powerpc/8xx: Fix regression introduced by cache coherency rewrite
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / oss / swarm_cs4297a.c
blob1edab7b4ea83b26a41311671983d65625d0edb33
1 /*******************************************************************************
3 * "swarm_cs4297a.c" -- Cirrus Logic-Crystal CS4297a linux audio driver.
5 * Copyright (C) 2001 Broadcom Corporation.
6 * Copyright (C) 2000,2001 Cirrus Logic Corp.
7 * -- adapted from drivers by Thomas Sailer,
8 * -- but don't bug him; Problems should go to:
9 * -- tom woller (twoller@crystal.cirrus.com) or
10 * (audio@crystal.cirrus.com).
11 * -- adapted from cs4281 PCI driver for cs4297a on
12 * BCM1250 Synchronous Serial interface
13 * (Kip Walker, Broadcom Corp.)
14 * Copyright (C) 2004 Maciej W. Rozycki
15 * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
31 * Module command line parameters:
32 * none
34 * Supported devices:
35 * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible
36 * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible
37 * /dev/midi simple MIDI UART interface, no ioctl
39 * Modification History
40 * 08/20/00 trw - silence and no stopping DAC until release
41 * 08/23/00 trw - added CS_DBG statements, fix interrupt hang issue on DAC stop.
42 * 09/18/00 trw - added 16bit only record with conversion
43 * 09/24/00 trw - added Enhanced Full duplex (separate simultaneous
44 * capture/playback rates)
45 * 10/03/00 trw - fixed mmap (fixed GRECORD and the XMMS mmap test plugin
46 * libOSSm.so)
47 * 10/11/00 trw - modified for 2.4.0-test9 kernel enhancements (NR_MAP removal)
48 * 11/03/00 trw - fixed interrupt loss/stutter, added debug.
49 * 11/10/00 bkz - added __devinit to cs4297a_hw_init()
50 * 11/10/00 trw - fixed SMP and capture spinlock hang.
51 * 12/04/00 trw - cleaned up CSDEBUG flags and added "defaultorder" moduleparm.
52 * 12/05/00 trw - fixed polling (myth2), and added underrun swptr fix.
53 * 12/08/00 trw - added PM support.
54 * 12/14/00 trw - added wrapper code, builds under 2.4.0, 2.2.17-20, 2.2.17-8
55 * (RH/Dell base), 2.2.18, 2.2.12. cleaned up code mods by ident.
56 * 12/19/00 trw - added PM support for 2.2 base (apm_callback). other PM cleanup.
57 * 12/21/00 trw - added fractional "defaultorder" inputs. if >100 then use
58 * defaultorder-100 as power of 2 for the buffer size. example:
59 * 106 = 2^(106-100) = 2^6 = 64 bytes for the buffer size.
61 *******************************************************************************/
63 #include <linux/list.h>
64 #include <linux/module.h>
65 #include <linux/string.h>
66 #include <linux/ioport.h>
67 #include <linux/sched.h>
68 #include <linux/delay.h>
69 #include <linux/sound.h>
70 #include <linux/slab.h>
71 #include <linux/soundcard.h>
72 #include <linux/ac97_codec.h>
73 #include <linux/pci.h>
74 #include <linux/bitops.h>
75 #include <linux/interrupt.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/mutex.h>
79 #include <linux/kernel.h>
81 #include <asm/byteorder.h>
82 #include <asm/dma.h>
83 #include <asm/io.h>
84 #include <asm/uaccess.h>
86 #include <asm/sibyte/sb1250_regs.h>
87 #include <asm/sibyte/sb1250_int.h>
88 #include <asm/sibyte/sb1250_dma.h>
89 #include <asm/sibyte/sb1250_scd.h>
90 #include <asm/sibyte/sb1250_syncser.h>
91 #include <asm/sibyte/sb1250_mac.h>
92 #include <asm/sibyte/sb1250.h>
94 struct cs4297a_state;
96 static void stop_dac(struct cs4297a_state *s);
97 static void stop_adc(struct cs4297a_state *s);
98 static void start_dac(struct cs4297a_state *s);
99 static void start_adc(struct cs4297a_state *s);
100 #undef OSS_DOCUMENTED_MIXER_SEMANTICS
102 // ---------------------------------------------------------------------
104 #define CS4297a_MAGIC 0xf00beef1
106 // buffer order determines the size of the dma buffer for the driver.
107 // under Linux, a smaller buffer allows more responsiveness from many of the
108 // applications (e.g. games). A larger buffer allows some of the apps (esound)
109 // to not underrun the dma buffer as easily. As default, use 32k (order=3)
110 // rather than 64k as some of the games work more responsively.
111 // log base 2( buff sz = 32k).
113 //static unsigned long defaultorder = 3;
114 //MODULE_PARM(defaultorder, "i");
117 // Turn on/off debugging compilation by commenting out "#define CSDEBUG"
119 #define CSDEBUG 0
120 #if CSDEBUG
121 #define CSDEBUG_INTERFACE 1
122 #else
123 #undef CSDEBUG_INTERFACE
124 #endif
126 // cs_debugmask areas
128 #define CS_INIT 0x00000001 // initialization and probe functions
129 #define CS_ERROR 0x00000002 // tmp debugging bit placeholder
130 #define CS_INTERRUPT 0x00000004 // interrupt handler (separate from all other)
131 #define CS_FUNCTION 0x00000008 // enter/leave functions
132 #define CS_WAVE_WRITE 0x00000010 // write information for wave
133 #define CS_WAVE_READ 0x00000020 // read information for wave
134 #define CS_AC97 0x00000040 // AC97 register access
135 #define CS_DESCR 0x00000080 // descriptor management
136 #define CS_OPEN 0x00000400 // all open functions in the driver
137 #define CS_RELEASE 0x00000800 // all release functions in the driver
138 #define CS_PARMS 0x00001000 // functional and operational parameters
139 #define CS_IOCTL 0x00002000 // ioctl (non-mixer)
140 #define CS_TMP 0x10000000 // tmp debug mask bit
143 // CSDEBUG is usual mode is set to 1, then use the
144 // cs_debuglevel and cs_debugmask to turn on or off debugging.
145 // Debug level of 1 has been defined to be kernel errors and info
146 // that should be printed on any released driver.
148 #if CSDEBUG
149 #define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask) ) {x;}
150 #else
151 #define CS_DBGOUT(mask,level,x)
152 #endif
154 #if CSDEBUG
155 static unsigned long cs_debuglevel = 4; // levels range from 1-9
156 static unsigned long cs_debugmask = CS_INIT /*| CS_IOCTL*/;
157 module_param(cs_debuglevel, int, 0);
158 module_param(cs_debugmask, int, 0);
159 #endif
160 #define CS_TRUE 1
161 #define CS_FALSE 0
163 #define CS_TYPE_ADC 0
164 #define CS_TYPE_DAC 1
166 #define SER_BASE (A_SER_BASE_1 + KSEG1)
167 #define SS_CSR(t) (SER_BASE+t)
168 #define SS_TXTBL(t) (SER_BASE+R_SER_TX_TABLE_BASE+(t*8))
169 #define SS_RXTBL(t) (SER_BASE+R_SER_RX_TABLE_BASE+(t*8))
171 #define FRAME_BYTES 32
172 #define FRAME_SAMPLE_BYTES 4
174 /* Should this be variable? */
175 #define SAMPLE_BUF_SIZE (16*1024)
176 #define SAMPLE_FRAME_COUNT (SAMPLE_BUF_SIZE / FRAME_SAMPLE_BYTES)
177 /* The driver can explode/shrink the frames to/from a smaller sample
178 buffer */
179 #define DMA_BLOAT_FACTOR 1
180 #define DMA_DESCR (SAMPLE_FRAME_COUNT / DMA_BLOAT_FACTOR)
181 #define DMA_BUF_SIZE (DMA_DESCR * FRAME_BYTES)
183 /* Use the maxmium count (255 == 5.1 ms between interrupts) */
184 #define DMA_INT_CNT ((1 << S_DMA_INT_PKTCNT) - 1)
186 /* Figure this out: how many TX DMAs ahead to schedule a reg access */
187 #define REG_LATENCY 150
189 #define FRAME_TX_US 20
191 #define SERDMA_NEXTBUF(d,f) (((d)->f+1) % (d)->ringsz)
193 static const char invalid_magic[] =
194 KERN_CRIT "cs4297a: invalid magic value\n";
196 #define VALIDATE_STATE(s) \
197 ({ \
198 if (!(s) || (s)->magic != CS4297a_MAGIC) { \
199 printk(invalid_magic); \
200 return -ENXIO; \
204 struct list_head cs4297a_devs = { &cs4297a_devs, &cs4297a_devs };
206 typedef struct serdma_descr_s {
207 u64 descr_a;
208 u64 descr_b;
209 } serdma_descr_t;
211 typedef unsigned long paddr_t;
213 typedef struct serdma_s {
214 unsigned ringsz;
215 serdma_descr_t *descrtab;
216 serdma_descr_t *descrtab_end;
217 paddr_t descrtab_phys;
219 serdma_descr_t *descr_add;
220 serdma_descr_t *descr_rem;
222 u64 *dma_buf; // buffer for DMA contents (frames)
223 paddr_t dma_buf_phys;
224 u16 *sample_buf; // tmp buffer for sample conversions
225 u16 *sb_swptr;
226 u16 *sb_hwptr;
227 u16 *sb_end;
229 dma_addr_t dmaaddr;
230 // unsigned buforder; // Log base 2 of 'dma_buf' size in bytes..
231 unsigned numfrag; // # of 'fragments' in the buffer.
232 unsigned fragshift; // Log base 2 of fragment size.
233 unsigned hwptr, swptr;
234 unsigned total_bytes; // # bytes process since open.
235 unsigned blocks; // last returned blocks value GETOPTR
236 unsigned wakeup; // interrupt occurred on block
237 int count;
238 unsigned underrun; // underrun flag
239 unsigned error; // over/underrun
240 wait_queue_head_t wait;
241 wait_queue_head_t reg_wait;
242 // redundant, but makes calculations easier
243 unsigned fragsize; // 2**fragshift..
244 unsigned sbufsz; // 2**buforder.
245 unsigned fragsamples;
246 // OSS stuff
247 unsigned mapped:1; // Buffer mapped in cs4297a_mmap()?
248 unsigned ready:1; // prog_dmabuf_dac()/adc() successful?
249 unsigned endcleared:1;
250 unsigned type:1; // adc or dac buffer (CS_TYPE_XXX)
251 unsigned ossfragshift;
252 int ossmaxfrags;
253 unsigned subdivision;
254 } serdma_t;
256 struct cs4297a_state {
257 // magic
258 unsigned int magic;
260 struct list_head list;
262 // soundcore stuff
263 int dev_audio;
264 int dev_mixer;
266 // hardware resources
267 unsigned int irq;
269 struct {
270 unsigned int rx_ovrrn; /* FIFO */
271 unsigned int rx_overflow; /* staging buffer */
272 unsigned int tx_underrun;
273 unsigned int rx_bad;
274 unsigned int rx_good;
275 } stats;
277 // mixer registers
278 struct {
279 unsigned short vol[10];
280 unsigned int recsrc;
281 unsigned int modcnt;
282 unsigned short micpreamp;
283 } mix;
285 // wave stuff
286 struct properties {
287 unsigned fmt;
288 unsigned fmt_original; // original requested format
289 unsigned channels;
290 unsigned rate;
291 } prop_dac, prop_adc;
292 unsigned conversion:1; // conversion from 16 to 8 bit in progress
293 unsigned ena;
294 spinlock_t lock;
295 struct mutex open_mutex;
296 struct mutex open_sem_adc;
297 struct mutex open_sem_dac;
298 fmode_t open_mode;
299 wait_queue_head_t open_wait;
300 wait_queue_head_t open_wait_adc;
301 wait_queue_head_t open_wait_dac;
303 dma_addr_t dmaaddr_sample_buf;
304 unsigned buforder_sample_buf; // Log base 2 of 'dma_buf' size in bytes..
306 serdma_t dma_dac, dma_adc;
308 volatile u16 read_value;
309 volatile u16 read_reg;
310 volatile u64 reg_request;
313 #if 1
314 #define prog_codec(a,b)
315 #define dealloc_dmabuf(a,b);
316 #endif
318 static int prog_dmabuf_adc(struct cs4297a_state *s)
320 s->dma_adc.ready = 1;
321 return 0;
325 static int prog_dmabuf_dac(struct cs4297a_state *s)
327 s->dma_dac.ready = 1;
328 return 0;
331 static void clear_advance(void *buf, unsigned bsize, unsigned bptr,
332 unsigned len, unsigned char c)
334 if (bptr + len > bsize) {
335 unsigned x = bsize - bptr;
336 memset(((char *) buf) + bptr, c, x);
337 bptr = 0;
338 len -= x;
340 CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
341 "cs4297a: clear_advance(): memset %d at 0x%.8x for %d size \n",
342 (unsigned)c, (unsigned)((char *) buf) + bptr, len));
343 memset(((char *) buf) + bptr, c, len);
346 #if CSDEBUG
348 // DEBUG ROUTINES
350 #define SOUND_MIXER_CS_GETDBGLEVEL _SIOWR('M',120, int)
351 #define SOUND_MIXER_CS_SETDBGLEVEL _SIOWR('M',121, int)
352 #define SOUND_MIXER_CS_GETDBGMASK _SIOWR('M',122, int)
353 #define SOUND_MIXER_CS_SETDBGMASK _SIOWR('M',123, int)
355 static void cs_printioctl(unsigned int x)
357 unsigned int i;
358 unsigned char vidx;
359 // Index of mixtable1[] member is Device ID
360 // and must be <= SOUND_MIXER_NRDEVICES.
361 // Value of array member is index into s->mix.vol[]
362 static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
363 [SOUND_MIXER_PCM] = 1, // voice
364 [SOUND_MIXER_LINE1] = 2, // AUX
365 [SOUND_MIXER_CD] = 3, // CD
366 [SOUND_MIXER_LINE] = 4, // Line
367 [SOUND_MIXER_SYNTH] = 5, // FM
368 [SOUND_MIXER_MIC] = 6, // Mic
369 [SOUND_MIXER_SPEAKER] = 7, // Speaker
370 [SOUND_MIXER_RECLEV] = 8, // Recording level
371 [SOUND_MIXER_VOLUME] = 9 // Master Volume
374 switch (x) {
375 case SOUND_MIXER_CS_GETDBGMASK:
376 CS_DBGOUT(CS_IOCTL, 4,
377 printk("SOUND_MIXER_CS_GETDBGMASK:\n"));
378 break;
379 case SOUND_MIXER_CS_GETDBGLEVEL:
380 CS_DBGOUT(CS_IOCTL, 4,
381 printk("SOUND_MIXER_CS_GETDBGLEVEL:\n"));
382 break;
383 case SOUND_MIXER_CS_SETDBGMASK:
384 CS_DBGOUT(CS_IOCTL, 4,
385 printk("SOUND_MIXER_CS_SETDBGMASK:\n"));
386 break;
387 case SOUND_MIXER_CS_SETDBGLEVEL:
388 CS_DBGOUT(CS_IOCTL, 4,
389 printk("SOUND_MIXER_CS_SETDBGLEVEL:\n"));
390 break;
391 case OSS_GETVERSION:
392 CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION:\n"));
393 break;
394 case SNDCTL_DSP_SYNC:
395 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC:\n"));
396 break;
397 case SNDCTL_DSP_SETDUPLEX:
398 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX:\n"));
399 break;
400 case SNDCTL_DSP_GETCAPS:
401 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS:\n"));
402 break;
403 case SNDCTL_DSP_RESET:
404 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET:\n"));
405 break;
406 case SNDCTL_DSP_SPEED:
407 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED:\n"));
408 break;
409 case SNDCTL_DSP_STEREO:
410 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO:\n"));
411 break;
412 case SNDCTL_DSP_CHANNELS:
413 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS:\n"));
414 break;
415 case SNDCTL_DSP_GETFMTS:
416 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS:\n"));
417 break;
418 case SNDCTL_DSP_SETFMT:
419 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT:\n"));
420 break;
421 case SNDCTL_DSP_POST:
422 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST:\n"));
423 break;
424 case SNDCTL_DSP_GETTRIGGER:
425 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER:\n"));
426 break;
427 case SNDCTL_DSP_SETTRIGGER:
428 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER:\n"));
429 break;
430 case SNDCTL_DSP_GETOSPACE:
431 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE:\n"));
432 break;
433 case SNDCTL_DSP_GETISPACE:
434 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE:\n"));
435 break;
436 case SNDCTL_DSP_NONBLOCK:
437 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK:\n"));
438 break;
439 case SNDCTL_DSP_GETODELAY:
440 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY:\n"));
441 break;
442 case SNDCTL_DSP_GETIPTR:
443 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR:\n"));
444 break;
445 case SNDCTL_DSP_GETOPTR:
446 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR:\n"));
447 break;
448 case SNDCTL_DSP_GETBLKSIZE:
449 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE:\n"));
450 break;
451 case SNDCTL_DSP_SETFRAGMENT:
452 CS_DBGOUT(CS_IOCTL, 4,
453 printk("SNDCTL_DSP_SETFRAGMENT:\n"));
454 break;
455 case SNDCTL_DSP_SUBDIVIDE:
456 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE:\n"));
457 break;
458 case SOUND_PCM_READ_RATE:
459 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE:\n"));
460 break;
461 case SOUND_PCM_READ_CHANNELS:
462 CS_DBGOUT(CS_IOCTL, 4,
463 printk("SOUND_PCM_READ_CHANNELS:\n"));
464 break;
465 case SOUND_PCM_READ_BITS:
466 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS:\n"));
467 break;
468 case SOUND_PCM_WRITE_FILTER:
469 CS_DBGOUT(CS_IOCTL, 4,
470 printk("SOUND_PCM_WRITE_FILTER:\n"));
471 break;
472 case SNDCTL_DSP_SETSYNCRO:
473 CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO:\n"));
474 break;
475 case SOUND_PCM_READ_FILTER:
476 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER:\n"));
477 break;
478 case SOUND_MIXER_PRIVATE1:
479 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1:\n"));
480 break;
481 case SOUND_MIXER_PRIVATE2:
482 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2:\n"));
483 break;
484 case SOUND_MIXER_PRIVATE3:
485 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3:\n"));
486 break;
487 case SOUND_MIXER_PRIVATE4:
488 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4:\n"));
489 break;
490 case SOUND_MIXER_PRIVATE5:
491 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5:\n"));
492 break;
493 case SOUND_MIXER_INFO:
494 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO:\n"));
495 break;
496 case SOUND_OLD_MIXER_INFO:
497 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO:\n"));
498 break;
500 default:
501 switch (_IOC_NR(x)) {
502 case SOUND_MIXER_VOLUME:
503 CS_DBGOUT(CS_IOCTL, 4,
504 printk("SOUND_MIXER_VOLUME:\n"));
505 break;
506 case SOUND_MIXER_SPEAKER:
507 CS_DBGOUT(CS_IOCTL, 4,
508 printk("SOUND_MIXER_SPEAKER:\n"));
509 break;
510 case SOUND_MIXER_RECLEV:
511 CS_DBGOUT(CS_IOCTL, 4,
512 printk("SOUND_MIXER_RECLEV:\n"));
513 break;
514 case SOUND_MIXER_MIC:
515 CS_DBGOUT(CS_IOCTL, 4,
516 printk("SOUND_MIXER_MIC:\n"));
517 break;
518 case SOUND_MIXER_SYNTH:
519 CS_DBGOUT(CS_IOCTL, 4,
520 printk("SOUND_MIXER_SYNTH:\n"));
521 break;
522 case SOUND_MIXER_RECSRC:
523 CS_DBGOUT(CS_IOCTL, 4,
524 printk("SOUND_MIXER_RECSRC:\n"));
525 break;
526 case SOUND_MIXER_DEVMASK:
527 CS_DBGOUT(CS_IOCTL, 4,
528 printk("SOUND_MIXER_DEVMASK:\n"));
529 break;
530 case SOUND_MIXER_RECMASK:
531 CS_DBGOUT(CS_IOCTL, 4,
532 printk("SOUND_MIXER_RECMASK:\n"));
533 break;
534 case SOUND_MIXER_STEREODEVS:
535 CS_DBGOUT(CS_IOCTL, 4,
536 printk("SOUND_MIXER_STEREODEVS:\n"));
537 break;
538 case SOUND_MIXER_CAPS:
539 CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:\n"));
540 break;
541 default:
542 i = _IOC_NR(x);
543 if (i >= SOUND_MIXER_NRDEVICES
544 || !(vidx = mixtable1[i])) {
545 CS_DBGOUT(CS_IOCTL, 4, printk
546 ("UNKNOWN IOCTL: 0x%.8x NR=%d\n",
547 x, i));
548 } else {
549 CS_DBGOUT(CS_IOCTL, 4, printk
550 ("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d\n",
551 x, i));
553 break;
557 #endif
560 static int ser_init(struct cs4297a_state *s)
562 int i;
564 CS_DBGOUT(CS_INIT, 2,
565 printk(KERN_INFO "cs4297a: Setting up serial parameters\n"));
567 __raw_writeq(M_SYNCSER_CMD_RX_RESET | M_SYNCSER_CMD_TX_RESET, SS_CSR(R_SER_CMD));
569 __raw_writeq(M_SYNCSER_MSB_FIRST, SS_CSR(R_SER_MODE));
570 __raw_writeq(32, SS_CSR(R_SER_MINFRM_SZ));
571 __raw_writeq(32, SS_CSR(R_SER_MAXFRM_SZ));
573 __raw_writeq(1, SS_CSR(R_SER_TX_RD_THRSH));
574 __raw_writeq(4, SS_CSR(R_SER_TX_WR_THRSH));
575 __raw_writeq(8, SS_CSR(R_SER_RX_RD_THRSH));
577 /* This looks good from experimentation */
578 __raw_writeq((M_SYNCSER_TXSYNC_INT | V_SYNCSER_TXSYNC_DLY(0) | M_SYNCSER_TXCLK_EXT |
579 M_SYNCSER_RXSYNC_INT | V_SYNCSER_RXSYNC_DLY(1) | M_SYNCSER_RXCLK_EXT | M_SYNCSER_RXSYNC_EDGE),
580 SS_CSR(R_SER_LINE_MODE));
582 /* This looks good from experimentation */
583 __raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE,
584 SS_TXTBL(0));
585 __raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
586 SS_TXTBL(1));
587 __raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
588 SS_TXTBL(2));
589 __raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE |
590 M_SYNCSER_SEQ_STROBE | M_SYNCSER_SEQ_LAST, SS_TXTBL(3));
592 __raw_writeq(V_SYNCSER_SEQ_COUNT(14) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE,
593 SS_RXTBL(0));
594 __raw_writeq(V_SYNCSER_SEQ_COUNT(15) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
595 SS_RXTBL(1));
596 __raw_writeq(V_SYNCSER_SEQ_COUNT(13) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_BYTE,
597 SS_RXTBL(2));
598 __raw_writeq(V_SYNCSER_SEQ_COUNT( 0) | M_SYNCSER_SEQ_ENABLE | M_SYNCSER_SEQ_STROBE |
599 M_SYNCSER_SEQ_LAST, SS_RXTBL(3));
601 for (i=4; i<16; i++) {
602 /* Just in case... */
603 __raw_writeq(M_SYNCSER_SEQ_LAST, SS_TXTBL(i));
604 __raw_writeq(M_SYNCSER_SEQ_LAST, SS_RXTBL(i));
607 return 0;
610 static int init_serdma(serdma_t *dma)
612 CS_DBGOUT(CS_INIT, 2,
613 printk(KERN_ERR "cs4297a: desc - %d sbufsize - %d dbufsize - %d\n",
614 DMA_DESCR, SAMPLE_BUF_SIZE, DMA_BUF_SIZE));
616 /* Descriptors */
617 dma->ringsz = DMA_DESCR;
618 dma->descrtab = kzalloc(dma->ringsz * sizeof(serdma_descr_t), GFP_KERNEL);
619 if (!dma->descrtab) {
620 printk(KERN_ERR "cs4297a: kzalloc descrtab failed\n");
621 return -1;
623 dma->descrtab_end = dma->descrtab + dma->ringsz;
624 /* XXX bloddy mess, use proper DMA API here ... */
625 dma->descrtab_phys = CPHYSADDR((long)dma->descrtab);
626 dma->descr_add = dma->descr_rem = dma->descrtab;
628 /* Frame buffer area */
629 dma->dma_buf = kzalloc(DMA_BUF_SIZE, GFP_KERNEL);
630 if (!dma->dma_buf) {
631 printk(KERN_ERR "cs4297a: kzalloc dma_buf failed\n");
632 kfree(dma->descrtab);
633 return -1;
635 dma->dma_buf_phys = CPHYSADDR((long)dma->dma_buf);
637 /* Samples buffer area */
638 dma->sbufsz = SAMPLE_BUF_SIZE;
639 dma->sample_buf = kmalloc(dma->sbufsz, GFP_KERNEL);
640 if (!dma->sample_buf) {
641 printk(KERN_ERR "cs4297a: kmalloc sample_buf failed\n");
642 kfree(dma->descrtab);
643 kfree(dma->dma_buf);
644 return -1;
646 dma->sb_swptr = dma->sb_hwptr = dma->sample_buf;
647 dma->sb_end = (u16 *)((void *)dma->sample_buf + dma->sbufsz);
648 dma->fragsize = dma->sbufsz >> 1;
650 CS_DBGOUT(CS_INIT, 4,
651 printk(KERN_ERR "cs4297a: descrtab - %08x dma_buf - %x sample_buf - %x\n",
652 (int)dma->descrtab, (int)dma->dma_buf,
653 (int)dma->sample_buf));
655 return 0;
658 static int dma_init(struct cs4297a_state *s)
660 int i;
662 CS_DBGOUT(CS_INIT, 2,
663 printk(KERN_INFO "cs4297a: Setting up DMA\n"));
665 if (init_serdma(&s->dma_adc) ||
666 init_serdma(&s->dma_dac))
667 return -1;
669 if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX))||
670 __raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) {
671 panic("DMA state corrupted?!");
674 /* Initialize now - the descr/buffer pairings will never
675 change... */
676 for (i=0; i<DMA_DESCR; i++) {
677 s->dma_dac.descrtab[i].descr_a = M_DMA_SERRX_SOP | V_DMA_DSCRA_A_SIZE(1) |
678 (s->dma_dac.dma_buf_phys + i*FRAME_BYTES);
679 s->dma_dac.descrtab[i].descr_b = V_DMA_DSCRB_PKT_SIZE(FRAME_BYTES);
680 s->dma_adc.descrtab[i].descr_a = V_DMA_DSCRA_A_SIZE(1) |
681 (s->dma_adc.dma_buf_phys + i*FRAME_BYTES);
682 s->dma_adc.descrtab[i].descr_b = 0;
685 __raw_writeq((M_DMA_EOP_INT_EN | V_DMA_INT_PKTCNT(DMA_INT_CNT) |
686 V_DMA_RINGSZ(DMA_DESCR) | M_DMA_TDX_EN),
687 SS_CSR(R_SER_DMA_CONFIG0_RX));
688 __raw_writeq(M_DMA_L2CA, SS_CSR(R_SER_DMA_CONFIG1_RX));
689 __raw_writeq(s->dma_adc.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_RX));
691 __raw_writeq(V_DMA_RINGSZ(DMA_DESCR), SS_CSR(R_SER_DMA_CONFIG0_TX));
692 __raw_writeq(M_DMA_L2CA | M_DMA_NO_DSCR_UPDT, SS_CSR(R_SER_DMA_CONFIG1_TX));
693 __raw_writeq(s->dma_dac.descrtab_phys, SS_CSR(R_SER_DMA_DSCR_BASE_TX));
695 /* Prep the receive DMA descriptor ring */
696 __raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
698 __raw_writeq(M_SYNCSER_DMA_RX_EN | M_SYNCSER_DMA_TX_EN, SS_CSR(R_SER_DMA_ENABLE));
700 __raw_writeq((M_SYNCSER_RX_SYNC_ERR | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_EOP_COUNT),
701 SS_CSR(R_SER_INT_MASK));
703 /* Enable the rx/tx; let the codec warm up to the sync and
704 start sending good frames before the receive FIFO is
705 enabled */
706 __raw_writeq(M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD));
707 udelay(1000);
708 __raw_writeq(M_SYNCSER_CMD_RX_EN | M_SYNCSER_CMD_TX_EN, SS_CSR(R_SER_CMD));
710 /* XXXKW is this magic? (the "1" part) */
711 while ((__raw_readq(SS_CSR(R_SER_STATUS)) & 0xf1) != 1)
714 CS_DBGOUT(CS_INIT, 4,
715 printk(KERN_INFO "cs4297a: status: %08x\n",
716 (unsigned int)(__raw_readq(SS_CSR(R_SER_STATUS)) & 0xffffffff)));
718 return 0;
721 static int serdma_reg_access(struct cs4297a_state *s, u64 data)
723 serdma_t *d = &s->dma_dac;
724 u64 *data_p;
725 unsigned swptr;
726 unsigned long flags;
727 serdma_descr_t *descr;
729 if (s->reg_request) {
730 printk(KERN_ERR "cs4297a: attempt to issue multiple reg_access\n");
731 return -1;
734 if (s->ena & FMODE_WRITE) {
735 /* Since a writer has the DSP open, we have to mux the
736 request in */
737 s->reg_request = data;
738 interruptible_sleep_on(&s->dma_dac.reg_wait);
739 /* XXXKW how can I deal with the starvation case where
740 the opener isn't writing? */
741 } else {
742 /* Be safe when changing ring pointers */
743 spin_lock_irqsave(&s->lock, flags);
744 if (d->hwptr != d->swptr) {
745 printk(KERN_ERR "cs4297a: reg access found bookkeeping error (hw/sw = %d/%d\n",
746 d->hwptr, d->swptr);
747 spin_unlock_irqrestore(&s->lock, flags);
748 return -1;
750 swptr = d->swptr;
751 d->hwptr = d->swptr = (d->swptr + 1) % d->ringsz;
752 spin_unlock_irqrestore(&s->lock, flags);
754 descr = &d->descrtab[swptr];
755 data_p = &d->dma_buf[swptr * 4];
756 *data_p = cpu_to_be64(data);
757 __raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_TX));
758 CS_DBGOUT(CS_DESCR, 4,
759 printk(KERN_INFO "cs4297a: add_tx %p (%x -> %x)\n",
760 data_p, swptr, d->hwptr));
763 CS_DBGOUT(CS_FUNCTION, 6,
764 printk(KERN_INFO "cs4297a: serdma_reg_access()-\n"));
766 return 0;
769 //****************************************************************************
770 // "cs4297a_read_ac97" -- Reads an AC97 register
771 //****************************************************************************
772 static int cs4297a_read_ac97(struct cs4297a_state *s, u32 offset,
773 u32 * value)
775 CS_DBGOUT(CS_AC97, 1,
776 printk(KERN_INFO "cs4297a: read reg %2x\n", offset));
777 if (serdma_reg_access(s, (0xCLL << 60) | (1LL << 47) | ((u64)(offset & 0x7F) << 40)))
778 return -1;
780 interruptible_sleep_on(&s->dma_adc.reg_wait);
781 *value = s->read_value;
782 CS_DBGOUT(CS_AC97, 2,
783 printk(KERN_INFO "cs4297a: rdr reg %x -> %x\n", s->read_reg, s->read_value));
785 return 0;
789 //****************************************************************************
790 // "cs4297a_write_ac97()"-- writes an AC97 register
791 //****************************************************************************
792 static int cs4297a_write_ac97(struct cs4297a_state *s, u32 offset,
793 u32 value)
795 CS_DBGOUT(CS_AC97, 1,
796 printk(KERN_INFO "cs4297a: write reg %2x -> %04x\n", offset, value));
797 return (serdma_reg_access(s, (0xELL << 60) | ((u64)(offset & 0x7F) << 40) | ((value & 0xffff) << 12)));
800 static void stop_dac(struct cs4297a_state *s)
802 unsigned long flags;
804 CS_DBGOUT(CS_WAVE_WRITE, 3, printk(KERN_INFO "cs4297a: stop_dac():\n"));
805 spin_lock_irqsave(&s->lock, flags);
806 s->ena &= ~FMODE_WRITE;
807 #if 0
808 /* XXXKW what do I really want here? My theory for now is
809 that I just flip the "ena" bit, and the interrupt handler
810 will stop processing the xmit channel */
811 __raw_writeq((s->ena & FMODE_READ) ? M_SYNCSER_DMA_RX_EN : 0,
812 SS_CSR(R_SER_DMA_ENABLE));
813 #endif
815 spin_unlock_irqrestore(&s->lock, flags);
819 static void start_dac(struct cs4297a_state *s)
821 unsigned long flags;
823 CS_DBGOUT(CS_FUNCTION, 3, printk(KERN_INFO "cs4297a: start_dac()+\n"));
824 spin_lock_irqsave(&s->lock, flags);
825 if (!(s->ena & FMODE_WRITE) && (s->dma_dac.mapped ||
826 (s->dma_dac.count > 0
827 && s->dma_dac.ready))) {
828 s->ena |= FMODE_WRITE;
829 /* XXXKW what do I really want here? My theory for
830 now is that I just flip the "ena" bit, and the
831 interrupt handler will start processing the xmit
832 channel */
834 CS_DBGOUT(CS_WAVE_WRITE | CS_PARMS, 8, printk(KERN_INFO
835 "cs4297a: start_dac(): start dma\n"));
838 spin_unlock_irqrestore(&s->lock, flags);
839 CS_DBGOUT(CS_FUNCTION, 3,
840 printk(KERN_INFO "cs4297a: start_dac()-\n"));
844 static void stop_adc(struct cs4297a_state *s)
846 unsigned long flags;
848 CS_DBGOUT(CS_FUNCTION, 3,
849 printk(KERN_INFO "cs4297a: stop_adc()+\n"));
851 spin_lock_irqsave(&s->lock, flags);
852 s->ena &= ~FMODE_READ;
854 if (s->conversion == 1) {
855 s->conversion = 0;
856 s->prop_adc.fmt = s->prop_adc.fmt_original;
858 /* Nothing to do really, I need to keep the DMA going
859 XXXKW when do I get here, and is there more I should do? */
860 spin_unlock_irqrestore(&s->lock, flags);
861 CS_DBGOUT(CS_FUNCTION, 3,
862 printk(KERN_INFO "cs4297a: stop_adc()-\n"));
866 static void start_adc(struct cs4297a_state *s)
868 unsigned long flags;
870 CS_DBGOUT(CS_FUNCTION, 2,
871 printk(KERN_INFO "cs4297a: start_adc()+\n"));
873 if (!(s->ena & FMODE_READ) &&
874 (s->dma_adc.mapped || s->dma_adc.count <=
875 (signed) (s->dma_adc.sbufsz - 2 * s->dma_adc.fragsize))
876 && s->dma_adc.ready) {
877 if (s->prop_adc.fmt & AFMT_S8 || s->prop_adc.fmt & AFMT_U8) {
879 // now only use 16 bit capture, due to truncation issue
880 // in the chip, noticable distortion occurs.
881 // allocate buffer and then convert from 16 bit to
882 // 8 bit for the user buffer.
884 s->prop_adc.fmt_original = s->prop_adc.fmt;
885 if (s->prop_adc.fmt & AFMT_S8) {
886 s->prop_adc.fmt &= ~AFMT_S8;
887 s->prop_adc.fmt |= AFMT_S16_LE;
889 if (s->prop_adc.fmt & AFMT_U8) {
890 s->prop_adc.fmt &= ~AFMT_U8;
891 s->prop_adc.fmt |= AFMT_U16_LE;
894 // prog_dmabuf_adc performs a stop_adc() but that is
895 // ok since we really haven't started the DMA yet.
897 prog_codec(s, CS_TYPE_ADC);
899 prog_dmabuf_adc(s);
900 s->conversion = 1;
902 spin_lock_irqsave(&s->lock, flags);
903 s->ena |= FMODE_READ;
904 /* Nothing to do really, I am probably already
905 DMAing... XXXKW when do I get here, and is there
906 more I should do? */
907 spin_unlock_irqrestore(&s->lock, flags);
909 CS_DBGOUT(CS_PARMS, 6, printk(KERN_INFO
910 "cs4297a: start_adc(): start adc\n"));
912 CS_DBGOUT(CS_FUNCTION, 2,
913 printk(KERN_INFO "cs4297a: start_adc()-\n"));
918 // call with spinlock held!
919 static void cs4297a_update_ptr(struct cs4297a_state *s, int intflag)
921 int good_diff, diff, diff2;
922 u64 *data_p, data;
923 u32 *s_ptr;
924 unsigned hwptr;
925 u32 status;
926 serdma_t *d;
927 serdma_descr_t *descr;
929 // update ADC pointer
930 status = intflag ? __raw_readq(SS_CSR(R_SER_STATUS)) : 0;
932 if ((s->ena & FMODE_READ) || (status & (M_SYNCSER_RX_EOP_COUNT))) {
933 d = &s->dma_adc;
934 hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
935 d->descrtab_phys) / sizeof(serdma_descr_t));
937 if (s->ena & FMODE_READ) {
938 CS_DBGOUT(CS_FUNCTION, 2,
939 printk(KERN_INFO "cs4297a: upd_rcv sw->hw->hw %x/%x/%x (int-%d)n",
940 d->swptr, d->hwptr, hwptr, intflag));
941 /* Number of DMA buffers available for software: */
942 diff2 = diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz;
943 d->hwptr = hwptr;
944 good_diff = 0;
945 s_ptr = (u32 *)&(d->dma_buf[d->swptr*4]);
946 descr = &d->descrtab[d->swptr];
947 while (diff2--) {
948 u64 data = be64_to_cpu(*(u64 *)s_ptr);
949 u64 descr_a;
950 u16 left, right;
951 descr_a = descr->descr_a;
952 descr->descr_a &= ~M_DMA_SERRX_SOP;
953 if ((descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)s_ptr)) {
954 printk(KERN_ERR "cs4297a: RX Bad address (read)\n");
956 if (((data & 0x9800000000000000) != 0x9800000000000000) ||
957 (!(descr_a & M_DMA_SERRX_SOP)) ||
958 (G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) {
959 s->stats.rx_bad++;
960 printk(KERN_DEBUG "cs4297a: RX Bad attributes (read)\n");
961 continue;
963 s->stats.rx_good++;
964 if ((data >> 61) == 7) {
965 s->read_value = (data >> 12) & 0xffff;
966 s->read_reg = (data >> 40) & 0x7f;
967 wake_up(&d->reg_wait);
969 if (d->count && (d->sb_hwptr == d->sb_swptr)) {
970 s->stats.rx_overflow++;
971 printk(KERN_DEBUG "cs4297a: RX overflow\n");
972 continue;
974 good_diff++;
975 left = ((be32_to_cpu(s_ptr[1]) & 0xff) << 8) |
976 ((be32_to_cpu(s_ptr[2]) >> 24) & 0xff);
977 right = (be32_to_cpu(s_ptr[2]) >> 4) & 0xffff;
978 *d->sb_hwptr++ = cpu_to_be16(left);
979 *d->sb_hwptr++ = cpu_to_be16(right);
980 if (d->sb_hwptr == d->sb_end)
981 d->sb_hwptr = d->sample_buf;
982 descr++;
983 if (descr == d->descrtab_end) {
984 descr = d->descrtab;
985 s_ptr = (u32 *)s->dma_adc.dma_buf;
986 } else {
987 s_ptr += 8;
990 d->total_bytes += good_diff * FRAME_SAMPLE_BYTES;
991 d->count += good_diff * FRAME_SAMPLE_BYTES;
992 if (d->count > d->sbufsz) {
993 printk(KERN_ERR "cs4297a: bogus receive overflow!!\n");
995 d->swptr = (d->swptr + diff) % d->ringsz;
996 __raw_writeq(diff, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
997 if (d->mapped) {
998 if (d->count >= (signed) d->fragsize)
999 wake_up(&d->wait);
1000 } else {
1001 if (d->count > 0) {
1002 CS_DBGOUT(CS_WAVE_READ, 4,
1003 printk(KERN_INFO
1004 "cs4297a: update count -> %d\n", d->count));
1005 wake_up(&d->wait);
1008 } else {
1009 /* Receive is going even if no one is
1010 listening (for register accesses and to
1011 avoid FIFO overrun) */
1012 diff2 = diff = (hwptr + d->ringsz - d->hwptr) % d->ringsz;
1013 if (!diff) {
1014 printk(KERN_ERR "cs4297a: RX full or empty?\n");
1017 descr = &d->descrtab[d->swptr];
1018 data_p = &d->dma_buf[d->swptr*4];
1020 /* Force this to happen at least once; I got
1021 here because of an interrupt, so there must
1022 be a buffer to process. */
1023 do {
1024 data = be64_to_cpu(*data_p);
1025 if ((descr->descr_a & M_DMA_DSCRA_A_ADDR) != CPHYSADDR((long)data_p)) {
1026 printk(KERN_ERR "cs4297a: RX Bad address %d (%llx %lx)\n", d->swptr,
1027 (long long)(descr->descr_a & M_DMA_DSCRA_A_ADDR),
1028 (long)CPHYSADDR((long)data_p));
1030 if (!(data & (1LL << 63)) ||
1031 !(descr->descr_a & M_DMA_SERRX_SOP) ||
1032 (G_DMA_DSCRB_PKT_SIZE(descr->descr_b) != FRAME_BYTES)) {
1033 s->stats.rx_bad++;
1034 printk(KERN_DEBUG "cs4297a: RX Bad attributes\n");
1035 } else {
1036 s->stats.rx_good++;
1037 if ((data >> 61) == 7) {
1038 s->read_value = (data >> 12) & 0xffff;
1039 s->read_reg = (data >> 40) & 0x7f;
1040 wake_up(&d->reg_wait);
1043 descr->descr_a &= ~M_DMA_SERRX_SOP;
1044 descr++;
1045 d->swptr++;
1046 data_p += 4;
1047 if (descr == d->descrtab_end) {
1048 descr = d->descrtab;
1049 d->swptr = 0;
1050 data_p = d->dma_buf;
1052 __raw_writeq(1, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
1053 } while (--diff);
1054 d->hwptr = hwptr;
1056 CS_DBGOUT(CS_DESCR, 6,
1057 printk(KERN_INFO "cs4297a: hw/sw %x/%x\n", d->hwptr, d->swptr));
1060 CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
1061 "cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
1062 (unsigned)s, d->hwptr,
1063 d->total_bytes, d->count));
1066 /* XXXKW worry about s->reg_request -- there is a starvation
1067 case if s->ena has FMODE_WRITE on, but the client isn't
1068 doing writes */
1070 // update DAC pointer
1072 // check for end of buffer, means that we are going to wait for another interrupt
1073 // to allow silence to fill the fifos on the part, to keep pops down to a minimum.
1075 if (s->ena & FMODE_WRITE) {
1076 serdma_t *d = &s->dma_dac;
1077 hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
1078 d->descrtab_phys) / sizeof(serdma_descr_t));
1079 diff = (d->ringsz + hwptr - d->hwptr) % d->ringsz;
1080 CS_DBGOUT(CS_WAVE_WRITE, 4, printk(KERN_INFO
1081 "cs4297a: cs4297a_update_ptr(): hw/hw/sw %x/%x/%x diff %d count %d\n",
1082 d->hwptr, hwptr, d->swptr, diff, d->count));
1083 d->hwptr = hwptr;
1084 /* XXXKW stereo? conversion? Just assume 2 16-bit samples for now */
1085 d->total_bytes += diff * FRAME_SAMPLE_BYTES;
1086 if (d->mapped) {
1087 d->count += diff * FRAME_SAMPLE_BYTES;
1088 if (d->count >= d->fragsize) {
1089 d->wakeup = 1;
1090 wake_up(&d->wait);
1091 if (d->count > d->sbufsz)
1092 d->count &= d->sbufsz - 1;
1094 } else {
1095 d->count -= diff * FRAME_SAMPLE_BYTES;
1096 if (d->count <= 0) {
1098 // fill with silence, and do not shut down the DAC.
1099 // Continue to play silence until the _release.
1101 CS_DBGOUT(CS_WAVE_WRITE, 6, printk(KERN_INFO
1102 "cs4297a: cs4297a_update_ptr(): memset %d at 0x%.8x for %d size \n",
1103 (unsigned)(s->prop_dac.fmt &
1104 (AFMT_U8 | AFMT_U16_LE)) ? 0x80 : 0,
1105 (unsigned)d->dma_buf,
1106 d->ringsz));
1107 memset(d->dma_buf, 0, d->ringsz * FRAME_BYTES);
1108 if (d->count < 0) {
1109 d->underrun = 1;
1110 s->stats.tx_underrun++;
1111 d->count = 0;
1112 CS_DBGOUT(CS_ERROR, 9, printk(KERN_INFO
1113 "cs4297a: cs4297a_update_ptr(): underrun\n"));
1115 } else if (d->count <=
1116 (signed) d->fragsize
1117 && !d->endcleared) {
1118 /* XXXKW what is this for? */
1119 clear_advance(d->dma_buf,
1120 d->sbufsz,
1121 d->swptr,
1122 d->fragsize,
1124 d->endcleared = 1;
1126 if ( (d->count <= (signed) d->sbufsz/2) || intflag)
1128 CS_DBGOUT(CS_WAVE_WRITE, 4,
1129 printk(KERN_INFO
1130 "cs4297a: update count -> %d\n", d->count));
1131 wake_up(&d->wait);
1134 CS_DBGOUT(CS_PARMS, 8, printk(KERN_INFO
1135 "cs4297a: cs4297a_update_ptr(): s=0x%.8x hwptr=%d total_bytes=%d count=%d \n",
1136 (unsigned) s, d->hwptr,
1137 d->total_bytes, d->count));
1141 static int mixer_ioctl(struct cs4297a_state *s, unsigned int cmd,
1142 unsigned long arg)
1144 // Index to mixer_src[] is value of AC97 Input Mux Select Reg.
1145 // Value of array member is recording source Device ID Mask.
1146 static const unsigned int mixer_src[8] = {
1147 SOUND_MASK_MIC, SOUND_MASK_CD, 0, SOUND_MASK_LINE1,
1148 SOUND_MASK_LINE, SOUND_MASK_VOLUME, 0, 0
1151 // Index of mixtable1[] member is Device ID
1152 // and must be <= SOUND_MIXER_NRDEVICES.
1153 // Value of array member is index into s->mix.vol[]
1154 static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
1155 [SOUND_MIXER_PCM] = 1, // voice
1156 [SOUND_MIXER_LINE1] = 2, // AUX
1157 [SOUND_MIXER_CD] = 3, // CD
1158 [SOUND_MIXER_LINE] = 4, // Line
1159 [SOUND_MIXER_SYNTH] = 5, // FM
1160 [SOUND_MIXER_MIC] = 6, // Mic
1161 [SOUND_MIXER_SPEAKER] = 7, // Speaker
1162 [SOUND_MIXER_RECLEV] = 8, // Recording level
1163 [SOUND_MIXER_VOLUME] = 9 // Master Volume
1166 static const unsigned mixreg[] = {
1167 AC97_PCMOUT_VOL,
1168 AC97_AUX_VOL,
1169 AC97_CD_VOL,
1170 AC97_LINEIN_VOL
1172 unsigned char l, r, rl, rr, vidx;
1173 unsigned char attentbl[11] =
1174 { 63, 42, 26, 17, 14, 11, 8, 6, 4, 2, 0 };
1175 unsigned temp1;
1176 int i, val;
1178 VALIDATE_STATE(s);
1179 CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO
1180 "cs4297a: mixer_ioctl(): s=0x%.8x cmd=0x%.8x\n",
1181 (unsigned) s, cmd));
1182 #if CSDEBUG
1183 cs_printioctl(cmd);
1184 #endif
1185 #if CSDEBUG_INTERFACE
1187 if ((cmd == SOUND_MIXER_CS_GETDBGMASK) ||
1188 (cmd == SOUND_MIXER_CS_SETDBGMASK) ||
1189 (cmd == SOUND_MIXER_CS_GETDBGLEVEL) ||
1190 (cmd == SOUND_MIXER_CS_SETDBGLEVEL))
1192 switch (cmd) {
1194 case SOUND_MIXER_CS_GETDBGMASK:
1195 return put_user(cs_debugmask,
1196 (unsigned long *) arg);
1198 case SOUND_MIXER_CS_GETDBGLEVEL:
1199 return put_user(cs_debuglevel,
1200 (unsigned long *) arg);
1202 case SOUND_MIXER_CS_SETDBGMASK:
1203 if (get_user(val, (unsigned long *) arg))
1204 return -EFAULT;
1205 cs_debugmask = val;
1206 return 0;
1208 case SOUND_MIXER_CS_SETDBGLEVEL:
1209 if (get_user(val, (unsigned long *) arg))
1210 return -EFAULT;
1211 cs_debuglevel = val;
1212 return 0;
1213 default:
1214 CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
1215 "cs4297a: mixer_ioctl(): ERROR unknown debug cmd\n"));
1216 return 0;
1219 #endif
1221 if (cmd == SOUND_MIXER_PRIVATE1) {
1222 return -EINVAL;
1224 if (cmd == SOUND_MIXER_PRIVATE2) {
1225 // enable/disable/query spatializer
1226 if (get_user(val, (int *) arg))
1227 return -EFAULT;
1228 if (val != -1) {
1229 temp1 = (val & 0x3f) >> 2;
1230 cs4297a_write_ac97(s, AC97_3D_CONTROL, temp1);
1231 cs4297a_read_ac97(s, AC97_GENERAL_PURPOSE,
1232 &temp1);
1233 cs4297a_write_ac97(s, AC97_GENERAL_PURPOSE,
1234 temp1 | 0x2000);
1236 cs4297a_read_ac97(s, AC97_3D_CONTROL, &temp1);
1237 return put_user((temp1 << 2) | 3, (int *) arg);
1239 if (cmd == SOUND_MIXER_INFO) {
1240 mixer_info info;
1241 memset(&info, 0, sizeof(info));
1242 strlcpy(info.id, "CS4297a", sizeof(info.id));
1243 strlcpy(info.name, "Crystal CS4297a", sizeof(info.name));
1244 info.modify_counter = s->mix.modcnt;
1245 if (copy_to_user((void *) arg, &info, sizeof(info)))
1246 return -EFAULT;
1247 return 0;
1249 if (cmd == SOUND_OLD_MIXER_INFO) {
1250 _old_mixer_info info;
1251 memset(&info, 0, sizeof(info));
1252 strlcpy(info.id, "CS4297a", sizeof(info.id));
1253 strlcpy(info.name, "Crystal CS4297a", sizeof(info.name));
1254 if (copy_to_user((void *) arg, &info, sizeof(info)))
1255 return -EFAULT;
1256 return 0;
1258 if (cmd == OSS_GETVERSION)
1259 return put_user(SOUND_VERSION, (int *) arg);
1261 if (_IOC_TYPE(cmd) != 'M' || _SIOC_SIZE(cmd) != sizeof(int))
1262 return -EINVAL;
1264 // If ioctl has only the SIOC_READ bit(bit 31)
1265 // on, process the only-read commands.
1266 if (_SIOC_DIR(cmd) == _SIOC_READ) {
1267 switch (_IOC_NR(cmd)) {
1268 case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
1269 cs4297a_read_ac97(s, AC97_RECORD_SELECT,
1270 &temp1);
1271 return put_user(mixer_src[temp1 & 7], (int *) arg);
1273 case SOUND_MIXER_DEVMASK: // Arg contains a bit for each supported device
1274 return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE |
1275 SOUND_MASK_VOLUME | SOUND_MASK_RECLEV,
1276 (int *) arg);
1278 case SOUND_MIXER_RECMASK: // Arg contains a bit for each supported recording source
1279 return put_user(SOUND_MASK_LINE | SOUND_MASK_VOLUME,
1280 (int *) arg);
1282 case SOUND_MIXER_STEREODEVS: // Mixer channels supporting stereo
1283 return put_user(SOUND_MASK_PCM | SOUND_MASK_LINE |
1284 SOUND_MASK_VOLUME | SOUND_MASK_RECLEV,
1285 (int *) arg);
1287 case SOUND_MIXER_CAPS:
1288 return put_user(SOUND_CAP_EXCL_INPUT, (int *) arg);
1290 default:
1291 i = _IOC_NR(cmd);
1292 if (i >= SOUND_MIXER_NRDEVICES
1293 || !(vidx = mixtable1[i]))
1294 return -EINVAL;
1295 return put_user(s->mix.vol[vidx - 1], (int *) arg);
1298 // If ioctl doesn't have both the SIOC_READ and
1299 // the SIOC_WRITE bit set, return invalid.
1300 if (_SIOC_DIR(cmd) != (_SIOC_READ | _SIOC_WRITE))
1301 return -EINVAL;
1303 // Increment the count of volume writes.
1304 s->mix.modcnt++;
1306 // Isolate the command; it must be a write.
1307 switch (_IOC_NR(cmd)) {
1309 case SOUND_MIXER_RECSRC: // Arg contains a bit for each recording source
1310 if (get_user(val, (int *) arg))
1311 return -EFAULT;
1312 i = hweight32(val); // i = # bits on in val.
1313 if (i != 1) // One & only 1 bit must be on.
1314 return 0;
1315 for (i = 0; i < sizeof(mixer_src) / sizeof(int); i++) {
1316 if (val == mixer_src[i]) {
1317 temp1 = (i << 8) | i;
1318 cs4297a_write_ac97(s,
1319 AC97_RECORD_SELECT,
1320 temp1);
1321 return 0;
1324 return 0;
1326 case SOUND_MIXER_VOLUME:
1327 if (get_user(val, (int *) arg))
1328 return -EFAULT;
1329 l = val & 0xff;
1330 if (l > 100)
1331 l = 100; // Max soundcard.h vol is 100.
1332 if (l < 6) {
1333 rl = 63;
1334 l = 0;
1335 } else
1336 rl = attentbl[(10 * l) / 100]; // Convert 0-100 vol to 63-0 atten.
1338 r = (val >> 8) & 0xff;
1339 if (r > 100)
1340 r = 100; // Max right volume is 100, too
1341 if (r < 6) {
1342 rr = 63;
1343 r = 0;
1344 } else
1345 rr = attentbl[(10 * r) / 100]; // Convert volume to attenuation.
1347 if ((rl > 60) && (rr > 60)) // If both l & r are 'low',
1348 temp1 = 0x8000; // turn on the mute bit.
1349 else
1350 temp1 = 0;
1352 temp1 |= (rl << 8) | rr;
1354 cs4297a_write_ac97(s, AC97_MASTER_VOL_STEREO, temp1);
1355 cs4297a_write_ac97(s, AC97_PHONE_VOL, temp1);
1357 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1358 s->mix.vol[8] = ((unsigned int) r << 8) | l;
1359 #else
1360 s->mix.vol[8] = val;
1361 #endif
1362 return put_user(s->mix.vol[8], (int *) arg);
1364 case SOUND_MIXER_SPEAKER:
1365 if (get_user(val, (int *) arg))
1366 return -EFAULT;
1367 l = val & 0xff;
1368 if (l > 100)
1369 l = 100;
1370 if (l < 3) {
1371 rl = 0;
1372 l = 0;
1373 } else {
1374 rl = (l * 2 - 5) / 13; // Convert 0-100 range to 0-15.
1375 l = (rl * 13 + 5) / 2;
1378 if (rl < 3) {
1379 temp1 = 0x8000;
1380 rl = 0;
1381 } else
1382 temp1 = 0;
1383 rl = 15 - rl; // Convert volume to attenuation.
1384 temp1 |= rl << 1;
1385 cs4297a_write_ac97(s, AC97_PCBEEP_VOL, temp1);
1387 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1388 s->mix.vol[6] = l << 8;
1389 #else
1390 s->mix.vol[6] = val;
1391 #endif
1392 return put_user(s->mix.vol[6], (int *) arg);
1394 case SOUND_MIXER_RECLEV:
1395 if (get_user(val, (int *) arg))
1396 return -EFAULT;
1397 l = val & 0xff;
1398 if (l > 100)
1399 l = 100;
1400 r = (val >> 8) & 0xff;
1401 if (r > 100)
1402 r = 100;
1403 rl = (l * 2 - 5) / 13; // Convert 0-100 scale to 0-15.
1404 rr = (r * 2 - 5) / 13;
1405 if (rl < 3 && rr < 3)
1406 temp1 = 0x8000;
1407 else
1408 temp1 = 0;
1410 temp1 = temp1 | (rl << 8) | rr;
1411 cs4297a_write_ac97(s, AC97_RECORD_GAIN, temp1);
1413 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1414 s->mix.vol[7] = ((unsigned int) r << 8) | l;
1415 #else
1416 s->mix.vol[7] = val;
1417 #endif
1418 return put_user(s->mix.vol[7], (int *) arg);
1420 case SOUND_MIXER_MIC:
1421 if (get_user(val, (int *) arg))
1422 return -EFAULT;
1423 l = val & 0xff;
1424 if (l > 100)
1425 l = 100;
1426 if (l < 1) {
1427 l = 0;
1428 rl = 0;
1429 } else {
1430 rl = ((unsigned) l * 5 - 4) / 16; // Convert 0-100 range to 0-31.
1431 l = (rl * 16 + 4) / 5;
1433 cs4297a_read_ac97(s, AC97_MIC_VOL, &temp1);
1434 temp1 &= 0x40; // Isolate 20db gain bit.
1435 if (rl < 3) {
1436 temp1 |= 0x8000;
1437 rl = 0;
1439 rl = 31 - rl; // Convert volume to attenuation.
1440 temp1 |= rl;
1441 cs4297a_write_ac97(s, AC97_MIC_VOL, temp1);
1443 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1444 s->mix.vol[5] = val << 8;
1445 #else
1446 s->mix.vol[5] = val;
1447 #endif
1448 return put_user(s->mix.vol[5], (int *) arg);
1451 case SOUND_MIXER_SYNTH:
1452 if (get_user(val, (int *) arg))
1453 return -EFAULT;
1454 l = val & 0xff;
1455 if (l > 100)
1456 l = 100;
1457 if (get_user(val, (int *) arg))
1458 return -EFAULT;
1459 r = (val >> 8) & 0xff;
1460 if (r > 100)
1461 r = 100;
1462 rl = (l * 2 - 11) / 3; // Convert 0-100 range to 0-63.
1463 rr = (r * 2 - 11) / 3;
1464 if (rl < 3) // If l is low, turn on
1465 temp1 = 0x0080; // the mute bit.
1466 else
1467 temp1 = 0;
1469 rl = 63 - rl; // Convert vol to attenuation.
1470 // writel(temp1 | rl, s->pBA0 + FMLVC);
1471 if (rr < 3) // If rr is low, turn on
1472 temp1 = 0x0080; // the mute bit.
1473 else
1474 temp1 = 0;
1475 rr = 63 - rr; // Convert vol to attenuation.
1476 // writel(temp1 | rr, s->pBA0 + FMRVC);
1478 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1479 s->mix.vol[4] = (r << 8) | l;
1480 #else
1481 s->mix.vol[4] = val;
1482 #endif
1483 return put_user(s->mix.vol[4], (int *) arg);
1486 default:
1487 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
1488 "cs4297a: mixer_ioctl(): default\n"));
1490 i = _IOC_NR(cmd);
1491 if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
1492 return -EINVAL;
1493 if (get_user(val, (int *) arg))
1494 return -EFAULT;
1495 l = val & 0xff;
1496 if (l > 100)
1497 l = 100;
1498 if (l < 1) {
1499 l = 0;
1500 rl = 31;
1501 } else
1502 rl = (attentbl[(l * 10) / 100]) >> 1;
1504 r = (val >> 8) & 0xff;
1505 if (r > 100)
1506 r = 100;
1507 if (r < 1) {
1508 r = 0;
1509 rr = 31;
1510 } else
1511 rr = (attentbl[(r * 10) / 100]) >> 1;
1512 if ((rl > 30) && (rr > 30))
1513 temp1 = 0x8000;
1514 else
1515 temp1 = 0;
1516 temp1 = temp1 | (rl << 8) | rr;
1517 cs4297a_write_ac97(s, mixreg[vidx - 1], temp1);
1519 #ifdef OSS_DOCUMENTED_MIXER_SEMANTICS
1520 s->mix.vol[vidx - 1] = ((unsigned int) r << 8) | l;
1521 #else
1522 s->mix.vol[vidx - 1] = val;
1523 #endif
1524 return put_user(s->mix.vol[vidx - 1], (int *) arg);
1529 // ---------------------------------------------------------------------
1531 static int cs4297a_open_mixdev(struct inode *inode, struct file *file)
1533 int minor = iminor(inode);
1534 struct cs4297a_state *s=NULL;
1535 struct list_head *entry;
1537 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
1538 printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()+\n"));
1540 list_for_each(entry, &cs4297a_devs)
1542 s = list_entry(entry, struct cs4297a_state, list);
1543 if(s->dev_mixer == minor)
1544 break;
1546 if (!s)
1548 CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
1549 printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- -ENODEV\n"));
1550 return -ENODEV;
1552 VALIDATE_STATE(s);
1553 file->private_data = s;
1555 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
1556 printk(KERN_INFO "cs4297a: cs4297a_open_mixdev()- 0\n"));
1558 return nonseekable_open(inode, file);
1562 static int cs4297a_release_mixdev(struct inode *inode, struct file *file)
1564 struct cs4297a_state *s =
1565 (struct cs4297a_state *) file->private_data;
1567 VALIDATE_STATE(s);
1568 return 0;
1572 static int cs4297a_ioctl_mixdev(struct inode *inode, struct file *file,
1573 unsigned int cmd, unsigned long arg)
1575 return mixer_ioctl((struct cs4297a_state *) file->private_data, cmd,
1576 arg);
1580 // ******************************************************************************************
1581 // Mixer file operations struct.
1582 // ******************************************************************************************
1583 static const struct file_operations cs4297a_mixer_fops = {
1584 .owner = THIS_MODULE,
1585 .llseek = no_llseek,
1586 .ioctl = cs4297a_ioctl_mixdev,
1587 .open = cs4297a_open_mixdev,
1588 .release = cs4297a_release_mixdev,
1591 // ---------------------------------------------------------------------
1594 static int drain_adc(struct cs4297a_state *s, int nonblock)
1596 /* This routine serves no purpose currently - any samples
1597 sitting in the receive queue will just be processed by the
1598 background consumer. This would be different if DMA
1599 actually stopped when there were no clients. */
1600 return 0;
1603 static int drain_dac(struct cs4297a_state *s, int nonblock)
1605 DECLARE_WAITQUEUE(wait, current);
1606 unsigned long flags;
1607 unsigned hwptr;
1608 unsigned tmo;
1609 int count;
1611 if (s->dma_dac.mapped)
1612 return 0;
1613 if (nonblock)
1614 return -EBUSY;
1615 add_wait_queue(&s->dma_dac.wait, &wait);
1616 while ((count = __raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX))) ||
1617 (s->dma_dac.count > 0)) {
1618 if (!signal_pending(current)) {
1619 set_current_state(TASK_INTERRUPTIBLE);
1620 /* XXXKW is this calculation working? */
1621 tmo = ((count * FRAME_TX_US) * HZ) / 1000000;
1622 schedule_timeout(tmo + 1);
1623 } else {
1624 /* XXXKW do I care if there is a signal pending? */
1627 spin_lock_irqsave(&s->lock, flags);
1628 /* Reset the bookkeeping */
1629 hwptr = (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
1630 s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t));
1631 s->dma_dac.hwptr = s->dma_dac.swptr = hwptr;
1632 spin_unlock_irqrestore(&s->lock, flags);
1633 remove_wait_queue(&s->dma_dac.wait, &wait);
1634 current->state = TASK_RUNNING;
1635 return 0;
1639 // ---------------------------------------------------------------------
1641 static ssize_t cs4297a_read(struct file *file, char *buffer, size_t count,
1642 loff_t * ppos)
1644 struct cs4297a_state *s =
1645 (struct cs4297a_state *) file->private_data;
1646 ssize_t ret;
1647 unsigned long flags;
1648 int cnt, count_fr, cnt_by;
1649 unsigned copied = 0;
1651 CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
1652 printk(KERN_INFO "cs4297a: cs4297a_read()+ %d \n", count));
1654 VALIDATE_STATE(s);
1655 if (s->dma_adc.mapped)
1656 return -ENXIO;
1657 if (!s->dma_adc.ready && (ret = prog_dmabuf_adc(s)))
1658 return ret;
1659 if (!access_ok(VERIFY_WRITE, buffer, count))
1660 return -EFAULT;
1661 ret = 0;
1663 // "count" is the amount of bytes to read (from app), is decremented each loop
1664 // by the amount of bytes that have been returned to the user buffer.
1665 // "cnt" is the running total of each read from the buffer (changes each loop)
1666 // "buffer" points to the app's buffer
1667 // "ret" keeps a running total of the amount of bytes that have been copied
1668 // to the user buffer.
1669 // "copied" is the total bytes copied into the user buffer for each loop.
1671 while (count > 0) {
1672 CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
1673 "_read() count>0 count=%d .count=%d .swptr=%d .hwptr=%d \n",
1674 count, s->dma_adc.count,
1675 s->dma_adc.swptr, s->dma_adc.hwptr));
1676 spin_lock_irqsave(&s->lock, flags);
1678 /* cnt will be the number of available samples (16-bit
1679 stereo); it starts out as the maxmimum consequetive
1680 samples */
1681 cnt = (s->dma_adc.sb_end - s->dma_adc.sb_swptr) / 2;
1682 count_fr = s->dma_adc.count / FRAME_SAMPLE_BYTES;
1684 // dma_adc.count is the current total bytes that have not been read.
1685 // if the amount of unread bytes from the current sw pointer to the
1686 // end of the buffer is greater than the current total bytes that
1687 // have not been read, then set the "cnt" (unread bytes) to the
1688 // amount of unread bytes.
1690 if (count_fr < cnt)
1691 cnt = count_fr;
1692 cnt_by = cnt * FRAME_SAMPLE_BYTES;
1693 spin_unlock_irqrestore(&s->lock, flags);
1695 // if we are converting from 8/16 then we need to copy
1696 // twice the number of 16 bit bytes then 8 bit bytes.
1698 if (s->conversion) {
1699 if (cnt_by > (count * 2)) {
1700 cnt = (count * 2) / FRAME_SAMPLE_BYTES;
1701 cnt_by = count * 2;
1703 } else {
1704 if (cnt_by > count) {
1705 cnt = count / FRAME_SAMPLE_BYTES;
1706 cnt_by = count;
1710 // "cnt" NOW is the smaller of the amount that will be read,
1711 // and the amount that is requested in this read (or partial).
1712 // if there are no bytes in the buffer to read, then start the
1713 // ADC and wait for the interrupt handler to wake us up.
1715 if (cnt <= 0) {
1717 // start up the dma engine and then continue back to the top of
1718 // the loop when wake up occurs.
1719 start_adc(s);
1720 if (file->f_flags & O_NONBLOCK)
1721 return ret ? ret : -EAGAIN;
1722 interruptible_sleep_on(&s->dma_adc.wait);
1723 if (signal_pending(current))
1724 return ret ? ret : -ERESTARTSYS;
1725 continue;
1727 // there are bytes in the buffer to read.
1728 // copy from the hw buffer over to the user buffer.
1729 // user buffer is designated by "buffer"
1730 // virtual address to copy from is dma_buf+swptr
1731 // the "cnt" is the number of bytes to read.
1733 CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO
1734 "_read() copy_to cnt=%d count=%d ", cnt_by, count));
1735 CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
1736 " .sbufsz=%d .count=%d buffer=0x%.8x ret=%d\n",
1737 s->dma_adc.sbufsz, s->dma_adc.count,
1738 (unsigned) buffer, ret));
1740 if (copy_to_user (buffer, ((void *)s->dma_adc.sb_swptr), cnt_by))
1741 return ret ? ret : -EFAULT;
1742 copied = cnt_by;
1744 /* Return the descriptors */
1745 spin_lock_irqsave(&s->lock, flags);
1746 CS_DBGOUT(CS_FUNCTION, 2,
1747 printk(KERN_INFO "cs4297a: upd_rcv sw->hw %x/%x\n", s->dma_adc.swptr, s->dma_adc.hwptr));
1748 s->dma_adc.count -= cnt_by;
1749 s->dma_adc.sb_swptr += cnt * 2;
1750 if (s->dma_adc.sb_swptr == s->dma_adc.sb_end)
1751 s->dma_adc.sb_swptr = s->dma_adc.sample_buf;
1752 spin_unlock_irqrestore(&s->lock, flags);
1753 count -= copied;
1754 buffer += copied;
1755 ret += copied;
1756 start_adc(s);
1758 CS_DBGOUT(CS_FUNCTION | CS_WAVE_READ, 2,
1759 printk(KERN_INFO "cs4297a: cs4297a_read()- %d\n", ret));
1760 return ret;
1764 static ssize_t cs4297a_write(struct file *file, const char *buffer,
1765 size_t count, loff_t * ppos)
1767 struct cs4297a_state *s =
1768 (struct cs4297a_state *) file->private_data;
1769 ssize_t ret;
1770 unsigned long flags;
1771 unsigned swptr, hwptr;
1772 int cnt;
1774 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
1775 printk(KERN_INFO "cs4297a: cs4297a_write()+ count=%d\n",
1776 count));
1777 VALIDATE_STATE(s);
1779 if (s->dma_dac.mapped)
1780 return -ENXIO;
1781 if (!s->dma_dac.ready && (ret = prog_dmabuf_dac(s)))
1782 return ret;
1783 if (!access_ok(VERIFY_READ, buffer, count))
1784 return -EFAULT;
1785 ret = 0;
1786 while (count > 0) {
1787 serdma_t *d = &s->dma_dac;
1788 int copy_cnt;
1789 u32 *s_tmpl;
1790 u32 *t_tmpl;
1791 u32 left, right;
1792 int swap = (s->prop_dac.fmt == AFMT_S16_LE) || (s->prop_dac.fmt == AFMT_U16_LE);
1794 /* XXXXXX this is broken for BLOAT_FACTOR */
1795 spin_lock_irqsave(&s->lock, flags);
1796 if (d->count < 0) {
1797 d->count = 0;
1798 d->swptr = d->hwptr;
1800 if (d->underrun) {
1801 d->underrun = 0;
1802 hwptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
1803 d->descrtab_phys) / sizeof(serdma_descr_t));
1804 d->swptr = d->hwptr = hwptr;
1806 swptr = d->swptr;
1807 cnt = d->sbufsz - (swptr * FRAME_SAMPLE_BYTES);
1808 /* Will this write fill up the buffer? */
1809 if (d->count + cnt > d->sbufsz)
1810 cnt = d->sbufsz - d->count;
1811 spin_unlock_irqrestore(&s->lock, flags);
1812 if (cnt > count)
1813 cnt = count;
1814 if (cnt <= 0) {
1815 start_dac(s);
1816 if (file->f_flags & O_NONBLOCK)
1817 return ret ? ret : -EAGAIN;
1818 interruptible_sleep_on(&d->wait);
1819 if (signal_pending(current))
1820 return ret ? ret : -ERESTARTSYS;
1821 continue;
1823 if (copy_from_user(d->sample_buf, buffer, cnt))
1824 return ret ? ret : -EFAULT;
1826 copy_cnt = cnt;
1827 s_tmpl = (u32 *)d->sample_buf;
1828 t_tmpl = (u32 *)(d->dma_buf + (swptr * 4));
1830 /* XXXKW assuming 16-bit stereo! */
1831 do {
1832 u32 tmp;
1834 t_tmpl[0] = cpu_to_be32(0x98000000);
1836 tmp = be32_to_cpu(s_tmpl[0]);
1837 left = tmp & 0xffff;
1838 right = tmp >> 16;
1839 if (swap) {
1840 left = swab16(left);
1841 right = swab16(right);
1843 t_tmpl[1] = cpu_to_be32(left >> 8);
1844 t_tmpl[2] = cpu_to_be32(((left & 0xff) << 24) |
1845 (right << 4));
1847 s_tmpl++;
1848 t_tmpl += 8;
1849 copy_cnt -= 4;
1850 } while (copy_cnt);
1852 /* Mux in any pending read/write accesses */
1853 if (s->reg_request) {
1854 *(u64 *)(d->dma_buf + (swptr * 4)) |=
1855 cpu_to_be64(s->reg_request);
1856 s->reg_request = 0;
1857 wake_up(&s->dma_dac.reg_wait);
1860 CS_DBGOUT(CS_WAVE_WRITE, 4,
1861 printk(KERN_INFO
1862 "cs4297a: copy in %d to swptr %x\n", cnt, swptr));
1864 swptr = (swptr + (cnt/FRAME_SAMPLE_BYTES)) % d->ringsz;
1865 __raw_writeq(cnt/FRAME_SAMPLE_BYTES, SS_CSR(R_SER_DMA_DSCR_COUNT_TX));
1866 spin_lock_irqsave(&s->lock, flags);
1867 d->swptr = swptr;
1868 d->count += cnt;
1869 d->endcleared = 0;
1870 spin_unlock_irqrestore(&s->lock, flags);
1871 count -= cnt;
1872 buffer += cnt;
1873 ret += cnt;
1874 start_dac(s);
1876 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE, 2,
1877 printk(KERN_INFO "cs4297a: cs4297a_write()- %d\n", ret));
1878 return ret;
1882 static unsigned int cs4297a_poll(struct file *file,
1883 struct poll_table_struct *wait)
1885 struct cs4297a_state *s =
1886 (struct cs4297a_state *) file->private_data;
1887 unsigned long flags;
1888 unsigned int mask = 0;
1890 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1891 printk(KERN_INFO "cs4297a: cs4297a_poll()+\n"));
1892 VALIDATE_STATE(s);
1893 if (file->f_mode & FMODE_WRITE) {
1894 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1895 printk(KERN_INFO
1896 "cs4297a: cs4297a_poll() wait on FMODE_WRITE\n"));
1897 if(!s->dma_dac.ready && prog_dmabuf_dac(s))
1898 return 0;
1899 poll_wait(file, &s->dma_dac.wait, wait);
1901 if (file->f_mode & FMODE_READ) {
1902 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1903 printk(KERN_INFO
1904 "cs4297a: cs4297a_poll() wait on FMODE_READ\n"));
1905 if(!s->dma_dac.ready && prog_dmabuf_adc(s))
1906 return 0;
1907 poll_wait(file, &s->dma_adc.wait, wait);
1909 spin_lock_irqsave(&s->lock, flags);
1910 cs4297a_update_ptr(s,CS_FALSE);
1911 if (file->f_mode & FMODE_WRITE) {
1912 if (s->dma_dac.mapped) {
1913 if (s->dma_dac.count >=
1914 (signed) s->dma_dac.fragsize) {
1915 if (s->dma_dac.wakeup)
1916 mask |= POLLOUT | POLLWRNORM;
1917 else
1918 mask = 0;
1919 s->dma_dac.wakeup = 0;
1921 } else {
1922 if ((signed) (s->dma_dac.sbufsz/2) >= s->dma_dac.count)
1923 mask |= POLLOUT | POLLWRNORM;
1925 } else if (file->f_mode & FMODE_READ) {
1926 if (s->dma_adc.mapped) {
1927 if (s->dma_adc.count >= (signed) s->dma_adc.fragsize)
1928 mask |= POLLIN | POLLRDNORM;
1929 } else {
1930 if (s->dma_adc.count > 0)
1931 mask |= POLLIN | POLLRDNORM;
1934 spin_unlock_irqrestore(&s->lock, flags);
1935 CS_DBGOUT(CS_FUNCTION | CS_WAVE_WRITE | CS_WAVE_READ, 4,
1936 printk(KERN_INFO "cs4297a: cs4297a_poll()- 0x%.8x\n",
1937 mask));
1938 return mask;
1942 static int cs4297a_mmap(struct file *file, struct vm_area_struct *vma)
1944 /* XXXKW currently no mmap support */
1945 return -EINVAL;
1946 return 0;
1950 static int cs4297a_ioctl(struct inode *inode, struct file *file,
1951 unsigned int cmd, unsigned long arg)
1953 struct cs4297a_state *s =
1954 (struct cs4297a_state *) file->private_data;
1955 unsigned long flags;
1956 audio_buf_info abinfo;
1957 count_info cinfo;
1958 int val, mapped, ret;
1960 CS_DBGOUT(CS_FUNCTION|CS_IOCTL, 4, printk(KERN_INFO
1961 "cs4297a: cs4297a_ioctl(): file=0x%.8x cmd=0x%.8x\n",
1962 (unsigned) file, cmd));
1963 #if CSDEBUG
1964 cs_printioctl(cmd);
1965 #endif
1966 VALIDATE_STATE(s);
1967 mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) ||
1968 ((file->f_mode & FMODE_READ) && s->dma_adc.mapped);
1969 switch (cmd) {
1970 case OSS_GETVERSION:
1971 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
1972 "cs4297a: cs4297a_ioctl(): SOUND_VERSION=0x%.8x\n",
1973 SOUND_VERSION));
1974 return put_user(SOUND_VERSION, (int *) arg);
1976 case SNDCTL_DSP_SYNC:
1977 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
1978 "cs4297a: cs4297a_ioctl(): DSP_SYNC\n"));
1979 if (file->f_mode & FMODE_WRITE)
1980 return drain_dac(s,
1981 0 /*file->f_flags & O_NONBLOCK */
1983 return 0;
1985 case SNDCTL_DSP_SETDUPLEX:
1986 return 0;
1988 case SNDCTL_DSP_GETCAPS:
1989 return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME |
1990 DSP_CAP_TRIGGER | DSP_CAP_MMAP,
1991 (int *) arg);
1993 case SNDCTL_DSP_RESET:
1994 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
1995 "cs4297a: cs4297a_ioctl(): DSP_RESET\n"));
1996 if (file->f_mode & FMODE_WRITE) {
1997 stop_dac(s);
1998 synchronize_irq(s->irq);
1999 s->dma_dac.count = s->dma_dac.total_bytes =
2000 s->dma_dac.blocks = s->dma_dac.wakeup = 0;
2001 s->dma_dac.swptr = s->dma_dac.hwptr =
2002 (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_TX)) & M_DMA_CURDSCR_ADDR) -
2003 s->dma_dac.descrtab_phys) / sizeof(serdma_descr_t));
2005 if (file->f_mode & FMODE_READ) {
2006 stop_adc(s);
2007 synchronize_irq(s->irq);
2008 s->dma_adc.count = s->dma_adc.total_bytes =
2009 s->dma_adc.blocks = s->dma_dac.wakeup = 0;
2010 s->dma_adc.swptr = s->dma_adc.hwptr =
2011 (int)(((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
2012 s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t));
2014 return 0;
2016 case SNDCTL_DSP_SPEED:
2017 if (get_user(val, (int *) arg))
2018 return -EFAULT;
2019 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2020 "cs4297a: cs4297a_ioctl(): DSP_SPEED val=%d -> 48000\n", val));
2021 val = 48000;
2022 return put_user(val, (int *) arg);
2024 case SNDCTL_DSP_STEREO:
2025 if (get_user(val, (int *) arg))
2026 return -EFAULT;
2027 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2028 "cs4297a: cs4297a_ioctl(): DSP_STEREO val=%d\n", val));
2029 if (file->f_mode & FMODE_READ) {
2030 stop_adc(s);
2031 s->dma_adc.ready = 0;
2032 s->prop_adc.channels = val ? 2 : 1;
2034 if (file->f_mode & FMODE_WRITE) {
2035 stop_dac(s);
2036 s->dma_dac.ready = 0;
2037 s->prop_dac.channels = val ? 2 : 1;
2039 return 0;
2041 case SNDCTL_DSP_CHANNELS:
2042 if (get_user(val, (int *) arg))
2043 return -EFAULT;
2044 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2045 "cs4297a: cs4297a_ioctl(): DSP_CHANNELS val=%d\n",
2046 val));
2047 if (val != 0) {
2048 if (file->f_mode & FMODE_READ) {
2049 stop_adc(s);
2050 s->dma_adc.ready = 0;
2051 if (val >= 2)
2052 s->prop_adc.channels = 2;
2053 else
2054 s->prop_adc.channels = 1;
2056 if (file->f_mode & FMODE_WRITE) {
2057 stop_dac(s);
2058 s->dma_dac.ready = 0;
2059 if (val >= 2)
2060 s->prop_dac.channels = 2;
2061 else
2062 s->prop_dac.channels = 1;
2066 if (file->f_mode & FMODE_WRITE)
2067 val = s->prop_dac.channels;
2068 else if (file->f_mode & FMODE_READ)
2069 val = s->prop_adc.channels;
2071 return put_user(val, (int *) arg);
2073 case SNDCTL_DSP_GETFMTS: // Returns a mask
2074 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2075 "cs4297a: cs4297a_ioctl(): DSP_GETFMT val=0x%.8x\n",
2076 AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
2077 AFMT_U8));
2078 return put_user(AFMT_S16_LE | AFMT_U16_LE | AFMT_S8 |
2079 AFMT_U8, (int *) arg);
2081 case SNDCTL_DSP_SETFMT:
2082 if (get_user(val, (int *) arg))
2083 return -EFAULT;
2084 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2085 "cs4297a: cs4297a_ioctl(): DSP_SETFMT val=0x%.8x\n",
2086 val));
2087 if (val != AFMT_QUERY) {
2088 if (file->f_mode & FMODE_READ) {
2089 stop_adc(s);
2090 s->dma_adc.ready = 0;
2091 if (val != AFMT_S16_LE
2092 && val != AFMT_U16_LE && val != AFMT_S8
2093 && val != AFMT_U8)
2094 val = AFMT_U8;
2095 s->prop_adc.fmt = val;
2096 s->prop_adc.fmt_original = s->prop_adc.fmt;
2098 if (file->f_mode & FMODE_WRITE) {
2099 stop_dac(s);
2100 s->dma_dac.ready = 0;
2101 if (val != AFMT_S16_LE
2102 && val != AFMT_U16_LE && val != AFMT_S8
2103 && val != AFMT_U8)
2104 val = AFMT_U8;
2105 s->prop_dac.fmt = val;
2106 s->prop_dac.fmt_original = s->prop_dac.fmt;
2108 } else {
2109 if (file->f_mode & FMODE_WRITE)
2110 val = s->prop_dac.fmt_original;
2111 else if (file->f_mode & FMODE_READ)
2112 val = s->prop_adc.fmt_original;
2114 CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(KERN_INFO
2115 "cs4297a: cs4297a_ioctl(): DSP_SETFMT return val=0x%.8x\n",
2116 val));
2117 return put_user(val, (int *) arg);
2119 case SNDCTL_DSP_POST:
2120 CS_DBGOUT(CS_IOCTL, 4, printk(KERN_INFO
2121 "cs4297a: cs4297a_ioctl(): DSP_POST\n"));
2122 return 0;
2124 case SNDCTL_DSP_GETTRIGGER:
2125 val = 0;
2126 if (file->f_mode & s->ena & FMODE_READ)
2127 val |= PCM_ENABLE_INPUT;
2128 if (file->f_mode & s->ena & FMODE_WRITE)
2129 val |= PCM_ENABLE_OUTPUT;
2130 return put_user(val, (int *) arg);
2132 case SNDCTL_DSP_SETTRIGGER:
2133 if (get_user(val, (int *) arg))
2134 return -EFAULT;
2135 if (file->f_mode & FMODE_READ) {
2136 if (val & PCM_ENABLE_INPUT) {
2137 if (!s->dma_adc.ready
2138 && (ret = prog_dmabuf_adc(s)))
2139 return ret;
2140 start_adc(s);
2141 } else
2142 stop_adc(s);
2144 if (file->f_mode & FMODE_WRITE) {
2145 if (val & PCM_ENABLE_OUTPUT) {
2146 if (!s->dma_dac.ready
2147 && (ret = prog_dmabuf_dac(s)))
2148 return ret;
2149 start_dac(s);
2150 } else
2151 stop_dac(s);
2153 return 0;
2155 case SNDCTL_DSP_GETOSPACE:
2156 if (!(file->f_mode & FMODE_WRITE))
2157 return -EINVAL;
2158 if (!s->dma_dac.ready && (val = prog_dmabuf_dac(s)))
2159 return val;
2160 spin_lock_irqsave(&s->lock, flags);
2161 cs4297a_update_ptr(s,CS_FALSE);
2162 abinfo.fragsize = s->dma_dac.fragsize;
2163 if (s->dma_dac.mapped)
2164 abinfo.bytes = s->dma_dac.sbufsz;
2165 else
2166 abinfo.bytes =
2167 s->dma_dac.sbufsz - s->dma_dac.count;
2168 abinfo.fragstotal = s->dma_dac.numfrag;
2169 abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift;
2170 CS_DBGOUT(CS_FUNCTION | CS_PARMS, 4, printk(KERN_INFO
2171 "cs4297a: cs4297a_ioctl(): GETOSPACE .fragsize=%d .bytes=%d .fragstotal=%d .fragments=%d\n",
2172 abinfo.fragsize,abinfo.bytes,abinfo.fragstotal,
2173 abinfo.fragments));
2174 spin_unlock_irqrestore(&s->lock, flags);
2175 return copy_to_user((void *) arg, &abinfo,
2176 sizeof(abinfo)) ? -EFAULT : 0;
2178 case SNDCTL_DSP_GETISPACE:
2179 if (!(file->f_mode & FMODE_READ))
2180 return -EINVAL;
2181 if (!s->dma_adc.ready && (val = prog_dmabuf_adc(s)))
2182 return val;
2183 spin_lock_irqsave(&s->lock, flags);
2184 cs4297a_update_ptr(s,CS_FALSE);
2185 if (s->conversion) {
2186 abinfo.fragsize = s->dma_adc.fragsize / 2;
2187 abinfo.bytes = s->dma_adc.count / 2;
2188 abinfo.fragstotal = s->dma_adc.numfrag;
2189 abinfo.fragments =
2190 abinfo.bytes >> (s->dma_adc.fragshift - 1);
2191 } else {
2192 abinfo.fragsize = s->dma_adc.fragsize;
2193 abinfo.bytes = s->dma_adc.count;
2194 abinfo.fragstotal = s->dma_adc.numfrag;
2195 abinfo.fragments =
2196 abinfo.bytes >> s->dma_adc.fragshift;
2198 spin_unlock_irqrestore(&s->lock, flags);
2199 return copy_to_user((void *) arg, &abinfo,
2200 sizeof(abinfo)) ? -EFAULT : 0;
2202 case SNDCTL_DSP_NONBLOCK:
2203 spin_lock(&file->f_lock);
2204 file->f_flags |= O_NONBLOCK;
2205 spin_unlock(&file->f_lock);
2206 return 0;
2208 case SNDCTL_DSP_GETODELAY:
2209 if (!(file->f_mode & FMODE_WRITE))
2210 return -EINVAL;
2211 if(!s->dma_dac.ready && prog_dmabuf_dac(s))
2212 return 0;
2213 spin_lock_irqsave(&s->lock, flags);
2214 cs4297a_update_ptr(s,CS_FALSE);
2215 val = s->dma_dac.count;
2216 spin_unlock_irqrestore(&s->lock, flags);
2217 return put_user(val, (int *) arg);
2219 case SNDCTL_DSP_GETIPTR:
2220 if (!(file->f_mode & FMODE_READ))
2221 return -EINVAL;
2222 if(!s->dma_adc.ready && prog_dmabuf_adc(s))
2223 return 0;
2224 spin_lock_irqsave(&s->lock, flags);
2225 cs4297a_update_ptr(s,CS_FALSE);
2226 cinfo.bytes = s->dma_adc.total_bytes;
2227 if (s->dma_adc.mapped) {
2228 cinfo.blocks =
2229 (cinfo.bytes >> s->dma_adc.fragshift) -
2230 s->dma_adc.blocks;
2231 s->dma_adc.blocks =
2232 cinfo.bytes >> s->dma_adc.fragshift;
2233 } else {
2234 if (s->conversion) {
2235 cinfo.blocks =
2236 s->dma_adc.count /
2237 2 >> (s->dma_adc.fragshift - 1);
2238 } else
2239 cinfo.blocks =
2240 s->dma_adc.count >> s->dma_adc.
2241 fragshift;
2243 if (s->conversion)
2244 cinfo.ptr = s->dma_adc.hwptr / 2;
2245 else
2246 cinfo.ptr = s->dma_adc.hwptr;
2247 if (s->dma_adc.mapped)
2248 s->dma_adc.count &= s->dma_adc.fragsize - 1;
2249 spin_unlock_irqrestore(&s->lock, flags);
2250 return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
2252 case SNDCTL_DSP_GETOPTR:
2253 if (!(file->f_mode & FMODE_WRITE))
2254 return -EINVAL;
2255 if(!s->dma_dac.ready && prog_dmabuf_dac(s))
2256 return 0;
2257 spin_lock_irqsave(&s->lock, flags);
2258 cs4297a_update_ptr(s,CS_FALSE);
2259 cinfo.bytes = s->dma_dac.total_bytes;
2260 if (s->dma_dac.mapped) {
2261 cinfo.blocks =
2262 (cinfo.bytes >> s->dma_dac.fragshift) -
2263 s->dma_dac.blocks;
2264 s->dma_dac.blocks =
2265 cinfo.bytes >> s->dma_dac.fragshift;
2266 } else {
2267 cinfo.blocks =
2268 s->dma_dac.count >> s->dma_dac.fragshift;
2270 cinfo.ptr = s->dma_dac.hwptr;
2271 if (s->dma_dac.mapped)
2272 s->dma_dac.count &= s->dma_dac.fragsize - 1;
2273 spin_unlock_irqrestore(&s->lock, flags);
2274 return copy_to_user((void *) arg, &cinfo, sizeof(cinfo)) ? -EFAULT : 0;
2276 case SNDCTL_DSP_GETBLKSIZE:
2277 if (file->f_mode & FMODE_WRITE) {
2278 if ((val = prog_dmabuf_dac(s)))
2279 return val;
2280 return put_user(s->dma_dac.fragsize, (int *) arg);
2282 if ((val = prog_dmabuf_adc(s)))
2283 return val;
2284 if (s->conversion)
2285 return put_user(s->dma_adc.fragsize / 2,
2286 (int *) arg);
2287 else
2288 return put_user(s->dma_adc.fragsize, (int *) arg);
2290 case SNDCTL_DSP_SETFRAGMENT:
2291 if (get_user(val, (int *) arg))
2292 return -EFAULT;
2293 return 0; // Say OK, but do nothing.
2295 case SNDCTL_DSP_SUBDIVIDE:
2296 if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision)
2297 || (file->f_mode & FMODE_WRITE
2298 && s->dma_dac.subdivision)) return -EINVAL;
2299 if (get_user(val, (int *) arg))
2300 return -EFAULT;
2301 if (val != 1 && val != 2 && val != 4)
2302 return -EINVAL;
2303 if (file->f_mode & FMODE_READ)
2304 s->dma_adc.subdivision = val;
2305 else if (file->f_mode & FMODE_WRITE)
2306 s->dma_dac.subdivision = val;
2307 return 0;
2309 case SOUND_PCM_READ_RATE:
2310 if (file->f_mode & FMODE_READ)
2311 return put_user(s->prop_adc.rate, (int *) arg);
2312 else if (file->f_mode & FMODE_WRITE)
2313 return put_user(s->prop_dac.rate, (int *) arg);
2315 case SOUND_PCM_READ_CHANNELS:
2316 if (file->f_mode & FMODE_READ)
2317 return put_user(s->prop_adc.channels, (int *) arg);
2318 else if (file->f_mode & FMODE_WRITE)
2319 return put_user(s->prop_dac.channels, (int *) arg);
2321 case SOUND_PCM_READ_BITS:
2322 if (file->f_mode & FMODE_READ)
2323 return
2324 put_user(
2325 (s->prop_adc.
2326 fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
2327 (int *) arg);
2328 else if (file->f_mode & FMODE_WRITE)
2329 return
2330 put_user(
2331 (s->prop_dac.
2332 fmt & (AFMT_S8 | AFMT_U8)) ? 8 : 16,
2333 (int *) arg);
2335 case SOUND_PCM_WRITE_FILTER:
2336 case SNDCTL_DSP_SETSYNCRO:
2337 case SOUND_PCM_READ_FILTER:
2338 return -EINVAL;
2340 return mixer_ioctl(s, cmd, arg);
2344 static int cs4297a_release(struct inode *inode, struct file *file)
2346 struct cs4297a_state *s =
2347 (struct cs4297a_state *) file->private_data;
2349 CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk(KERN_INFO
2350 "cs4297a: cs4297a_release(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n",
2351 (unsigned) inode, (unsigned) file, file->f_mode));
2352 VALIDATE_STATE(s);
2354 if (file->f_mode & FMODE_WRITE) {
2355 drain_dac(s, file->f_flags & O_NONBLOCK);
2356 mutex_lock(&s->open_sem_dac);
2357 stop_dac(s);
2358 dealloc_dmabuf(s, &s->dma_dac);
2359 s->open_mode &= ~FMODE_WRITE;
2360 mutex_unlock(&s->open_sem_dac);
2361 wake_up(&s->open_wait_dac);
2363 if (file->f_mode & FMODE_READ) {
2364 drain_adc(s, file->f_flags & O_NONBLOCK);
2365 mutex_lock(&s->open_sem_adc);
2366 stop_adc(s);
2367 dealloc_dmabuf(s, &s->dma_adc);
2368 s->open_mode &= ~FMODE_READ;
2369 mutex_unlock(&s->open_sem_adc);
2370 wake_up(&s->open_wait_adc);
2372 return 0;
2375 static int cs4297a_open(struct inode *inode, struct file *file)
2377 int minor = iminor(inode);
2378 struct cs4297a_state *s=NULL;
2379 struct list_head *entry;
2381 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
2382 "cs4297a: cs4297a_open(): inode=0x%.8x file=0x%.8x f_mode=0x%x\n",
2383 (unsigned) inode, (unsigned) file, file->f_mode));
2384 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
2385 "cs4297a: status = %08x\n", (int)__raw_readq(SS_CSR(R_SER_STATUS_DEBUG))));
2387 list_for_each(entry, &cs4297a_devs)
2389 s = list_entry(entry, struct cs4297a_state, list);
2391 if (!((s->dev_audio ^ minor) & ~0xf))
2392 break;
2394 if (entry == &cs4297a_devs)
2395 return -ENODEV;
2396 if (!s) {
2397 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
2398 "cs4297a: cs4297a_open(): Error - unable to find audio state struct\n"));
2399 return -ENODEV;
2401 VALIDATE_STATE(s);
2402 file->private_data = s;
2404 // wait for device to become free
2405 if (!(file->f_mode & (FMODE_WRITE | FMODE_READ))) {
2406 CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2, printk(KERN_INFO
2407 "cs4297a: cs4297a_open(): Error - must open READ and/or WRITE\n"));
2408 return -ENODEV;
2410 if (file->f_mode & FMODE_WRITE) {
2411 if (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX)) != 0) {
2412 printk(KERN_ERR "cs4297a: TX pipe needs to drain\n");
2413 while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_TX)))
2417 mutex_lock(&s->open_sem_dac);
2418 while (s->open_mode & FMODE_WRITE) {
2419 if (file->f_flags & O_NONBLOCK) {
2420 mutex_unlock(&s->open_sem_dac);
2421 return -EBUSY;
2423 mutex_unlock(&s->open_sem_dac);
2424 interruptible_sleep_on(&s->open_wait_dac);
2426 if (signal_pending(current)) {
2427 printk("open - sig pending\n");
2428 return -ERESTARTSYS;
2430 mutex_lock(&s->open_sem_dac);
2433 if (file->f_mode & FMODE_READ) {
2434 mutex_lock(&s->open_sem_adc);
2435 while (s->open_mode & FMODE_READ) {
2436 if (file->f_flags & O_NONBLOCK) {
2437 mutex_unlock(&s->open_sem_adc);
2438 return -EBUSY;
2440 mutex_unlock(&s->open_sem_adc);
2441 interruptible_sleep_on(&s->open_wait_adc);
2443 if (signal_pending(current)) {
2444 printk("open - sig pending\n");
2445 return -ERESTARTSYS;
2447 mutex_lock(&s->open_sem_adc);
2450 s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2451 if (file->f_mode & FMODE_READ) {
2452 s->prop_adc.fmt = AFMT_S16_BE;
2453 s->prop_adc.fmt_original = s->prop_adc.fmt;
2454 s->prop_adc.channels = 2;
2455 s->prop_adc.rate = 48000;
2456 s->conversion = 0;
2457 s->ena &= ~FMODE_READ;
2458 s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags =
2459 s->dma_adc.subdivision = 0;
2460 mutex_unlock(&s->open_sem_adc);
2462 if (prog_dmabuf_adc(s)) {
2463 CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
2464 "cs4297a: adc Program dmabufs failed.\n"));
2465 cs4297a_release(inode, file);
2466 return -ENOMEM;
2469 if (file->f_mode & FMODE_WRITE) {
2470 s->prop_dac.fmt = AFMT_S16_BE;
2471 s->prop_dac.fmt_original = s->prop_dac.fmt;
2472 s->prop_dac.channels = 2;
2473 s->prop_dac.rate = 48000;
2474 s->conversion = 0;
2475 s->ena &= ~FMODE_WRITE;
2476 s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags =
2477 s->dma_dac.subdivision = 0;
2478 mutex_unlock(&s->open_sem_dac);
2480 if (prog_dmabuf_dac(s)) {
2481 CS_DBGOUT(CS_OPEN | CS_ERROR, 2, printk(KERN_ERR
2482 "cs4297a: dac Program dmabufs failed.\n"));
2483 cs4297a_release(inode, file);
2484 return -ENOMEM;
2487 CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2,
2488 printk(KERN_INFO "cs4297a: cs4297a_open()- 0\n"));
2489 return nonseekable_open(inode, file);
2493 // ******************************************************************************************
2494 // Wave (audio) file operations struct.
2495 // ******************************************************************************************
2496 static const struct file_operations cs4297a_audio_fops = {
2497 .owner = THIS_MODULE,
2498 .llseek = no_llseek,
2499 .read = cs4297a_read,
2500 .write = cs4297a_write,
2501 .poll = cs4297a_poll,
2502 .ioctl = cs4297a_ioctl,
2503 .mmap = cs4297a_mmap,
2504 .open = cs4297a_open,
2505 .release = cs4297a_release,
2508 static void cs4297a_interrupt(int irq, void *dev_id)
2510 struct cs4297a_state *s = (struct cs4297a_state *) dev_id;
2511 u32 status;
2513 status = __raw_readq(SS_CSR(R_SER_STATUS_DEBUG));
2515 CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
2516 "cs4297a: cs4297a_interrupt() HISR=0x%.8x\n", status));
2518 #if 0
2519 /* XXXKW what check *should* be done here? */
2520 if (!(status & (M_SYNCSER_RX_EOP_COUNT | M_SYNCSER_RX_OVERRUN | M_SYNCSER_RX_SYNC_ERR))) {
2521 status = __raw_readq(SS_CSR(R_SER_STATUS));
2522 printk(KERN_ERR "cs4297a: unexpected interrupt (status %08x)\n", status);
2523 return;
2525 #endif
2527 if (status & M_SYNCSER_RX_SYNC_ERR) {
2528 status = __raw_readq(SS_CSR(R_SER_STATUS));
2529 printk(KERN_ERR "cs4297a: rx sync error (status %08x)\n", status);
2530 return;
2533 if (status & M_SYNCSER_RX_OVERRUN) {
2534 int newptr, i;
2535 s->stats.rx_ovrrn++;
2536 printk(KERN_ERR "cs4297a: receive FIFO overrun\n");
2538 /* Fix things up: get the receive descriptor pool
2539 clean and give them back to the hardware */
2540 while (__raw_readq(SS_CSR(R_SER_DMA_DSCR_COUNT_RX)))
2542 newptr = (unsigned) (((__raw_readq(SS_CSR(R_SER_DMA_CUR_DSCR_ADDR_RX)) & M_DMA_CURDSCR_ADDR) -
2543 s->dma_adc.descrtab_phys) / sizeof(serdma_descr_t));
2544 for (i=0; i<DMA_DESCR; i++) {
2545 s->dma_adc.descrtab[i].descr_a &= ~M_DMA_SERRX_SOP;
2547 s->dma_adc.swptr = s->dma_adc.hwptr = newptr;
2548 s->dma_adc.count = 0;
2549 s->dma_adc.sb_swptr = s->dma_adc.sb_hwptr = s->dma_adc.sample_buf;
2550 __raw_writeq(DMA_DESCR, SS_CSR(R_SER_DMA_DSCR_COUNT_RX));
2553 spin_lock(&s->lock);
2554 cs4297a_update_ptr(s,CS_TRUE);
2555 spin_unlock(&s->lock);
2557 CS_DBGOUT(CS_INTERRUPT, 6, printk(KERN_INFO
2558 "cs4297a: cs4297a_interrupt()-\n"));
2561 #if 0
2562 static struct initvol {
2563 int mixch;
2564 int vol;
2565 } initvol[] __initdata = {
2567 {SOUND_MIXER_WRITE_VOLUME, 0x4040},
2568 {SOUND_MIXER_WRITE_PCM, 0x4040},
2569 {SOUND_MIXER_WRITE_SYNTH, 0x4040},
2570 {SOUND_MIXER_WRITE_CD, 0x4040},
2571 {SOUND_MIXER_WRITE_LINE, 0x4040},
2572 {SOUND_MIXER_WRITE_LINE1, 0x4040},
2573 {SOUND_MIXER_WRITE_RECLEV, 0x0000},
2574 {SOUND_MIXER_WRITE_SPEAKER, 0x4040},
2575 {SOUND_MIXER_WRITE_MIC, 0x0000}
2577 #endif
2579 static int __init cs4297a_init(void)
2581 struct cs4297a_state *s;
2582 u32 pwr, id;
2583 mm_segment_t fs;
2584 int rval;
2585 #ifndef CONFIG_BCM_CS4297A_CSWARM
2586 u64 cfg;
2587 int mdio_val;
2588 #endif
2590 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
2591 "cs4297a: cs4297a_init_module()+ \n"));
2593 #ifndef CONFIG_BCM_CS4297A_CSWARM
2594 mdio_val = __raw_readq(KSEG1 + A_MAC_REGISTER(2, R_MAC_MDIO)) &
2595 (M_MAC_MDIO_DIR|M_MAC_MDIO_OUT);
2597 /* Check syscfg for synchronous serial on port 1 */
2598 cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG);
2599 if (!(cfg & M_SYS_SER1_ENABLE)) {
2600 __raw_writeq(cfg | M_SYS_SER1_ENABLE, KSEG1+A_SCD_SYSTEM_CFG);
2601 cfg = __raw_readq(KSEG1 + A_SCD_SYSTEM_CFG);
2602 if (!(cfg & M_SYS_SER1_ENABLE)) {
2603 printk(KERN_INFO "cs4297a: serial port 1 not configured for synchronous operation\n");
2604 return -1;
2607 printk(KERN_INFO "cs4297a: serial port 1 switching to synchronous operation\n");
2609 /* Force the codec (on SWARM) to reset by clearing
2610 GENO, preserving MDIO (no effect on CSWARM) */
2611 __raw_writeq(mdio_val, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO));
2612 udelay(10);
2615 /* Now set GENO */
2616 __raw_writeq(mdio_val | M_MAC_GENC, KSEG1+A_MAC_REGISTER(2, R_MAC_MDIO));
2617 /* Give the codec some time to finish resetting (start the bit clock) */
2618 udelay(100);
2619 #endif
2621 if (!(s = kzalloc(sizeof(struct cs4297a_state), GFP_KERNEL))) {
2622 CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
2623 "cs4297a: probe() no memory for state struct.\n"));
2624 return -1;
2626 s->magic = CS4297a_MAGIC;
2627 init_waitqueue_head(&s->dma_adc.wait);
2628 init_waitqueue_head(&s->dma_dac.wait);
2629 init_waitqueue_head(&s->dma_adc.reg_wait);
2630 init_waitqueue_head(&s->dma_dac.reg_wait);
2631 init_waitqueue_head(&s->open_wait);
2632 init_waitqueue_head(&s->open_wait_adc);
2633 init_waitqueue_head(&s->open_wait_dac);
2634 mutex_init(&s->open_sem_adc);
2635 mutex_init(&s->open_sem_dac);
2636 spin_lock_init(&s->lock);
2638 s->irq = K_INT_SER_1;
2640 if (request_irq
2641 (s->irq, cs4297a_interrupt, 0, "Crystal CS4297a", s)) {
2642 CS_DBGOUT(CS_INIT | CS_ERROR, 1,
2643 printk(KERN_ERR "cs4297a: irq %u in use\n", s->irq));
2644 goto err_irq;
2646 if ((s->dev_audio = register_sound_dsp(&cs4297a_audio_fops, -1)) <
2647 0) {
2648 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
2649 "cs4297a: probe() register_sound_dsp() failed.\n"));
2650 goto err_dev1;
2652 if ((s->dev_mixer = register_sound_mixer(&cs4297a_mixer_fops, -1)) <
2653 0) {
2654 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
2655 "cs4297a: probe() register_sound_mixer() failed.\n"));
2656 goto err_dev2;
2659 if (ser_init(s) || dma_init(s)) {
2660 CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
2661 "cs4297a: ser_init failed.\n"));
2662 goto err_dev3;
2665 do {
2666 udelay(4000);
2667 rval = cs4297a_read_ac97(s, AC97_POWER_CONTROL, &pwr);
2668 } while (!rval && (pwr != 0xf));
2670 if (!rval) {
2671 char *sb1250_duart_present;
2673 fs = get_fs();
2674 set_fs(KERNEL_DS);
2675 #if 0
2676 val = SOUND_MASK_LINE;
2677 mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long) &val);
2678 for (i = 0; i < ARRAY_SIZE(initvol); i++) {
2679 val = initvol[i].vol;
2680 mixer_ioctl(s, initvol[i].mixch, (unsigned long) &val);
2682 // cs4297a_write_ac97(s, 0x18, 0x0808);
2683 #else
2684 // cs4297a_write_ac97(s, 0x5e, 0x180);
2685 cs4297a_write_ac97(s, 0x02, 0x0808);
2686 cs4297a_write_ac97(s, 0x18, 0x0808);
2687 #endif
2688 set_fs(fs);
2690 list_add(&s->list, &cs4297a_devs);
2692 cs4297a_read_ac97(s, AC97_VENDOR_ID1, &id);
2694 sb1250_duart_present = symbol_get(sb1250_duart_present);
2695 if (sb1250_duart_present)
2696 sb1250_duart_present[1] = 0;
2698 printk(KERN_INFO "cs4297a: initialized (vendor id = %x)\n", id);
2700 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
2701 printk(KERN_INFO "cs4297a: cs4297a_init_module()-\n"));
2703 return 0;
2706 err_dev3:
2707 unregister_sound_mixer(s->dev_mixer);
2708 err_dev2:
2709 unregister_sound_dsp(s->dev_audio);
2710 err_dev1:
2711 free_irq(s->irq, s);
2712 err_irq:
2713 kfree(s);
2715 printk(KERN_INFO "cs4297a: initialization failed\n");
2717 return -1;
2720 static void __exit cs4297a_cleanup(void)
2723 XXXKW
2724 disable_irq, free_irq
2725 drain DMA queue
2726 disable DMA
2727 disable TX/RX
2728 free memory
2730 CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
2731 printk(KERN_INFO "cs4297a: cleanup_cs4297a() finished\n"));
2734 // ---------------------------------------------------------------------
2736 MODULE_AUTHOR("Kip Walker, Broadcom Corp.");
2737 MODULE_DESCRIPTION("Cirrus Logic CS4297a Driver for Broadcom SWARM board");
2739 // ---------------------------------------------------------------------
2741 module_init(cs4297a_init);
2742 module_exit(cs4297a_cleanup);