, page);
60 else
61 del_page_from_inactive_list(zone, page);
62 list_add_tail(&page->lru, pagelist);
64 spin_unlock_irq(&zone->lru_lock);
66 return ret;
70 * migrate_prep() needs to be called before we start compiling a list of pages
71 * to be migrated using isolate_lru_page().
73 int migrate_prep(void)
76 * Clear the LRU lists so pages can be isolated.
77 * Note that pages may be moved off the LRU after we have
78 * drained them. Those pages will fail to migrate like other
79 * pages that may be busy.
81 lru_add_drain_all();
83 return 0;
86 static inline void move_to_lru(struct page *page)
88 if (PageActive(page)) {
90 * lru_cache_add_active checks that
91 * the PG_active bit is off.
93 ClearPageActive(page);
94 lru_cache_add_active(page);
95 } else {
96 lru_cache_add(page);
98 put_page(page);
102 * Add isolated pages on the list back to the LRU.
104 * returns the number of pages put back.
106 int putback_lru_pages(struct list_head *l)
108 struct page *page;
109 struct page *page2;
110 int count = 0;
112 list_for_each_entry_safe(page, page2, l, lru) {
113 list_del(&page->lru);
114 move_to_lru(page);
115 count++;
117 return count;
121 * Restore a potential migration pte to a working pte entry
123 static void remove_migration_pte(struct vm_area_struct *vma,
124 struct page *old, struct page *new)
126 struct mm_struct *mm = vma->vm_mm;
127 swp_entry_t entry;
128 pgd_t *pgd;
129 pud_t *pud;
130 pmd_t *pmd;
131 pte_t *ptep, pte;
132 spinlock_t *ptl;
133 unsigned long addr = page_address_in_vma(new, vma);
135 if (addr == -EFAULT)
136 return;
138 pgd = pgd_offset(mm, addr);
139 if (!pgd_present(*pgd))
140 return;
142 pud = pud_offset(pgd, addr);
143 if (!pud_present(*pud))
144 return;
146 pmd = pmd_offset(pud, addr);
147 if (!pmd_present(*pmd))
148 return;
150 ptep = pte_offset_map(pmd, addr);
152 if (!is_swap_pte(*ptep)) {
153 pte_unmap(ptep);
154 return;
157 ptl = pte_lockptr(mm, pmd);
158 spin_lock(ptl);
159 pte = *ptep;
160 if (!is_swap_pte(pte))
161 goto out;
163 entry = pte_to_swp_entry(pte);
165 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
166 goto out;
169 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
170 * Failure is not an option here: we're now expected to remove every
171 * migration pte, and will cause crashes otherwise. Normally this
172 * is not an issue: mem_cgroup_prepare_migration bumped up the old
173 * page_cgroup count for safety, that's now attached to the new page,
174 * so this charge should just be another incrementation of the count,
175 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
176 * there's been a force_empty, those reference counts may no longer
177 * be reliable, and this charge can actually fail: oh well, we don't
178 * make the situation any worse by proceeding as if it had succeeded.
180 mem_cgroup_charge(new, mm, GFP_ATOMIC);
182 get_page(new);
183 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
184 if (is_write_migration_entry(entry))
185 pte = pte_mkwrite(pte);
186 flush_cache_page(vma, addr, pte_pfn(pte));
187 set_pte_at(mm, addr, ptep, pte);
189 if (PageAnon(new))
190 page_add_anon_rmap(new, vma, addr);
191 else
192 page_add_file_rmap(new);
194 /* No need to invalidate - it was non-present before */
195 update_mmu_cache(vma, addr, pte);
197 out:
198 pte_unmap_unlock(ptep, ptl);
202 * Note that remove_file_migration_ptes will only work on regular mappings,
203 * Nonlinear mappings do not use migration entries.
205 static void remove_file_migration_ptes(struct page *old, struct page *new)
207 struct vm_area_struct *vma;
208 struct address_space *mapping = page_mapping(new);
209 struct prio_tree_iter iter;
210 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
212 if (!mapping)
213 return;
215 spin_lock(&mapping->i_mmap_lock);
217 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
218 remove_migration_pte(vma, old, new);
220 spin_unlock(&mapping->i_mmap_lock);
224 * Must hold mmap_sem lock on at least one of the vmas containing
225 * the page so that the anon_vma cannot vanish.
227 static void remove_anon_migration_ptes(struct page *old, struct page *new)
229 struct anon_vma *anon_vma;
230 struct vm_area_struct *vma;
231 unsigned long mapping;
233 mapping = (unsigned long)new->mapping;
235 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
236 return;
239 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
241 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
242 spin_lock(&anon_vma->lock);
244 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
245 remove_migration_pte(vma, old, new);
247 spin_unlock(&anon_vma->lock);
251 * Get rid of all migration entries and replace them by
252 * references to the indicated page.
254 static void remove_migration_ptes(struct page *old, struct page *new)
256 if (PageAnon(new))
257 remove_anon_migration_ptes(old, new);
258 else
259 remove_file_migration_ptes(old, new);
263 * Something used the pte of a page under migration. We need to
264 * get to the page and wait until migration is finished.
265 * When we return from this function the fault will be retried.
267 * This function is called from do_swap_page().
269 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
270 unsigned long address)
272 pte_t *ptep, pte;
273 spinlock_t *ptl;
274 swp_entry_t entry;
275 struct page *page;
277 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
278 pte = *ptep;
279 if (!is_swap_pte(pte))
280 goto out;
282 entry = pte_to_swp_entry(pte);
283 if (!is_migration_entry(entry))
284 goto out;
286 page = migration_entry_to_page(entry);
289 * Once radix-tree replacement of page migration started, page_count
290 * *must* be zero. And, we don't want to call wait_on_page_locked()
291 * against a page without get_page().
292 * So, we use get_page_unless_zero(), here. Even failed, page fault
293 * will occur again.
295 if (!get_page_unless_zero(page))
296 goto out;
297 pte_unmap_unlock(ptep, ptl);
298 wait_on_page_locked(page);
299 put_page(page);
300 return;
301 out:
302 pte_unmap_unlock(ptep, ptl);
306 * Replace the page in the mapping.
308 * The number of remaining references must be:
309 * 1 for anonymous pages without a mapping
310 * 2 for pages with a mapping
311 * 3 for pages with a mapping and PagePrivate set.
313 static int migrate_page_move_mapping(struct address_space *mapping,
314 struct page *newpage, struct page *page)
316 int expected_count;
317 void **pslot;
319 if (!mapping) {
320 /* Anonymous page without mapping */
321 if (page_count(page) != 1)
322 return -EAGAIN;
323 return 0;
326 spin_lock_irq(&mapping->tree_lock);
328 pslot = radix_tree_lookup_slot(&mapping->page_tree,
329 page_index(page));
331 expected_count = 2 + !!PagePrivate(page);
332 if (page_count(page) != expected_count ||
333 (struct page *)radix_tree_deref_slot(pslot) != page) {
334 spin_unlock_irq(&mapping->tree_lock);
335 return -EAGAIN;
338 if (!page_freeze_refs(page, expected_count)) {
339 spin_unlock_irq(&mapping->tree_lock);
340 return -EAGAIN;
344 * Now we know that no one else is looking at the page.
346 get_page(newpage); /* add cache reference */
347 #ifdef CONFIG_SWAP
348 if (PageSwapCache(page)) {
349 SetPageSwapCache(newpage);
350 set_page_private(newpage, page_private(page));
352 #endif
354 radix_tree_replace_slot(pslot, newpage);
356 page_unfreeze_refs(page, expected_count);
358 * Drop cache reference from old page.
359 * We know this isn't the last reference.
361 __put_page(page);
364 * If moved to a different zone then also account
365 * the page for that zone. Other VM counters will be
366 * taken care of when we establish references to the
367 * new page and drop references to the old page.
369 * Note that anonymous pages are accounted for
370 * via NR_FILE_PAGES and NR_ANON_PAGES if they
371 * are mapped to swap space.
373 __dec_zone_page_state(page, NR_FILE_PAGES);
374 __inc_zone_page_state(newpage, NR_FILE_PAGES);
376 spin_unlock_irq(&mapping->tree_lock);
377 if (!PageSwapCache(newpage))
378 mem_cgroup_uncharge_cache_page(page);
380 return 0;
384 * Copy the page to its new location
386 static void migrate_page_copy(struct page *newpage, struct page *page)
388 copy_highpage(newpage, page);
390 if (PageError(page))
391 SetPageError(newpage);
392 if (PageReferenced(page))
393 SetPageReferenced(newpage);
394 if (PageUptodate(page))
395 SetPageUptodate(newpage);
396 if (PageActive(page))
397 SetPageActive(newpage);
398 if (PageChecked(page))
399 SetPageChecked(newpage);
400 if (PageMappedToDisk(page))
401 SetPageMappedToDisk(newpage);
403 if (PageDirty(page)) {
404 clear_page_dirty_for_io(page);
406 * Want to mark the page and the radix tree as dirty, and
407 * redo the accounting that clear_page_dirty_for_io undid,
408 * but we can't use set_page_dirty because that function
409 * is actually a signal that all of the page has become dirty.
410 * Wheras only part of our page may be dirty.
412 __set_page_dirty_nobuffers(newpage);
415 #ifdef CONFIG_SWAP
416 ClearPageSwapCache(page);
417 #endif
418 ClearPageActive(page);
419 ClearPagePrivate(page);
420 set_page_private(page, 0);
421 page->mapping = NULL;
424 * If any waiters have accumulated on the new page then
425 * wake them up.
427 if (PageWriteback(newpage))
428 end_page_writeback(newpage);
431 /************************************************************
432 * Migration functions
433 ***********************************************************/
435 /* Always fail migration. Used for mappings that are not movable */
436 int fail_migrate_page(struct address_space *mapping,
437 struct page *newpage, struct page *page)
439 return -EIO;
441 EXPORT_SYMBOL(fail_migrate_page);
444 * Common logic to directly migrate a single page suitable for
445 * pages that do not use PagePrivate.
447 * Pages are locked upon entry and exit.
449 int migrate_page(struct address_space *mapping,
450 struct page *newpage, struct page *page)
452 int rc;
454 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
456 rc = migrate_page_move_mapping(mapping, newpage, page);
458 if (rc)
459 return rc;
461 migrate_page_copy(newpage, page);
462 return 0;
464 EXPORT_SYMBOL(migrate_page);
466 #ifdef CONFIG_BLOCK
468 * Migration function for pages with buffers. This function can only be used
469 * if the underlying filesystem guarantees that no other references to "page"
470 * exist.
472 int buffer_migrate_page(struct address_space *mapping,
473 struct page *newpage, struct page *page)
475 struct buffer_head *bh, *head;
476 int rc;
478 if (!page_has_buffers(page))
479 return migrate_page(mapping, newpage, page);
481 head = page_buffers(page);
483 rc = migrate_page_move_mapping(mapping, newpage, page);
485 if (rc)
486 return rc;
488 bh = head;
489 do {
490 get_bh(bh);
491 lock_buffer(bh);
492 bh = bh->b_this_page;
494 } while (bh != head);
496 ClearPagePrivate(page);
497 set_page_private(newpage, page_private(page));
498 set_page_private(page, 0);
499 put_page(page);
500 get_page(newpage);
502 bh = head;
503 do {
504 set_bh_page(bh, newpage, bh_offset(bh));
505 bh = bh->b_this_page;
507 } while (bh != head);
509 SetPagePrivate(newpage);
511 migrate_page_copy(newpage, page);
513 bh = head;
514 do {
515 unlock_buffer(bh);
516 put_bh(bh);
517 bh = bh->b_this_page;
519 } while (bh != head);
521 return 0;
523 EXPORT_SYMBOL(buffer_migrate_page);
524 #endif
527 * Writeback a page to clean the dirty state
529 static int writeout(struct address_space *mapping, struct page *page)
531 struct writeback_control wbc = {
532 .sync_mode = WB_SYNC_NONE,
533 .nr_to_write = 1,
534 .range_start = 0,
535 .range_end = LLONG_MAX,
536 .nonblocking = 1,
537 .for_reclaim = 1
539 int rc;
541 if (!mapping->a_ops->writepage)
542 /* No write method for the address space */
543 return -EINVAL;
545 if (!clear_page_dirty_for_io(page))
546 /* Someone else already triggered a write */
547 return -EAGAIN;
550 * A dirty page may imply that the underlying filesystem has
551 * the page on some queue. So the page must be clean for
552 * migration. Writeout may mean we loose the lock and the
553 * page state is no longer what we checked for earlier.
554 * At this point we know that the migration attempt cannot
555 * be successful.
557 remove_migration_ptes(page, page);
559 rc = mapping->a_ops->writepage(page, &wbc);
560 if (rc < 0)
561 /* I/O Error writing */
562 return -EIO;
564 if (rc != AOP_WRITEPAGE_ACTIVATE)
565 /* unlocked. Relock */
566 lock_page(page);
568 return -EAGAIN;
572 * Default handling if a filesystem does not provide a migration function.
574 static int fallback_migrate_page(struct address_space *mapping,
575 struct page *newpage, struct page *page)
577 if (PageDirty(page))
578 return writeout(mapping, page);
581 * Buffers may be managed in a filesystem specific way.
582 * We must have no buffers or drop them.
584 if (PagePrivate(page) &&
585 !try_to_release_page(page, GFP_KERNEL))
586 return -EAGAIN;
588 return migrate_page(mapping, newpage, page);
592 * Move a page to a newly allocated page
593 * The page is locked and all ptes have been successfully removed.
595 * The new page will have replaced the old page if this function
596 * is successful.
598 static int move_to_new_page(struct page *newpage, struct page *page)
600 struct address_space *mapping;
601 int rc;
604 * Block others from accessing the page when we get around to
605 * establishing additional references. We are the only one
606 * holding a reference to the new page at this point.
608 if (!trylock_page(newpage))
609 BUG();
611 /* Prepare mapping for the new page.*/
612 newpage->index = page->index;
613 newpage->mapping = page->mapping;
615 mapping = page_mapping(page);
616 if (!mapping)
617 rc = migrate_page(mapping, newpage, page);
618 else if (mapping->a_ops->migratepage)
620 * Most pages have a mapping and most filesystems
621 * should provide a migration function. Anonymous
622 * pages are part of swap space which also has its
623 * own migration function. This is the most common
624 * path for page migration.
626 rc = mapping->a_ops->migratepage(mapping,
627 newpage, page);
628 else
629 rc = fallback_migrate_page(mapping, newpage, page);
631 if (!rc) {
632 remove_migration_ptes(page, newpage);
633 } else
634 newpage->mapping = NULL;
636 unlock_page(newpage);
638 return rc;
642 * Obtain the lock on page, remove all ptes and migrate the page
643 * to the newly allocated page in newpage.
645 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
646 struct page *page, int force)
648 int rc = 0;
649 int *result = NULL;
650 struct page *newpage = get_new_page(page, private, &result);
651 int rcu_locked = 0;
652 int charge = 0;
654 if (!newpage)
655 return -ENOMEM;
657 if (page_count(page) == 1)
658 /* page was freed from under us. So we are done. */
659 goto move_newpage;
661 charge = mem_cgroup_prepare_migration(page, newpage);
662 if (charge == -ENOMEM) {
663 rc = -ENOMEM;
664 goto move_newpage;
666 /* prepare cgroup just returns 0 or -ENOMEM */
667 BUG_ON(charge);
669 rc = -EAGAIN;
670 if (!trylock_page(page)) {
671 if (!force)
672 goto move_newpage;
673 lock_page(page);
676 if (PageWriteback(page)) {
677 if (!force)
678 goto unlock;
679 wait_on_page_writeback(page);
682 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
683 * we cannot notice that anon_vma is freed while we migrates a page.
684 * This rcu_read_lock() delays freeing anon_vma pointer until the end
685 * of migration. File cache pages are no problem because of page_lock()
686 * File Caches may use write_page() or lock_page() in migration, then,
687 * just care Anon page here.
689 if (PageAnon(page)) {
690 rcu_read_lock();
691 rcu_locked = 1;
695 * Corner case handling:
696 * 1. When a new swap-cache page is read into, it is added to the LRU
697 * and treated as swapcache but it has no rmap yet.
698 * Calling try_to_unmap() against a page->mapping==NULL page will
699 * trigger a BUG. So handle it here.
700 * 2. An orphaned page (see truncate_complete_page) might have
701 * fs-private metadata. The page can be picked up due to memory
702 * offlining. Everywhere else except page reclaim, the page is
703 * invisible to the vm, so the page can not be migrated. So try to
704 * free the metadata, so the page can be freed.
706 if (!page->mapping) {
707 if (!PageAnon(page) && PagePrivate(page)) {
709 * Go direct to try_to_free_buffers() here because
710 * a) that's what try_to_release_page() would do anyway
711 * b) we may be under rcu_read_lock() here, so we can't
712 * use GFP_KERNEL which is what try_to_release_page()
713 * needs to be effective.
715 try_to_free_buffers(page);
717 goto rcu_unlock;
720 /* Establish migration ptes or remove ptes */
721 try_to_unmap(page, 1);
723 if (!page_mapped(page))
724 rc = move_to_new_page(newpage, page);
726 if (rc)
727 remove_migration_ptes(page, page);
728 rcu_unlock:
729 if (rcu_locked)
730 rcu_read_unlock();
732 unlock:
734 unlock_page(page);
736 if (rc != -EAGAIN) {
738 * A page that has been migrated has all references
739 * removed and will be freed. A page that has not been
740 * migrated will have kepts its references and be
741 * restored.
743 list_del(&page->lru);
744 move_to_lru(page);
747 move_newpage:
748 if (!charge)
749 mem_cgroup_end_migration(newpage);
751 * Move the new page to the LRU. If migration was not successful
752 * then this will free the page.
754 move_to_lru(newpage);
755 if (result) {
756 if (rc)
757 *result = rc;
758 else
759 *result = page_to_nid(newpage);
761 return rc;
765 * migrate_pages
767 * The function takes one list of pages to migrate and a function
768 * that determines from the page to be migrated and the private data
769 * the target of the move and allocates the page.
771 * The function returns after 10 attempts or if no pages
772 * are movable anymore because to has become empty
773 * or no retryable pages exist anymore. All pages will be
774 * returned to the LRU or freed.
776 * Return: Number of pages not migrated or error code.
778 int migrate_pages(struct list_head *from,
779 new_page_t get_new_page, unsigned long private)
781 int retry = 1;
782 int nr_failed = 0;
783 int pass = 0;
784 struct page *page;
785 struct page *page2;
786 int swapwrite = current->flags & PF_SWAPWRITE;
787 int rc;
789 if (!swapwrite)
790 current->flags |= PF_SWAPWRITE;
792 for(pass = 0; pass < 10 && retry; pass++) {
793 retry = 0;
795 list_for_each_entry_safe(page, page2, from, lru) {
796 cond_resched();
798 rc = unmap_and_move(get_new_page, private,
799 page, pass > 2);
801 switch(rc) {
802 case -ENOMEM:
803 goto out;
804 case -EAGAIN:
805 retry++;
806 break;
807 case 0:
808 break;
809 default:
810 /* Permanent failure */
811 nr_failed++;
812 break;
816 rc = 0;
817 out:
818 if (!swapwrite)
819 current->flags &= ~PF_SWAPWRITE;
821 putback_lru_pages(from);
823 if (rc)
824 return rc;
826 return nr_failed + retry;
829 #ifdef CONFIG_NUMA
831 * Move a list of individual pages
833 struct page_to_node {
834 unsigned long addr;
835 struct page *page;
836 int node;
837 int status;
840 static struct page *new_page_node(struct page *p, unsigned long private,
841 int **result)
843 struct page_to_node *pm = (struct page_to_node *)private;
845 while (pm->node != MAX_NUMNODES && pm->page != p)
846 pm++;
848 if (pm->node == MAX_NUMNODES)
849 return NULL;
851 *result = &pm->status;
853 return alloc_pages_node(pm->node,
854 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
858 * Move a set of pages as indicated in the pm array. The addr
859 * field must be set to the virtual address of the page to be moved
860 * and the node number must contain a valid target node.
862 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
863 int migrate_all)
865 int err;
866 struct page_to_node *pp;
867 LIST_HEAD(pagelist);
869 down_read(&mm->mmap_sem);
872 * Build a list of pages to migrate
874 migrate_prep();
875 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
876 struct vm_area_struct *vma;
877 struct page *page;
880 * A valid page pointer that will not match any of the
881 * pages that will be moved.
883 pp->page = ZERO_PAGE(0);
885 err = -EFAULT;
886 vma = find_vma(mm, pp->addr);
887 if (!vma || !vma_migratable(vma))
888 goto set_status;
890 page = follow_page(vma, pp->addr, FOLL_GET);
892 err = PTR_ERR(page);
893 if (IS_ERR(page))
894 goto set_status;
896 err = -ENOENT;
897 if (!page)
898 goto set_status;
900 if (PageReserved(page)) /* Check for zero page */
901 goto put_and_set;
903 pp->page = page;
904 err = page_to_nid(page);
906 if (err == pp->node)
908 * Node already in the right place
910 goto put_and_set;
912 err = -EACCES;
913 if (page_mapcount(page) > 1 &&
914 !migrate_all)
915 goto put_and_set;
917 err = isolate_lru_page(page, &pagelist);
918 put_and_set:
920 * Either remove the duplicate refcount from
921 * isolate_lru_page() or drop the page ref if it was
922 * not isolated.
924 put_page(page);
925 set_status:
926 pp->status = err;
929 if (!list_empty(&pagelist))
930 err = migrate_pages(&pagelist, new_page_node,
931 (unsigned long)pm);
932 else
933 err = -ENOENT;
935 up_read(&mm->mmap_sem);
936 return err;
940 * Determine the nodes of a list of pages. The addr in the pm array
941 * must have been set to the virtual address of which we want to determine
942 * the node number.
944 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
946 down_read(&mm->mmap_sem);
948 for ( ; pm->node != MAX_NUMNODES; pm++) {
949 struct vm_area_struct *vma;
950 struct page *page;
951 int err;
953 err = -EFAULT;
954 vma = find_vma(mm, pm->addr);
955 if (!vma)
956 goto set_status;
958 page = follow_page(vma, pm->addr, 0);
960 err = PTR_ERR(page);
961 if (IS_ERR(page))
962 goto set_status;
964 err = -ENOENT;
965 /* Use PageReserved to check for zero page */
966 if (!page || PageReserved(page))
967 goto set_status;
969 err = page_to_nid(page);
970 set_status:
971 pm->status = err;
974 up_read(&mm->mmap_sem);
975 return 0;
979 * Move a list of pages in the address space of the currently executing
980 * process.
982 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
983 const void __user * __user *, pages,
984 const int __user *, nodes,
985 int __user *, status, int, flags)
987 int err = 0;
988 int i;
989 struct task_struct *task;
990 nodemask_t task_nodes;
991 struct mm_struct *mm;
992 struct page_to_node *pm = NULL;
994 /* Check flags */
995 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
996 return -EINVAL;
998 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
999 return -EPERM;
1001 /* Find the mm_struct */
1002 read_lock(&tasklist_lock);
1003 task = pid ? find_task_by_vpid(pid) : current;
1004 if (!task) {
1005 read_unlock(&tasklist_lock);
1006 return -ESRCH;
1008 mm = get_task_mm(task);
1009 read_unlock(&tasklist_lock);
1011 if (!mm)
1012 return -EINVAL;
1015 * Check if this process has the right to modify the specified
1016 * process. The right exists if the process has administrative
1017 * capabilities, superuser privileges or the same
1018 * userid as the target process.
1020 if ((current->euid != task->suid) && (current->euid != task->uid) &&
1021 (current->uid != task->suid) && (current->uid != task->uid) &&
1022 !capable(CAP_SYS_NICE)) {
1023 err = -EPERM;
1024 goto out2;
1027 err = security_task_movememory(task);
1028 if (err)
1029 goto out2;
1032 task_nodes = cpuset_mems_allowed(task);
1034 /* Limit nr_pages so that the multiplication may not overflow */
1035 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
1036 err = -E2BIG;
1037 goto out2;
1040 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
1041 if (!pm) {
1042 err = -ENOMEM;
1043 goto out2;
1047 * Get parameters from user space and initialize the pm
1048 * array. Return various errors if the user did something wrong.
1050 for (i = 0; i < nr_pages; i++) {
1051 const void __user *p;
1053 err = -EFAULT;
1054 if (get_user(p, pages + i))
1055 goto out;
1057 pm[i].addr = (unsigned long)p;
1058 if (nodes) {
1059 int node;
1061 if (get_user(node, nodes + i))
1062 goto out;
1064 err = -ENODEV;
1065 if (node < 0 || node >= MAX_NUMNODES)
1066 goto out;
1068 if (!node_state(node, N_HIGH_MEMORY))
1069 goto out;
1071 err = -EACCES;
1072 if (!node_isset(node, task_nodes))
1073 goto out;
1075 pm[i].node = node;
1076 } else
1077 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
1079 /* End marker */
1080 pm[nr_pages].node = MAX_NUMNODES;
1082 if (nodes)
1083 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
1084 else
1085 err = do_pages_stat(mm, pm);
1087 if (err >= 0)
1088 /* Return status information */
1089 for (i = 0; i < nr_pages; i++)
1090 if (put_user(pm[i].status, status + i))
1091 err = -EFAULT;
1093 out:
1094 vfree(pm);
1095 out2:
1096 mmput(mm);
1097 return err;
1101 * Call migration functions in the vma_ops that may prepare
1102 * memory in a vm for migration. migration functions may perform
1103 * the migration for vmas that do not have an underlying page struct.
1105 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1106 const nodemask_t *from, unsigned long flags)
1108 struct vm_area_struct *vma;
1109 int err = 0;
1111 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1112 if (vma->vm_ops && vma->vm_ops->migrate) {
1113 err = vma->vm_ops->migrate(vma, to, from, flags);
1114 if (err)
1115 break;
1118 return err;
1120 #endif