ACPI: thinkpad-acpi: preserve radio state across shutdown
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / pagemap.h
blob62efcebf87609847b3b0dfcb10f808efaeb9d4cc
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
21 #define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
22 #define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
23 #define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
25 static inline void mapping_set_error(struct address_space *mapping, int error)
27 if (unlikely(error)) {
28 if (error == -ENOSPC)
29 set_bit(AS_ENOSPC, &mapping->flags);
30 else
31 set_bit(AS_EIO, &mapping->flags);
35 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
37 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
41 * This is non-atomic. Only to be used before the mapping is activated.
42 * Probably needs a barrier...
44 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
46 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
47 (__force unsigned long)mask;
51 * The page cache can done in larger chunks than
52 * one page, because it allows for more efficient
53 * throughput (it can then be mapped into user
54 * space in smaller chunks for same flexibility).
56 * Or rather, it _will_ be done in larger chunks.
58 #define PAGE_CACHE_SHIFT PAGE_SHIFT
59 #define PAGE_CACHE_SIZE PAGE_SIZE
60 #define PAGE_CACHE_MASK PAGE_MASK
61 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
63 #define page_cache_get(page) get_page(page)
64 #define page_cache_release(page) put_page(page)
65 void release_pages(struct page **pages, int nr, int cold);
68 * speculatively take a reference to a page.
69 * If the page is free (_count == 0), then _count is untouched, and 0
70 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
72 * This function must be called inside the same rcu_read_lock() section as has
73 * been used to lookup the page in the pagecache radix-tree (or page table):
74 * this allows allocators to use a synchronize_rcu() to stabilize _count.
76 * Unless an RCU grace period has passed, the count of all pages coming out
77 * of the allocator must be considered unstable. page_count may return higher
78 * than expected, and put_page must be able to do the right thing when the
79 * page has been finished with, no matter what it is subsequently allocated
80 * for (because put_page is what is used here to drop an invalid speculative
81 * reference).
83 * This is the interesting part of the lockless pagecache (and lockless
84 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
85 * has the following pattern:
86 * 1. find page in radix tree
87 * 2. conditionally increment refcount
88 * 3. check the page is still in pagecache (if no, goto 1)
90 * Remove-side that cares about stability of _count (eg. reclaim) has the
91 * following (with tree_lock held for write):
92 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
93 * B. remove page from pagecache
94 * C. free the page
96 * There are 2 critical interleavings that matter:
97 * - 2 runs before A: in this case, A sees elevated refcount and bails out
98 * - A runs before 2: in this case, 2 sees zero refcount and retries;
99 * subsequently, B will complete and 1 will find no page, causing the
100 * lookup to return NULL.
102 * It is possible that between 1 and 2, the page is removed then the exact same
103 * page is inserted into the same position in pagecache. That's OK: the
104 * old find_get_page using tree_lock could equally have run before or after
105 * such a re-insertion, depending on order that locks are granted.
107 * Lookups racing against pagecache insertion isn't a big problem: either 1
108 * will find the page or it will not. Likewise, the old find_get_page could run
109 * either before the insertion or afterwards, depending on timing.
111 static inline int page_cache_get_speculative(struct page *page)
113 VM_BUG_ON(in_interrupt());
115 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
116 # ifdef CONFIG_PREEMPT
117 VM_BUG_ON(!in_atomic());
118 # endif
120 * Preempt must be disabled here - we rely on rcu_read_lock doing
121 * this for us.
123 * Pagecache won't be truncated from interrupt context, so if we have
124 * found a page in the radix tree here, we have pinned its refcount by
125 * disabling preempt, and hence no need for the "speculative get" that
126 * SMP requires.
128 VM_BUG_ON(page_count(page) == 0);
129 atomic_inc(&page->_count);
131 #else
132 if (unlikely(!get_page_unless_zero(page))) {
134 * Either the page has been freed, or will be freed.
135 * In either case, retry here and the caller should
136 * do the right thing (see comments above).
138 return 0;
140 #endif
141 VM_BUG_ON(PageTail(page));
143 return 1;
147 * Same as above, but add instead of inc (could just be merged)
149 static inline int page_cache_add_speculative(struct page *page, int count)
151 VM_BUG_ON(in_interrupt());
153 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
154 # ifdef CONFIG_PREEMPT
155 VM_BUG_ON(!in_atomic());
156 # endif
157 VM_BUG_ON(page_count(page) == 0);
158 atomic_add(count, &page->_count);
160 #else
161 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
162 return 0;
163 #endif
164 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
166 return 1;
169 static inline int page_freeze_refs(struct page *page, int count)
171 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
174 static inline void page_unfreeze_refs(struct page *page, int count)
176 VM_BUG_ON(page_count(page) != 0);
177 VM_BUG_ON(count == 0);
179 atomic_set(&page->_count, count);
182 #ifdef CONFIG_NUMA
183 extern struct page *__page_cache_alloc(gfp_t gfp);
184 #else
185 static inline struct page *__page_cache_alloc(gfp_t gfp)
187 return alloc_pages(gfp, 0);
189 #endif
191 static inline struct page *page_cache_alloc(struct address_space *x)
193 return __page_cache_alloc(mapping_gfp_mask(x));
196 static inline struct page *page_cache_alloc_cold(struct address_space *x)
198 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
201 typedef int filler_t(void *, struct page *);
203 extern struct page * find_get_page(struct address_space *mapping,
204 pgoff_t index);
205 extern struct page * find_lock_page(struct address_space *mapping,
206 pgoff_t index);
207 extern struct page * find_or_create_page(struct address_space *mapping,
208 pgoff_t index, gfp_t gfp_mask);
209 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
210 unsigned int nr_pages, struct page **pages);
211 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
212 unsigned int nr_pages, struct page **pages);
213 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
214 int tag, unsigned int nr_pages, struct page **pages);
216 struct page *grab_cache_page_write_begin(struct address_space *mapping,
217 pgoff_t index, unsigned flags);
220 * Returns locked page at given index in given cache, creating it if needed.
222 static inline struct page *grab_cache_page(struct address_space *mapping,
223 pgoff_t index)
225 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
228 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
229 pgoff_t index);
230 extern struct page * read_cache_page_async(struct address_space *mapping,
231 pgoff_t index, filler_t *filler,
232 void *data);
233 extern struct page * read_cache_page(struct address_space *mapping,
234 pgoff_t index, filler_t *filler,
235 void *data);
236 extern int read_cache_pages(struct address_space *mapping,
237 struct list_head *pages, filler_t *filler, void *data);
239 static inline struct page *read_mapping_page_async(
240 struct address_space *mapping,
241 pgoff_t index, void *data)
243 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
244 return read_cache_page_async(mapping, index, filler, data);
247 static inline struct page *read_mapping_page(struct address_space *mapping,
248 pgoff_t index, void *data)
250 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
251 return read_cache_page(mapping, index, filler, data);
255 * Return byte-offset into filesystem object for page.
257 static inline loff_t page_offset(struct page *page)
259 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
262 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
263 unsigned long address)
265 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
266 pgoff += vma->vm_pgoff;
267 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
270 extern void __lock_page(struct page *page);
271 extern int __lock_page_killable(struct page *page);
272 extern void __lock_page_nosync(struct page *page);
273 extern void unlock_page(struct page *page);
275 static inline void set_page_locked(struct page *page)
277 set_bit(PG_locked, &page->flags);
280 static inline void clear_page_locked(struct page *page)
282 clear_bit(PG_locked, &page->flags);
285 static inline int trylock_page(struct page *page)
287 return !test_and_set_bit(PG_locked, &page->flags);
291 * lock_page may only be called if we have the page's inode pinned.
293 static inline void lock_page(struct page *page)
295 might_sleep();
296 if (!trylock_page(page))
297 __lock_page(page);
301 * lock_page_killable is like lock_page but can be interrupted by fatal
302 * signals. It returns 0 if it locked the page and -EINTR if it was
303 * killed while waiting.
305 static inline int lock_page_killable(struct page *page)
307 might_sleep();
308 if (!trylock_page(page))
309 return __lock_page_killable(page);
310 return 0;
314 * lock_page_nosync should only be used if we can't pin the page's inode.
315 * Doesn't play quite so well with block device plugging.
317 static inline void lock_page_nosync(struct page *page)
319 might_sleep();
320 if (!trylock_page(page))
321 __lock_page_nosync(page);
325 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
326 * Never use this directly!
328 extern void wait_on_page_bit(struct page *page, int bit_nr);
331 * Wait for a page to be unlocked.
333 * This must be called with the caller "holding" the page,
334 * ie with increased "page->count" so that the page won't
335 * go away during the wait..
337 static inline void wait_on_page_locked(struct page *page)
339 if (PageLocked(page))
340 wait_on_page_bit(page, PG_locked);
344 * Wait for a page to complete writeback
346 static inline void wait_on_page_writeback(struct page *page)
348 if (PageWriteback(page))
349 wait_on_page_bit(page, PG_writeback);
352 extern void end_page_writeback(struct page *page);
355 * Fault a userspace page into pagetables. Return non-zero on a fault.
357 * This assumes that two userspace pages are always sufficient. That's
358 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
360 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
362 int ret;
364 if (unlikely(size == 0))
365 return 0;
368 * Writing zeroes into userspace here is OK, because we know that if
369 * the zero gets there, we'll be overwriting it.
371 ret = __put_user(0, uaddr);
372 if (ret == 0) {
373 char __user *end = uaddr + size - 1;
376 * If the page was already mapped, this will get a cache miss
377 * for sure, so try to avoid doing it.
379 if (((unsigned long)uaddr & PAGE_MASK) !=
380 ((unsigned long)end & PAGE_MASK))
381 ret = __put_user(0, end);
383 return ret;
386 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
388 volatile char c;
389 int ret;
391 if (unlikely(size == 0))
392 return 0;
394 ret = __get_user(c, uaddr);
395 if (ret == 0) {
396 const char __user *end = uaddr + size - 1;
398 if (((unsigned long)uaddr & PAGE_MASK) !=
399 ((unsigned long)end & PAGE_MASK))
400 ret = __get_user(c, end);
402 return ret;
405 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
406 pgoff_t index, gfp_t gfp_mask);
407 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
408 pgoff_t index, gfp_t gfp_mask);
409 extern void remove_from_page_cache(struct page *page);
410 extern void __remove_from_page_cache(struct page *page);
413 * Like add_to_page_cache_locked, but used to add newly allocated pages:
414 * the page is new, so we can just run set_page_locked() against it.
416 static inline int add_to_page_cache(struct page *page,
417 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
419 int error;
421 set_page_locked(page);
422 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
423 if (unlikely(error))
424 clear_page_locked(page);
425 return error;
428 #endif /* _LINUX_PAGEMAP_H */