perf, powerpc: Implement group scheduling transactional APIs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / perf_event.c
blob43b83c35cf54b0dfb07bc5abef8ee558d5f3cd9c
1 /*
2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
39 unsigned int group_flag;
40 int n_txn_start;
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
44 struct power_pmu *ppmu;
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
59 #ifdef CONFIG_PPC32
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
69 return 0;
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
74 return 0;
76 static inline void perf_read_regs(struct pt_regs *regs) { }
77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
79 return 0;
82 #endif /* CONFIG_PPC32 */
85 * Things that are specific to 64-bit implementations.
87 #ifdef CONFIG_PPC64
89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
91 unsigned long mmcra = regs->dsisr;
93 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 if (slot > 1)
96 return 4 * (slot - 1);
98 return 0;
102 * The user wants a data address recorded.
103 * If we're not doing instruction sampling, give them the SDAR
104 * (sampled data address). If we are doing instruction sampling, then
105 * only give them the SDAR if it corresponds to the instruction
106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107 * bit in MMCRA.
109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
111 unsigned long mmcra = regs->dsisr;
112 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
115 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 *addrp = mfspr(SPRN_SDAR);
119 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
121 unsigned long mmcra = regs->dsisr;
122 unsigned long sihv = MMCRA_SIHV;
123 unsigned long sipr = MMCRA_SIPR;
125 if (TRAP(regs) != 0xf00)
126 return 0; /* not a PMU interrupt */
128 if (ppmu->flags & PPMU_ALT_SIPR) {
129 sihv = POWER6_MMCRA_SIHV;
130 sipr = POWER6_MMCRA_SIPR;
133 /* PR has priority over HV, so order below is important */
134 if (mmcra & sipr)
135 return PERF_RECORD_MISC_USER;
136 if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
137 return PERF_RECORD_MISC_HYPERVISOR;
138 return PERF_RECORD_MISC_KERNEL;
142 * Overload regs->dsisr to store MMCRA so we only need to read it once
143 * on each interrupt.
145 static inline void perf_read_regs(struct pt_regs *regs)
147 regs->dsisr = mfspr(SPRN_MMCRA);
151 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
152 * it as an NMI.
154 static inline int perf_intr_is_nmi(struct pt_regs *regs)
156 return !regs->softe;
159 #endif /* CONFIG_PPC64 */
161 static void perf_event_interrupt(struct pt_regs *regs);
163 void perf_event_print_debug(void)
168 * Read one performance monitor counter (PMC).
170 static unsigned long read_pmc(int idx)
172 unsigned long val;
174 switch (idx) {
175 case 1:
176 val = mfspr(SPRN_PMC1);
177 break;
178 case 2:
179 val = mfspr(SPRN_PMC2);
180 break;
181 case 3:
182 val = mfspr(SPRN_PMC3);
183 break;
184 case 4:
185 val = mfspr(SPRN_PMC4);
186 break;
187 case 5:
188 val = mfspr(SPRN_PMC5);
189 break;
190 case 6:
191 val = mfspr(SPRN_PMC6);
192 break;
193 #ifdef CONFIG_PPC64
194 case 7:
195 val = mfspr(SPRN_PMC7);
196 break;
197 case 8:
198 val = mfspr(SPRN_PMC8);
199 break;
200 #endif /* CONFIG_PPC64 */
201 default:
202 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
203 val = 0;
205 return val;
209 * Write one PMC.
211 static void write_pmc(int idx, unsigned long val)
213 switch (idx) {
214 case 1:
215 mtspr(SPRN_PMC1, val);
216 break;
217 case 2:
218 mtspr(SPRN_PMC2, val);
219 break;
220 case 3:
221 mtspr(SPRN_PMC3, val);
222 break;
223 case 4:
224 mtspr(SPRN_PMC4, val);
225 break;
226 case 5:
227 mtspr(SPRN_PMC5, val);
228 break;
229 case 6:
230 mtspr(SPRN_PMC6, val);
231 break;
232 #ifdef CONFIG_PPC64
233 case 7:
234 mtspr(SPRN_PMC7, val);
235 break;
236 case 8:
237 mtspr(SPRN_PMC8, val);
238 break;
239 #endif /* CONFIG_PPC64 */
240 default:
241 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
246 * Check if a set of events can all go on the PMU at once.
247 * If they can't, this will look at alternative codes for the events
248 * and see if any combination of alternative codes is feasible.
249 * The feasible set is returned in event_id[].
251 static int power_check_constraints(struct cpu_hw_events *cpuhw,
252 u64 event_id[], unsigned int cflags[],
253 int n_ev)
255 unsigned long mask, value, nv;
256 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
257 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
258 int i, j;
259 unsigned long addf = ppmu->add_fields;
260 unsigned long tadd = ppmu->test_adder;
262 if (n_ev > ppmu->n_counter)
263 return -1;
265 /* First see if the events will go on as-is */
266 for (i = 0; i < n_ev; ++i) {
267 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
268 && !ppmu->limited_pmc_event(event_id[i])) {
269 ppmu->get_alternatives(event_id[i], cflags[i],
270 cpuhw->alternatives[i]);
271 event_id[i] = cpuhw->alternatives[i][0];
273 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
274 &cpuhw->avalues[i][0]))
275 return -1;
277 value = mask = 0;
278 for (i = 0; i < n_ev; ++i) {
279 nv = (value | cpuhw->avalues[i][0]) +
280 (value & cpuhw->avalues[i][0] & addf);
281 if ((((nv + tadd) ^ value) & mask) != 0 ||
282 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
283 cpuhw->amasks[i][0]) != 0)
284 break;
285 value = nv;
286 mask |= cpuhw->amasks[i][0];
288 if (i == n_ev)
289 return 0; /* all OK */
291 /* doesn't work, gather alternatives... */
292 if (!ppmu->get_alternatives)
293 return -1;
294 for (i = 0; i < n_ev; ++i) {
295 choice[i] = 0;
296 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
297 cpuhw->alternatives[i]);
298 for (j = 1; j < n_alt[i]; ++j)
299 ppmu->get_constraint(cpuhw->alternatives[i][j],
300 &cpuhw->amasks[i][j],
301 &cpuhw->avalues[i][j]);
304 /* enumerate all possibilities and see if any will work */
305 i = 0;
306 j = -1;
307 value = mask = nv = 0;
308 while (i < n_ev) {
309 if (j >= 0) {
310 /* we're backtracking, restore context */
311 value = svalues[i];
312 mask = smasks[i];
313 j = choice[i];
316 * See if any alternative k for event_id i,
317 * where k > j, will satisfy the constraints.
319 while (++j < n_alt[i]) {
320 nv = (value | cpuhw->avalues[i][j]) +
321 (value & cpuhw->avalues[i][j] & addf);
322 if ((((nv + tadd) ^ value) & mask) == 0 &&
323 (((nv + tadd) ^ cpuhw->avalues[i][j])
324 & cpuhw->amasks[i][j]) == 0)
325 break;
327 if (j >= n_alt[i]) {
329 * No feasible alternative, backtrack
330 * to event_id i-1 and continue enumerating its
331 * alternatives from where we got up to.
333 if (--i < 0)
334 return -1;
335 } else {
337 * Found a feasible alternative for event_id i,
338 * remember where we got up to with this event_id,
339 * go on to the next event_id, and start with
340 * the first alternative for it.
342 choice[i] = j;
343 svalues[i] = value;
344 smasks[i] = mask;
345 value = nv;
346 mask |= cpuhw->amasks[i][j];
347 ++i;
348 j = -1;
352 /* OK, we have a feasible combination, tell the caller the solution */
353 for (i = 0; i < n_ev; ++i)
354 event_id[i] = cpuhw->alternatives[i][choice[i]];
355 return 0;
359 * Check if newly-added events have consistent settings for
360 * exclude_{user,kernel,hv} with each other and any previously
361 * added events.
363 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
364 int n_prev, int n_new)
366 int eu = 0, ek = 0, eh = 0;
367 int i, n, first;
368 struct perf_event *event;
370 n = n_prev + n_new;
371 if (n <= 1)
372 return 0;
374 first = 1;
375 for (i = 0; i < n; ++i) {
376 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
377 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
378 continue;
380 event = ctrs[i];
381 if (first) {
382 eu = event->attr.exclude_user;
383 ek = event->attr.exclude_kernel;
384 eh = event->attr.exclude_hv;
385 first = 0;
386 } else if (event->attr.exclude_user != eu ||
387 event->attr.exclude_kernel != ek ||
388 event->attr.exclude_hv != eh) {
389 return -EAGAIN;
393 if (eu || ek || eh)
394 for (i = 0; i < n; ++i)
395 if (cflags[i] & PPMU_LIMITED_PMC_OK)
396 cflags[i] |= PPMU_LIMITED_PMC_REQD;
398 return 0;
401 static void power_pmu_read(struct perf_event *event)
403 s64 val, delta, prev;
405 if (!event->hw.idx)
406 return;
408 * Performance monitor interrupts come even when interrupts
409 * are soft-disabled, as long as interrupts are hard-enabled.
410 * Therefore we treat them like NMIs.
412 do {
413 prev = atomic64_read(&event->hw.prev_count);
414 barrier();
415 val = read_pmc(event->hw.idx);
416 } while (atomic64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
418 /* The counters are only 32 bits wide */
419 delta = (val - prev) & 0xfffffffful;
420 atomic64_add(delta, &event->count);
421 atomic64_sub(delta, &event->hw.period_left);
425 * On some machines, PMC5 and PMC6 can't be written, don't respect
426 * the freeze conditions, and don't generate interrupts. This tells
427 * us if `event' is using such a PMC.
429 static int is_limited_pmc(int pmcnum)
431 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
432 && (pmcnum == 5 || pmcnum == 6);
435 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
436 unsigned long pmc5, unsigned long pmc6)
438 struct perf_event *event;
439 u64 val, prev, delta;
440 int i;
442 for (i = 0; i < cpuhw->n_limited; ++i) {
443 event = cpuhw->limited_counter[i];
444 if (!event->hw.idx)
445 continue;
446 val = (event->hw.idx == 5) ? pmc5 : pmc6;
447 prev = atomic64_read(&event->hw.prev_count);
448 event->hw.idx = 0;
449 delta = (val - prev) & 0xfffffffful;
450 atomic64_add(delta, &event->count);
454 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
455 unsigned long pmc5, unsigned long pmc6)
457 struct perf_event *event;
458 u64 val;
459 int i;
461 for (i = 0; i < cpuhw->n_limited; ++i) {
462 event = cpuhw->limited_counter[i];
463 event->hw.idx = cpuhw->limited_hwidx[i];
464 val = (event->hw.idx == 5) ? pmc5 : pmc6;
465 atomic64_set(&event->hw.prev_count, val);
466 perf_event_update_userpage(event);
471 * Since limited events don't respect the freeze conditions, we
472 * have to read them immediately after freezing or unfreezing the
473 * other events. We try to keep the values from the limited
474 * events as consistent as possible by keeping the delay (in
475 * cycles and instructions) between freezing/unfreezing and reading
476 * the limited events as small and consistent as possible.
477 * Therefore, if any limited events are in use, we read them
478 * both, and always in the same order, to minimize variability,
479 * and do it inside the same asm that writes MMCR0.
481 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
483 unsigned long pmc5, pmc6;
485 if (!cpuhw->n_limited) {
486 mtspr(SPRN_MMCR0, mmcr0);
487 return;
491 * Write MMCR0, then read PMC5 and PMC6 immediately.
492 * To ensure we don't get a performance monitor interrupt
493 * between writing MMCR0 and freezing/thawing the limited
494 * events, we first write MMCR0 with the event overflow
495 * interrupt enable bits turned off.
497 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
498 : "=&r" (pmc5), "=&r" (pmc6)
499 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
500 "i" (SPRN_MMCR0),
501 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
503 if (mmcr0 & MMCR0_FC)
504 freeze_limited_counters(cpuhw, pmc5, pmc6);
505 else
506 thaw_limited_counters(cpuhw, pmc5, pmc6);
509 * Write the full MMCR0 including the event overflow interrupt
510 * enable bits, if necessary.
512 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
513 mtspr(SPRN_MMCR0, mmcr0);
517 * Disable all events to prevent PMU interrupts and to allow
518 * events to be added or removed.
520 void hw_perf_disable(void)
522 struct cpu_hw_events *cpuhw;
523 unsigned long flags;
525 if (!ppmu)
526 return;
527 local_irq_save(flags);
528 cpuhw = &__get_cpu_var(cpu_hw_events);
530 if (!cpuhw->disabled) {
531 cpuhw->disabled = 1;
532 cpuhw->n_added = 0;
535 * Check if we ever enabled the PMU on this cpu.
537 if (!cpuhw->pmcs_enabled) {
538 ppc_enable_pmcs();
539 cpuhw->pmcs_enabled = 1;
543 * Disable instruction sampling if it was enabled
545 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
546 mtspr(SPRN_MMCRA,
547 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
548 mb();
552 * Set the 'freeze counters' bit.
553 * The barrier is to make sure the mtspr has been
554 * executed and the PMU has frozen the events
555 * before we return.
557 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
558 mb();
560 local_irq_restore(flags);
564 * Re-enable all events if disable == 0.
565 * If we were previously disabled and events were added, then
566 * put the new config on the PMU.
568 void hw_perf_enable(void)
570 struct perf_event *event;
571 struct cpu_hw_events *cpuhw;
572 unsigned long flags;
573 long i;
574 unsigned long val;
575 s64 left;
576 unsigned int hwc_index[MAX_HWEVENTS];
577 int n_lim;
578 int idx;
580 if (!ppmu)
581 return;
582 local_irq_save(flags);
583 cpuhw = &__get_cpu_var(cpu_hw_events);
584 if (!cpuhw->disabled) {
585 local_irq_restore(flags);
586 return;
588 cpuhw->disabled = 0;
591 * If we didn't change anything, or only removed events,
592 * no need to recalculate MMCR* settings and reset the PMCs.
593 * Just reenable the PMU with the current MMCR* settings
594 * (possibly updated for removal of events).
596 if (!cpuhw->n_added) {
597 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
598 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
599 if (cpuhw->n_events == 0)
600 ppc_set_pmu_inuse(0);
601 goto out_enable;
605 * Compute MMCR* values for the new set of events
607 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
608 cpuhw->mmcr)) {
609 /* shouldn't ever get here */
610 printk(KERN_ERR "oops compute_mmcr failed\n");
611 goto out;
615 * Add in MMCR0 freeze bits corresponding to the
616 * attr.exclude_* bits for the first event.
617 * We have already checked that all events have the
618 * same values for these bits as the first event.
620 event = cpuhw->event[0];
621 if (event->attr.exclude_user)
622 cpuhw->mmcr[0] |= MMCR0_FCP;
623 if (event->attr.exclude_kernel)
624 cpuhw->mmcr[0] |= freeze_events_kernel;
625 if (event->attr.exclude_hv)
626 cpuhw->mmcr[0] |= MMCR0_FCHV;
629 * Write the new configuration to MMCR* with the freeze
630 * bit set and set the hardware events to their initial values.
631 * Then unfreeze the events.
633 ppc_set_pmu_inuse(1);
634 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
635 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
636 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
637 | MMCR0_FC);
640 * Read off any pre-existing events that need to move
641 * to another PMC.
643 for (i = 0; i < cpuhw->n_events; ++i) {
644 event = cpuhw->event[i];
645 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
646 power_pmu_read(event);
647 write_pmc(event->hw.idx, 0);
648 event->hw.idx = 0;
653 * Initialize the PMCs for all the new and moved events.
655 cpuhw->n_limited = n_lim = 0;
656 for (i = 0; i < cpuhw->n_events; ++i) {
657 event = cpuhw->event[i];
658 if (event->hw.idx)
659 continue;
660 idx = hwc_index[i] + 1;
661 if (is_limited_pmc(idx)) {
662 cpuhw->limited_counter[n_lim] = event;
663 cpuhw->limited_hwidx[n_lim] = idx;
664 ++n_lim;
665 continue;
667 val = 0;
668 if (event->hw.sample_period) {
669 left = atomic64_read(&event->hw.period_left);
670 if (left < 0x80000000L)
671 val = 0x80000000L - left;
673 atomic64_set(&event->hw.prev_count, val);
674 event->hw.idx = idx;
675 write_pmc(idx, val);
676 perf_event_update_userpage(event);
678 cpuhw->n_limited = n_lim;
679 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
681 out_enable:
682 mb();
683 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
686 * Enable instruction sampling if necessary
688 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
689 mb();
690 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
693 out:
694 local_irq_restore(flags);
697 static int collect_events(struct perf_event *group, int max_count,
698 struct perf_event *ctrs[], u64 *events,
699 unsigned int *flags)
701 int n = 0;
702 struct perf_event *event;
704 if (!is_software_event(group)) {
705 if (n >= max_count)
706 return -1;
707 ctrs[n] = group;
708 flags[n] = group->hw.event_base;
709 events[n++] = group->hw.config;
711 list_for_each_entry(event, &group->sibling_list, group_entry) {
712 if (!is_software_event(event) &&
713 event->state != PERF_EVENT_STATE_OFF) {
714 if (n >= max_count)
715 return -1;
716 ctrs[n] = event;
717 flags[n] = event->hw.event_base;
718 events[n++] = event->hw.config;
721 return n;
725 * Add a event to the PMU.
726 * If all events are not already frozen, then we disable and
727 * re-enable the PMU in order to get hw_perf_enable to do the
728 * actual work of reconfiguring the PMU.
730 static int power_pmu_enable(struct perf_event *event)
732 struct cpu_hw_events *cpuhw;
733 unsigned long flags;
734 int n0;
735 int ret = -EAGAIN;
737 local_irq_save(flags);
738 perf_disable();
741 * Add the event to the list (if there is room)
742 * and check whether the total set is still feasible.
744 cpuhw = &__get_cpu_var(cpu_hw_events);
745 n0 = cpuhw->n_events;
746 if (n0 >= ppmu->n_counter)
747 goto out;
748 cpuhw->event[n0] = event;
749 cpuhw->events[n0] = event->hw.config;
750 cpuhw->flags[n0] = event->hw.event_base;
753 * If group events scheduling transaction was started,
754 * skip the schedulability test here, it will be peformed
755 * at commit time(->commit_txn) as a whole
757 if (cpuhw->group_flag & PERF_EVENT_TXN_STARTED)
758 goto nocheck;
760 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
761 goto out;
762 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
763 goto out;
764 event->hw.config = cpuhw->events[n0];
766 nocheck:
767 ++cpuhw->n_events;
768 ++cpuhw->n_added;
770 ret = 0;
771 out:
772 perf_enable();
773 local_irq_restore(flags);
774 return ret;
778 * Remove a event from the PMU.
780 static void power_pmu_disable(struct perf_event *event)
782 struct cpu_hw_events *cpuhw;
783 long i;
784 unsigned long flags;
786 local_irq_save(flags);
787 perf_disable();
789 power_pmu_read(event);
791 cpuhw = &__get_cpu_var(cpu_hw_events);
792 for (i = 0; i < cpuhw->n_events; ++i) {
793 if (event == cpuhw->event[i]) {
794 while (++i < cpuhw->n_events)
795 cpuhw->event[i-1] = cpuhw->event[i];
796 --cpuhw->n_events;
797 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
798 if (event->hw.idx) {
799 write_pmc(event->hw.idx, 0);
800 event->hw.idx = 0;
802 perf_event_update_userpage(event);
803 break;
806 for (i = 0; i < cpuhw->n_limited; ++i)
807 if (event == cpuhw->limited_counter[i])
808 break;
809 if (i < cpuhw->n_limited) {
810 while (++i < cpuhw->n_limited) {
811 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
812 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
814 --cpuhw->n_limited;
816 if (cpuhw->n_events == 0) {
817 /* disable exceptions if no events are running */
818 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
821 perf_enable();
822 local_irq_restore(flags);
826 * Re-enable interrupts on a event after they were throttled
827 * because they were coming too fast.
829 static void power_pmu_unthrottle(struct perf_event *event)
831 s64 val, left;
832 unsigned long flags;
834 if (!event->hw.idx || !event->hw.sample_period)
835 return;
836 local_irq_save(flags);
837 perf_disable();
838 power_pmu_read(event);
839 left = event->hw.sample_period;
840 event->hw.last_period = left;
841 val = 0;
842 if (left < 0x80000000L)
843 val = 0x80000000L - left;
844 write_pmc(event->hw.idx, val);
845 atomic64_set(&event->hw.prev_count, val);
846 atomic64_set(&event->hw.period_left, left);
847 perf_event_update_userpage(event);
848 perf_enable();
849 local_irq_restore(flags);
853 * Start group events scheduling transaction
854 * Set the flag to make pmu::enable() not perform the
855 * schedulability test, it will be performed at commit time
857 void power_pmu_start_txn(const struct pmu *pmu)
859 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
861 cpuhw->group_flag |= PERF_EVENT_TXN_STARTED;
862 cpuhw->n_txn_start = cpuhw->n_events;
866 * Stop group events scheduling transaction
867 * Clear the flag and pmu::enable() will perform the
868 * schedulability test.
870 void power_pmu_cancel_txn(const struct pmu *pmu)
872 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
874 cpuhw->group_flag &= ~PERF_EVENT_TXN_STARTED;
878 * Commit group events scheduling transaction
879 * Perform the group schedulability test as a whole
880 * Return 0 if success
882 int power_pmu_commit_txn(const struct pmu *pmu)
884 struct cpu_hw_events *cpuhw;
885 long i, n;
887 if (!ppmu)
888 return -EAGAIN;
889 cpuhw = &__get_cpu_var(cpu_hw_events);
890 n = cpuhw->n_events;
891 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
892 return -EAGAIN;
893 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
894 if (i < 0)
895 return -EAGAIN;
897 for (i = cpuhw->n_txn_start; i < n; ++i)
898 cpuhw->event[i]->hw.config = cpuhw->events[i];
900 return 0;
903 struct pmu power_pmu = {
904 .enable = power_pmu_enable,
905 .disable = power_pmu_disable,
906 .read = power_pmu_read,
907 .unthrottle = power_pmu_unthrottle,
908 .start_txn = power_pmu_start_txn,
909 .cancel_txn = power_pmu_cancel_txn,
910 .commit_txn = power_pmu_commit_txn,
914 * Return 1 if we might be able to put event on a limited PMC,
915 * or 0 if not.
916 * A event can only go on a limited PMC if it counts something
917 * that a limited PMC can count, doesn't require interrupts, and
918 * doesn't exclude any processor mode.
920 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
921 unsigned int flags)
923 int n;
924 u64 alt[MAX_EVENT_ALTERNATIVES];
926 if (event->attr.exclude_user
927 || event->attr.exclude_kernel
928 || event->attr.exclude_hv
929 || event->attr.sample_period)
930 return 0;
932 if (ppmu->limited_pmc_event(ev))
933 return 1;
936 * The requested event_id isn't on a limited PMC already;
937 * see if any alternative code goes on a limited PMC.
939 if (!ppmu->get_alternatives)
940 return 0;
942 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
943 n = ppmu->get_alternatives(ev, flags, alt);
945 return n > 0;
949 * Find an alternative event_id that goes on a normal PMC, if possible,
950 * and return the event_id code, or 0 if there is no such alternative.
951 * (Note: event_id code 0 is "don't count" on all machines.)
953 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
955 u64 alt[MAX_EVENT_ALTERNATIVES];
956 int n;
958 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
959 n = ppmu->get_alternatives(ev, flags, alt);
960 if (!n)
961 return 0;
962 return alt[0];
965 /* Number of perf_events counting hardware events */
966 static atomic_t num_events;
967 /* Used to avoid races in calling reserve/release_pmc_hardware */
968 static DEFINE_MUTEX(pmc_reserve_mutex);
971 * Release the PMU if this is the last perf_event.
973 static void hw_perf_event_destroy(struct perf_event *event)
975 if (!atomic_add_unless(&num_events, -1, 1)) {
976 mutex_lock(&pmc_reserve_mutex);
977 if (atomic_dec_return(&num_events) == 0)
978 release_pmc_hardware();
979 mutex_unlock(&pmc_reserve_mutex);
984 * Translate a generic cache event_id config to a raw event_id code.
986 static int hw_perf_cache_event(u64 config, u64 *eventp)
988 unsigned long type, op, result;
989 int ev;
991 if (!ppmu->cache_events)
992 return -EINVAL;
994 /* unpack config */
995 type = config & 0xff;
996 op = (config >> 8) & 0xff;
997 result = (config >> 16) & 0xff;
999 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1000 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1001 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1002 return -EINVAL;
1004 ev = (*ppmu->cache_events)[type][op][result];
1005 if (ev == 0)
1006 return -EOPNOTSUPP;
1007 if (ev == -1)
1008 return -EINVAL;
1009 *eventp = ev;
1010 return 0;
1013 const struct pmu *hw_perf_event_init(struct perf_event *event)
1015 u64 ev;
1016 unsigned long flags;
1017 struct perf_event *ctrs[MAX_HWEVENTS];
1018 u64 events[MAX_HWEVENTS];
1019 unsigned int cflags[MAX_HWEVENTS];
1020 int n;
1021 int err;
1022 struct cpu_hw_events *cpuhw;
1024 if (!ppmu)
1025 return ERR_PTR(-ENXIO);
1026 switch (event->attr.type) {
1027 case PERF_TYPE_HARDWARE:
1028 ev = event->attr.config;
1029 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1030 return ERR_PTR(-EOPNOTSUPP);
1031 ev = ppmu->generic_events[ev];
1032 break;
1033 case PERF_TYPE_HW_CACHE:
1034 err = hw_perf_cache_event(event->attr.config, &ev);
1035 if (err)
1036 return ERR_PTR(err);
1037 break;
1038 case PERF_TYPE_RAW:
1039 ev = event->attr.config;
1040 break;
1041 default:
1042 return ERR_PTR(-EINVAL);
1044 event->hw.config_base = ev;
1045 event->hw.idx = 0;
1048 * If we are not running on a hypervisor, force the
1049 * exclude_hv bit to 0 so that we don't care what
1050 * the user set it to.
1052 if (!firmware_has_feature(FW_FEATURE_LPAR))
1053 event->attr.exclude_hv = 0;
1056 * If this is a per-task event, then we can use
1057 * PM_RUN_* events interchangeably with their non RUN_*
1058 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1059 * XXX we should check if the task is an idle task.
1061 flags = 0;
1062 if (event->ctx->task)
1063 flags |= PPMU_ONLY_COUNT_RUN;
1066 * If this machine has limited events, check whether this
1067 * event_id could go on a limited event.
1069 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1070 if (can_go_on_limited_pmc(event, ev, flags)) {
1071 flags |= PPMU_LIMITED_PMC_OK;
1072 } else if (ppmu->limited_pmc_event(ev)) {
1074 * The requested event_id is on a limited PMC,
1075 * but we can't use a limited PMC; see if any
1076 * alternative goes on a normal PMC.
1078 ev = normal_pmc_alternative(ev, flags);
1079 if (!ev)
1080 return ERR_PTR(-EINVAL);
1085 * If this is in a group, check if it can go on with all the
1086 * other hardware events in the group. We assume the event
1087 * hasn't been linked into its leader's sibling list at this point.
1089 n = 0;
1090 if (event->group_leader != event) {
1091 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1092 ctrs, events, cflags);
1093 if (n < 0)
1094 return ERR_PTR(-EINVAL);
1096 events[n] = ev;
1097 ctrs[n] = event;
1098 cflags[n] = flags;
1099 if (check_excludes(ctrs, cflags, n, 1))
1100 return ERR_PTR(-EINVAL);
1102 cpuhw = &get_cpu_var(cpu_hw_events);
1103 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1104 put_cpu_var(cpu_hw_events);
1105 if (err)
1106 return ERR_PTR(-EINVAL);
1108 event->hw.config = events[n];
1109 event->hw.event_base = cflags[n];
1110 event->hw.last_period = event->hw.sample_period;
1111 atomic64_set(&event->hw.period_left, event->hw.last_period);
1114 * See if we need to reserve the PMU.
1115 * If no events are currently in use, then we have to take a
1116 * mutex to ensure that we don't race with another task doing
1117 * reserve_pmc_hardware or release_pmc_hardware.
1119 err = 0;
1120 if (!atomic_inc_not_zero(&num_events)) {
1121 mutex_lock(&pmc_reserve_mutex);
1122 if (atomic_read(&num_events) == 0 &&
1123 reserve_pmc_hardware(perf_event_interrupt))
1124 err = -EBUSY;
1125 else
1126 atomic_inc(&num_events);
1127 mutex_unlock(&pmc_reserve_mutex);
1129 event->destroy = hw_perf_event_destroy;
1131 if (err)
1132 return ERR_PTR(err);
1133 return &power_pmu;
1137 * A counter has overflowed; update its count and record
1138 * things if requested. Note that interrupts are hard-disabled
1139 * here so there is no possibility of being interrupted.
1141 static void record_and_restart(struct perf_event *event, unsigned long val,
1142 struct pt_regs *regs, int nmi)
1144 u64 period = event->hw.sample_period;
1145 s64 prev, delta, left;
1146 int record = 0;
1148 /* we don't have to worry about interrupts here */
1149 prev = atomic64_read(&event->hw.prev_count);
1150 delta = (val - prev) & 0xfffffffful;
1151 atomic64_add(delta, &event->count);
1154 * See if the total period for this event has expired,
1155 * and update for the next period.
1157 val = 0;
1158 left = atomic64_read(&event->hw.period_left) - delta;
1159 if (period) {
1160 if (left <= 0) {
1161 left += period;
1162 if (left <= 0)
1163 left = period;
1164 record = 1;
1166 if (left < 0x80000000LL)
1167 val = 0x80000000LL - left;
1171 * Finally record data if requested.
1173 if (record) {
1174 struct perf_sample_data data;
1176 perf_sample_data_init(&data, ~0ULL);
1177 data.period = event->hw.last_period;
1179 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1180 perf_get_data_addr(regs, &data.addr);
1182 if (perf_event_overflow(event, nmi, &data, regs)) {
1184 * Interrupts are coming too fast - throttle them
1185 * by setting the event to 0, so it will be
1186 * at least 2^30 cycles until the next interrupt
1187 * (assuming each event counts at most 2 counts
1188 * per cycle).
1190 val = 0;
1191 left = ~0ULL >> 1;
1195 write_pmc(event->hw.idx, val);
1196 atomic64_set(&event->hw.prev_count, val);
1197 atomic64_set(&event->hw.period_left, left);
1198 perf_event_update_userpage(event);
1202 * Called from generic code to get the misc flags (i.e. processor mode)
1203 * for an event_id.
1205 unsigned long perf_misc_flags(struct pt_regs *regs)
1207 u32 flags = perf_get_misc_flags(regs);
1209 if (flags)
1210 return flags;
1211 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1212 PERF_RECORD_MISC_KERNEL;
1216 * Called from generic code to get the instruction pointer
1217 * for an event_id.
1219 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1221 unsigned long ip;
1223 if (TRAP(regs) != 0xf00)
1224 return regs->nip; /* not a PMU interrupt */
1226 ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1227 return ip;
1231 * Performance monitor interrupt stuff
1233 static void perf_event_interrupt(struct pt_regs *regs)
1235 int i;
1236 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1237 struct perf_event *event;
1238 unsigned long val;
1239 int found = 0;
1240 int nmi;
1242 if (cpuhw->n_limited)
1243 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1244 mfspr(SPRN_PMC6));
1246 perf_read_regs(regs);
1248 nmi = perf_intr_is_nmi(regs);
1249 if (nmi)
1250 nmi_enter();
1251 else
1252 irq_enter();
1254 for (i = 0; i < cpuhw->n_events; ++i) {
1255 event = cpuhw->event[i];
1256 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1257 continue;
1258 val = read_pmc(event->hw.idx);
1259 if ((int)val < 0) {
1260 /* event has overflowed */
1261 found = 1;
1262 record_and_restart(event, val, regs, nmi);
1267 * In case we didn't find and reset the event that caused
1268 * the interrupt, scan all events and reset any that are
1269 * negative, to avoid getting continual interrupts.
1270 * Any that we processed in the previous loop will not be negative.
1272 if (!found) {
1273 for (i = 0; i < ppmu->n_counter; ++i) {
1274 if (is_limited_pmc(i + 1))
1275 continue;
1276 val = read_pmc(i + 1);
1277 if ((int)val < 0)
1278 write_pmc(i + 1, 0);
1283 * Reset MMCR0 to its normal value. This will set PMXE and
1284 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1285 * and thus allow interrupts to occur again.
1286 * XXX might want to use MSR.PM to keep the events frozen until
1287 * we get back out of this interrupt.
1289 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1291 if (nmi)
1292 nmi_exit();
1293 else
1294 irq_exit();
1297 static void power_pmu_setup(int cpu)
1299 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1301 if (!ppmu)
1302 return;
1303 memset(cpuhw, 0, sizeof(*cpuhw));
1304 cpuhw->mmcr[0] = MMCR0_FC;
1307 static int __cpuinit
1308 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1310 unsigned int cpu = (long)hcpu;
1312 switch (action & ~CPU_TASKS_FROZEN) {
1313 case CPU_UP_PREPARE:
1314 power_pmu_setup(cpu);
1315 break;
1317 default:
1318 break;
1321 return NOTIFY_OK;
1324 int register_power_pmu(struct power_pmu *pmu)
1326 if (ppmu)
1327 return -EBUSY; /* something's already registered */
1329 ppmu = pmu;
1330 pr_info("%s performance monitor hardware support registered\n",
1331 pmu->name);
1333 #ifdef MSR_HV
1335 * Use FCHV to ignore kernel events if MSR.HV is set.
1337 if (mfmsr() & MSR_HV)
1338 freeze_events_kernel = MMCR0_FCHV;
1339 #endif /* CONFIG_PPC64 */
1341 perf_cpu_notifier(power_pmu_notifier);
1343 return 0;