ACPI: thinkpad-acpi: preserve radio state across shutdown
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sys.c
blob10a263bf1b21c52420e9b5fca6cfd24ddf70e692
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
37 #include <linux/compat.h>
38 #include <linux/syscalls.h>
39 #include <linux/kprobes.h>
40 #include <linux/user_namespace.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/unistd.h>
46 #ifndef SET_UNALIGN_CTL
47 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
48 #endif
49 #ifndef GET_UNALIGN_CTL
50 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
51 #endif
52 #ifndef SET_FPEMU_CTL
53 # define SET_FPEMU_CTL(a,b) (-EINVAL)
54 #endif
55 #ifndef GET_FPEMU_CTL
56 # define GET_FPEMU_CTL(a,b) (-EINVAL)
57 #endif
58 #ifndef SET_FPEXC_CTL
59 # define SET_FPEXC_CTL(a,b) (-EINVAL)
60 #endif
61 #ifndef GET_FPEXC_CTL
62 # define GET_FPEXC_CTL(a,b) (-EINVAL)
63 #endif
64 #ifndef GET_ENDIAN
65 # define GET_ENDIAN(a,b) (-EINVAL)
66 #endif
67 #ifndef SET_ENDIAN
68 # define SET_ENDIAN(a,b) (-EINVAL)
69 #endif
70 #ifndef GET_TSC_CTL
71 # define GET_TSC_CTL(a) (-EINVAL)
72 #endif
73 #ifndef SET_TSC_CTL
74 # define SET_TSC_CTL(a) (-EINVAL)
75 #endif
78 * this is where the system-wide overflow UID and GID are defined, for
79 * architectures that now have 32-bit UID/GID but didn't in the past
82 int overflowuid = DEFAULT_OVERFLOWUID;
83 int overflowgid = DEFAULT_OVERFLOWGID;
85 #ifdef CONFIG_UID16
86 EXPORT_SYMBOL(overflowuid);
87 EXPORT_SYMBOL(overflowgid);
88 #endif
91 * the same as above, but for filesystems which can only store a 16-bit
92 * UID and GID. as such, this is needed on all architectures
95 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
96 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98 EXPORT_SYMBOL(fs_overflowuid);
99 EXPORT_SYMBOL(fs_overflowgid);
102 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
105 int C_A_D = 1;
106 struct pid *cad_pid;
107 EXPORT_SYMBOL(cad_pid);
110 * If set, this is used for preparing the system to power off.
113 void (*pm_power_off_prepare)(void);
115 static int set_one_prio(struct task_struct *p, int niceval, int error)
117 int no_nice;
119 if (p->uid != current->euid &&
120 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
121 error = -EPERM;
122 goto out;
124 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
125 error = -EACCES;
126 goto out;
128 no_nice = security_task_setnice(p, niceval);
129 if (no_nice) {
130 error = no_nice;
131 goto out;
133 if (error == -ESRCH)
134 error = 0;
135 set_user_nice(p, niceval);
136 out:
137 return error;
140 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
142 struct task_struct *g, *p;
143 struct user_struct *user;
144 int error = -EINVAL;
145 struct pid *pgrp;
147 if (which > PRIO_USER || which < PRIO_PROCESS)
148 goto out;
150 /* normalize: avoid signed division (rounding problems) */
151 error = -ESRCH;
152 if (niceval < -20)
153 niceval = -20;
154 if (niceval > 19)
155 niceval = 19;
157 read_lock(&tasklist_lock);
158 switch (which) {
159 case PRIO_PROCESS:
160 if (who)
161 p = find_task_by_vpid(who);
162 else
163 p = current;
164 if (p)
165 error = set_one_prio(p, niceval, error);
166 break;
167 case PRIO_PGRP:
168 if (who)
169 pgrp = find_vpid(who);
170 else
171 pgrp = task_pgrp(current);
172 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
173 error = set_one_prio(p, niceval, error);
174 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
175 break;
176 case PRIO_USER:
177 user = current->user;
178 if (!who)
179 who = current->uid;
180 else
181 if ((who != current->uid) && !(user = find_user(who)))
182 goto out_unlock; /* No processes for this user */
184 do_each_thread(g, p)
185 if (p->uid == who)
186 error = set_one_prio(p, niceval, error);
187 while_each_thread(g, p);
188 if (who != current->uid)
189 free_uid(user); /* For find_user() */
190 break;
192 out_unlock:
193 read_unlock(&tasklist_lock);
194 out:
195 return error;
199 * Ugh. To avoid negative return values, "getpriority()" will
200 * not return the normal nice-value, but a negated value that
201 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
202 * to stay compatible.
204 SYSCALL_DEFINE2(getpriority, int, which, int, who)
206 struct task_struct *g, *p;
207 struct user_struct *user;
208 long niceval, retval = -ESRCH;
209 struct pid *pgrp;
211 if (which > PRIO_USER || which < PRIO_PROCESS)
212 return -EINVAL;
214 read_lock(&tasklist_lock);
215 switch (which) {
216 case PRIO_PROCESS:
217 if (who)
218 p = find_task_by_vpid(who);
219 else
220 p = current;
221 if (p) {
222 niceval = 20 - task_nice(p);
223 if (niceval > retval)
224 retval = niceval;
226 break;
227 case PRIO_PGRP:
228 if (who)
229 pgrp = find_vpid(who);
230 else
231 pgrp = task_pgrp(current);
232 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
233 niceval = 20 - task_nice(p);
234 if (niceval > retval)
235 retval = niceval;
236 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
237 break;
238 case PRIO_USER:
239 user = current->user;
240 if (!who)
241 who = current->uid;
242 else
243 if ((who != current->uid) && !(user = find_user(who)))
244 goto out_unlock; /* No processes for this user */
246 do_each_thread(g, p)
247 if (p->uid == who) {
248 niceval = 20 - task_nice(p);
249 if (niceval > retval)
250 retval = niceval;
252 while_each_thread(g, p);
253 if (who != current->uid)
254 free_uid(user); /* for find_user() */
255 break;
257 out_unlock:
258 read_unlock(&tasklist_lock);
260 return retval;
264 * emergency_restart - reboot the system
266 * Without shutting down any hardware or taking any locks
267 * reboot the system. This is called when we know we are in
268 * trouble so this is our best effort to reboot. This is
269 * safe to call in interrupt context.
271 void emergency_restart(void)
273 machine_emergency_restart();
275 EXPORT_SYMBOL_GPL(emergency_restart);
277 void kernel_restart_prepare(char *cmd)
279 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
280 system_state = SYSTEM_RESTART;
281 device_shutdown();
282 sysdev_shutdown();
286 * kernel_restart - reboot the system
287 * @cmd: pointer to buffer containing command to execute for restart
288 * or %NULL
290 * Shutdown everything and perform a clean reboot.
291 * This is not safe to call in interrupt context.
293 void kernel_restart(char *cmd)
295 kernel_restart_prepare(cmd);
296 if (!cmd)
297 printk(KERN_EMERG "Restarting system.\n");
298 else
299 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
300 machine_restart(cmd);
302 EXPORT_SYMBOL_GPL(kernel_restart);
304 static void kernel_shutdown_prepare(enum system_states state)
306 blocking_notifier_call_chain(&reboot_notifier_list,
307 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
308 system_state = state;
309 device_shutdown();
312 * kernel_halt - halt the system
314 * Shutdown everything and perform a clean system halt.
316 void kernel_halt(void)
318 kernel_shutdown_prepare(SYSTEM_HALT);
319 sysdev_shutdown();
320 printk(KERN_EMERG "System halted.\n");
321 machine_halt();
324 EXPORT_SYMBOL_GPL(kernel_halt);
327 * kernel_power_off - power_off the system
329 * Shutdown everything and perform a clean system power_off.
331 void kernel_power_off(void)
333 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
334 if (pm_power_off_prepare)
335 pm_power_off_prepare();
336 disable_nonboot_cpus();
337 sysdev_shutdown();
338 printk(KERN_EMERG "Power down.\n");
339 machine_power_off();
341 EXPORT_SYMBOL_GPL(kernel_power_off);
343 * Reboot system call: for obvious reasons only root may call it,
344 * and even root needs to set up some magic numbers in the registers
345 * so that some mistake won't make this reboot the whole machine.
346 * You can also set the meaning of the ctrl-alt-del-key here.
348 * reboot doesn't sync: do that yourself before calling this.
350 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
351 void __user *, arg)
353 char buffer[256];
355 /* We only trust the superuser with rebooting the system. */
356 if (!capable(CAP_SYS_BOOT))
357 return -EPERM;
359 /* For safety, we require "magic" arguments. */
360 if (magic1 != LINUX_REBOOT_MAGIC1 ||
361 (magic2 != LINUX_REBOOT_MAGIC2 &&
362 magic2 != LINUX_REBOOT_MAGIC2A &&
363 magic2 != LINUX_REBOOT_MAGIC2B &&
364 magic2 != LINUX_REBOOT_MAGIC2C))
365 return -EINVAL;
367 /* Instead of trying to make the power_off code look like
368 * halt when pm_power_off is not set do it the easy way.
370 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
371 cmd = LINUX_REBOOT_CMD_HALT;
373 lock_kernel();
374 switch (cmd) {
375 case LINUX_REBOOT_CMD_RESTART:
376 kernel_restart(NULL);
377 break;
379 case LINUX_REBOOT_CMD_CAD_ON:
380 C_A_D = 1;
381 break;
383 case LINUX_REBOOT_CMD_CAD_OFF:
384 C_A_D = 0;
385 break;
387 case LINUX_REBOOT_CMD_HALT:
388 kernel_halt();
389 unlock_kernel();
390 do_exit(0);
391 break;
393 case LINUX_REBOOT_CMD_POWER_OFF:
394 kernel_power_off();
395 unlock_kernel();
396 do_exit(0);
397 break;
399 case LINUX_REBOOT_CMD_RESTART2:
400 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
401 unlock_kernel();
402 return -EFAULT;
404 buffer[sizeof(buffer) - 1] = '\0';
406 kernel_restart(buffer);
407 break;
409 #ifdef CONFIG_KEXEC
410 case LINUX_REBOOT_CMD_KEXEC:
412 int ret;
413 ret = kernel_kexec();
414 unlock_kernel();
415 return ret;
417 #endif
419 #ifdef CONFIG_HIBERNATION
420 case LINUX_REBOOT_CMD_SW_SUSPEND:
422 int ret = hibernate();
423 unlock_kernel();
424 return ret;
426 #endif
428 default:
429 unlock_kernel();
430 return -EINVAL;
432 unlock_kernel();
433 return 0;
436 static void deferred_cad(struct work_struct *dummy)
438 kernel_restart(NULL);
442 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
443 * As it's called within an interrupt, it may NOT sync: the only choice
444 * is whether to reboot at once, or just ignore the ctrl-alt-del.
446 void ctrl_alt_del(void)
448 static DECLARE_WORK(cad_work, deferred_cad);
450 if (C_A_D)
451 schedule_work(&cad_work);
452 else
453 kill_cad_pid(SIGINT, 1);
457 * Unprivileged users may change the real gid to the effective gid
458 * or vice versa. (BSD-style)
460 * If you set the real gid at all, or set the effective gid to a value not
461 * equal to the real gid, then the saved gid is set to the new effective gid.
463 * This makes it possible for a setgid program to completely drop its
464 * privileges, which is often a useful assertion to make when you are doing
465 * a security audit over a program.
467 * The general idea is that a program which uses just setregid() will be
468 * 100% compatible with BSD. A program which uses just setgid() will be
469 * 100% compatible with POSIX with saved IDs.
471 * SMP: There are not races, the GIDs are checked only by filesystem
472 * operations (as far as semantic preservation is concerned).
474 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
476 int old_rgid = current->gid;
477 int old_egid = current->egid;
478 int new_rgid = old_rgid;
479 int new_egid = old_egid;
480 int retval;
482 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
483 if (retval)
484 return retval;
486 if (rgid != (gid_t) -1) {
487 if ((old_rgid == rgid) ||
488 (current->egid==rgid) ||
489 capable(CAP_SETGID))
490 new_rgid = rgid;
491 else
492 return -EPERM;
494 if (egid != (gid_t) -1) {
495 if ((old_rgid == egid) ||
496 (current->egid == egid) ||
497 (current->sgid == egid) ||
498 capable(CAP_SETGID))
499 new_egid = egid;
500 else
501 return -EPERM;
503 if (new_egid != old_egid) {
504 set_dumpable(current->mm, suid_dumpable);
505 smp_wmb();
507 if (rgid != (gid_t) -1 ||
508 (egid != (gid_t) -1 && egid != old_rgid))
509 current->sgid = new_egid;
510 current->fsgid = new_egid;
511 current->egid = new_egid;
512 current->gid = new_rgid;
513 key_fsgid_changed(current);
514 proc_id_connector(current, PROC_EVENT_GID);
515 return 0;
519 * setgid() is implemented like SysV w/ SAVED_IDS
521 * SMP: Same implicit races as above.
523 SYSCALL_DEFINE1(setgid, gid_t, gid)
525 int old_egid = current->egid;
526 int retval;
528 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
529 if (retval)
530 return retval;
532 if (capable(CAP_SETGID)) {
533 if (old_egid != gid) {
534 set_dumpable(current->mm, suid_dumpable);
535 smp_wmb();
537 current->gid = current->egid = current->sgid = current->fsgid = gid;
538 } else if ((gid == current->gid) || (gid == current->sgid)) {
539 if (old_egid != gid) {
540 set_dumpable(current->mm, suid_dumpable);
541 smp_wmb();
543 current->egid = current->fsgid = gid;
545 else
546 return -EPERM;
548 key_fsgid_changed(current);
549 proc_id_connector(current, PROC_EVENT_GID);
550 return 0;
553 static int set_user(uid_t new_ruid, int dumpclear)
555 struct user_struct *new_user;
557 new_user = alloc_uid(current->nsproxy->user_ns, new_ruid);
558 if (!new_user)
559 return -EAGAIN;
561 if (atomic_read(&new_user->processes) >=
562 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
563 new_user != current->nsproxy->user_ns->root_user) {
564 free_uid(new_user);
565 return -EAGAIN;
568 switch_uid(new_user);
570 if (dumpclear) {
571 set_dumpable(current->mm, suid_dumpable);
572 smp_wmb();
574 current->uid = new_ruid;
575 return 0;
579 * Unprivileged users may change the real uid to the effective uid
580 * or vice versa. (BSD-style)
582 * If you set the real uid at all, or set the effective uid to a value not
583 * equal to the real uid, then the saved uid is set to the new effective uid.
585 * This makes it possible for a setuid program to completely drop its
586 * privileges, which is often a useful assertion to make when you are doing
587 * a security audit over a program.
589 * The general idea is that a program which uses just setreuid() will be
590 * 100% compatible with BSD. A program which uses just setuid() will be
591 * 100% compatible with POSIX with saved IDs.
593 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
596 int retval;
598 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
599 if (retval)
600 return retval;
602 new_ruid = old_ruid = current->uid;
603 new_euid = old_euid = current->euid;
604 old_suid = current->suid;
606 if (ruid != (uid_t) -1) {
607 new_ruid = ruid;
608 if ((old_ruid != ruid) &&
609 (current->euid != ruid) &&
610 !capable(CAP_SETUID))
611 return -EPERM;
614 if (euid != (uid_t) -1) {
615 new_euid = euid;
616 if ((old_ruid != euid) &&
617 (current->euid != euid) &&
618 (current->suid != euid) &&
619 !capable(CAP_SETUID))
620 return -EPERM;
623 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
624 return -EAGAIN;
626 if (new_euid != old_euid) {
627 set_dumpable(current->mm, suid_dumpable);
628 smp_wmb();
630 current->fsuid = current->euid = new_euid;
631 if (ruid != (uid_t) -1 ||
632 (euid != (uid_t) -1 && euid != old_ruid))
633 current->suid = current->euid;
634 current->fsuid = current->euid;
636 key_fsuid_changed(current);
637 proc_id_connector(current, PROC_EVENT_UID);
639 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
645 * setuid() is implemented like SysV with SAVED_IDS
647 * Note that SAVED_ID's is deficient in that a setuid root program
648 * like sendmail, for example, cannot set its uid to be a normal
649 * user and then switch back, because if you're root, setuid() sets
650 * the saved uid too. If you don't like this, blame the bright people
651 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
652 * will allow a root program to temporarily drop privileges and be able to
653 * regain them by swapping the real and effective uid.
655 SYSCALL_DEFINE1(setuid, uid_t, uid)
657 int old_euid = current->euid;
658 int old_ruid, old_suid, new_suid;
659 int retval;
661 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
662 if (retval)
663 return retval;
665 old_ruid = current->uid;
666 old_suid = current->suid;
667 new_suid = old_suid;
669 if (capable(CAP_SETUID)) {
670 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
671 return -EAGAIN;
672 new_suid = uid;
673 } else if ((uid != current->uid) && (uid != new_suid))
674 return -EPERM;
676 if (old_euid != uid) {
677 set_dumpable(current->mm, suid_dumpable);
678 smp_wmb();
680 current->fsuid = current->euid = uid;
681 current->suid = new_suid;
683 key_fsuid_changed(current);
684 proc_id_connector(current, PROC_EVENT_UID);
686 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
691 * This function implements a generic ability to update ruid, euid,
692 * and suid. This allows you to implement the 4.4 compatible seteuid().
694 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
696 int old_ruid = current->uid;
697 int old_euid = current->euid;
698 int old_suid = current->suid;
699 int retval;
701 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
702 if (retval)
703 return retval;
705 if (!capable(CAP_SETUID)) {
706 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
707 (ruid != current->euid) && (ruid != current->suid))
708 return -EPERM;
709 if ((euid != (uid_t) -1) && (euid != current->uid) &&
710 (euid != current->euid) && (euid != current->suid))
711 return -EPERM;
712 if ((suid != (uid_t) -1) && (suid != current->uid) &&
713 (suid != current->euid) && (suid != current->suid))
714 return -EPERM;
716 if (ruid != (uid_t) -1) {
717 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
718 return -EAGAIN;
720 if (euid != (uid_t) -1) {
721 if (euid != current->euid) {
722 set_dumpable(current->mm, suid_dumpable);
723 smp_wmb();
725 current->euid = euid;
727 current->fsuid = current->euid;
728 if (suid != (uid_t) -1)
729 current->suid = suid;
731 key_fsuid_changed(current);
732 proc_id_connector(current, PROC_EVENT_UID);
734 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
737 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
739 int retval;
741 if (!(retval = put_user(current->uid, ruid)) &&
742 !(retval = put_user(current->euid, euid)))
743 retval = put_user(current->suid, suid);
745 return retval;
749 * Same as above, but for rgid, egid, sgid.
751 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
753 int retval;
755 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
756 if (retval)
757 return retval;
759 if (!capable(CAP_SETGID)) {
760 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
761 (rgid != current->egid) && (rgid != current->sgid))
762 return -EPERM;
763 if ((egid != (gid_t) -1) && (egid != current->gid) &&
764 (egid != current->egid) && (egid != current->sgid))
765 return -EPERM;
766 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
767 (sgid != current->egid) && (sgid != current->sgid))
768 return -EPERM;
770 if (egid != (gid_t) -1) {
771 if (egid != current->egid) {
772 set_dumpable(current->mm, suid_dumpable);
773 smp_wmb();
775 current->egid = egid;
777 current->fsgid = current->egid;
778 if (rgid != (gid_t) -1)
779 current->gid = rgid;
780 if (sgid != (gid_t) -1)
781 current->sgid = sgid;
783 key_fsgid_changed(current);
784 proc_id_connector(current, PROC_EVENT_GID);
785 return 0;
788 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
790 int retval;
792 if (!(retval = put_user(current->gid, rgid)) &&
793 !(retval = put_user(current->egid, egid)))
794 retval = put_user(current->sgid, sgid);
796 return retval;
801 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
802 * is used for "access()" and for the NFS daemon (letting nfsd stay at
803 * whatever uid it wants to). It normally shadows "euid", except when
804 * explicitly set by setfsuid() or for access..
806 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
808 int old_fsuid;
810 old_fsuid = current->fsuid;
811 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
812 return old_fsuid;
814 if (uid == current->uid || uid == current->euid ||
815 uid == current->suid || uid == current->fsuid ||
816 capable(CAP_SETUID)) {
817 if (uid != old_fsuid) {
818 set_dumpable(current->mm, suid_dumpable);
819 smp_wmb();
821 current->fsuid = uid;
824 key_fsuid_changed(current);
825 proc_id_connector(current, PROC_EVENT_UID);
827 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
829 return old_fsuid;
833 * Samma på svenska..
835 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
837 int old_fsgid;
839 old_fsgid = current->fsgid;
840 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
841 return old_fsgid;
843 if (gid == current->gid || gid == current->egid ||
844 gid == current->sgid || gid == current->fsgid ||
845 capable(CAP_SETGID)) {
846 if (gid != old_fsgid) {
847 set_dumpable(current->mm, suid_dumpable);
848 smp_wmb();
850 current->fsgid = gid;
851 key_fsgid_changed(current);
852 proc_id_connector(current, PROC_EVENT_GID);
854 return old_fsgid;
857 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
860 * In the SMP world we might just be unlucky and have one of
861 * the times increment as we use it. Since the value is an
862 * atomically safe type this is just fine. Conceptually its
863 * as if the syscall took an instant longer to occur.
865 if (tbuf) {
866 struct tms tmp;
867 struct task_struct *tsk = current;
868 struct task_struct *t;
869 cputime_t utime, stime, cutime, cstime;
871 spin_lock_irq(&tsk->sighand->siglock);
872 utime = tsk->signal->utime;
873 stime = tsk->signal->stime;
874 t = tsk;
875 do {
876 utime = cputime_add(utime, t->utime);
877 stime = cputime_add(stime, t->stime);
878 t = next_thread(t);
879 } while (t != tsk);
881 cutime = tsk->signal->cutime;
882 cstime = tsk->signal->cstime;
883 spin_unlock_irq(&tsk->sighand->siglock);
885 tmp.tms_utime = cputime_to_clock_t(utime);
886 tmp.tms_stime = cputime_to_clock_t(stime);
887 tmp.tms_cutime = cputime_to_clock_t(cutime);
888 tmp.tms_cstime = cputime_to_clock_t(cstime);
889 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
890 return -EFAULT;
892 return (long) jiffies_64_to_clock_t(get_jiffies_64());
896 * This needs some heavy checking ...
897 * I just haven't the stomach for it. I also don't fully
898 * understand sessions/pgrp etc. Let somebody who does explain it.
900 * OK, I think I have the protection semantics right.... this is really
901 * only important on a multi-user system anyway, to make sure one user
902 * can't send a signal to a process owned by another. -TYT, 12/12/91
904 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
905 * LBT 04.03.94
907 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
909 struct task_struct *p;
910 struct task_struct *group_leader = current->group_leader;
911 struct pid *pgrp;
912 int err;
914 if (!pid)
915 pid = task_pid_vnr(group_leader);
916 if (!pgid)
917 pgid = pid;
918 if (pgid < 0)
919 return -EINVAL;
921 /* From this point forward we keep holding onto the tasklist lock
922 * so that our parent does not change from under us. -DaveM
924 write_lock_irq(&tasklist_lock);
926 err = -ESRCH;
927 p = find_task_by_vpid(pid);
928 if (!p)
929 goto out;
931 err = -EINVAL;
932 if (!thread_group_leader(p))
933 goto out;
935 if (same_thread_group(p->real_parent, group_leader)) {
936 err = -EPERM;
937 if (task_session(p) != task_session(group_leader))
938 goto out;
939 err = -EACCES;
940 if (p->did_exec)
941 goto out;
942 } else {
943 err = -ESRCH;
944 if (p != group_leader)
945 goto out;
948 err = -EPERM;
949 if (p->signal->leader)
950 goto out;
952 pgrp = task_pid(p);
953 if (pgid != pid) {
954 struct task_struct *g;
956 pgrp = find_vpid(pgid);
957 g = pid_task(pgrp, PIDTYPE_PGID);
958 if (!g || task_session(g) != task_session(group_leader))
959 goto out;
962 err = security_task_setpgid(p, pgid);
963 if (err)
964 goto out;
966 if (task_pgrp(p) != pgrp) {
967 change_pid(p, PIDTYPE_PGID, pgrp);
968 set_task_pgrp(p, pid_nr(pgrp));
971 err = 0;
972 out:
973 /* All paths lead to here, thus we are safe. -DaveM */
974 write_unlock_irq(&tasklist_lock);
975 return err;
978 SYSCALL_DEFINE1(getpgid, pid_t, pid)
980 struct task_struct *p;
981 struct pid *grp;
982 int retval;
984 rcu_read_lock();
985 if (!pid)
986 grp = task_pgrp(current);
987 else {
988 retval = -ESRCH;
989 p = find_task_by_vpid(pid);
990 if (!p)
991 goto out;
992 grp = task_pgrp(p);
993 if (!grp)
994 goto out;
996 retval = security_task_getpgid(p);
997 if (retval)
998 goto out;
1000 retval = pid_vnr(grp);
1001 out:
1002 rcu_read_unlock();
1003 return retval;
1006 #ifdef __ARCH_WANT_SYS_GETPGRP
1008 SYSCALL_DEFINE0(getpgrp)
1010 return sys_getpgid(0);
1013 #endif
1015 SYSCALL_DEFINE1(getsid, pid_t, pid)
1017 struct task_struct *p;
1018 struct pid *sid;
1019 int retval;
1021 rcu_read_lock();
1022 if (!pid)
1023 sid = task_session(current);
1024 else {
1025 retval = -ESRCH;
1026 p = find_task_by_vpid(pid);
1027 if (!p)
1028 goto out;
1029 sid = task_session(p);
1030 if (!sid)
1031 goto out;
1033 retval = security_task_getsid(p);
1034 if (retval)
1035 goto out;
1037 retval = pid_vnr(sid);
1038 out:
1039 rcu_read_unlock();
1040 return retval;
1043 SYSCALL_DEFINE0(setsid)
1045 struct task_struct *group_leader = current->group_leader;
1046 struct pid *sid = task_pid(group_leader);
1047 pid_t session = pid_vnr(sid);
1048 int err = -EPERM;
1050 write_lock_irq(&tasklist_lock);
1051 /* Fail if I am already a session leader */
1052 if (group_leader->signal->leader)
1053 goto out;
1055 /* Fail if a process group id already exists that equals the
1056 * proposed session id.
1058 if (pid_task(sid, PIDTYPE_PGID))
1059 goto out;
1061 group_leader->signal->leader = 1;
1062 __set_special_pids(sid);
1064 spin_lock(&group_leader->sighand->siglock);
1065 group_leader->signal->tty = NULL;
1066 spin_unlock(&group_leader->sighand->siglock);
1068 err = session;
1069 out:
1070 write_unlock_irq(&tasklist_lock);
1071 return err;
1075 * Supplementary group IDs
1078 /* init to 2 - one for init_task, one to ensure it is never freed */
1079 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1081 struct group_info *groups_alloc(int gidsetsize)
1083 struct group_info *group_info;
1084 int nblocks;
1085 int i;
1087 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1088 /* Make sure we always allocate at least one indirect block pointer */
1089 nblocks = nblocks ? : 1;
1090 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1091 if (!group_info)
1092 return NULL;
1093 group_info->ngroups = gidsetsize;
1094 group_info->nblocks = nblocks;
1095 atomic_set(&group_info->usage, 1);
1097 if (gidsetsize <= NGROUPS_SMALL)
1098 group_info->blocks[0] = group_info->small_block;
1099 else {
1100 for (i = 0; i < nblocks; i++) {
1101 gid_t *b;
1102 b = (void *)__get_free_page(GFP_USER);
1103 if (!b)
1104 goto out_undo_partial_alloc;
1105 group_info->blocks[i] = b;
1108 return group_info;
1110 out_undo_partial_alloc:
1111 while (--i >= 0) {
1112 free_page((unsigned long)group_info->blocks[i]);
1114 kfree(group_info);
1115 return NULL;
1118 EXPORT_SYMBOL(groups_alloc);
1120 void groups_free(struct group_info *group_info)
1122 if (group_info->blocks[0] != group_info->small_block) {
1123 int i;
1124 for (i = 0; i < group_info->nblocks; i++)
1125 free_page((unsigned long)group_info->blocks[i]);
1127 kfree(group_info);
1130 EXPORT_SYMBOL(groups_free);
1132 /* export the group_info to a user-space array */
1133 static int groups_to_user(gid_t __user *grouplist,
1134 struct group_info *group_info)
1136 int i;
1137 unsigned int count = group_info->ngroups;
1139 for (i = 0; i < group_info->nblocks; i++) {
1140 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1141 unsigned int len = cp_count * sizeof(*grouplist);
1143 if (copy_to_user(grouplist, group_info->blocks[i], len))
1144 return -EFAULT;
1146 grouplist += NGROUPS_PER_BLOCK;
1147 count -= cp_count;
1149 return 0;
1152 /* fill a group_info from a user-space array - it must be allocated already */
1153 static int groups_from_user(struct group_info *group_info,
1154 gid_t __user *grouplist)
1156 int i;
1157 unsigned int count = group_info->ngroups;
1159 for (i = 0; i < group_info->nblocks; i++) {
1160 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1161 unsigned int len = cp_count * sizeof(*grouplist);
1163 if (copy_from_user(group_info->blocks[i], grouplist, len))
1164 return -EFAULT;
1166 grouplist += NGROUPS_PER_BLOCK;
1167 count -= cp_count;
1169 return 0;
1172 /* a simple Shell sort */
1173 static void groups_sort(struct group_info *group_info)
1175 int base, max, stride;
1176 int gidsetsize = group_info->ngroups;
1178 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1179 ; /* nothing */
1180 stride /= 3;
1182 while (stride) {
1183 max = gidsetsize - stride;
1184 for (base = 0; base < max; base++) {
1185 int left = base;
1186 int right = left + stride;
1187 gid_t tmp = GROUP_AT(group_info, right);
1189 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1190 GROUP_AT(group_info, right) =
1191 GROUP_AT(group_info, left);
1192 right = left;
1193 left -= stride;
1195 GROUP_AT(group_info, right) = tmp;
1197 stride /= 3;
1201 /* a simple bsearch */
1202 int groups_search(struct group_info *group_info, gid_t grp)
1204 unsigned int left, right;
1206 if (!group_info)
1207 return 0;
1209 left = 0;
1210 right = group_info->ngroups;
1211 while (left < right) {
1212 unsigned int mid = (left+right)/2;
1213 int cmp = grp - GROUP_AT(group_info, mid);
1214 if (cmp > 0)
1215 left = mid + 1;
1216 else if (cmp < 0)
1217 right = mid;
1218 else
1219 return 1;
1221 return 0;
1224 /* validate and set current->group_info */
1225 int set_current_groups(struct group_info *group_info)
1227 int retval;
1228 struct group_info *old_info;
1230 retval = security_task_setgroups(group_info);
1231 if (retval)
1232 return retval;
1234 groups_sort(group_info);
1235 get_group_info(group_info);
1237 task_lock(current);
1238 old_info = current->group_info;
1239 current->group_info = group_info;
1240 task_unlock(current);
1242 put_group_info(old_info);
1244 return 0;
1247 EXPORT_SYMBOL(set_current_groups);
1249 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1251 int i = 0;
1254 * SMP: Nobody else can change our grouplist. Thus we are
1255 * safe.
1258 if (gidsetsize < 0)
1259 return -EINVAL;
1261 /* no need to grab task_lock here; it cannot change */
1262 i = current->group_info->ngroups;
1263 if (gidsetsize) {
1264 if (i > gidsetsize) {
1265 i = -EINVAL;
1266 goto out;
1268 if (groups_to_user(grouplist, current->group_info)) {
1269 i = -EFAULT;
1270 goto out;
1273 out:
1274 return i;
1278 * SMP: Our groups are copy-on-write. We can set them safely
1279 * without another task interfering.
1282 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1284 struct group_info *group_info;
1285 int retval;
1287 if (!capable(CAP_SETGID))
1288 return -EPERM;
1289 if ((unsigned)gidsetsize > NGROUPS_MAX)
1290 return -EINVAL;
1292 group_info = groups_alloc(gidsetsize);
1293 if (!group_info)
1294 return -ENOMEM;
1295 retval = groups_from_user(group_info, grouplist);
1296 if (retval) {
1297 put_group_info(group_info);
1298 return retval;
1301 retval = set_current_groups(group_info);
1302 put_group_info(group_info);
1304 return retval;
1308 * Check whether we're fsgid/egid or in the supplemental group..
1310 int in_group_p(gid_t grp)
1312 int retval = 1;
1313 if (grp != current->fsgid)
1314 retval = groups_search(current->group_info, grp);
1315 return retval;
1318 EXPORT_SYMBOL(in_group_p);
1320 int in_egroup_p(gid_t grp)
1322 int retval = 1;
1323 if (grp != current->egid)
1324 retval = groups_search(current->group_info, grp);
1325 return retval;
1328 EXPORT_SYMBOL(in_egroup_p);
1330 DECLARE_RWSEM(uts_sem);
1332 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1334 int errno = 0;
1336 down_read(&uts_sem);
1337 if (copy_to_user(name, utsname(), sizeof *name))
1338 errno = -EFAULT;
1339 up_read(&uts_sem);
1340 return errno;
1343 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1345 int errno;
1346 char tmp[__NEW_UTS_LEN];
1348 if (!capable(CAP_SYS_ADMIN))
1349 return -EPERM;
1350 if (len < 0 || len > __NEW_UTS_LEN)
1351 return -EINVAL;
1352 down_write(&uts_sem);
1353 errno = -EFAULT;
1354 if (!copy_from_user(tmp, name, len)) {
1355 memcpy(utsname()->nodename, tmp, len);
1356 utsname()->nodename[len] = 0;
1357 errno = 0;
1359 up_write(&uts_sem);
1360 return errno;
1363 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1365 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1367 int i, errno;
1369 if (len < 0)
1370 return -EINVAL;
1371 down_read(&uts_sem);
1372 i = 1 + strlen(utsname()->nodename);
1373 if (i > len)
1374 i = len;
1375 errno = 0;
1376 if (copy_to_user(name, utsname()->nodename, i))
1377 errno = -EFAULT;
1378 up_read(&uts_sem);
1379 return errno;
1382 #endif
1385 * Only setdomainname; getdomainname can be implemented by calling
1386 * uname()
1388 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1390 int errno;
1391 char tmp[__NEW_UTS_LEN];
1393 if (!capable(CAP_SYS_ADMIN))
1394 return -EPERM;
1395 if (len < 0 || len > __NEW_UTS_LEN)
1396 return -EINVAL;
1398 down_write(&uts_sem);
1399 errno = -EFAULT;
1400 if (!copy_from_user(tmp, name, len)) {
1401 memcpy(utsname()->domainname, tmp, len);
1402 utsname()->domainname[len] = 0;
1403 errno = 0;
1405 up_write(&uts_sem);
1406 return errno;
1409 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1411 if (resource >= RLIM_NLIMITS)
1412 return -EINVAL;
1413 else {
1414 struct rlimit value;
1415 task_lock(current->group_leader);
1416 value = current->signal->rlim[resource];
1417 task_unlock(current->group_leader);
1418 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1422 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1425 * Back compatibility for getrlimit. Needed for some apps.
1428 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1429 struct rlimit __user *, rlim)
1431 struct rlimit x;
1432 if (resource >= RLIM_NLIMITS)
1433 return -EINVAL;
1435 task_lock(current->group_leader);
1436 x = current->signal->rlim[resource];
1437 task_unlock(current->group_leader);
1438 if (x.rlim_cur > 0x7FFFFFFF)
1439 x.rlim_cur = 0x7FFFFFFF;
1440 if (x.rlim_max > 0x7FFFFFFF)
1441 x.rlim_max = 0x7FFFFFFF;
1442 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1445 #endif
1447 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1449 struct rlimit new_rlim, *old_rlim;
1450 unsigned long it_prof_secs;
1451 int retval;
1453 if (resource >= RLIM_NLIMITS)
1454 return -EINVAL;
1455 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1456 return -EFAULT;
1457 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1458 return -EINVAL;
1459 old_rlim = current->signal->rlim + resource;
1460 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1461 !capable(CAP_SYS_RESOURCE))
1462 return -EPERM;
1463 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1464 return -EPERM;
1466 retval = security_task_setrlimit(resource, &new_rlim);
1467 if (retval)
1468 return retval;
1470 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1472 * The caller is asking for an immediate RLIMIT_CPU
1473 * expiry. But we use the zero value to mean "it was
1474 * never set". So let's cheat and make it one second
1475 * instead
1477 new_rlim.rlim_cur = 1;
1480 task_lock(current->group_leader);
1481 *old_rlim = new_rlim;
1482 task_unlock(current->group_leader);
1484 if (resource != RLIMIT_CPU)
1485 goto out;
1488 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1489 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1490 * very long-standing error, and fixing it now risks breakage of
1491 * applications, so we live with it
1493 if (new_rlim.rlim_cur == RLIM_INFINITY)
1494 goto out;
1496 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires);
1497 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) {
1498 unsigned long rlim_cur = new_rlim.rlim_cur;
1499 cputime_t cputime;
1501 cputime = secs_to_cputime(rlim_cur);
1502 read_lock(&tasklist_lock);
1503 spin_lock_irq(&current->sighand->siglock);
1504 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
1505 spin_unlock_irq(&current->sighand->siglock);
1506 read_unlock(&tasklist_lock);
1508 out:
1509 return 0;
1513 * It would make sense to put struct rusage in the task_struct,
1514 * except that would make the task_struct be *really big*. After
1515 * task_struct gets moved into malloc'ed memory, it would
1516 * make sense to do this. It will make moving the rest of the information
1517 * a lot simpler! (Which we're not doing right now because we're not
1518 * measuring them yet).
1520 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1521 * races with threads incrementing their own counters. But since word
1522 * reads are atomic, we either get new values or old values and we don't
1523 * care which for the sums. We always take the siglock to protect reading
1524 * the c* fields from p->signal from races with exit.c updating those
1525 * fields when reaping, so a sample either gets all the additions of a
1526 * given child after it's reaped, or none so this sample is before reaping.
1528 * Locking:
1529 * We need to take the siglock for CHILDEREN, SELF and BOTH
1530 * for the cases current multithreaded, non-current single threaded
1531 * non-current multithreaded. Thread traversal is now safe with
1532 * the siglock held.
1533 * Strictly speaking, we donot need to take the siglock if we are current and
1534 * single threaded, as no one else can take our signal_struct away, no one
1535 * else can reap the children to update signal->c* counters, and no one else
1536 * can race with the signal-> fields. If we do not take any lock, the
1537 * signal-> fields could be read out of order while another thread was just
1538 * exiting. So we should place a read memory barrier when we avoid the lock.
1539 * On the writer side, write memory barrier is implied in __exit_signal
1540 * as __exit_signal releases the siglock spinlock after updating the signal->
1541 * fields. But we don't do this yet to keep things simple.
1545 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r,
1546 cputime_t *utimep, cputime_t *stimep)
1548 *utimep = cputime_add(*utimep, t->utime);
1549 *stimep = cputime_add(*stimep, t->stime);
1550 r->ru_nvcsw += t->nvcsw;
1551 r->ru_nivcsw += t->nivcsw;
1552 r->ru_minflt += t->min_flt;
1553 r->ru_majflt += t->maj_flt;
1554 r->ru_inblock += task_io_get_inblock(t);
1555 r->ru_oublock += task_io_get_oublock(t);
1558 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1560 struct task_struct *t;
1561 unsigned long flags;
1562 cputime_t utime, stime;
1564 memset((char *) r, 0, sizeof *r);
1565 utime = stime = cputime_zero;
1567 if (who == RUSAGE_THREAD) {
1568 accumulate_thread_rusage(p, r, &utime, &stime);
1569 goto out;
1572 if (!lock_task_sighand(p, &flags))
1573 return;
1575 switch (who) {
1576 case RUSAGE_BOTH:
1577 case RUSAGE_CHILDREN:
1578 utime = p->signal->cutime;
1579 stime = p->signal->cstime;
1580 r->ru_nvcsw = p->signal->cnvcsw;
1581 r->ru_nivcsw = p->signal->cnivcsw;
1582 r->ru_minflt = p->signal->cmin_flt;
1583 r->ru_majflt = p->signal->cmaj_flt;
1584 r->ru_inblock = p->signal->cinblock;
1585 r->ru_oublock = p->signal->coublock;
1587 if (who == RUSAGE_CHILDREN)
1588 break;
1590 case RUSAGE_SELF:
1591 utime = cputime_add(utime, p->signal->utime);
1592 stime = cputime_add(stime, p->signal->stime);
1593 r->ru_nvcsw += p->signal->nvcsw;
1594 r->ru_nivcsw += p->signal->nivcsw;
1595 r->ru_minflt += p->signal->min_flt;
1596 r->ru_majflt += p->signal->maj_flt;
1597 r->ru_inblock += p->signal->inblock;
1598 r->ru_oublock += p->signal->oublock;
1599 t = p;
1600 do {
1601 accumulate_thread_rusage(t, r, &utime, &stime);
1602 t = next_thread(t);
1603 } while (t != p);
1604 break;
1606 default:
1607 BUG();
1609 unlock_task_sighand(p, &flags);
1611 out:
1612 cputime_to_timeval(utime, &r->ru_utime);
1613 cputime_to_timeval(stime, &r->ru_stime);
1616 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1618 struct rusage r;
1619 k_getrusage(p, who, &r);
1620 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1623 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1625 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1626 who != RUSAGE_THREAD)
1627 return -EINVAL;
1628 return getrusage(current, who, ru);
1631 SYSCALL_DEFINE1(umask, int, mask)
1633 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1634 return mask;
1637 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1638 unsigned long, arg4, unsigned long, arg5)
1640 long error = 0;
1642 if (security_task_prctl(option, arg2, arg3, arg4, arg5, &error))
1643 return error;
1645 switch (option) {
1646 case PR_SET_PDEATHSIG:
1647 if (!valid_signal(arg2)) {
1648 error = -EINVAL;
1649 break;
1651 current->pdeath_signal = arg2;
1652 break;
1653 case PR_GET_PDEATHSIG:
1654 error = put_user(current->pdeath_signal, (int __user *)arg2);
1655 break;
1656 case PR_GET_DUMPABLE:
1657 error = get_dumpable(current->mm);
1658 break;
1659 case PR_SET_DUMPABLE:
1660 if (arg2 < 0 || arg2 > 1) {
1661 error = -EINVAL;
1662 break;
1664 set_dumpable(current->mm, arg2);
1665 break;
1667 case PR_SET_UNALIGN:
1668 error = SET_UNALIGN_CTL(current, arg2);
1669 break;
1670 case PR_GET_UNALIGN:
1671 error = GET_UNALIGN_CTL(current, arg2);
1672 break;
1673 case PR_SET_FPEMU:
1674 error = SET_FPEMU_CTL(current, arg2);
1675 break;
1676 case PR_GET_FPEMU:
1677 error = GET_FPEMU_CTL(current, arg2);
1678 break;
1679 case PR_SET_FPEXC:
1680 error = SET_FPEXC_CTL(current, arg2);
1681 break;
1682 case PR_GET_FPEXC:
1683 error = GET_FPEXC_CTL(current, arg2);
1684 break;
1685 case PR_GET_TIMING:
1686 error = PR_TIMING_STATISTICAL;
1687 break;
1688 case PR_SET_TIMING:
1689 if (arg2 != PR_TIMING_STATISTICAL)
1690 error = -EINVAL;
1691 break;
1693 case PR_SET_NAME: {
1694 struct task_struct *me = current;
1695 unsigned char ncomm[sizeof(me->comm)];
1697 ncomm[sizeof(me->comm)-1] = 0;
1698 if (strncpy_from_user(ncomm, (char __user *)arg2,
1699 sizeof(me->comm)-1) < 0)
1700 return -EFAULT;
1701 set_task_comm(me, ncomm);
1702 return 0;
1704 case PR_GET_NAME: {
1705 struct task_struct *me = current;
1706 unsigned char tcomm[sizeof(me->comm)];
1708 get_task_comm(tcomm, me);
1709 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1710 return -EFAULT;
1711 return 0;
1713 case PR_GET_ENDIAN:
1714 error = GET_ENDIAN(current, arg2);
1715 break;
1716 case PR_SET_ENDIAN:
1717 error = SET_ENDIAN(current, arg2);
1718 break;
1720 case PR_GET_SECCOMP:
1721 error = prctl_get_seccomp();
1722 break;
1723 case PR_SET_SECCOMP:
1724 error = prctl_set_seccomp(arg2);
1725 break;
1726 case PR_GET_TSC:
1727 error = GET_TSC_CTL(arg2);
1728 break;
1729 case PR_SET_TSC:
1730 error = SET_TSC_CTL(arg2);
1731 break;
1732 default:
1733 error = -EINVAL;
1734 break;
1736 return error;
1739 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1740 struct getcpu_cache __user *, unused)
1742 int err = 0;
1743 int cpu = raw_smp_processor_id();
1744 if (cpup)
1745 err |= put_user(cpu, cpup);
1746 if (nodep)
1747 err |= put_user(cpu_to_node(cpu), nodep);
1748 return err ? -EFAULT : 0;
1751 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1753 static void argv_cleanup(char **argv, char **envp)
1755 argv_free(argv);
1759 * orderly_poweroff - Trigger an orderly system poweroff
1760 * @force: force poweroff if command execution fails
1762 * This may be called from any context to trigger a system shutdown.
1763 * If the orderly shutdown fails, it will force an immediate shutdown.
1765 int orderly_poweroff(bool force)
1767 int argc;
1768 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1769 static char *envp[] = {
1770 "HOME=/",
1771 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1772 NULL
1774 int ret = -ENOMEM;
1775 struct subprocess_info *info;
1777 if (argv == NULL) {
1778 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1779 __func__, poweroff_cmd);
1780 goto out;
1783 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1784 if (info == NULL) {
1785 argv_free(argv);
1786 goto out;
1789 call_usermodehelper_setcleanup(info, argv_cleanup);
1791 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1793 out:
1794 if (ret && force) {
1795 printk(KERN_WARNING "Failed to start orderly shutdown: "
1796 "forcing the issue\n");
1798 /* I guess this should try to kick off some daemon to
1799 sync and poweroff asap. Or not even bother syncing
1800 if we're doing an emergency shutdown? */
1801 emergency_sync();
1802 kernel_power_off();
1805 return ret;
1807 EXPORT_SYMBOL_GPL(orderly_poweroff);