ACPI: thinkpad-acpi: preserve radio state across shutdown
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-timers.c
blob24ae23635a78ff92331ba9f23d1bbd4f88c1f5f8
1 /*
2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
69 * Lets keep our timers in a slab cache :-)
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
134 static struct k_clock posix_clocks[MAX_CLOCKS];
137 * These ones are defined below.
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152 spin_unlock_irqrestore(&timr->it_lock, flags);
156 * Call the k_clock hook function if non-null, or the default function.
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
180 * Get real time for posix timers
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184 ktime_get_real_ts(tp);
185 return 0;
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
191 return do_sys_settimeofday(tp, NULL);
194 static int common_timer_create(struct k_itimer *new_timer)
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
201 * Return nonzero if we know a priori this clockid_t value is bogus.
203 static inline int invalid_clockid(const clockid_t which_clock)
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
213 return 1;
217 * Get monotonic time for posix timers
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
221 ktime_get_ts(tp);
222 return 0;
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
228 static __init int init_posix_timers(void)
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
245 idr_init(&posix_timers_id);
246 return 0;
249 __initcall(init_posix_timers);
251 static void schedule_next_timer(struct k_itimer *timr)
253 struct hrtimer *timer = &timr->it.real.timer;
255 if (timr->it.real.interval.tv64 == 0)
256 return;
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
265 hrtimer_restart(timer);
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
279 void do_schedule_next_timer(struct siginfo *info)
281 struct k_itimer *timr;
282 unsigned long flags;
284 timr = lock_timer(info->si_tid, &flags);
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
292 info->si_overrun += timr->it_overrun_last;
295 if (timr)
296 unlock_timer(timr, flags);
299 int posix_timer_event(struct k_itimer *timr, int si_private)
302 * FIXME: if ->sigq is queued we can race with
303 * dequeue_signal()->do_schedule_next_timer().
305 * If dequeue_signal() sees the "right" value of
306 * si_sys_private it calls do_schedule_next_timer().
307 * We re-queue ->sigq and drop ->it_lock().
308 * do_schedule_next_timer() locks the timer
309 * and re-schedules it while ->sigq is pending.
310 * Not really bad, but not that we want.
312 timr->sigq->info.si_sys_private = si_private;
314 timr->sigq->info.si_signo = timr->it_sigev_signo;
315 timr->sigq->info.si_code = SI_TIMER;
316 timr->sigq->info.si_tid = timr->it_id;
317 timr->sigq->info.si_value = timr->it_sigev_value;
319 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
320 struct task_struct *leader;
321 int ret = send_sigqueue(timr->sigq, timr->it_process, 0);
323 if (likely(ret >= 0))
324 return ret;
326 timr->it_sigev_notify = SIGEV_SIGNAL;
327 leader = timr->it_process->group_leader;
328 put_task_struct(timr->it_process);
329 timr->it_process = leader;
332 return send_sigqueue(timr->sigq, timr->it_process, 1);
334 EXPORT_SYMBOL_GPL(posix_timer_event);
337 * This function gets called when a POSIX.1b interval timer expires. It
338 * is used as a callback from the kernel internal timer. The
339 * run_timer_list code ALWAYS calls with interrupts on.
341 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
343 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
345 struct k_itimer *timr;
346 unsigned long flags;
347 int si_private = 0;
348 enum hrtimer_restart ret = HRTIMER_NORESTART;
350 timr = container_of(timer, struct k_itimer, it.real.timer);
351 spin_lock_irqsave(&timr->it_lock, flags);
353 if (timr->it.real.interval.tv64 != 0)
354 si_private = ++timr->it_requeue_pending;
356 if (posix_timer_event(timr, si_private)) {
358 * signal was not sent because of sig_ignor
359 * we will not get a call back to restart it AND
360 * it should be restarted.
362 if (timr->it.real.interval.tv64 != 0) {
363 ktime_t now = hrtimer_cb_get_time(timer);
366 * FIXME: What we really want, is to stop this
367 * timer completely and restart it in case the
368 * SIG_IGN is removed. This is a non trivial
369 * change which involves sighand locking
370 * (sigh !), which we don't want to do late in
371 * the release cycle.
373 * For now we just let timers with an interval
374 * less than a jiffie expire every jiffie to
375 * avoid softirq starvation in case of SIG_IGN
376 * and a very small interval, which would put
377 * the timer right back on the softirq pending
378 * list. By moving now ahead of time we trick
379 * hrtimer_forward() to expire the timer
380 * later, while we still maintain the overrun
381 * accuracy, but have some inconsistency in
382 * the timer_gettime() case. This is at least
383 * better than a starved softirq. A more
384 * complex fix which solves also another related
385 * inconsistency is already in the pipeline.
387 #ifdef CONFIG_HIGH_RES_TIMERS
389 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
391 if (timr->it.real.interval.tv64 < kj.tv64)
392 now = ktime_add(now, kj);
394 #endif
395 timr->it_overrun += (unsigned int)
396 hrtimer_forward(timer, now,
397 timr->it.real.interval);
398 ret = HRTIMER_RESTART;
399 ++timr->it_requeue_pending;
403 unlock_timer(timr, flags);
404 return ret;
407 static struct task_struct * good_sigevent(sigevent_t * event)
409 struct task_struct *rtn = current->group_leader;
411 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
412 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
413 !same_thread_group(rtn, current) ||
414 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
415 return NULL;
417 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
418 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
419 return NULL;
421 return rtn;
424 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
426 if ((unsigned) clock_id >= MAX_CLOCKS) {
427 printk("POSIX clock register failed for clock_id %d\n",
428 clock_id);
429 return;
432 posix_clocks[clock_id] = *new_clock;
434 EXPORT_SYMBOL_GPL(register_posix_clock);
436 static struct k_itimer * alloc_posix_timer(void)
438 struct k_itimer *tmr;
439 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
440 if (!tmr)
441 return tmr;
442 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
443 kmem_cache_free(posix_timers_cache, tmr);
444 return NULL;
446 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
447 return tmr;
450 #define IT_ID_SET 1
451 #define IT_ID_NOT_SET 0
452 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
454 if (it_id_set) {
455 unsigned long flags;
456 spin_lock_irqsave(&idr_lock, flags);
457 idr_remove(&posix_timers_id, tmr->it_id);
458 spin_unlock_irqrestore(&idr_lock, flags);
460 sigqueue_free(tmr->sigq);
461 kmem_cache_free(posix_timers_cache, tmr);
464 /* Create a POSIX.1b interval timer. */
466 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
467 struct sigevent __user *, timer_event_spec,
468 timer_t __user *, created_timer_id)
470 int error = 0;
471 struct k_itimer *new_timer = NULL;
472 int new_timer_id;
473 struct task_struct *process = NULL;
474 unsigned long flags;
475 sigevent_t event;
476 int it_id_set = IT_ID_NOT_SET;
478 if (invalid_clockid(which_clock))
479 return -EINVAL;
481 new_timer = alloc_posix_timer();
482 if (unlikely(!new_timer))
483 return -EAGAIN;
485 spin_lock_init(&new_timer->it_lock);
486 retry:
487 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
488 error = -EAGAIN;
489 goto out;
491 spin_lock_irq(&idr_lock);
492 error = idr_get_new(&posix_timers_id, (void *) new_timer,
493 &new_timer_id);
494 spin_unlock_irq(&idr_lock);
495 if (error == -EAGAIN)
496 goto retry;
497 else if (error) {
499 * Weird looking, but we return EAGAIN if the IDR is
500 * full (proper POSIX return value for this)
502 error = -EAGAIN;
503 goto out;
506 it_id_set = IT_ID_SET;
507 new_timer->it_id = (timer_t) new_timer_id;
508 new_timer->it_clock = which_clock;
509 new_timer->it_overrun = -1;
510 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
511 if (error)
512 goto out;
515 * return the timer_id now. The next step is hard to
516 * back out if there is an error.
518 if (copy_to_user(created_timer_id,
519 &new_timer_id, sizeof (new_timer_id))) {
520 error = -EFAULT;
521 goto out;
523 if (timer_event_spec) {
524 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
525 error = -EFAULT;
526 goto out;
528 new_timer->it_sigev_notify = event.sigev_notify;
529 new_timer->it_sigev_signo = event.sigev_signo;
530 new_timer->it_sigev_value = event.sigev_value;
532 read_lock(&tasklist_lock);
533 if ((process = good_sigevent(&event))) {
535 * We may be setting up this process for another
536 * thread. It may be exiting. To catch this
537 * case the we check the PF_EXITING flag. If
538 * the flag is not set, the siglock will catch
539 * him before it is too late (in exit_itimers).
541 * The exec case is a bit more invloved but easy
542 * to code. If the process is in our thread
543 * group (and it must be or we would not allow
544 * it here) and is doing an exec, it will cause
545 * us to be killed. In this case it will wait
546 * for us to die which means we can finish this
547 * linkage with our last gasp. I.e. no code :)
549 spin_lock_irqsave(&process->sighand->siglock, flags);
550 if (!(process->flags & PF_EXITING)) {
551 new_timer->it_process = process;
552 list_add(&new_timer->list,
553 &process->signal->posix_timers);
554 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
555 get_task_struct(process);
556 spin_unlock_irqrestore(&process->sighand->siglock, flags);
557 } else {
558 spin_unlock_irqrestore(&process->sighand->siglock, flags);
559 process = NULL;
562 read_unlock(&tasklist_lock);
563 if (!process) {
564 error = -EINVAL;
565 goto out;
567 } else {
568 new_timer->it_sigev_notify = SIGEV_SIGNAL;
569 new_timer->it_sigev_signo = SIGALRM;
570 new_timer->it_sigev_value.sival_int = new_timer->it_id;
571 process = current->group_leader;
572 spin_lock_irqsave(&process->sighand->siglock, flags);
573 new_timer->it_process = process;
574 list_add(&new_timer->list, &process->signal->posix_timers);
575 spin_unlock_irqrestore(&process->sighand->siglock, flags);
579 * In the case of the timer belonging to another task, after
580 * the task is unlocked, the timer is owned by the other task
581 * and may cease to exist at any time. Don't use or modify
582 * new_timer after the unlock call.
585 out:
586 if (error)
587 release_posix_timer(new_timer, it_id_set);
589 return error;
593 * Locking issues: We need to protect the result of the id look up until
594 * we get the timer locked down so it is not deleted under us. The
595 * removal is done under the idr spinlock so we use that here to bridge
596 * the find to the timer lock. To avoid a dead lock, the timer id MUST
597 * be release with out holding the timer lock.
599 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
601 struct k_itimer *timr;
603 * Watch out here. We do a irqsave on the idr_lock and pass the
604 * flags part over to the timer lock. Must not let interrupts in
605 * while we are moving the lock.
608 spin_lock_irqsave(&idr_lock, *flags);
609 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
610 if (timr) {
611 spin_lock(&timr->it_lock);
613 if ((timr->it_id != timer_id) || !(timr->it_process) ||
614 !same_thread_group(timr->it_process, current)) {
615 spin_unlock(&timr->it_lock);
616 spin_unlock_irqrestore(&idr_lock, *flags);
617 timr = NULL;
618 } else
619 spin_unlock(&idr_lock);
620 } else
621 spin_unlock_irqrestore(&idr_lock, *flags);
623 return timr;
627 * Get the time remaining on a POSIX.1b interval timer. This function
628 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
629 * mess with irq.
631 * We have a couple of messes to clean up here. First there is the case
632 * of a timer that has a requeue pending. These timers should appear to
633 * be in the timer list with an expiry as if we were to requeue them
634 * now.
636 * The second issue is the SIGEV_NONE timer which may be active but is
637 * not really ever put in the timer list (to save system resources).
638 * This timer may be expired, and if so, we will do it here. Otherwise
639 * it is the same as a requeue pending timer WRT to what we should
640 * report.
642 static void
643 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
645 ktime_t now, remaining, iv;
646 struct hrtimer *timer = &timr->it.real.timer;
648 memset(cur_setting, 0, sizeof(struct itimerspec));
650 iv = timr->it.real.interval;
652 /* interval timer ? */
653 if (iv.tv64)
654 cur_setting->it_interval = ktime_to_timespec(iv);
655 else if (!hrtimer_active(timer) &&
656 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
657 return;
659 now = timer->base->get_time();
662 * When a requeue is pending or this is a SIGEV_NONE
663 * timer move the expiry time forward by intervals, so
664 * expiry is > now.
666 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
667 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
668 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
670 remaining = ktime_sub(timer->expires, now);
671 /* Return 0 only, when the timer is expired and not pending */
672 if (remaining.tv64 <= 0) {
674 * A single shot SIGEV_NONE timer must return 0, when
675 * it is expired !
677 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
678 cur_setting->it_value.tv_nsec = 1;
679 } else
680 cur_setting->it_value = ktime_to_timespec(remaining);
683 /* Get the time remaining on a POSIX.1b interval timer. */
684 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
685 struct itimerspec __user *, setting)
687 struct k_itimer *timr;
688 struct itimerspec cur_setting;
689 unsigned long flags;
691 timr = lock_timer(timer_id, &flags);
692 if (!timr)
693 return -EINVAL;
695 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
697 unlock_timer(timr, flags);
699 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
700 return -EFAULT;
702 return 0;
706 * Get the number of overruns of a POSIX.1b interval timer. This is to
707 * be the overrun of the timer last delivered. At the same time we are
708 * accumulating overruns on the next timer. The overrun is frozen when
709 * the signal is delivered, either at the notify time (if the info block
710 * is not queued) or at the actual delivery time (as we are informed by
711 * the call back to do_schedule_next_timer(). So all we need to do is
712 * to pick up the frozen overrun.
714 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
716 struct k_itimer *timr;
717 int overrun;
718 unsigned long flags;
720 timr = lock_timer(timer_id, &flags);
721 if (!timr)
722 return -EINVAL;
724 overrun = timr->it_overrun_last;
725 unlock_timer(timr, flags);
727 return overrun;
730 /* Set a POSIX.1b interval timer. */
731 /* timr->it_lock is taken. */
732 static int
733 common_timer_set(struct k_itimer *timr, int flags,
734 struct itimerspec *new_setting, struct itimerspec *old_setting)
736 struct hrtimer *timer = &timr->it.real.timer;
737 enum hrtimer_mode mode;
739 if (old_setting)
740 common_timer_get(timr, old_setting);
742 /* disable the timer */
743 timr->it.real.interval.tv64 = 0;
745 * careful here. If smp we could be in the "fire" routine which will
746 * be spinning as we hold the lock. But this is ONLY an SMP issue.
748 if (hrtimer_try_to_cancel(timer) < 0)
749 return TIMER_RETRY;
751 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
752 ~REQUEUE_PENDING;
753 timr->it_overrun_last = 0;
755 /* switch off the timer when it_value is zero */
756 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
757 return 0;
759 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
760 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
761 timr->it.real.timer.function = posix_timer_fn;
763 timer->expires = timespec_to_ktime(new_setting->it_value);
765 /* Convert interval */
766 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
768 /* SIGEV_NONE timers are not queued ! See common_timer_get */
769 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
770 /* Setup correct expiry time for relative timers */
771 if (mode == HRTIMER_MODE_REL) {
772 timer->expires =
773 ktime_add_safe(timer->expires,
774 timer->base->get_time());
776 return 0;
779 hrtimer_start(timer, timer->expires, mode);
780 return 0;
783 /* Set a POSIX.1b interval timer */
784 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
785 const struct itimerspec __user *, new_setting,
786 struct itimerspec __user *, old_setting)
788 struct k_itimer *timr;
789 struct itimerspec new_spec, old_spec;
790 int error = 0;
791 unsigned long flag;
792 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
794 if (!new_setting)
795 return -EINVAL;
797 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
798 return -EFAULT;
800 if (!timespec_valid(&new_spec.it_interval) ||
801 !timespec_valid(&new_spec.it_value))
802 return -EINVAL;
803 retry:
804 timr = lock_timer(timer_id, &flag);
805 if (!timr)
806 return -EINVAL;
808 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
809 (timr, flags, &new_spec, rtn));
811 unlock_timer(timr, flag);
812 if (error == TIMER_RETRY) {
813 rtn = NULL; // We already got the old time...
814 goto retry;
817 if (old_setting && !error &&
818 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
819 error = -EFAULT;
821 return error;
824 static inline int common_timer_del(struct k_itimer *timer)
826 timer->it.real.interval.tv64 = 0;
828 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
829 return TIMER_RETRY;
830 return 0;
833 static inline int timer_delete_hook(struct k_itimer *timer)
835 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
838 /* Delete a POSIX.1b interval timer. */
839 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
841 struct k_itimer *timer;
842 unsigned long flags;
844 retry_delete:
845 timer = lock_timer(timer_id, &flags);
846 if (!timer)
847 return -EINVAL;
849 if (timer_delete_hook(timer) == TIMER_RETRY) {
850 unlock_timer(timer, flags);
851 goto retry_delete;
854 spin_lock(&current->sighand->siglock);
855 list_del(&timer->list);
856 spin_unlock(&current->sighand->siglock);
858 * This keeps any tasks waiting on the spin lock from thinking
859 * they got something (see the lock code above).
861 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
862 put_task_struct(timer->it_process);
863 timer->it_process = NULL;
865 unlock_timer(timer, flags);
866 release_posix_timer(timer, IT_ID_SET);
867 return 0;
871 * return timer owned by the process, used by exit_itimers
873 static void itimer_delete(struct k_itimer *timer)
875 unsigned long flags;
877 retry_delete:
878 spin_lock_irqsave(&timer->it_lock, flags);
880 if (timer_delete_hook(timer) == TIMER_RETRY) {
881 unlock_timer(timer, flags);
882 goto retry_delete;
884 list_del(&timer->list);
886 * This keeps any tasks waiting on the spin lock from thinking
887 * they got something (see the lock code above).
889 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
890 put_task_struct(timer->it_process);
891 timer->it_process = NULL;
893 unlock_timer(timer, flags);
894 release_posix_timer(timer, IT_ID_SET);
898 * This is called by do_exit or de_thread, only when there are no more
899 * references to the shared signal_struct.
901 void exit_itimers(struct signal_struct *sig)
903 struct k_itimer *tmr;
905 while (!list_empty(&sig->posix_timers)) {
906 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
907 itimer_delete(tmr);
911 /* Not available / possible... functions */
912 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
914 return -EINVAL;
916 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
918 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
919 struct timespec *t, struct timespec __user *r)
921 #ifndef ENOTSUP
922 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
923 #else /* parisc does define it separately. */
924 return -ENOTSUP;
925 #endif
927 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
929 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
930 const struct timespec __user *, tp)
932 struct timespec new_tp;
934 if (invalid_clockid(which_clock))
935 return -EINVAL;
936 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
937 return -EFAULT;
939 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
942 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
943 struct timespec __user *,tp)
945 struct timespec kernel_tp;
946 int error;
948 if (invalid_clockid(which_clock))
949 return -EINVAL;
950 error = CLOCK_DISPATCH(which_clock, clock_get,
951 (which_clock, &kernel_tp));
952 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
953 error = -EFAULT;
955 return error;
959 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
960 struct timespec __user *, tp)
962 struct timespec rtn_tp;
963 int error;
965 if (invalid_clockid(which_clock))
966 return -EINVAL;
968 error = CLOCK_DISPATCH(which_clock, clock_getres,
969 (which_clock, &rtn_tp));
971 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
972 error = -EFAULT;
975 return error;
979 * nanosleep for monotonic and realtime clocks
981 static int common_nsleep(const clockid_t which_clock, int flags,
982 struct timespec *tsave, struct timespec __user *rmtp)
984 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
985 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
986 which_clock);
989 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
990 const struct timespec __user *, rqtp,
991 struct timespec __user *, rmtp)
993 struct timespec t;
995 if (invalid_clockid(which_clock))
996 return -EINVAL;
998 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
999 return -EFAULT;
1001 if (!timespec_valid(&t))
1002 return -EINVAL;
1004 return CLOCK_DISPATCH(which_clock, nsleep,
1005 (which_clock, flags, &t, rmtp));
1009 * nanosleep_restart for monotonic and realtime clocks
1011 static int common_nsleep_restart(struct restart_block *restart_block)
1013 return hrtimer_nanosleep_restart(restart_block);
1017 * This will restart clock_nanosleep. This is required only by
1018 * compat_clock_nanosleep_restart for now.
1020 long
1021 clock_nanosleep_restart(struct restart_block *restart_block)
1023 clockid_t which_clock = restart_block->arg0;
1025 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1026 (restart_block));