ACPI: thinkpad-acpi: preserve radio state across shutdown
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / math-emu / op-common.h
bloba4cb9d19a55eacb3ad7983a8124a1d3d948c05a1
1 /* Software floating-point emulation. Common operations.
2 Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Richard Henderson (rth@cygnus.com),
5 Jakub Jelinek (jj@ultra.linux.cz),
6 David S. Miller (davem@redhat.com) and
7 Peter Maydell (pmaydell@chiark.greenend.org.uk).
9 The GNU C Library is free software; you can redistribute it and/or
10 modify it under the terms of the GNU Library General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version.
14 The GNU C Library is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Library General Public License for more details.
19 You should have received a copy of the GNU Library General Public
20 License along with the GNU C Library; see the file COPYING.LIB. If
21 not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 #ifndef __MATH_EMU_OP_COMMON_H__
25 #define __MATH_EMU_OP_COMMON_H__
27 #define _FP_DECL(wc, X) \
28 _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \
29 _FP_FRAC_DECL_##wc(X)
32 * Finish truely unpacking a native fp value by classifying the kind
33 * of fp value and normalizing both the exponent and the fraction.
36 #define _FP_UNPACK_CANONICAL(fs, wc, X) \
37 do { \
38 switch (X##_e) \
39 { \
40 default: \
41 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \
42 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
43 X##_e -= _FP_EXPBIAS_##fs; \
44 X##_c = FP_CLS_NORMAL; \
45 break; \
47 case 0: \
48 if (_FP_FRAC_ZEROP_##wc(X)) \
49 X##_c = FP_CLS_ZERO; \
50 else \
51 { \
52 /* a denormalized number */ \
53 _FP_I_TYPE _shift; \
54 _FP_FRAC_CLZ_##wc(_shift, X); \
55 _shift -= _FP_FRACXBITS_##fs; \
56 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
57 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
58 X##_c = FP_CLS_NORMAL; \
59 FP_SET_EXCEPTION(FP_EX_DENORM); \
60 if (FP_DENORM_ZERO) \
61 { \
62 FP_SET_EXCEPTION(FP_EX_INEXACT); \
63 X##_c = FP_CLS_ZERO; \
64 } \
65 } \
66 break; \
68 case _FP_EXPMAX_##fs: \
69 if (_FP_FRAC_ZEROP_##wc(X)) \
70 X##_c = FP_CLS_INF; \
71 else \
72 { \
73 X##_c = FP_CLS_NAN; \
74 /* Check for signaling NaN */ \
75 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
76 FP_SET_EXCEPTION(FP_EX_INVALID); \
77 } \
78 break; \
79 } \
80 } while (0)
83 * Before packing the bits back into the native fp result, take care
84 * of such mundane things as rounding and overflow. Also, for some
85 * kinds of fp values, the original parts may not have been fully
86 * extracted -- but that is ok, we can regenerate them now.
89 #define _FP_PACK_CANONICAL(fs, wc, X) \
90 do { \
91 switch (X##_c) \
92 { \
93 case FP_CLS_NORMAL: \
94 X##_e += _FP_EXPBIAS_##fs; \
95 if (X##_e > 0) \
96 { \
97 _FP_ROUND(wc, X); \
98 if (_FP_FRAC_OVERP_##wc(fs, X)) \
99 { \
100 _FP_FRAC_CLEAR_OVERP_##wc(fs, X); \
101 X##_e++; \
103 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
104 if (X##_e >= _FP_EXPMAX_##fs) \
106 /* overflow */ \
107 switch (FP_ROUNDMODE) \
109 case FP_RND_NEAREST: \
110 X##_c = FP_CLS_INF; \
111 break; \
112 case FP_RND_PINF: \
113 if (!X##_s) X##_c = FP_CLS_INF; \
114 break; \
115 case FP_RND_MINF: \
116 if (X##_s) X##_c = FP_CLS_INF; \
117 break; \
119 if (X##_c == FP_CLS_INF) \
121 /* Overflow to infinity */ \
122 X##_e = _FP_EXPMAX_##fs; \
123 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
125 else \
127 /* Overflow to maximum normal */ \
128 X##_e = _FP_EXPMAX_##fs - 1; \
129 _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \
131 FP_SET_EXCEPTION(FP_EX_OVERFLOW); \
132 FP_SET_EXCEPTION(FP_EX_INEXACT); \
135 else \
137 /* we've got a denormalized number */ \
138 X##_e = -X##_e + 1; \
139 if (X##_e <= _FP_WFRACBITS_##fs) \
141 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
142 if (_FP_FRAC_HIGH_##fs(X) \
143 & (_FP_OVERFLOW_##fs >> 1)) \
145 X##_e = 1; \
146 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
148 else \
150 _FP_ROUND(wc, X); \
151 if (_FP_FRAC_HIGH_##fs(X) \
152 & (_FP_OVERFLOW_##fs >> 1)) \
154 X##_e = 1; \
155 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
156 FP_SET_EXCEPTION(FP_EX_INEXACT); \
158 else \
160 X##_e = 0; \
161 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
164 if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \
165 (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
166 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
168 else \
170 /* underflow to zero */ \
171 X##_e = 0; \
172 if (!_FP_FRAC_ZEROP_##wc(X)) \
174 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
175 _FP_ROUND(wc, X); \
176 _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \
178 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
181 break; \
183 case FP_CLS_ZERO: \
184 X##_e = 0; \
185 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
186 break; \
188 case FP_CLS_INF: \
189 X##_e = _FP_EXPMAX_##fs; \
190 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
191 break; \
193 case FP_CLS_NAN: \
194 X##_e = _FP_EXPMAX_##fs; \
195 if (!_FP_KEEPNANFRACP) \
197 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
198 X##_s = _FP_NANSIGN_##fs; \
200 else \
201 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \
202 break; \
204 } while (0)
206 /* This one accepts raw argument and not cooked, returns
207 * 1 if X is a signaling NaN.
209 #define _FP_ISSIGNAN(fs, wc, X) \
210 ({ \
211 int __ret = 0; \
212 if (X##_e == _FP_EXPMAX_##fs) \
214 if (!_FP_FRAC_ZEROP_##wc(X) \
215 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
216 __ret = 1; \
218 __ret; \
226 * Main addition routine. The input values should be cooked.
229 #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
230 do { \
231 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
233 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
235 /* shift the smaller number so that its exponent matches the larger */ \
236 _FP_I_TYPE diff = X##_e - Y##_e; \
238 if (diff < 0) \
240 diff = -diff; \
241 if (diff <= _FP_WFRACBITS_##fs) \
242 _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
243 else if (!_FP_FRAC_ZEROP_##wc(X)) \
244 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
245 R##_e = Y##_e; \
247 else \
249 if (diff > 0) \
251 if (diff <= _FP_WFRACBITS_##fs) \
252 _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
253 else if (!_FP_FRAC_ZEROP_##wc(Y)) \
254 _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
256 R##_e = X##_e; \
259 R##_c = FP_CLS_NORMAL; \
261 if (X##_s == Y##_s) \
263 R##_s = X##_s; \
264 _FP_FRAC_ADD_##wc(R, X, Y); \
265 if (_FP_FRAC_OVERP_##wc(fs, R)) \
267 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
268 R##_e++; \
271 else \
273 R##_s = X##_s; \
274 _FP_FRAC_SUB_##wc(R, X, Y); \
275 if (_FP_FRAC_ZEROP_##wc(R)) \
277 /* return an exact zero */ \
278 if (FP_ROUNDMODE == FP_RND_MINF) \
279 R##_s |= Y##_s; \
280 else \
281 R##_s &= Y##_s; \
282 R##_c = FP_CLS_ZERO; \
284 else \
286 if (_FP_FRAC_NEGP_##wc(R)) \
288 _FP_FRAC_SUB_##wc(R, Y, X); \
289 R##_s = Y##_s; \
292 /* renormalize after subtraction */ \
293 _FP_FRAC_CLZ_##wc(diff, R); \
294 diff -= _FP_WFRACXBITS_##fs; \
295 if (diff) \
297 R##_e -= diff; \
298 _FP_FRAC_SLL_##wc(R, diff); \
302 break; \
305 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
306 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \
307 break; \
309 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
310 R##_e = X##_e; \
311 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
312 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
313 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
314 _FP_FRAC_COPY_##wc(R, X); \
315 R##_s = X##_s; \
316 R##_c = X##_c; \
317 break; \
319 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
320 R##_e = Y##_e; \
321 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
322 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
323 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
324 _FP_FRAC_COPY_##wc(R, Y); \
325 R##_s = Y##_s; \
326 R##_c = Y##_c; \
327 break; \
329 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
330 if (X##_s != Y##_s) \
332 /* +INF + -INF => NAN */ \
333 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
334 R##_s = _FP_NANSIGN_##fs; \
335 R##_c = FP_CLS_NAN; \
336 FP_SET_EXCEPTION(FP_EX_INVALID); \
337 break; \
339 /* FALLTHRU */ \
341 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
342 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
343 R##_s = X##_s; \
344 R##_c = FP_CLS_INF; \
345 break; \
347 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
348 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
349 R##_s = Y##_s; \
350 R##_c = FP_CLS_INF; \
351 break; \
353 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
354 /* make sure the sign is correct */ \
355 if (FP_ROUNDMODE == FP_RND_MINF) \
356 R##_s = X##_s | Y##_s; \
357 else \
358 R##_s = X##_s & Y##_s; \
359 R##_c = FP_CLS_ZERO; \
360 break; \
362 default: \
363 abort(); \
365 } while (0)
367 #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
368 #define _FP_SUB(fs, wc, R, X, Y) \
369 do { \
370 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \
371 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \
372 } while (0)
376 * Main negation routine. FIXME -- when we care about setting exception
377 * bits reliably, this will not do. We should examine all of the fp classes.
380 #define _FP_NEG(fs, wc, R, X) \
381 do { \
382 _FP_FRAC_COPY_##wc(R, X); \
383 R##_c = X##_c; \
384 R##_e = X##_e; \
385 R##_s = 1 ^ X##_s; \
386 } while (0)
390 * Main multiplication routine. The input values should be cooked.
393 #define _FP_MUL(fs, wc, R, X, Y) \
394 do { \
395 R##_s = X##_s ^ Y##_s; \
396 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
398 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
399 R##_c = FP_CLS_NORMAL; \
400 R##_e = X##_e + Y##_e + 1; \
402 _FP_MUL_MEAT_##fs(R,X,Y); \
404 if (_FP_FRAC_OVERP_##wc(fs, R)) \
405 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
406 else \
407 R##_e--; \
408 break; \
410 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
411 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \
412 break; \
414 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
415 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
416 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
417 R##_s = X##_s; \
419 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
420 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
421 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
422 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
423 _FP_FRAC_COPY_##wc(R, X); \
424 R##_c = X##_c; \
425 break; \
427 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
428 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
429 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
430 R##_s = Y##_s; \
432 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
433 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
434 _FP_FRAC_COPY_##wc(R, Y); \
435 R##_c = Y##_c; \
436 break; \
438 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
439 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
440 R##_s = _FP_NANSIGN_##fs; \
441 R##_c = FP_CLS_NAN; \
442 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
443 FP_SET_EXCEPTION(FP_EX_INVALID); \
444 break; \
446 default: \
447 abort(); \
449 } while (0)
453 * Main division routine. The input values should be cooked.
456 #define _FP_DIV(fs, wc, R, X, Y) \
457 do { \
458 R##_s = X##_s ^ Y##_s; \
459 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
461 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
462 R##_c = FP_CLS_NORMAL; \
463 R##_e = X##_e - Y##_e; \
465 _FP_DIV_MEAT_##fs(R,X,Y); \
466 break; \
468 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
469 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \
470 break; \
472 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
473 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
474 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
475 R##_s = X##_s; \
476 _FP_FRAC_COPY_##wc(R, X); \
477 R##_c = X##_c; \
478 break; \
480 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
481 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
482 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
483 R##_s = Y##_s; \
484 _FP_FRAC_COPY_##wc(R, Y); \
485 R##_c = Y##_c; \
486 break; \
488 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
489 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
490 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
491 R##_c = FP_CLS_ZERO; \
492 break; \
494 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
495 FP_SET_EXCEPTION(FP_EX_DIVZERO); \
496 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
497 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
498 R##_c = FP_CLS_INF; \
499 break; \
501 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
502 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
503 R##_s = _FP_NANSIGN_##fs; \
504 R##_c = FP_CLS_NAN; \
505 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
506 FP_SET_EXCEPTION(FP_EX_INVALID); \
507 break; \
509 default: \
510 abort(); \
512 } while (0)
516 * Main differential comparison routine. The inputs should be raw not
517 * cooked. The return is -1,0,1 for normal values, 2 otherwise.
520 #define _FP_CMP(fs, wc, ret, X, Y, un) \
521 do { \
522 /* NANs are unordered */ \
523 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
524 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
526 ret = un; \
528 else \
530 int __is_zero_x; \
531 int __is_zero_y; \
533 __is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
534 __is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
536 if (__is_zero_x && __is_zero_y) \
537 ret = 0; \
538 else if (__is_zero_x) \
539 ret = Y##_s ? 1 : -1; \
540 else if (__is_zero_y) \
541 ret = X##_s ? -1 : 1; \
542 else if (X##_s != Y##_s) \
543 ret = X##_s ? -1 : 1; \
544 else if (X##_e > Y##_e) \
545 ret = X##_s ? -1 : 1; \
546 else if (X##_e < Y##_e) \
547 ret = X##_s ? 1 : -1; \
548 else if (_FP_FRAC_GT_##wc(X, Y)) \
549 ret = X##_s ? -1 : 1; \
550 else if (_FP_FRAC_GT_##wc(Y, X)) \
551 ret = X##_s ? 1 : -1; \
552 else \
553 ret = 0; \
555 } while (0)
558 /* Simplification for strict equality. */
560 #define _FP_CMP_EQ(fs, wc, ret, X, Y) \
561 do { \
562 /* NANs are unordered */ \
563 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
564 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
566 ret = 1; \
568 else \
570 ret = !(X##_e == Y##_e \
571 && _FP_FRAC_EQ_##wc(X, Y) \
572 && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
574 } while (0)
577 * Main square root routine. The input value should be cooked.
580 #define _FP_SQRT(fs, wc, R, X) \
581 do { \
582 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
583 _FP_W_TYPE q; \
584 switch (X##_c) \
586 case FP_CLS_NAN: \
587 _FP_FRAC_COPY_##wc(R, X); \
588 R##_s = X##_s; \
589 R##_c = FP_CLS_NAN; \
590 break; \
591 case FP_CLS_INF: \
592 if (X##_s) \
594 R##_s = _FP_NANSIGN_##fs; \
595 R##_c = FP_CLS_NAN; /* NAN */ \
596 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
597 FP_SET_EXCEPTION(FP_EX_INVALID); \
599 else \
601 R##_s = 0; \
602 R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
604 break; \
605 case FP_CLS_ZERO: \
606 R##_s = X##_s; \
607 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
608 break; \
609 case FP_CLS_NORMAL: \
610 R##_s = 0; \
611 if (X##_s) \
613 R##_c = FP_CLS_NAN; /* sNAN */ \
614 R##_s = _FP_NANSIGN_##fs; \
615 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
616 FP_SET_EXCEPTION(FP_EX_INVALID); \
617 break; \
619 R##_c = FP_CLS_NORMAL; \
620 if (X##_e & 1) \
621 _FP_FRAC_SLL_##wc(X, 1); \
622 R##_e = X##_e >> 1; \
623 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
624 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
625 q = _FP_OVERFLOW_##fs >> 1; \
626 _FP_SQRT_MEAT_##wc(R, S, T, X, q); \
628 } while (0)
631 * Convert from FP to integer
634 /* RSIGNED can have following values:
635 * 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
636 * the result is either 0 or (2^rsize)-1 depending on the sign in such case.
637 * 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
638 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
639 * on the sign in such case.
640 * 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
641 * set plus the result is truncated to fit into destination.
642 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
643 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
644 * on the sign in such case.
646 #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
647 do { \
648 switch (X##_c) \
650 case FP_CLS_NORMAL: \
651 if (X##_e < 0) \
653 FP_SET_EXCEPTION(FP_EX_INEXACT); \
654 case FP_CLS_ZERO: \
655 r = 0; \
657 else if (X##_e >= rsize - (rsigned > 0 || X##_s) \
658 || (!rsigned && X##_s)) \
659 { /* overflow */ \
660 case FP_CLS_NAN: \
661 case FP_CLS_INF: \
662 if (rsigned == 2) \
664 if (X##_c != FP_CLS_NORMAL \
665 || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \
666 r = 0; \
667 else \
669 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
670 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
673 else if (rsigned) \
675 r = 1; \
676 r <<= rsize - 1; \
677 r -= 1 - X##_s; \
679 else \
681 r = 0; \
682 if (X##_s) \
683 r = ~r; \
685 FP_SET_EXCEPTION(FP_EX_INVALID); \
687 else \
689 if (_FP_W_TYPE_SIZE*wc < rsize) \
691 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
692 r <<= X##_e - _FP_WFRACBITS_##fs; \
694 else \
696 if (X##_e >= _FP_WFRACBITS_##fs) \
697 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
698 else if (X##_e < _FP_WFRACBITS_##fs - 1) \
700 _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \
701 _FP_WFRACBITS_##fs); \
702 if (_FP_FRAC_LOW_##wc(X) & 1) \
703 FP_SET_EXCEPTION(FP_EX_INEXACT); \
704 _FP_FRAC_SRL_##wc(X, 1); \
706 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
708 if (rsigned && X##_s) \
709 r = -r; \
711 break; \
713 } while (0)
715 #define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
716 do { \
717 r = 0; \
718 switch (X##_c) \
720 case FP_CLS_NORMAL: \
721 if (X##_e >= _FP_FRACBITS_##fs - 1) \
723 if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \
725 if (X##_e >= _FP_WFRACBITS_##fs - 1) \
727 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
728 r <<= X##_e - _FP_WFRACBITS_##fs + 1; \
730 else \
732 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \
733 + _FP_FRACBITS_##fs - 1); \
734 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
738 else \
740 if (X##_e <= -_FP_WORKBITS - 1) \
741 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
742 else \
743 _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \
744 _FP_WFRACBITS_##fs); \
745 _FP_ROUND(wc, X); \
746 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
747 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
749 if (rsigned && X##_s) \
750 r = -r; \
751 if (X##_e >= rsize - (rsigned > 0 || X##_s) \
752 || (!rsigned && X##_s)) \
753 { /* overflow */ \
754 case FP_CLS_NAN: \
755 case FP_CLS_INF: \
756 if (!rsigned) \
758 r = 0; \
759 if (X##_s) \
760 r = ~r; \
762 else if (rsigned != 2) \
764 r = 1; \
765 r <<= rsize - 1; \
766 r -= 1 - X##_s; \
768 FP_SET_EXCEPTION(FP_EX_INVALID); \
770 break; \
771 case FP_CLS_ZERO: \
772 break; \
774 } while (0)
776 #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
777 do { \
778 if (r) \
780 unsigned rtype ur_; \
781 X##_c = FP_CLS_NORMAL; \
783 if ((X##_s = (r < 0))) \
784 ur_ = (unsigned rtype) -r; \
785 else \
786 ur_ = (unsigned rtype) r; \
787 if (rsize <= _FP_W_TYPE_SIZE) \
788 __FP_CLZ(X##_e, ur_); \
789 else \
790 __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \
791 (_FP_W_TYPE)ur_); \
792 if (rsize < _FP_W_TYPE_SIZE) \
793 X##_e -= (_FP_W_TYPE_SIZE - rsize); \
794 X##_e = rsize - X##_e - 1; \
796 if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e) \
797 __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
798 _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \
799 if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \
800 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
802 else \
804 X##_c = FP_CLS_ZERO, X##_s = 0; \
806 } while (0)
809 #define FP_CONV(dfs,sfs,dwc,swc,D,S) \
810 do { \
811 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
812 D##_e = S##_e; \
813 D##_c = S##_c; \
814 D##_s = S##_s; \
815 } while (0)
818 * Helper primitives.
821 /* Count leading zeros in a word. */
823 #ifndef __FP_CLZ
824 #if _FP_W_TYPE_SIZE < 64
825 /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
826 #define __FP_CLZ(r, x) \
827 do { \
828 _FP_W_TYPE _t = (x); \
829 r = _FP_W_TYPE_SIZE - 1; \
830 if (_t > 0xffff) r -= 16; \
831 if (_t > 0xffff) _t >>= 16; \
832 if (_t > 0xff) r -= 8; \
833 if (_t > 0xff) _t >>= 8; \
834 if (_t & 0xf0) r -= 4; \
835 if (_t & 0xf0) _t >>= 4; \
836 if (_t & 0xc) r -= 2; \
837 if (_t & 0xc) _t >>= 2; \
838 if (_t & 0x2) r -= 1; \
839 } while (0)
840 #else /* not _FP_W_TYPE_SIZE < 64 */
841 #define __FP_CLZ(r, x) \
842 do { \
843 _FP_W_TYPE _t = (x); \
844 r = _FP_W_TYPE_SIZE - 1; \
845 if (_t > 0xffffffff) r -= 32; \
846 if (_t > 0xffffffff) _t >>= 32; \
847 if (_t > 0xffff) r -= 16; \
848 if (_t > 0xffff) _t >>= 16; \
849 if (_t > 0xff) r -= 8; \
850 if (_t > 0xff) _t >>= 8; \
851 if (_t & 0xf0) r -= 4; \
852 if (_t & 0xf0) _t >>= 4; \
853 if (_t & 0xc) r -= 2; \
854 if (_t & 0xc) _t >>= 2; \
855 if (_t & 0x2) r -= 1; \
856 } while (0)
857 #endif /* not _FP_W_TYPE_SIZE < 64 */
858 #endif /* ndef __FP_CLZ */
860 #define _FP_DIV_HELP_imm(q, r, n, d) \
861 do { \
862 q = n / d, r = n % d; \
863 } while (0)
865 #endif /* __MATH_EMU_OP_COMMON_H__ */