Linux 2.6.28-rc8
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobe4bb1dd7b308fce6f47e736b70425f4bc3482c0a
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 #ifdef CONFIG_SMP
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 #endif
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 if (!overrun)
187 break;
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
216 ktime_t now;
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
242 #endif
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
254 struct cfs_rq;
256 static LIST_HEAD(task_groups);
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
277 #endif
279 struct rcu_head rcu;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
348 tg = p->user->tg;
349 #elif defined(CONFIG_CGROUP_SCHED)
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
352 #else
353 tg = &init_task_group;
354 #endif
355 return tg;
358 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
359 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
364 #endif
366 #ifdef CONFIG_RT_GROUP_SCHED
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
369 #endif
372 #else
374 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 static inline struct task_group *task_group(struct task_struct *p)
377 return NULL;
380 #endif /* CONFIG_GROUP_SCHED */
382 /* CFS-related fields in a runqueue */
383 struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
387 u64 exec_clock;
388 u64 min_vruntime;
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
393 struct list_head tasks;
394 struct list_head *balance_iterator;
397 * 'curr' points to currently running entity on this cfs_rq.
398 * It is set to NULL otherwise (i.e when none are currently running).
400 struct sched_entity *curr, *next, *last;
402 unsigned int nr_spread_over;
404 #ifdef CONFIG_FAIR_GROUP_SCHED
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
418 #ifdef CONFIG_SMP
420 * the part of load.weight contributed by tasks
422 unsigned long task_weight;
425 * h_load = weight * f(tg)
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
430 unsigned long h_load;
433 * this cpu's part of tg->shares
435 unsigned long shares;
438 * load.weight at the time we set shares
440 unsigned long rq_weight;
441 #endif
442 #endif
445 /* Real-Time classes' related field in a runqueue: */
446 struct rt_rq {
447 struct rt_prio_array active;
448 unsigned long rt_nr_running;
449 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
450 int highest_prio; /* highest queued rt task prio */
451 #endif
452 #ifdef CONFIG_SMP
453 unsigned long rt_nr_migratory;
454 int overloaded;
455 #endif
456 int rt_throttled;
457 u64 rt_time;
458 u64 rt_runtime;
459 /* Nests inside the rq lock: */
460 spinlock_t rt_runtime_lock;
462 #ifdef CONFIG_RT_GROUP_SCHED
463 unsigned long rt_nr_boosted;
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469 #endif
472 #ifdef CONFIG_SMP
475 * We add the notion of a root-domain which will be used to define per-domain
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
482 struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
491 cpumask_t rto_mask;
492 atomic_t rto_count;
493 #ifdef CONFIG_SMP
494 struct cpupri cpupri;
495 #endif
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
502 static struct root_domain def_root_domain;
504 #endif
507 * This is the main, per-CPU runqueue data structure.
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
513 struct rq {
514 /* runqueue lock: */
515 spinlock_t lock;
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
521 unsigned long nr_running;
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524 unsigned char idle_at_tick;
525 #ifdef CONFIG_NO_HZ
526 unsigned long last_tick_seen;
527 unsigned char in_nohz_recently;
528 #endif
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
531 unsigned long nr_load_updates;
532 u64 nr_switches;
534 struct cfs_rq cfs;
535 struct rt_rq rt;
537 #ifdef CONFIG_FAIR_GROUP_SCHED
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
540 #endif
541 #ifdef CONFIG_RT_GROUP_SCHED
542 struct list_head leaf_rt_rq_list;
543 #endif
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
551 unsigned long nr_uninterruptible;
553 struct task_struct *curr, *idle;
554 unsigned long next_balance;
555 struct mm_struct *prev_mm;
557 u64 clock;
559 atomic_t nr_iowait;
561 #ifdef CONFIG_SMP
562 struct root_domain *rd;
563 struct sched_domain *sd;
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
568 /* cpu of this runqueue: */
569 int cpu;
570 int online;
572 unsigned long avg_load_per_task;
574 struct task_struct *migration_thread;
575 struct list_head migration_queue;
576 #endif
578 #ifdef CONFIG_SCHED_HRTICK
579 #ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582 #endif
583 struct hrtimer hrtick_timer;
584 #endif
586 #ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
590 /* sys_sched_yield() stats */
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
596 /* schedule() stats */
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
601 /* try_to_wake_up() stats */
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
605 /* BKL stats */
606 unsigned int bkl_count;
607 #endif
610 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
612 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
617 static inline int cpu_of(struct rq *rq)
619 #ifdef CONFIG_SMP
620 return rq->cpu;
621 #else
622 return 0;
623 #endif
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628 * See detach_destroy_domains: synchronize_sched for details.
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
633 #define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
636 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637 #define this_rq() (&__get_cpu_var(runqueues))
638 #define task_rq(p) cpu_rq(task_cpu(p))
639 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
641 static inline void update_rq_clock(struct rq *rq)
643 rq->clock = sched_clock_cpu(cpu_of(rq));
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
649 #ifdef CONFIG_SCHED_DEBUG
650 # define const_debug __read_mostly
651 #else
652 # define const_debug static const
653 #endif
656 * runqueue_is_locked
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
662 int runqueue_is_locked(void)
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_open(struct inode *inode, struct file *filp)
708 filp->private_data = inode->i_private;
709 return 0;
712 static ssize_t
713 sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
742 kfree(buf);
744 return r;
747 static ssize_t
748 sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
756 if (cnt > 63)
757 cnt = 63;
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
762 buf[cnt] = 0;
764 if (strncmp(buf, "NO_", 3) == 0) {
765 neg = 1;
766 cmp += 3;
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
781 if (!sched_feat_names[i])
782 return -EINVAL;
784 filp->f_pos += cnt;
786 return cnt;
789 static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
825 unsigned int sysctl_sched_shares_thresh = 4;
828 * period over which we measure -rt task cpu usage in us.
829 * default: 1s
831 unsigned int sysctl_sched_rt_period = 1000000;
833 static __read_mostly int scheduler_running;
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
839 int sysctl_sched_rt_runtime = 950000;
841 static inline u64 global_rt_period(void)
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
846 static inline u64 global_rt_runtime(void)
848 if (sysctl_sched_rt_runtime < 0)
849 return RUNTIME_INF;
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
854 #ifndef prepare_arch_switch
855 # define prepare_arch_switch(next) do { } while (0)
856 #endif
857 #ifndef finish_arch_switch
858 # define finish_arch_switch(prev) do { } while (0)
859 #endif
861 static inline int task_current(struct rq *rq, struct task_struct *p)
863 return rq->curr == p;
866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
867 static inline int task_running(struct rq *rq, struct task_struct *p)
869 return task_current(rq, p);
872 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
878 #ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881 #endif
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889 spin_unlock_irq(&rq->lock);
892 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
893 static inline int task_running(struct rq *rq, struct task_struct *p)
895 #ifdef CONFIG_SMP
896 return p->oncpu;
897 #else
898 return task_current(rq, p);
899 #endif
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
904 #ifdef CONFIG_SMP
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
910 next->oncpu = 1;
911 #endif
912 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914 #else
915 spin_unlock(&rq->lock);
916 #endif
919 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
921 #ifdef CONFIG_SMP
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
927 smp_wmb();
928 prev->oncpu = 0;
929 #endif
930 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
932 #endif
934 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
940 static inline struct rq *__task_rq_lock(struct task_struct *p)
941 __acquires(rq->lock)
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 spin_unlock_irqrestore(&rq->lock, *flags);
972 void task_rq_unlock_wait(struct task_struct *p)
974 struct rq *rq = task_rq(p);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
980 static void __task_rq_unlock(struct rq *rq)
981 __releases(rq->lock)
983 spin_unlock(&rq->lock);
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
987 __releases(rq->lock)
989 spin_unlock_irqrestore(&rq->lock, *flags);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq *this_rq_lock(void)
996 __acquires(rq->lock)
998 struct rq *rq;
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1004 return rq;
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq *rq)
1026 if (!sched_feat(HRTICK))
1027 return 0;
1028 if (!cpu_active(cpu_of(rq)))
1029 return 0;
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1033 static void hrtick_clear(struct rq *rq)
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049 spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1054 return HRTIMER_NORESTART;
1057 #ifdef CONFIG_SMP
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg)
1063 struct rq *rq = arg;
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq *rq, u64 delay)
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1081 hrtimer_set_expires(timer, time);
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1091 static int
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1094 int cpu = (int)(long)hcpu;
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1104 return NOTIFY_OK;
1107 return NOTIFY_DONE;
1110 static __init void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick, 0);
1114 #else
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq *rq, u64 delay)
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1125 static inline void init_hrtick(void)
1128 #endif /* CONFIG_SMP */
1130 static void init_rq_hrtick(struct rq *rq)
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1149 static inline void init_rq_hrtick(struct rq *rq)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1165 #ifdef CONFIG_SMP
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169 #endif
1171 static void resched_task(struct task_struct *p)
1173 int cpu;
1175 assert_spin_locked(&task_rq(p)->lock);
1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1178 return;
1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1192 static void resched_cpu(int cpu)
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1203 #ifdef CONFIG_NO_HZ
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu)
1216 struct rq *rq = cpu_rq(cpu);
1218 if (cpu == smp_processor_id())
1219 return;
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq->curr != rq->idle)
1229 return;
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1243 #endif /* CONFIG_NO_HZ */
1245 #else /* !CONFIG_SMP */
1246 static void resched_task(struct task_struct *p)
1248 assert_spin_locked(&task_rq(p)->lock);
1249 set_tsk_need_resched(p);
1251 #endif /* CONFIG_SMP */
1253 #if BITS_PER_LONG == 32
1254 # define WMULT_CONST (~0UL)
1255 #else
1256 # define WMULT_CONST (1UL << 32)
1257 #endif
1259 #define WMULT_SHIFT 32
1262 * Shift right and round:
1264 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1267 * delta *= weight / lw
1269 static unsigned long
1270 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1273 u64 tmp;
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1277 lw->inv_weight = 1;
1278 else
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1280 / (lw->weight+1);
1283 tmp = (u64)delta_exec * weight;
1285 * Check whether we'd overflow the 64-bit multiplication:
1287 if (unlikely(tmp > WMULT_CONST))
1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1289 WMULT_SHIFT/2);
1290 else
1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1296 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1298 lw->weight += inc;
1299 lw->inv_weight = 0;
1302 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1304 lw->weight -= dec;
1305 lw->inv_weight = 0;
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 * scaled version of the new time slice allocation that they receive on time
1314 * slice expiry etc.
1317 #define WEIGHT_IDLEPRIO 2
1318 #define WMULT_IDLEPRIO (1 << 31)
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
1332 static const int prio_to_weight[40] = {
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1350 static const u32 prio_to_wmult[40] = {
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1361 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1368 struct rq_iterator {
1369 void *arg;
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1374 #ifdef CONFIG_SMP
1375 static unsigned long
1376 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1381 static int
1382 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
1385 #endif
1387 #ifdef CONFIG_CGROUP_CPUACCT
1388 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1389 #else
1390 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1391 #endif
1393 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1395 update_load_add(&rq->load, load);
1398 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1400 update_load_sub(&rq->load, load);
1403 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1404 typedef int (*tg_visitor)(struct task_group *, void *);
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1410 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1412 struct task_group *parent, *child;
1413 int ret;
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417 down:
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1426 continue;
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
1436 out_unlock:
1437 rcu_read_unlock();
1439 return ret;
1442 static int tg_nop(struct task_group *tg, void *data)
1444 return 0;
1446 #endif
1448 #ifdef CONFIG_SMP
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1453 static unsigned long cpu_avg_load_per_task(int cpu)
1455 struct rq *rq = cpu_rq(cpu);
1456 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1458 if (nr_running)
1459 rq->avg_load_per_task = rq->load.weight / nr_running;
1460 else
1461 rq->avg_load_per_task = 0;
1463 return rq->avg_load_per_task;
1466 #ifdef CONFIG_FAIR_GROUP_SCHED
1468 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1471 * Calculate and set the cpu's group shares.
1473 static void
1474 update_group_shares_cpu(struct task_group *tg, int cpu,
1475 unsigned long sd_shares, unsigned long sd_rq_weight)
1477 int boost = 0;
1478 unsigned long shares;
1479 unsigned long rq_weight;
1481 if (!tg->se[cpu])
1482 return;
1484 rq_weight = tg->cfs_rq[cpu]->load.weight;
1487 * If there are currently no tasks on the cpu pretend there is one of
1488 * average load so that when a new task gets to run here it will not
1489 * get delayed by group starvation.
1491 if (!rq_weight) {
1492 boost = 1;
1493 rq_weight = NICE_0_LOAD;
1496 if (unlikely(rq_weight > sd_rq_weight))
1497 rq_weight = sd_rq_weight;
1500 * \Sum shares * rq_weight
1501 * shares = -----------------------
1502 * \Sum rq_weight
1505 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1506 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1508 if (abs(shares - tg->se[cpu]->load.weight) >
1509 sysctl_sched_shares_thresh) {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long flags;
1513 spin_lock_irqsave(&rq->lock, flags);
1515 * record the actual number of shares, not the boosted amount.
1517 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1518 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1520 __set_se_shares(tg->se[cpu], shares);
1521 spin_unlock_irqrestore(&rq->lock, flags);
1526 * Re-compute the task group their per cpu shares over the given domain.
1527 * This needs to be done in a bottom-up fashion because the rq weight of a
1528 * parent group depends on the shares of its child groups.
1530 static int tg_shares_up(struct task_group *tg, void *data)
1532 unsigned long rq_weight = 0;
1533 unsigned long shares = 0;
1534 struct sched_domain *sd = data;
1535 int i;
1537 for_each_cpu_mask(i, sd->span) {
1538 rq_weight += tg->cfs_rq[i]->load.weight;
1539 shares += tg->cfs_rq[i]->shares;
1542 if ((!shares && rq_weight) || shares > tg->shares)
1543 shares = tg->shares;
1545 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1546 shares = tg->shares;
1548 if (!rq_weight)
1549 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1551 for_each_cpu_mask(i, sd->span)
1552 update_group_shares_cpu(tg, i, shares, rq_weight);
1554 return 0;
1558 * Compute the cpu's hierarchical load factor for each task group.
1559 * This needs to be done in a top-down fashion because the load of a child
1560 * group is a fraction of its parents load.
1562 static int tg_load_down(struct task_group *tg, void *data)
1564 unsigned long load;
1565 long cpu = (long)data;
1567 if (!tg->parent) {
1568 load = cpu_rq(cpu)->load.weight;
1569 } else {
1570 load = tg->parent->cfs_rq[cpu]->h_load;
1571 load *= tg->cfs_rq[cpu]->shares;
1572 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1575 tg->cfs_rq[cpu]->h_load = load;
1577 return 0;
1580 static void update_shares(struct sched_domain *sd)
1582 u64 now = cpu_clock(raw_smp_processor_id());
1583 s64 elapsed = now - sd->last_update;
1585 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1586 sd->last_update = now;
1587 walk_tg_tree(tg_nop, tg_shares_up, sd);
1591 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1593 spin_unlock(&rq->lock);
1594 update_shares(sd);
1595 spin_lock(&rq->lock);
1598 static void update_h_load(long cpu)
1600 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1603 #else
1605 static inline void update_shares(struct sched_domain *sd)
1609 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1613 #endif
1615 #endif
1617 #ifdef CONFIG_FAIR_GROUP_SCHED
1618 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1620 #ifdef CONFIG_SMP
1621 cfs_rq->shares = shares;
1622 #endif
1624 #endif
1626 #include "sched_stats.h"
1627 #include "sched_idletask.c"
1628 #include "sched_fair.c"
1629 #include "sched_rt.c"
1630 #ifdef CONFIG_SCHED_DEBUG
1631 # include "sched_debug.c"
1632 #endif
1634 #define sched_class_highest (&rt_sched_class)
1635 #define for_each_class(class) \
1636 for (class = sched_class_highest; class; class = class->next)
1638 static void inc_nr_running(struct rq *rq)
1640 rq->nr_running++;
1643 static void dec_nr_running(struct rq *rq)
1645 rq->nr_running--;
1648 static void set_load_weight(struct task_struct *p)
1650 if (task_has_rt_policy(p)) {
1651 p->se.load.weight = prio_to_weight[0] * 2;
1652 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1653 return;
1657 * SCHED_IDLE tasks get minimal weight:
1659 if (p->policy == SCHED_IDLE) {
1660 p->se.load.weight = WEIGHT_IDLEPRIO;
1661 p->se.load.inv_weight = WMULT_IDLEPRIO;
1662 return;
1665 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1666 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1669 static void update_avg(u64 *avg, u64 sample)
1671 s64 diff = sample - *avg;
1672 *avg += diff >> 3;
1675 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1677 sched_info_queued(p);
1678 p->sched_class->enqueue_task(rq, p, wakeup);
1679 p->se.on_rq = 1;
1682 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1684 if (sleep && p->se.last_wakeup) {
1685 update_avg(&p->se.avg_overlap,
1686 p->se.sum_exec_runtime - p->se.last_wakeup);
1687 p->se.last_wakeup = 0;
1690 sched_info_dequeued(p);
1691 p->sched_class->dequeue_task(rq, p, sleep);
1692 p->se.on_rq = 0;
1696 * __normal_prio - return the priority that is based on the static prio
1698 static inline int __normal_prio(struct task_struct *p)
1700 return p->static_prio;
1704 * Calculate the expected normal priority: i.e. priority
1705 * without taking RT-inheritance into account. Might be
1706 * boosted by interactivity modifiers. Changes upon fork,
1707 * setprio syscalls, and whenever the interactivity
1708 * estimator recalculates.
1710 static inline int normal_prio(struct task_struct *p)
1712 int prio;
1714 if (task_has_rt_policy(p))
1715 prio = MAX_RT_PRIO-1 - p->rt_priority;
1716 else
1717 prio = __normal_prio(p);
1718 return prio;
1722 * Calculate the current priority, i.e. the priority
1723 * taken into account by the scheduler. This value might
1724 * be boosted by RT tasks, or might be boosted by
1725 * interactivity modifiers. Will be RT if the task got
1726 * RT-boosted. If not then it returns p->normal_prio.
1728 static int effective_prio(struct task_struct *p)
1730 p->normal_prio = normal_prio(p);
1732 * If we are RT tasks or we were boosted to RT priority,
1733 * keep the priority unchanged. Otherwise, update priority
1734 * to the normal priority:
1736 if (!rt_prio(p->prio))
1737 return p->normal_prio;
1738 return p->prio;
1742 * activate_task - move a task to the runqueue.
1744 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1746 if (task_contributes_to_load(p))
1747 rq->nr_uninterruptible--;
1749 enqueue_task(rq, p, wakeup);
1750 inc_nr_running(rq);
1754 * deactivate_task - remove a task from the runqueue.
1756 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1758 if (task_contributes_to_load(p))
1759 rq->nr_uninterruptible++;
1761 dequeue_task(rq, p, sleep);
1762 dec_nr_running(rq);
1766 * task_curr - is this task currently executing on a CPU?
1767 * @p: the task in question.
1769 inline int task_curr(const struct task_struct *p)
1771 return cpu_curr(task_cpu(p)) == p;
1774 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1776 set_task_rq(p, cpu);
1777 #ifdef CONFIG_SMP
1779 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1780 * successfuly executed on another CPU. We must ensure that updates of
1781 * per-task data have been completed by this moment.
1783 smp_wmb();
1784 task_thread_info(p)->cpu = cpu;
1785 #endif
1788 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1789 const struct sched_class *prev_class,
1790 int oldprio, int running)
1792 if (prev_class != p->sched_class) {
1793 if (prev_class->switched_from)
1794 prev_class->switched_from(rq, p, running);
1795 p->sched_class->switched_to(rq, p, running);
1796 } else
1797 p->sched_class->prio_changed(rq, p, oldprio, running);
1800 #ifdef CONFIG_SMP
1802 /* Used instead of source_load when we know the type == 0 */
1803 static unsigned long weighted_cpuload(const int cpu)
1805 return cpu_rq(cpu)->load.weight;
1809 * Is this task likely cache-hot:
1811 static int
1812 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1814 s64 delta;
1817 * Buddy candidates are cache hot:
1819 if (sched_feat(CACHE_HOT_BUDDY) &&
1820 (&p->se == cfs_rq_of(&p->se)->next ||
1821 &p->se == cfs_rq_of(&p->se)->last))
1822 return 1;
1824 if (p->sched_class != &fair_sched_class)
1825 return 0;
1827 if (sysctl_sched_migration_cost == -1)
1828 return 1;
1829 if (sysctl_sched_migration_cost == 0)
1830 return 0;
1832 delta = now - p->se.exec_start;
1834 return delta < (s64)sysctl_sched_migration_cost;
1838 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1840 int old_cpu = task_cpu(p);
1841 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1842 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1843 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1844 u64 clock_offset;
1846 clock_offset = old_rq->clock - new_rq->clock;
1848 #ifdef CONFIG_SCHEDSTATS
1849 if (p->se.wait_start)
1850 p->se.wait_start -= clock_offset;
1851 if (p->se.sleep_start)
1852 p->se.sleep_start -= clock_offset;
1853 if (p->se.block_start)
1854 p->se.block_start -= clock_offset;
1855 if (old_cpu != new_cpu) {
1856 schedstat_inc(p, se.nr_migrations);
1857 if (task_hot(p, old_rq->clock, NULL))
1858 schedstat_inc(p, se.nr_forced2_migrations);
1860 #endif
1861 p->se.vruntime -= old_cfsrq->min_vruntime -
1862 new_cfsrq->min_vruntime;
1864 __set_task_cpu(p, new_cpu);
1867 struct migration_req {
1868 struct list_head list;
1870 struct task_struct *task;
1871 int dest_cpu;
1873 struct completion done;
1877 * The task's runqueue lock must be held.
1878 * Returns true if you have to wait for migration thread.
1880 static int
1881 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1883 struct rq *rq = task_rq(p);
1886 * If the task is not on a runqueue (and not running), then
1887 * it is sufficient to simply update the task's cpu field.
1889 if (!p->se.on_rq && !task_running(rq, p)) {
1890 set_task_cpu(p, dest_cpu);
1891 return 0;
1894 init_completion(&req->done);
1895 req->task = p;
1896 req->dest_cpu = dest_cpu;
1897 list_add(&req->list, &rq->migration_queue);
1899 return 1;
1903 * wait_task_inactive - wait for a thread to unschedule.
1905 * If @match_state is nonzero, it's the @p->state value just checked and
1906 * not expected to change. If it changes, i.e. @p might have woken up,
1907 * then return zero. When we succeed in waiting for @p to be off its CPU,
1908 * we return a positive number (its total switch count). If a second call
1909 * a short while later returns the same number, the caller can be sure that
1910 * @p has remained unscheduled the whole time.
1912 * The caller must ensure that the task *will* unschedule sometime soon,
1913 * else this function might spin for a *long* time. This function can't
1914 * be called with interrupts off, or it may introduce deadlock with
1915 * smp_call_function() if an IPI is sent by the same process we are
1916 * waiting to become inactive.
1918 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1920 unsigned long flags;
1921 int running, on_rq;
1922 unsigned long ncsw;
1923 struct rq *rq;
1925 for (;;) {
1927 * We do the initial early heuristics without holding
1928 * any task-queue locks at all. We'll only try to get
1929 * the runqueue lock when things look like they will
1930 * work out!
1932 rq = task_rq(p);
1935 * If the task is actively running on another CPU
1936 * still, just relax and busy-wait without holding
1937 * any locks.
1939 * NOTE! Since we don't hold any locks, it's not
1940 * even sure that "rq" stays as the right runqueue!
1941 * But we don't care, since "task_running()" will
1942 * return false if the runqueue has changed and p
1943 * is actually now running somewhere else!
1945 while (task_running(rq, p)) {
1946 if (match_state && unlikely(p->state != match_state))
1947 return 0;
1948 cpu_relax();
1952 * Ok, time to look more closely! We need the rq
1953 * lock now, to be *sure*. If we're wrong, we'll
1954 * just go back and repeat.
1956 rq = task_rq_lock(p, &flags);
1957 trace_sched_wait_task(rq, p);
1958 running = task_running(rq, p);
1959 on_rq = p->se.on_rq;
1960 ncsw = 0;
1961 if (!match_state || p->state == match_state)
1962 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1963 task_rq_unlock(rq, &flags);
1966 * If it changed from the expected state, bail out now.
1968 if (unlikely(!ncsw))
1969 break;
1972 * Was it really running after all now that we
1973 * checked with the proper locks actually held?
1975 * Oops. Go back and try again..
1977 if (unlikely(running)) {
1978 cpu_relax();
1979 continue;
1983 * It's not enough that it's not actively running,
1984 * it must be off the runqueue _entirely_, and not
1985 * preempted!
1987 * So if it wa still runnable (but just not actively
1988 * running right now), it's preempted, and we should
1989 * yield - it could be a while.
1991 if (unlikely(on_rq)) {
1992 schedule_timeout_uninterruptible(1);
1993 continue;
1997 * Ahh, all good. It wasn't running, and it wasn't
1998 * runnable, which means that it will never become
1999 * running in the future either. We're all done!
2001 break;
2004 return ncsw;
2007 /***
2008 * kick_process - kick a running thread to enter/exit the kernel
2009 * @p: the to-be-kicked thread
2011 * Cause a process which is running on another CPU to enter
2012 * kernel-mode, without any delay. (to get signals handled.)
2014 * NOTE: this function doesnt have to take the runqueue lock,
2015 * because all it wants to ensure is that the remote task enters
2016 * the kernel. If the IPI races and the task has been migrated
2017 * to another CPU then no harm is done and the purpose has been
2018 * achieved as well.
2020 void kick_process(struct task_struct *p)
2022 int cpu;
2024 preempt_disable();
2025 cpu = task_cpu(p);
2026 if ((cpu != smp_processor_id()) && task_curr(p))
2027 smp_send_reschedule(cpu);
2028 preempt_enable();
2032 * Return a low guess at the load of a migration-source cpu weighted
2033 * according to the scheduling class and "nice" value.
2035 * We want to under-estimate the load of migration sources, to
2036 * balance conservatively.
2038 static unsigned long source_load(int cpu, int type)
2040 struct rq *rq = cpu_rq(cpu);
2041 unsigned long total = weighted_cpuload(cpu);
2043 if (type == 0 || !sched_feat(LB_BIAS))
2044 return total;
2046 return min(rq->cpu_load[type-1], total);
2050 * Return a high guess at the load of a migration-target cpu weighted
2051 * according to the scheduling class and "nice" value.
2053 static unsigned long target_load(int cpu, int type)
2055 struct rq *rq = cpu_rq(cpu);
2056 unsigned long total = weighted_cpuload(cpu);
2058 if (type == 0 || !sched_feat(LB_BIAS))
2059 return total;
2061 return max(rq->cpu_load[type-1], total);
2065 * find_idlest_group finds and returns the least busy CPU group within the
2066 * domain.
2068 static struct sched_group *
2069 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2071 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2072 unsigned long min_load = ULONG_MAX, this_load = 0;
2073 int load_idx = sd->forkexec_idx;
2074 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2076 do {
2077 unsigned long load, avg_load;
2078 int local_group;
2079 int i;
2081 /* Skip over this group if it has no CPUs allowed */
2082 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2083 continue;
2085 local_group = cpu_isset(this_cpu, group->cpumask);
2087 /* Tally up the load of all CPUs in the group */
2088 avg_load = 0;
2090 for_each_cpu_mask_nr(i, group->cpumask) {
2091 /* Bias balancing toward cpus of our domain */
2092 if (local_group)
2093 load = source_load(i, load_idx);
2094 else
2095 load = target_load(i, load_idx);
2097 avg_load += load;
2100 /* Adjust by relative CPU power of the group */
2101 avg_load = sg_div_cpu_power(group,
2102 avg_load * SCHED_LOAD_SCALE);
2104 if (local_group) {
2105 this_load = avg_load;
2106 this = group;
2107 } else if (avg_load < min_load) {
2108 min_load = avg_load;
2109 idlest = group;
2111 } while (group = group->next, group != sd->groups);
2113 if (!idlest || 100*this_load < imbalance*min_load)
2114 return NULL;
2115 return idlest;
2119 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2121 static int
2122 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2123 cpumask_t *tmp)
2125 unsigned long load, min_load = ULONG_MAX;
2126 int idlest = -1;
2127 int i;
2129 /* Traverse only the allowed CPUs */
2130 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2132 for_each_cpu_mask_nr(i, *tmp) {
2133 load = weighted_cpuload(i);
2135 if (load < min_load || (load == min_load && i == this_cpu)) {
2136 min_load = load;
2137 idlest = i;
2141 return idlest;
2145 * sched_balance_self: balance the current task (running on cpu) in domains
2146 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2147 * SD_BALANCE_EXEC.
2149 * Balance, ie. select the least loaded group.
2151 * Returns the target CPU number, or the same CPU if no balancing is needed.
2153 * preempt must be disabled.
2155 static int sched_balance_self(int cpu, int flag)
2157 struct task_struct *t = current;
2158 struct sched_domain *tmp, *sd = NULL;
2160 for_each_domain(cpu, tmp) {
2162 * If power savings logic is enabled for a domain, stop there.
2164 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2165 break;
2166 if (tmp->flags & flag)
2167 sd = tmp;
2170 if (sd)
2171 update_shares(sd);
2173 while (sd) {
2174 cpumask_t span, tmpmask;
2175 struct sched_group *group;
2176 int new_cpu, weight;
2178 if (!(sd->flags & flag)) {
2179 sd = sd->child;
2180 continue;
2183 span = sd->span;
2184 group = find_idlest_group(sd, t, cpu);
2185 if (!group) {
2186 sd = sd->child;
2187 continue;
2190 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2191 if (new_cpu == -1 || new_cpu == cpu) {
2192 /* Now try balancing at a lower domain level of cpu */
2193 sd = sd->child;
2194 continue;
2197 /* Now try balancing at a lower domain level of new_cpu */
2198 cpu = new_cpu;
2199 sd = NULL;
2200 weight = cpus_weight(span);
2201 for_each_domain(cpu, tmp) {
2202 if (weight <= cpus_weight(tmp->span))
2203 break;
2204 if (tmp->flags & flag)
2205 sd = tmp;
2207 /* while loop will break here if sd == NULL */
2210 return cpu;
2213 #endif /* CONFIG_SMP */
2215 /***
2216 * try_to_wake_up - wake up a thread
2217 * @p: the to-be-woken-up thread
2218 * @state: the mask of task states that can be woken
2219 * @sync: do a synchronous wakeup?
2221 * Put it on the run-queue if it's not already there. The "current"
2222 * thread is always on the run-queue (except when the actual
2223 * re-schedule is in progress), and as such you're allowed to do
2224 * the simpler "current->state = TASK_RUNNING" to mark yourself
2225 * runnable without the overhead of this.
2227 * returns failure only if the task is already active.
2229 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2231 int cpu, orig_cpu, this_cpu, success = 0;
2232 unsigned long flags;
2233 long old_state;
2234 struct rq *rq;
2236 if (!sched_feat(SYNC_WAKEUPS))
2237 sync = 0;
2239 #ifdef CONFIG_SMP
2240 if (sched_feat(LB_WAKEUP_UPDATE)) {
2241 struct sched_domain *sd;
2243 this_cpu = raw_smp_processor_id();
2244 cpu = task_cpu(p);
2246 for_each_domain(this_cpu, sd) {
2247 if (cpu_isset(cpu, sd->span)) {
2248 update_shares(sd);
2249 break;
2253 #endif
2255 smp_wmb();
2256 rq = task_rq_lock(p, &flags);
2257 old_state = p->state;
2258 if (!(old_state & state))
2259 goto out;
2261 if (p->se.on_rq)
2262 goto out_running;
2264 cpu = task_cpu(p);
2265 orig_cpu = cpu;
2266 this_cpu = smp_processor_id();
2268 #ifdef CONFIG_SMP
2269 if (unlikely(task_running(rq, p)))
2270 goto out_activate;
2272 cpu = p->sched_class->select_task_rq(p, sync);
2273 if (cpu != orig_cpu) {
2274 set_task_cpu(p, cpu);
2275 task_rq_unlock(rq, &flags);
2276 /* might preempt at this point */
2277 rq = task_rq_lock(p, &flags);
2278 old_state = p->state;
2279 if (!(old_state & state))
2280 goto out;
2281 if (p->se.on_rq)
2282 goto out_running;
2284 this_cpu = smp_processor_id();
2285 cpu = task_cpu(p);
2288 #ifdef CONFIG_SCHEDSTATS
2289 schedstat_inc(rq, ttwu_count);
2290 if (cpu == this_cpu)
2291 schedstat_inc(rq, ttwu_local);
2292 else {
2293 struct sched_domain *sd;
2294 for_each_domain(this_cpu, sd) {
2295 if (cpu_isset(cpu, sd->span)) {
2296 schedstat_inc(sd, ttwu_wake_remote);
2297 break;
2301 #endif /* CONFIG_SCHEDSTATS */
2303 out_activate:
2304 #endif /* CONFIG_SMP */
2305 schedstat_inc(p, se.nr_wakeups);
2306 if (sync)
2307 schedstat_inc(p, se.nr_wakeups_sync);
2308 if (orig_cpu != cpu)
2309 schedstat_inc(p, se.nr_wakeups_migrate);
2310 if (cpu == this_cpu)
2311 schedstat_inc(p, se.nr_wakeups_local);
2312 else
2313 schedstat_inc(p, se.nr_wakeups_remote);
2314 update_rq_clock(rq);
2315 activate_task(rq, p, 1);
2316 success = 1;
2318 out_running:
2319 trace_sched_wakeup(rq, p);
2320 check_preempt_curr(rq, p, sync);
2322 p->state = TASK_RUNNING;
2323 #ifdef CONFIG_SMP
2324 if (p->sched_class->task_wake_up)
2325 p->sched_class->task_wake_up(rq, p);
2326 #endif
2327 out:
2328 current->se.last_wakeup = current->se.sum_exec_runtime;
2330 task_rq_unlock(rq, &flags);
2332 return success;
2335 int wake_up_process(struct task_struct *p)
2337 return try_to_wake_up(p, TASK_ALL, 0);
2339 EXPORT_SYMBOL(wake_up_process);
2341 int wake_up_state(struct task_struct *p, unsigned int state)
2343 return try_to_wake_up(p, state, 0);
2347 * Perform scheduler related setup for a newly forked process p.
2348 * p is forked by current.
2350 * __sched_fork() is basic setup used by init_idle() too:
2352 static void __sched_fork(struct task_struct *p)
2354 p->se.exec_start = 0;
2355 p->se.sum_exec_runtime = 0;
2356 p->se.prev_sum_exec_runtime = 0;
2357 p->se.last_wakeup = 0;
2358 p->se.avg_overlap = 0;
2360 #ifdef CONFIG_SCHEDSTATS
2361 p->se.wait_start = 0;
2362 p->se.sum_sleep_runtime = 0;
2363 p->se.sleep_start = 0;
2364 p->se.block_start = 0;
2365 p->se.sleep_max = 0;
2366 p->se.block_max = 0;
2367 p->se.exec_max = 0;
2368 p->se.slice_max = 0;
2369 p->se.wait_max = 0;
2370 #endif
2372 INIT_LIST_HEAD(&p->rt.run_list);
2373 p->se.on_rq = 0;
2374 INIT_LIST_HEAD(&p->se.group_node);
2376 #ifdef CONFIG_PREEMPT_NOTIFIERS
2377 INIT_HLIST_HEAD(&p->preempt_notifiers);
2378 #endif
2381 * We mark the process as running here, but have not actually
2382 * inserted it onto the runqueue yet. This guarantees that
2383 * nobody will actually run it, and a signal or other external
2384 * event cannot wake it up and insert it on the runqueue either.
2386 p->state = TASK_RUNNING;
2390 * fork()/clone()-time setup:
2392 void sched_fork(struct task_struct *p, int clone_flags)
2394 int cpu = get_cpu();
2396 __sched_fork(p);
2398 #ifdef CONFIG_SMP
2399 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2400 #endif
2401 set_task_cpu(p, cpu);
2404 * Make sure we do not leak PI boosting priority to the child:
2406 p->prio = current->normal_prio;
2407 if (!rt_prio(p->prio))
2408 p->sched_class = &fair_sched_class;
2410 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2411 if (likely(sched_info_on()))
2412 memset(&p->sched_info, 0, sizeof(p->sched_info));
2413 #endif
2414 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2415 p->oncpu = 0;
2416 #endif
2417 #ifdef CONFIG_PREEMPT
2418 /* Want to start with kernel preemption disabled. */
2419 task_thread_info(p)->preempt_count = 1;
2420 #endif
2421 put_cpu();
2425 * wake_up_new_task - wake up a newly created task for the first time.
2427 * This function will do some initial scheduler statistics housekeeping
2428 * that must be done for every newly created context, then puts the task
2429 * on the runqueue and wakes it.
2431 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2433 unsigned long flags;
2434 struct rq *rq;
2436 rq = task_rq_lock(p, &flags);
2437 BUG_ON(p->state != TASK_RUNNING);
2438 update_rq_clock(rq);
2440 p->prio = effective_prio(p);
2442 if (!p->sched_class->task_new || !current->se.on_rq) {
2443 activate_task(rq, p, 0);
2444 } else {
2446 * Let the scheduling class do new task startup
2447 * management (if any):
2449 p->sched_class->task_new(rq, p);
2450 inc_nr_running(rq);
2452 trace_sched_wakeup_new(rq, p);
2453 check_preempt_curr(rq, p, 0);
2454 #ifdef CONFIG_SMP
2455 if (p->sched_class->task_wake_up)
2456 p->sched_class->task_wake_up(rq, p);
2457 #endif
2458 task_rq_unlock(rq, &flags);
2461 #ifdef CONFIG_PREEMPT_NOTIFIERS
2464 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2465 * @notifier: notifier struct to register
2467 void preempt_notifier_register(struct preempt_notifier *notifier)
2469 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2471 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2474 * preempt_notifier_unregister - no longer interested in preemption notifications
2475 * @notifier: notifier struct to unregister
2477 * This is safe to call from within a preemption notifier.
2479 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2481 hlist_del(&notifier->link);
2483 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2485 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2487 struct preempt_notifier *notifier;
2488 struct hlist_node *node;
2490 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2491 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2494 static void
2495 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2496 struct task_struct *next)
2498 struct preempt_notifier *notifier;
2499 struct hlist_node *node;
2501 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2502 notifier->ops->sched_out(notifier, next);
2505 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2507 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511 static void
2512 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2513 struct task_struct *next)
2517 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2520 * prepare_task_switch - prepare to switch tasks
2521 * @rq: the runqueue preparing to switch
2522 * @prev: the current task that is being switched out
2523 * @next: the task we are going to switch to.
2525 * This is called with the rq lock held and interrupts off. It must
2526 * be paired with a subsequent finish_task_switch after the context
2527 * switch.
2529 * prepare_task_switch sets up locking and calls architecture specific
2530 * hooks.
2532 static inline void
2533 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2534 struct task_struct *next)
2536 fire_sched_out_preempt_notifiers(prev, next);
2537 prepare_lock_switch(rq, next);
2538 prepare_arch_switch(next);
2542 * finish_task_switch - clean up after a task-switch
2543 * @rq: runqueue associated with task-switch
2544 * @prev: the thread we just switched away from.
2546 * finish_task_switch must be called after the context switch, paired
2547 * with a prepare_task_switch call before the context switch.
2548 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2549 * and do any other architecture-specific cleanup actions.
2551 * Note that we may have delayed dropping an mm in context_switch(). If
2552 * so, we finish that here outside of the runqueue lock. (Doing it
2553 * with the lock held can cause deadlocks; see schedule() for
2554 * details.)
2556 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2557 __releases(rq->lock)
2559 struct mm_struct *mm = rq->prev_mm;
2560 long prev_state;
2562 rq->prev_mm = NULL;
2565 * A task struct has one reference for the use as "current".
2566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2567 * schedule one last time. The schedule call will never return, and
2568 * the scheduled task must drop that reference.
2569 * The test for TASK_DEAD must occur while the runqueue locks are
2570 * still held, otherwise prev could be scheduled on another cpu, die
2571 * there before we look at prev->state, and then the reference would
2572 * be dropped twice.
2573 * Manfred Spraul <manfred@colorfullife.com>
2575 prev_state = prev->state;
2576 finish_arch_switch(prev);
2577 finish_lock_switch(rq, prev);
2578 #ifdef CONFIG_SMP
2579 if (current->sched_class->post_schedule)
2580 current->sched_class->post_schedule(rq);
2581 #endif
2583 fire_sched_in_preempt_notifiers(current);
2584 if (mm)
2585 mmdrop(mm);
2586 if (unlikely(prev_state == TASK_DEAD)) {
2588 * Remove function-return probe instances associated with this
2589 * task and put them back on the free list.
2591 kprobe_flush_task(prev);
2592 put_task_struct(prev);
2597 * schedule_tail - first thing a freshly forked thread must call.
2598 * @prev: the thread we just switched away from.
2600 asmlinkage void schedule_tail(struct task_struct *prev)
2601 __releases(rq->lock)
2603 struct rq *rq = this_rq();
2605 finish_task_switch(rq, prev);
2606 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2607 /* In this case, finish_task_switch does not reenable preemption */
2608 preempt_enable();
2609 #endif
2610 if (current->set_child_tid)
2611 put_user(task_pid_vnr(current), current->set_child_tid);
2615 * context_switch - switch to the new MM and the new
2616 * thread's register state.
2618 static inline void
2619 context_switch(struct rq *rq, struct task_struct *prev,
2620 struct task_struct *next)
2622 struct mm_struct *mm, *oldmm;
2624 prepare_task_switch(rq, prev, next);
2625 trace_sched_switch(rq, prev, next);
2626 mm = next->mm;
2627 oldmm = prev->active_mm;
2629 * For paravirt, this is coupled with an exit in switch_to to
2630 * combine the page table reload and the switch backend into
2631 * one hypercall.
2633 arch_enter_lazy_cpu_mode();
2635 if (unlikely(!mm)) {
2636 next->active_mm = oldmm;
2637 atomic_inc(&oldmm->mm_count);
2638 enter_lazy_tlb(oldmm, next);
2639 } else
2640 switch_mm(oldmm, mm, next);
2642 if (unlikely(!prev->mm)) {
2643 prev->active_mm = NULL;
2644 rq->prev_mm = oldmm;
2647 * Since the runqueue lock will be released by the next
2648 * task (which is an invalid locking op but in the case
2649 * of the scheduler it's an obvious special-case), so we
2650 * do an early lockdep release here:
2652 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2653 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2654 #endif
2656 /* Here we just switch the register state and the stack. */
2657 switch_to(prev, next, prev);
2659 barrier();
2661 * this_rq must be evaluated again because prev may have moved
2662 * CPUs since it called schedule(), thus the 'rq' on its stack
2663 * frame will be invalid.
2665 finish_task_switch(this_rq(), prev);
2669 * nr_running, nr_uninterruptible and nr_context_switches:
2671 * externally visible scheduler statistics: current number of runnable
2672 * threads, current number of uninterruptible-sleeping threads, total
2673 * number of context switches performed since bootup.
2675 unsigned long nr_running(void)
2677 unsigned long i, sum = 0;
2679 for_each_online_cpu(i)
2680 sum += cpu_rq(i)->nr_running;
2682 return sum;
2685 unsigned long nr_uninterruptible(void)
2687 unsigned long i, sum = 0;
2689 for_each_possible_cpu(i)
2690 sum += cpu_rq(i)->nr_uninterruptible;
2693 * Since we read the counters lockless, it might be slightly
2694 * inaccurate. Do not allow it to go below zero though:
2696 if (unlikely((long)sum < 0))
2697 sum = 0;
2699 return sum;
2702 unsigned long long nr_context_switches(void)
2704 int i;
2705 unsigned long long sum = 0;
2707 for_each_possible_cpu(i)
2708 sum += cpu_rq(i)->nr_switches;
2710 return sum;
2713 unsigned long nr_iowait(void)
2715 unsigned long i, sum = 0;
2717 for_each_possible_cpu(i)
2718 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2720 return sum;
2723 unsigned long nr_active(void)
2725 unsigned long i, running = 0, uninterruptible = 0;
2727 for_each_online_cpu(i) {
2728 running += cpu_rq(i)->nr_running;
2729 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2732 if (unlikely((long)uninterruptible < 0))
2733 uninterruptible = 0;
2735 return running + uninterruptible;
2739 * Update rq->cpu_load[] statistics. This function is usually called every
2740 * scheduler tick (TICK_NSEC).
2742 static void update_cpu_load(struct rq *this_rq)
2744 unsigned long this_load = this_rq->load.weight;
2745 int i, scale;
2747 this_rq->nr_load_updates++;
2749 /* Update our load: */
2750 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2751 unsigned long old_load, new_load;
2753 /* scale is effectively 1 << i now, and >> i divides by scale */
2755 old_load = this_rq->cpu_load[i];
2756 new_load = this_load;
2758 * Round up the averaging division if load is increasing. This
2759 * prevents us from getting stuck on 9 if the load is 10, for
2760 * example.
2762 if (new_load > old_load)
2763 new_load += scale-1;
2764 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2768 #ifdef CONFIG_SMP
2771 * double_rq_lock - safely lock two runqueues
2773 * Note this does not disable interrupts like task_rq_lock,
2774 * you need to do so manually before calling.
2776 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2777 __acquires(rq1->lock)
2778 __acquires(rq2->lock)
2780 BUG_ON(!irqs_disabled());
2781 if (rq1 == rq2) {
2782 spin_lock(&rq1->lock);
2783 __acquire(rq2->lock); /* Fake it out ;) */
2784 } else {
2785 if (rq1 < rq2) {
2786 spin_lock(&rq1->lock);
2787 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2788 } else {
2789 spin_lock(&rq2->lock);
2790 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2793 update_rq_clock(rq1);
2794 update_rq_clock(rq2);
2798 * double_rq_unlock - safely unlock two runqueues
2800 * Note this does not restore interrupts like task_rq_unlock,
2801 * you need to do so manually after calling.
2803 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2804 __releases(rq1->lock)
2805 __releases(rq2->lock)
2807 spin_unlock(&rq1->lock);
2808 if (rq1 != rq2)
2809 spin_unlock(&rq2->lock);
2810 else
2811 __release(rq2->lock);
2815 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2817 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2818 __releases(this_rq->lock)
2819 __acquires(busiest->lock)
2820 __acquires(this_rq->lock)
2822 int ret = 0;
2824 if (unlikely(!irqs_disabled())) {
2825 /* printk() doesn't work good under rq->lock */
2826 spin_unlock(&this_rq->lock);
2827 BUG_ON(1);
2829 if (unlikely(!spin_trylock(&busiest->lock))) {
2830 if (busiest < this_rq) {
2831 spin_unlock(&this_rq->lock);
2832 spin_lock(&busiest->lock);
2833 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2834 ret = 1;
2835 } else
2836 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2838 return ret;
2841 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2842 __releases(busiest->lock)
2844 spin_unlock(&busiest->lock);
2845 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2849 * If dest_cpu is allowed for this process, migrate the task to it.
2850 * This is accomplished by forcing the cpu_allowed mask to only
2851 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2852 * the cpu_allowed mask is restored.
2854 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2856 struct migration_req req;
2857 unsigned long flags;
2858 struct rq *rq;
2860 rq = task_rq_lock(p, &flags);
2861 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2862 || unlikely(!cpu_active(dest_cpu)))
2863 goto out;
2865 trace_sched_migrate_task(rq, p, dest_cpu);
2866 /* force the process onto the specified CPU */
2867 if (migrate_task(p, dest_cpu, &req)) {
2868 /* Need to wait for migration thread (might exit: take ref). */
2869 struct task_struct *mt = rq->migration_thread;
2871 get_task_struct(mt);
2872 task_rq_unlock(rq, &flags);
2873 wake_up_process(mt);
2874 put_task_struct(mt);
2875 wait_for_completion(&req.done);
2877 return;
2879 out:
2880 task_rq_unlock(rq, &flags);
2884 * sched_exec - execve() is a valuable balancing opportunity, because at
2885 * this point the task has the smallest effective memory and cache footprint.
2887 void sched_exec(void)
2889 int new_cpu, this_cpu = get_cpu();
2890 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2891 put_cpu();
2892 if (new_cpu != this_cpu)
2893 sched_migrate_task(current, new_cpu);
2897 * pull_task - move a task from a remote runqueue to the local runqueue.
2898 * Both runqueues must be locked.
2900 static void pull_task(struct rq *src_rq, struct task_struct *p,
2901 struct rq *this_rq, int this_cpu)
2903 deactivate_task(src_rq, p, 0);
2904 set_task_cpu(p, this_cpu);
2905 activate_task(this_rq, p, 0);
2907 * Note that idle threads have a prio of MAX_PRIO, for this test
2908 * to be always true for them.
2910 check_preempt_curr(this_rq, p, 0);
2914 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2916 static
2917 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2918 struct sched_domain *sd, enum cpu_idle_type idle,
2919 int *all_pinned)
2922 * We do not migrate tasks that are:
2923 * 1) running (obviously), or
2924 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2925 * 3) are cache-hot on their current CPU.
2927 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2928 schedstat_inc(p, se.nr_failed_migrations_affine);
2929 return 0;
2931 *all_pinned = 0;
2933 if (task_running(rq, p)) {
2934 schedstat_inc(p, se.nr_failed_migrations_running);
2935 return 0;
2939 * Aggressive migration if:
2940 * 1) task is cache cold, or
2941 * 2) too many balance attempts have failed.
2944 if (!task_hot(p, rq->clock, sd) ||
2945 sd->nr_balance_failed > sd->cache_nice_tries) {
2946 #ifdef CONFIG_SCHEDSTATS
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(sd, lb_hot_gained[idle]);
2949 schedstat_inc(p, se.nr_forced_migrations);
2951 #endif
2952 return 1;
2955 if (task_hot(p, rq->clock, sd)) {
2956 schedstat_inc(p, se.nr_failed_migrations_hot);
2957 return 0;
2959 return 1;
2962 static unsigned long
2963 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2964 unsigned long max_load_move, struct sched_domain *sd,
2965 enum cpu_idle_type idle, int *all_pinned,
2966 int *this_best_prio, struct rq_iterator *iterator)
2968 int loops = 0, pulled = 0, pinned = 0;
2969 struct task_struct *p;
2970 long rem_load_move = max_load_move;
2972 if (max_load_move == 0)
2973 goto out;
2975 pinned = 1;
2978 * Start the load-balancing iterator:
2980 p = iterator->start(iterator->arg);
2981 next:
2982 if (!p || loops++ > sysctl_sched_nr_migrate)
2983 goto out;
2985 if ((p->se.load.weight >> 1) > rem_load_move ||
2986 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2987 p = iterator->next(iterator->arg);
2988 goto next;
2991 pull_task(busiest, p, this_rq, this_cpu);
2992 pulled++;
2993 rem_load_move -= p->se.load.weight;
2996 * We only want to steal up to the prescribed amount of weighted load.
2998 if (rem_load_move > 0) {
2999 if (p->prio < *this_best_prio)
3000 *this_best_prio = p->prio;
3001 p = iterator->next(iterator->arg);
3002 goto next;
3004 out:
3006 * Right now, this is one of only two places pull_task() is called,
3007 * so we can safely collect pull_task() stats here rather than
3008 * inside pull_task().
3010 schedstat_add(sd, lb_gained[idle], pulled);
3012 if (all_pinned)
3013 *all_pinned = pinned;
3015 return max_load_move - rem_load_move;
3019 * move_tasks tries to move up to max_load_move weighted load from busiest to
3020 * this_rq, as part of a balancing operation within domain "sd".
3021 * Returns 1 if successful and 0 otherwise.
3023 * Called with both runqueues locked.
3025 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3026 unsigned long max_load_move,
3027 struct sched_domain *sd, enum cpu_idle_type idle,
3028 int *all_pinned)
3030 const struct sched_class *class = sched_class_highest;
3031 unsigned long total_load_moved = 0;
3032 int this_best_prio = this_rq->curr->prio;
3034 do {
3035 total_load_moved +=
3036 class->load_balance(this_rq, this_cpu, busiest,
3037 max_load_move - total_load_moved,
3038 sd, idle, all_pinned, &this_best_prio);
3039 class = class->next;
3041 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3042 break;
3044 } while (class && max_load_move > total_load_moved);
3046 return total_load_moved > 0;
3049 static int
3050 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3051 struct sched_domain *sd, enum cpu_idle_type idle,
3052 struct rq_iterator *iterator)
3054 struct task_struct *p = iterator->start(iterator->arg);
3055 int pinned = 0;
3057 while (p) {
3058 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3059 pull_task(busiest, p, this_rq, this_cpu);
3061 * Right now, this is only the second place pull_task()
3062 * is called, so we can safely collect pull_task()
3063 * stats here rather than inside pull_task().
3065 schedstat_inc(sd, lb_gained[idle]);
3067 return 1;
3069 p = iterator->next(iterator->arg);
3072 return 0;
3076 * move_one_task tries to move exactly one task from busiest to this_rq, as
3077 * part of active balancing operations within "domain".
3078 * Returns 1 if successful and 0 otherwise.
3080 * Called with both runqueues locked.
3082 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3083 struct sched_domain *sd, enum cpu_idle_type idle)
3085 const struct sched_class *class;
3087 for (class = sched_class_highest; class; class = class->next)
3088 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3089 return 1;
3091 return 0;
3095 * find_busiest_group finds and returns the busiest CPU group within the
3096 * domain. It calculates and returns the amount of weighted load which
3097 * should be moved to restore balance via the imbalance parameter.
3099 static struct sched_group *
3100 find_busiest_group(struct sched_domain *sd, int this_cpu,
3101 unsigned long *imbalance, enum cpu_idle_type idle,
3102 int *sd_idle, const cpumask_t *cpus, int *balance)
3104 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3105 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3106 unsigned long max_pull;
3107 unsigned long busiest_load_per_task, busiest_nr_running;
3108 unsigned long this_load_per_task, this_nr_running;
3109 int load_idx, group_imb = 0;
3110 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3111 int power_savings_balance = 1;
3112 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3113 unsigned long min_nr_running = ULONG_MAX;
3114 struct sched_group *group_min = NULL, *group_leader = NULL;
3115 #endif
3117 max_load = this_load = total_load = total_pwr = 0;
3118 busiest_load_per_task = busiest_nr_running = 0;
3119 this_load_per_task = this_nr_running = 0;
3121 if (idle == CPU_NOT_IDLE)
3122 load_idx = sd->busy_idx;
3123 else if (idle == CPU_NEWLY_IDLE)
3124 load_idx = sd->newidle_idx;
3125 else
3126 load_idx = sd->idle_idx;
3128 do {
3129 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3130 int local_group;
3131 int i;
3132 int __group_imb = 0;
3133 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3134 unsigned long sum_nr_running, sum_weighted_load;
3135 unsigned long sum_avg_load_per_task;
3136 unsigned long avg_load_per_task;
3138 local_group = cpu_isset(this_cpu, group->cpumask);
3140 if (local_group)
3141 balance_cpu = first_cpu(group->cpumask);
3143 /* Tally up the load of all CPUs in the group */
3144 sum_weighted_load = sum_nr_running = avg_load = 0;
3145 sum_avg_load_per_task = avg_load_per_task = 0;
3147 max_cpu_load = 0;
3148 min_cpu_load = ~0UL;
3150 for_each_cpu_mask_nr(i, group->cpumask) {
3151 struct rq *rq;
3153 if (!cpu_isset(i, *cpus))
3154 continue;
3156 rq = cpu_rq(i);
3158 if (*sd_idle && rq->nr_running)
3159 *sd_idle = 0;
3161 /* Bias balancing toward cpus of our domain */
3162 if (local_group) {
3163 if (idle_cpu(i) && !first_idle_cpu) {
3164 first_idle_cpu = 1;
3165 balance_cpu = i;
3168 load = target_load(i, load_idx);
3169 } else {
3170 load = source_load(i, load_idx);
3171 if (load > max_cpu_load)
3172 max_cpu_load = load;
3173 if (min_cpu_load > load)
3174 min_cpu_load = load;
3177 avg_load += load;
3178 sum_nr_running += rq->nr_running;
3179 sum_weighted_load += weighted_cpuload(i);
3181 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3185 * First idle cpu or the first cpu(busiest) in this sched group
3186 * is eligible for doing load balancing at this and above
3187 * domains. In the newly idle case, we will allow all the cpu's
3188 * to do the newly idle load balance.
3190 if (idle != CPU_NEWLY_IDLE && local_group &&
3191 balance_cpu != this_cpu && balance) {
3192 *balance = 0;
3193 goto ret;
3196 total_load += avg_load;
3197 total_pwr += group->__cpu_power;
3199 /* Adjust by relative CPU power of the group */
3200 avg_load = sg_div_cpu_power(group,
3201 avg_load * SCHED_LOAD_SCALE);
3205 * Consider the group unbalanced when the imbalance is larger
3206 * than the average weight of two tasks.
3208 * APZ: with cgroup the avg task weight can vary wildly and
3209 * might not be a suitable number - should we keep a
3210 * normalized nr_running number somewhere that negates
3211 * the hierarchy?
3213 avg_load_per_task = sg_div_cpu_power(group,
3214 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3216 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3217 __group_imb = 1;
3219 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3221 if (local_group) {
3222 this_load = avg_load;
3223 this = group;
3224 this_nr_running = sum_nr_running;
3225 this_load_per_task = sum_weighted_load;
3226 } else if (avg_load > max_load &&
3227 (sum_nr_running > group_capacity || __group_imb)) {
3228 max_load = avg_load;
3229 busiest = group;
3230 busiest_nr_running = sum_nr_running;
3231 busiest_load_per_task = sum_weighted_load;
3232 group_imb = __group_imb;
3235 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3237 * Busy processors will not participate in power savings
3238 * balance.
3240 if (idle == CPU_NOT_IDLE ||
3241 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3242 goto group_next;
3245 * If the local group is idle or completely loaded
3246 * no need to do power savings balance at this domain
3248 if (local_group && (this_nr_running >= group_capacity ||
3249 !this_nr_running))
3250 power_savings_balance = 0;
3253 * If a group is already running at full capacity or idle,
3254 * don't include that group in power savings calculations
3256 if (!power_savings_balance || sum_nr_running >= group_capacity
3257 || !sum_nr_running)
3258 goto group_next;
3261 * Calculate the group which has the least non-idle load.
3262 * This is the group from where we need to pick up the load
3263 * for saving power
3265 if ((sum_nr_running < min_nr_running) ||
3266 (sum_nr_running == min_nr_running &&
3267 first_cpu(group->cpumask) <
3268 first_cpu(group_min->cpumask))) {
3269 group_min = group;
3270 min_nr_running = sum_nr_running;
3271 min_load_per_task = sum_weighted_load /
3272 sum_nr_running;
3276 * Calculate the group which is almost near its
3277 * capacity but still has some space to pick up some load
3278 * from other group and save more power
3280 if (sum_nr_running <= group_capacity - 1) {
3281 if (sum_nr_running > leader_nr_running ||
3282 (sum_nr_running == leader_nr_running &&
3283 first_cpu(group->cpumask) >
3284 first_cpu(group_leader->cpumask))) {
3285 group_leader = group;
3286 leader_nr_running = sum_nr_running;
3289 group_next:
3290 #endif
3291 group = group->next;
3292 } while (group != sd->groups);
3294 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3295 goto out_balanced;
3297 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3299 if (this_load >= avg_load ||
3300 100*max_load <= sd->imbalance_pct*this_load)
3301 goto out_balanced;
3303 busiest_load_per_task /= busiest_nr_running;
3304 if (group_imb)
3305 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3308 * We're trying to get all the cpus to the average_load, so we don't
3309 * want to push ourselves above the average load, nor do we wish to
3310 * reduce the max loaded cpu below the average load, as either of these
3311 * actions would just result in more rebalancing later, and ping-pong
3312 * tasks around. Thus we look for the minimum possible imbalance.
3313 * Negative imbalances (*we* are more loaded than anyone else) will
3314 * be counted as no imbalance for these purposes -- we can't fix that
3315 * by pulling tasks to us. Be careful of negative numbers as they'll
3316 * appear as very large values with unsigned longs.
3318 if (max_load <= busiest_load_per_task)
3319 goto out_balanced;
3322 * In the presence of smp nice balancing, certain scenarios can have
3323 * max load less than avg load(as we skip the groups at or below
3324 * its cpu_power, while calculating max_load..)
3326 if (max_load < avg_load) {
3327 *imbalance = 0;
3328 goto small_imbalance;
3331 /* Don't want to pull so many tasks that a group would go idle */
3332 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3334 /* How much load to actually move to equalise the imbalance */
3335 *imbalance = min(max_pull * busiest->__cpu_power,
3336 (avg_load - this_load) * this->__cpu_power)
3337 / SCHED_LOAD_SCALE;
3340 * if *imbalance is less than the average load per runnable task
3341 * there is no gaurantee that any tasks will be moved so we'll have
3342 * a think about bumping its value to force at least one task to be
3343 * moved
3345 if (*imbalance < busiest_load_per_task) {
3346 unsigned long tmp, pwr_now, pwr_move;
3347 unsigned int imbn;
3349 small_imbalance:
3350 pwr_move = pwr_now = 0;
3351 imbn = 2;
3352 if (this_nr_running) {
3353 this_load_per_task /= this_nr_running;
3354 if (busiest_load_per_task > this_load_per_task)
3355 imbn = 1;
3356 } else
3357 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3359 if (max_load - this_load + busiest_load_per_task >=
3360 busiest_load_per_task * imbn) {
3361 *imbalance = busiest_load_per_task;
3362 return busiest;
3366 * OK, we don't have enough imbalance to justify moving tasks,
3367 * however we may be able to increase total CPU power used by
3368 * moving them.
3371 pwr_now += busiest->__cpu_power *
3372 min(busiest_load_per_task, max_load);
3373 pwr_now += this->__cpu_power *
3374 min(this_load_per_task, this_load);
3375 pwr_now /= SCHED_LOAD_SCALE;
3377 /* Amount of load we'd subtract */
3378 tmp = sg_div_cpu_power(busiest,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 if (max_load > tmp)
3381 pwr_move += busiest->__cpu_power *
3382 min(busiest_load_per_task, max_load - tmp);
3384 /* Amount of load we'd add */
3385 if (max_load * busiest->__cpu_power <
3386 busiest_load_per_task * SCHED_LOAD_SCALE)
3387 tmp = sg_div_cpu_power(this,
3388 max_load * busiest->__cpu_power);
3389 else
3390 tmp = sg_div_cpu_power(this,
3391 busiest_load_per_task * SCHED_LOAD_SCALE);
3392 pwr_move += this->__cpu_power *
3393 min(this_load_per_task, this_load + tmp);
3394 pwr_move /= SCHED_LOAD_SCALE;
3396 /* Move if we gain throughput */
3397 if (pwr_move > pwr_now)
3398 *imbalance = busiest_load_per_task;
3401 return busiest;
3403 out_balanced:
3404 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3405 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3406 goto ret;
3408 if (this == group_leader && group_leader != group_min) {
3409 *imbalance = min_load_per_task;
3410 return group_min;
3412 #endif
3413 ret:
3414 *imbalance = 0;
3415 return NULL;
3419 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3421 static struct rq *
3422 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3423 unsigned long imbalance, const cpumask_t *cpus)
3425 struct rq *busiest = NULL, *rq;
3426 unsigned long max_load = 0;
3427 int i;
3429 for_each_cpu_mask_nr(i, group->cpumask) {
3430 unsigned long wl;
3432 if (!cpu_isset(i, *cpus))
3433 continue;
3435 rq = cpu_rq(i);
3436 wl = weighted_cpuload(i);
3438 if (rq->nr_running == 1 && wl > imbalance)
3439 continue;
3441 if (wl > max_load) {
3442 max_load = wl;
3443 busiest = rq;
3447 return busiest;
3451 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3452 * so long as it is large enough.
3454 #define MAX_PINNED_INTERVAL 512
3457 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3458 * tasks if there is an imbalance.
3460 static int load_balance(int this_cpu, struct rq *this_rq,
3461 struct sched_domain *sd, enum cpu_idle_type idle,
3462 int *balance, cpumask_t *cpus)
3464 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3465 struct sched_group *group;
3466 unsigned long imbalance;
3467 struct rq *busiest;
3468 unsigned long flags;
3470 cpus_setall(*cpus);
3473 * When power savings policy is enabled for the parent domain, idle
3474 * sibling can pick up load irrespective of busy siblings. In this case,
3475 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3476 * portraying it as CPU_NOT_IDLE.
3478 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3479 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3480 sd_idle = 1;
3482 schedstat_inc(sd, lb_count[idle]);
3484 redo:
3485 update_shares(sd);
3486 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3487 cpus, balance);
3489 if (*balance == 0)
3490 goto out_balanced;
3492 if (!group) {
3493 schedstat_inc(sd, lb_nobusyg[idle]);
3494 goto out_balanced;
3497 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3498 if (!busiest) {
3499 schedstat_inc(sd, lb_nobusyq[idle]);
3500 goto out_balanced;
3503 BUG_ON(busiest == this_rq);
3505 schedstat_add(sd, lb_imbalance[idle], imbalance);
3507 ld_moved = 0;
3508 if (busiest->nr_running > 1) {
3510 * Attempt to move tasks. If find_busiest_group has found
3511 * an imbalance but busiest->nr_running <= 1, the group is
3512 * still unbalanced. ld_moved simply stays zero, so it is
3513 * correctly treated as an imbalance.
3515 local_irq_save(flags);
3516 double_rq_lock(this_rq, busiest);
3517 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3518 imbalance, sd, idle, &all_pinned);
3519 double_rq_unlock(this_rq, busiest);
3520 local_irq_restore(flags);
3523 * some other cpu did the load balance for us.
3525 if (ld_moved && this_cpu != smp_processor_id())
3526 resched_cpu(this_cpu);
3528 /* All tasks on this runqueue were pinned by CPU affinity */
3529 if (unlikely(all_pinned)) {
3530 cpu_clear(cpu_of(busiest), *cpus);
3531 if (!cpus_empty(*cpus))
3532 goto redo;
3533 goto out_balanced;
3537 if (!ld_moved) {
3538 schedstat_inc(sd, lb_failed[idle]);
3539 sd->nr_balance_failed++;
3541 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3543 spin_lock_irqsave(&busiest->lock, flags);
3545 /* don't kick the migration_thread, if the curr
3546 * task on busiest cpu can't be moved to this_cpu
3548 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3549 spin_unlock_irqrestore(&busiest->lock, flags);
3550 all_pinned = 1;
3551 goto out_one_pinned;
3554 if (!busiest->active_balance) {
3555 busiest->active_balance = 1;
3556 busiest->push_cpu = this_cpu;
3557 active_balance = 1;
3559 spin_unlock_irqrestore(&busiest->lock, flags);
3560 if (active_balance)
3561 wake_up_process(busiest->migration_thread);
3564 * We've kicked active balancing, reset the failure
3565 * counter.
3567 sd->nr_balance_failed = sd->cache_nice_tries+1;
3569 } else
3570 sd->nr_balance_failed = 0;
3572 if (likely(!active_balance)) {
3573 /* We were unbalanced, so reset the balancing interval */
3574 sd->balance_interval = sd->min_interval;
3575 } else {
3577 * If we've begun active balancing, start to back off. This
3578 * case may not be covered by the all_pinned logic if there
3579 * is only 1 task on the busy runqueue (because we don't call
3580 * move_tasks).
3582 if (sd->balance_interval < sd->max_interval)
3583 sd->balance_interval *= 2;
3586 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3587 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3588 ld_moved = -1;
3590 goto out;
3592 out_balanced:
3593 schedstat_inc(sd, lb_balanced[idle]);
3595 sd->nr_balance_failed = 0;
3597 out_one_pinned:
3598 /* tune up the balancing interval */
3599 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3600 (sd->balance_interval < sd->max_interval))
3601 sd->balance_interval *= 2;
3603 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3604 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3605 ld_moved = -1;
3606 else
3607 ld_moved = 0;
3608 out:
3609 if (ld_moved)
3610 update_shares(sd);
3611 return ld_moved;
3615 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3616 * tasks if there is an imbalance.
3618 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3619 * this_rq is locked.
3621 static int
3622 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3623 cpumask_t *cpus)
3625 struct sched_group *group;
3626 struct rq *busiest = NULL;
3627 unsigned long imbalance;
3628 int ld_moved = 0;
3629 int sd_idle = 0;
3630 int all_pinned = 0;
3632 cpus_setall(*cpus);
3635 * When power savings policy is enabled for the parent domain, idle
3636 * sibling can pick up load irrespective of busy siblings. In this case,
3637 * let the state of idle sibling percolate up as IDLE, instead of
3638 * portraying it as CPU_NOT_IDLE.
3640 if (sd->flags & SD_SHARE_CPUPOWER &&
3641 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3642 sd_idle = 1;
3644 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3645 redo:
3646 update_shares_locked(this_rq, sd);
3647 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3648 &sd_idle, cpus, NULL);
3649 if (!group) {
3650 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3651 goto out_balanced;
3654 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3655 if (!busiest) {
3656 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3657 goto out_balanced;
3660 BUG_ON(busiest == this_rq);
3662 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3664 ld_moved = 0;
3665 if (busiest->nr_running > 1) {
3666 /* Attempt to move tasks */
3667 double_lock_balance(this_rq, busiest);
3668 /* this_rq->clock is already updated */
3669 update_rq_clock(busiest);
3670 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3671 imbalance, sd, CPU_NEWLY_IDLE,
3672 &all_pinned);
3673 double_unlock_balance(this_rq, busiest);
3675 if (unlikely(all_pinned)) {
3676 cpu_clear(cpu_of(busiest), *cpus);
3677 if (!cpus_empty(*cpus))
3678 goto redo;
3682 if (!ld_moved) {
3683 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3684 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3685 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3686 return -1;
3687 } else
3688 sd->nr_balance_failed = 0;
3690 update_shares_locked(this_rq, sd);
3691 return ld_moved;
3693 out_balanced:
3694 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3695 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3696 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3697 return -1;
3698 sd->nr_balance_failed = 0;
3700 return 0;
3704 * idle_balance is called by schedule() if this_cpu is about to become
3705 * idle. Attempts to pull tasks from other CPUs.
3707 static void idle_balance(int this_cpu, struct rq *this_rq)
3709 struct sched_domain *sd;
3710 int pulled_task = -1;
3711 unsigned long next_balance = jiffies + HZ;
3712 cpumask_t tmpmask;
3714 for_each_domain(this_cpu, sd) {
3715 unsigned long interval;
3717 if (!(sd->flags & SD_LOAD_BALANCE))
3718 continue;
3720 if (sd->flags & SD_BALANCE_NEWIDLE)
3721 /* If we've pulled tasks over stop searching: */
3722 pulled_task = load_balance_newidle(this_cpu, this_rq,
3723 sd, &tmpmask);
3725 interval = msecs_to_jiffies(sd->balance_interval);
3726 if (time_after(next_balance, sd->last_balance + interval))
3727 next_balance = sd->last_balance + interval;
3728 if (pulled_task)
3729 break;
3731 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3733 * We are going idle. next_balance may be set based on
3734 * a busy processor. So reset next_balance.
3736 this_rq->next_balance = next_balance;
3741 * active_load_balance is run by migration threads. It pushes running tasks
3742 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3743 * running on each physical CPU where possible, and avoids physical /
3744 * logical imbalances.
3746 * Called with busiest_rq locked.
3748 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3750 int target_cpu = busiest_rq->push_cpu;
3751 struct sched_domain *sd;
3752 struct rq *target_rq;
3754 /* Is there any task to move? */
3755 if (busiest_rq->nr_running <= 1)
3756 return;
3758 target_rq = cpu_rq(target_cpu);
3761 * This condition is "impossible", if it occurs
3762 * we need to fix it. Originally reported by
3763 * Bjorn Helgaas on a 128-cpu setup.
3765 BUG_ON(busiest_rq == target_rq);
3767 /* move a task from busiest_rq to target_rq */
3768 double_lock_balance(busiest_rq, target_rq);
3769 update_rq_clock(busiest_rq);
3770 update_rq_clock(target_rq);
3772 /* Search for an sd spanning us and the target CPU. */
3773 for_each_domain(target_cpu, sd) {
3774 if ((sd->flags & SD_LOAD_BALANCE) &&
3775 cpu_isset(busiest_cpu, sd->span))
3776 break;
3779 if (likely(sd)) {
3780 schedstat_inc(sd, alb_count);
3782 if (move_one_task(target_rq, target_cpu, busiest_rq,
3783 sd, CPU_IDLE))
3784 schedstat_inc(sd, alb_pushed);
3785 else
3786 schedstat_inc(sd, alb_failed);
3788 double_unlock_balance(busiest_rq, target_rq);
3791 #ifdef CONFIG_NO_HZ
3792 static struct {
3793 atomic_t load_balancer;
3794 cpumask_t cpu_mask;
3795 } nohz ____cacheline_aligned = {
3796 .load_balancer = ATOMIC_INIT(-1),
3797 .cpu_mask = CPU_MASK_NONE,
3801 * This routine will try to nominate the ilb (idle load balancing)
3802 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3803 * load balancing on behalf of all those cpus. If all the cpus in the system
3804 * go into this tickless mode, then there will be no ilb owner (as there is
3805 * no need for one) and all the cpus will sleep till the next wakeup event
3806 * arrives...
3808 * For the ilb owner, tick is not stopped. And this tick will be used
3809 * for idle load balancing. ilb owner will still be part of
3810 * nohz.cpu_mask..
3812 * While stopping the tick, this cpu will become the ilb owner if there
3813 * is no other owner. And will be the owner till that cpu becomes busy
3814 * or if all cpus in the system stop their ticks at which point
3815 * there is no need for ilb owner.
3817 * When the ilb owner becomes busy, it nominates another owner, during the
3818 * next busy scheduler_tick()
3820 int select_nohz_load_balancer(int stop_tick)
3822 int cpu = smp_processor_id();
3824 if (stop_tick) {
3825 cpu_set(cpu, nohz.cpu_mask);
3826 cpu_rq(cpu)->in_nohz_recently = 1;
3829 * If we are going offline and still the leader, give up!
3831 if (!cpu_active(cpu) &&
3832 atomic_read(&nohz.load_balancer) == cpu) {
3833 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3834 BUG();
3835 return 0;
3838 /* time for ilb owner also to sleep */
3839 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3840 if (atomic_read(&nohz.load_balancer) == cpu)
3841 atomic_set(&nohz.load_balancer, -1);
3842 return 0;
3845 if (atomic_read(&nohz.load_balancer) == -1) {
3846 /* make me the ilb owner */
3847 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3848 return 1;
3849 } else if (atomic_read(&nohz.load_balancer) == cpu)
3850 return 1;
3851 } else {
3852 if (!cpu_isset(cpu, nohz.cpu_mask))
3853 return 0;
3855 cpu_clear(cpu, nohz.cpu_mask);
3857 if (atomic_read(&nohz.load_balancer) == cpu)
3858 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3859 BUG();
3861 return 0;
3863 #endif
3865 static DEFINE_SPINLOCK(balancing);
3868 * It checks each scheduling domain to see if it is due to be balanced,
3869 * and initiates a balancing operation if so.
3871 * Balancing parameters are set up in arch_init_sched_domains.
3873 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3875 int balance = 1;
3876 struct rq *rq = cpu_rq(cpu);
3877 unsigned long interval;
3878 struct sched_domain *sd;
3879 /* Earliest time when we have to do rebalance again */
3880 unsigned long next_balance = jiffies + 60*HZ;
3881 int update_next_balance = 0;
3882 int need_serialize;
3883 cpumask_t tmp;
3885 for_each_domain(cpu, sd) {
3886 if (!(sd->flags & SD_LOAD_BALANCE))
3887 continue;
3889 interval = sd->balance_interval;
3890 if (idle != CPU_IDLE)
3891 interval *= sd->busy_factor;
3893 /* scale ms to jiffies */
3894 interval = msecs_to_jiffies(interval);
3895 if (unlikely(!interval))
3896 interval = 1;
3897 if (interval > HZ*NR_CPUS/10)
3898 interval = HZ*NR_CPUS/10;
3900 need_serialize = sd->flags & SD_SERIALIZE;
3902 if (need_serialize) {
3903 if (!spin_trylock(&balancing))
3904 goto out;
3907 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3908 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3910 * We've pulled tasks over so either we're no
3911 * longer idle, or one of our SMT siblings is
3912 * not idle.
3914 idle = CPU_NOT_IDLE;
3916 sd->last_balance = jiffies;
3918 if (need_serialize)
3919 spin_unlock(&balancing);
3920 out:
3921 if (time_after(next_balance, sd->last_balance + interval)) {
3922 next_balance = sd->last_balance + interval;
3923 update_next_balance = 1;
3927 * Stop the load balance at this level. There is another
3928 * CPU in our sched group which is doing load balancing more
3929 * actively.
3931 if (!balance)
3932 break;
3936 * next_balance will be updated only when there is a need.
3937 * When the cpu is attached to null domain for ex, it will not be
3938 * updated.
3940 if (likely(update_next_balance))
3941 rq->next_balance = next_balance;
3945 * run_rebalance_domains is triggered when needed from the scheduler tick.
3946 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3947 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3949 static void run_rebalance_domains(struct softirq_action *h)
3951 int this_cpu = smp_processor_id();
3952 struct rq *this_rq = cpu_rq(this_cpu);
3953 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3954 CPU_IDLE : CPU_NOT_IDLE;
3956 rebalance_domains(this_cpu, idle);
3958 #ifdef CONFIG_NO_HZ
3960 * If this cpu is the owner for idle load balancing, then do the
3961 * balancing on behalf of the other idle cpus whose ticks are
3962 * stopped.
3964 if (this_rq->idle_at_tick &&
3965 atomic_read(&nohz.load_balancer) == this_cpu) {
3966 cpumask_t cpus = nohz.cpu_mask;
3967 struct rq *rq;
3968 int balance_cpu;
3970 cpu_clear(this_cpu, cpus);
3971 for_each_cpu_mask_nr(balance_cpu, cpus) {
3973 * If this cpu gets work to do, stop the load balancing
3974 * work being done for other cpus. Next load
3975 * balancing owner will pick it up.
3977 if (need_resched())
3978 break;
3980 rebalance_domains(balance_cpu, CPU_IDLE);
3982 rq = cpu_rq(balance_cpu);
3983 if (time_after(this_rq->next_balance, rq->next_balance))
3984 this_rq->next_balance = rq->next_balance;
3987 #endif
3991 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3993 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3994 * idle load balancing owner or decide to stop the periodic load balancing,
3995 * if the whole system is idle.
3997 static inline void trigger_load_balance(struct rq *rq, int cpu)
3999 #ifdef CONFIG_NO_HZ
4001 * If we were in the nohz mode recently and busy at the current
4002 * scheduler tick, then check if we need to nominate new idle
4003 * load balancer.
4005 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4006 rq->in_nohz_recently = 0;
4008 if (atomic_read(&nohz.load_balancer) == cpu) {
4009 cpu_clear(cpu, nohz.cpu_mask);
4010 atomic_set(&nohz.load_balancer, -1);
4013 if (atomic_read(&nohz.load_balancer) == -1) {
4015 * simple selection for now: Nominate the
4016 * first cpu in the nohz list to be the next
4017 * ilb owner.
4019 * TBD: Traverse the sched domains and nominate
4020 * the nearest cpu in the nohz.cpu_mask.
4022 int ilb = first_cpu(nohz.cpu_mask);
4024 if (ilb < nr_cpu_ids)
4025 resched_cpu(ilb);
4030 * If this cpu is idle and doing idle load balancing for all the
4031 * cpus with ticks stopped, is it time for that to stop?
4033 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4034 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4035 resched_cpu(cpu);
4036 return;
4040 * If this cpu is idle and the idle load balancing is done by
4041 * someone else, then no need raise the SCHED_SOFTIRQ
4043 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4044 cpu_isset(cpu, nohz.cpu_mask))
4045 return;
4046 #endif
4047 if (time_after_eq(jiffies, rq->next_balance))
4048 raise_softirq(SCHED_SOFTIRQ);
4051 #else /* CONFIG_SMP */
4054 * on UP we do not need to balance between CPUs:
4056 static inline void idle_balance(int cpu, struct rq *rq)
4060 #endif
4062 DEFINE_PER_CPU(struct kernel_stat, kstat);
4064 EXPORT_PER_CPU_SYMBOL(kstat);
4067 * Return any ns on the sched_clock that have not yet been banked in
4068 * @p in case that task is currently running.
4070 unsigned long long task_delta_exec(struct task_struct *p)
4072 unsigned long flags;
4073 struct rq *rq;
4074 u64 ns = 0;
4076 rq = task_rq_lock(p, &flags);
4078 if (task_current(rq, p)) {
4079 u64 delta_exec;
4081 update_rq_clock(rq);
4082 delta_exec = rq->clock - p->se.exec_start;
4083 if ((s64)delta_exec > 0)
4084 ns = delta_exec;
4087 task_rq_unlock(rq, &flags);
4089 return ns;
4093 * Account user cpu time to a process.
4094 * @p: the process that the cpu time gets accounted to
4095 * @cputime: the cpu time spent in user space since the last update
4097 void account_user_time(struct task_struct *p, cputime_t cputime)
4099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4100 cputime64_t tmp;
4102 p->utime = cputime_add(p->utime, cputime);
4103 account_group_user_time(p, cputime);
4105 /* Add user time to cpustat. */
4106 tmp = cputime_to_cputime64(cputime);
4107 if (TASK_NICE(p) > 0)
4108 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4109 else
4110 cpustat->user = cputime64_add(cpustat->user, tmp);
4111 /* Account for user time used */
4112 acct_update_integrals(p);
4116 * Account guest cpu time to a process.
4117 * @p: the process that the cpu time gets accounted to
4118 * @cputime: the cpu time spent in virtual machine since the last update
4120 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4122 cputime64_t tmp;
4123 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4125 tmp = cputime_to_cputime64(cputime);
4127 p->utime = cputime_add(p->utime, cputime);
4128 account_group_user_time(p, cputime);
4129 p->gtime = cputime_add(p->gtime, cputime);
4131 cpustat->user = cputime64_add(cpustat->user, tmp);
4132 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4136 * Account scaled user cpu time to a process.
4137 * @p: the process that the cpu time gets accounted to
4138 * @cputime: the cpu time spent in user space since the last update
4140 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4142 p->utimescaled = cputime_add(p->utimescaled, cputime);
4146 * Account system cpu time to a process.
4147 * @p: the process that the cpu time gets accounted to
4148 * @hardirq_offset: the offset to subtract from hardirq_count()
4149 * @cputime: the cpu time spent in kernel space since the last update
4151 void account_system_time(struct task_struct *p, int hardirq_offset,
4152 cputime_t cputime)
4154 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4155 struct rq *rq = this_rq();
4156 cputime64_t tmp;
4158 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4159 account_guest_time(p, cputime);
4160 return;
4163 p->stime = cputime_add(p->stime, cputime);
4164 account_group_system_time(p, cputime);
4166 /* Add system time to cpustat. */
4167 tmp = cputime_to_cputime64(cputime);
4168 if (hardirq_count() - hardirq_offset)
4169 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4170 else if (softirq_count())
4171 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4172 else if (p != rq->idle)
4173 cpustat->system = cputime64_add(cpustat->system, tmp);
4174 else if (atomic_read(&rq->nr_iowait) > 0)
4175 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4176 else
4177 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4178 /* Account for system time used */
4179 acct_update_integrals(p);
4183 * Account scaled system cpu time to a process.
4184 * @p: the process that the cpu time gets accounted to
4185 * @hardirq_offset: the offset to subtract from hardirq_count()
4186 * @cputime: the cpu time spent in kernel space since the last update
4188 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4190 p->stimescaled = cputime_add(p->stimescaled, cputime);
4194 * Account for involuntary wait time.
4195 * @p: the process from which the cpu time has been stolen
4196 * @steal: the cpu time spent in involuntary wait
4198 void account_steal_time(struct task_struct *p, cputime_t steal)
4200 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4201 cputime64_t tmp = cputime_to_cputime64(steal);
4202 struct rq *rq = this_rq();
4204 if (p == rq->idle) {
4205 p->stime = cputime_add(p->stime, steal);
4206 account_group_system_time(p, steal);
4207 if (atomic_read(&rq->nr_iowait) > 0)
4208 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4209 else
4210 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4211 } else
4212 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4216 * Use precise platform statistics if available:
4218 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4219 cputime_t task_utime(struct task_struct *p)
4221 return p->utime;
4224 cputime_t task_stime(struct task_struct *p)
4226 return p->stime;
4228 #else
4229 cputime_t task_utime(struct task_struct *p)
4231 clock_t utime = cputime_to_clock_t(p->utime),
4232 total = utime + cputime_to_clock_t(p->stime);
4233 u64 temp;
4236 * Use CFS's precise accounting:
4238 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4240 if (total) {
4241 temp *= utime;
4242 do_div(temp, total);
4244 utime = (clock_t)temp;
4246 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4247 return p->prev_utime;
4250 cputime_t task_stime(struct task_struct *p)
4252 clock_t stime;
4255 * Use CFS's precise accounting. (we subtract utime from
4256 * the total, to make sure the total observed by userspace
4257 * grows monotonically - apps rely on that):
4259 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4260 cputime_to_clock_t(task_utime(p));
4262 if (stime >= 0)
4263 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4265 return p->prev_stime;
4267 #endif
4269 inline cputime_t task_gtime(struct task_struct *p)
4271 return p->gtime;
4275 * This function gets called by the timer code, with HZ frequency.
4276 * We call it with interrupts disabled.
4278 * It also gets called by the fork code, when changing the parent's
4279 * timeslices.
4281 void scheduler_tick(void)
4283 int cpu = smp_processor_id();
4284 struct rq *rq = cpu_rq(cpu);
4285 struct task_struct *curr = rq->curr;
4287 sched_clock_tick();
4289 spin_lock(&rq->lock);
4290 update_rq_clock(rq);
4291 update_cpu_load(rq);
4292 curr->sched_class->task_tick(rq, curr, 0);
4293 spin_unlock(&rq->lock);
4295 #ifdef CONFIG_SMP
4296 rq->idle_at_tick = idle_cpu(cpu);
4297 trigger_load_balance(rq, cpu);
4298 #endif
4301 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4302 defined(CONFIG_PREEMPT_TRACER))
4304 static inline unsigned long get_parent_ip(unsigned long addr)
4306 if (in_lock_functions(addr)) {
4307 addr = CALLER_ADDR2;
4308 if (in_lock_functions(addr))
4309 addr = CALLER_ADDR3;
4311 return addr;
4314 void __kprobes add_preempt_count(int val)
4316 #ifdef CONFIG_DEBUG_PREEMPT
4318 * Underflow?
4320 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4321 return;
4322 #endif
4323 preempt_count() += val;
4324 #ifdef CONFIG_DEBUG_PREEMPT
4326 * Spinlock count overflowing soon?
4328 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4329 PREEMPT_MASK - 10);
4330 #endif
4331 if (preempt_count() == val)
4332 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4334 EXPORT_SYMBOL(add_preempt_count);
4336 void __kprobes sub_preempt_count(int val)
4338 #ifdef CONFIG_DEBUG_PREEMPT
4340 * Underflow?
4342 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4343 return;
4345 * Is the spinlock portion underflowing?
4347 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4348 !(preempt_count() & PREEMPT_MASK)))
4349 return;
4350 #endif
4352 if (preempt_count() == val)
4353 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4354 preempt_count() -= val;
4356 EXPORT_SYMBOL(sub_preempt_count);
4358 #endif
4361 * Print scheduling while atomic bug:
4363 static noinline void __schedule_bug(struct task_struct *prev)
4365 struct pt_regs *regs = get_irq_regs();
4367 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4368 prev->comm, prev->pid, preempt_count());
4370 debug_show_held_locks(prev);
4371 print_modules();
4372 if (irqs_disabled())
4373 print_irqtrace_events(prev);
4375 if (regs)
4376 show_regs(regs);
4377 else
4378 dump_stack();
4382 * Various schedule()-time debugging checks and statistics:
4384 static inline void schedule_debug(struct task_struct *prev)
4387 * Test if we are atomic. Since do_exit() needs to call into
4388 * schedule() atomically, we ignore that path for now.
4389 * Otherwise, whine if we are scheduling when we should not be.
4391 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4392 __schedule_bug(prev);
4394 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4396 schedstat_inc(this_rq(), sched_count);
4397 #ifdef CONFIG_SCHEDSTATS
4398 if (unlikely(prev->lock_depth >= 0)) {
4399 schedstat_inc(this_rq(), bkl_count);
4400 schedstat_inc(prev, sched_info.bkl_count);
4402 #endif
4406 * Pick up the highest-prio task:
4408 static inline struct task_struct *
4409 pick_next_task(struct rq *rq, struct task_struct *prev)
4411 const struct sched_class *class;
4412 struct task_struct *p;
4415 * Optimization: we know that if all tasks are in
4416 * the fair class we can call that function directly:
4418 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4419 p = fair_sched_class.pick_next_task(rq);
4420 if (likely(p))
4421 return p;
4424 class = sched_class_highest;
4425 for ( ; ; ) {
4426 p = class->pick_next_task(rq);
4427 if (p)
4428 return p;
4430 * Will never be NULL as the idle class always
4431 * returns a non-NULL p:
4433 class = class->next;
4438 * schedule() is the main scheduler function.
4440 asmlinkage void __sched schedule(void)
4442 struct task_struct *prev, *next;
4443 unsigned long *switch_count;
4444 struct rq *rq;
4445 int cpu;
4447 need_resched:
4448 preempt_disable();
4449 cpu = smp_processor_id();
4450 rq = cpu_rq(cpu);
4451 rcu_qsctr_inc(cpu);
4452 prev = rq->curr;
4453 switch_count = &prev->nivcsw;
4455 release_kernel_lock(prev);
4456 need_resched_nonpreemptible:
4458 schedule_debug(prev);
4460 if (sched_feat(HRTICK))
4461 hrtick_clear(rq);
4463 spin_lock_irq(&rq->lock);
4464 update_rq_clock(rq);
4465 clear_tsk_need_resched(prev);
4467 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4468 if (unlikely(signal_pending_state(prev->state, prev)))
4469 prev->state = TASK_RUNNING;
4470 else
4471 deactivate_task(rq, prev, 1);
4472 switch_count = &prev->nvcsw;
4475 #ifdef CONFIG_SMP
4476 if (prev->sched_class->pre_schedule)
4477 prev->sched_class->pre_schedule(rq, prev);
4478 #endif
4480 if (unlikely(!rq->nr_running))
4481 idle_balance(cpu, rq);
4483 prev->sched_class->put_prev_task(rq, prev);
4484 next = pick_next_task(rq, prev);
4486 if (likely(prev != next)) {
4487 sched_info_switch(prev, next);
4489 rq->nr_switches++;
4490 rq->curr = next;
4491 ++*switch_count;
4493 context_switch(rq, prev, next); /* unlocks the rq */
4495 * the context switch might have flipped the stack from under
4496 * us, hence refresh the local variables.
4498 cpu = smp_processor_id();
4499 rq = cpu_rq(cpu);
4500 } else
4501 spin_unlock_irq(&rq->lock);
4503 if (unlikely(reacquire_kernel_lock(current) < 0))
4504 goto need_resched_nonpreemptible;
4506 preempt_enable_no_resched();
4507 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4508 goto need_resched;
4510 EXPORT_SYMBOL(schedule);
4512 #ifdef CONFIG_PREEMPT
4514 * this is the entry point to schedule() from in-kernel preemption
4515 * off of preempt_enable. Kernel preemptions off return from interrupt
4516 * occur there and call schedule directly.
4518 asmlinkage void __sched preempt_schedule(void)
4520 struct thread_info *ti = current_thread_info();
4523 * If there is a non-zero preempt_count or interrupts are disabled,
4524 * we do not want to preempt the current task. Just return..
4526 if (likely(ti->preempt_count || irqs_disabled()))
4527 return;
4529 do {
4530 add_preempt_count(PREEMPT_ACTIVE);
4531 schedule();
4532 sub_preempt_count(PREEMPT_ACTIVE);
4535 * Check again in case we missed a preemption opportunity
4536 * between schedule and now.
4538 barrier();
4539 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4541 EXPORT_SYMBOL(preempt_schedule);
4544 * this is the entry point to schedule() from kernel preemption
4545 * off of irq context.
4546 * Note, that this is called and return with irqs disabled. This will
4547 * protect us against recursive calling from irq.
4549 asmlinkage void __sched preempt_schedule_irq(void)
4551 struct thread_info *ti = current_thread_info();
4553 /* Catch callers which need to be fixed */
4554 BUG_ON(ti->preempt_count || !irqs_disabled());
4556 do {
4557 add_preempt_count(PREEMPT_ACTIVE);
4558 local_irq_enable();
4559 schedule();
4560 local_irq_disable();
4561 sub_preempt_count(PREEMPT_ACTIVE);
4564 * Check again in case we missed a preemption opportunity
4565 * between schedule and now.
4567 barrier();
4568 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4571 #endif /* CONFIG_PREEMPT */
4573 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4574 void *key)
4576 return try_to_wake_up(curr->private, mode, sync);
4578 EXPORT_SYMBOL(default_wake_function);
4581 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4582 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4583 * number) then we wake all the non-exclusive tasks and one exclusive task.
4585 * There are circumstances in which we can try to wake a task which has already
4586 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4587 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4589 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4590 int nr_exclusive, int sync, void *key)
4592 wait_queue_t *curr, *next;
4594 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4595 unsigned flags = curr->flags;
4597 if (curr->func(curr, mode, sync, key) &&
4598 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4599 break;
4604 * __wake_up - wake up threads blocked on a waitqueue.
4605 * @q: the waitqueue
4606 * @mode: which threads
4607 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4608 * @key: is directly passed to the wakeup function
4610 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4611 int nr_exclusive, void *key)
4613 unsigned long flags;
4615 spin_lock_irqsave(&q->lock, flags);
4616 __wake_up_common(q, mode, nr_exclusive, 0, key);
4617 spin_unlock_irqrestore(&q->lock, flags);
4619 EXPORT_SYMBOL(__wake_up);
4622 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4624 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4626 __wake_up_common(q, mode, 1, 0, NULL);
4630 * __wake_up_sync - wake up threads blocked on a waitqueue.
4631 * @q: the waitqueue
4632 * @mode: which threads
4633 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4635 * The sync wakeup differs that the waker knows that it will schedule
4636 * away soon, so while the target thread will be woken up, it will not
4637 * be migrated to another CPU - ie. the two threads are 'synchronized'
4638 * with each other. This can prevent needless bouncing between CPUs.
4640 * On UP it can prevent extra preemption.
4642 void
4643 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4645 unsigned long flags;
4646 int sync = 1;
4648 if (unlikely(!q))
4649 return;
4651 if (unlikely(!nr_exclusive))
4652 sync = 0;
4654 spin_lock_irqsave(&q->lock, flags);
4655 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4656 spin_unlock_irqrestore(&q->lock, flags);
4658 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4661 * complete: - signals a single thread waiting on this completion
4662 * @x: holds the state of this particular completion
4664 * This will wake up a single thread waiting on this completion. Threads will be
4665 * awakened in the same order in which they were queued.
4667 * See also complete_all(), wait_for_completion() and related routines.
4669 void complete(struct completion *x)
4671 unsigned long flags;
4673 spin_lock_irqsave(&x->wait.lock, flags);
4674 x->done++;
4675 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4676 spin_unlock_irqrestore(&x->wait.lock, flags);
4678 EXPORT_SYMBOL(complete);
4681 * complete_all: - signals all threads waiting on this completion
4682 * @x: holds the state of this particular completion
4684 * This will wake up all threads waiting on this particular completion event.
4686 void complete_all(struct completion *x)
4688 unsigned long flags;
4690 spin_lock_irqsave(&x->wait.lock, flags);
4691 x->done += UINT_MAX/2;
4692 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4693 spin_unlock_irqrestore(&x->wait.lock, flags);
4695 EXPORT_SYMBOL(complete_all);
4697 static inline long __sched
4698 do_wait_for_common(struct completion *x, long timeout, int state)
4700 if (!x->done) {
4701 DECLARE_WAITQUEUE(wait, current);
4703 wait.flags |= WQ_FLAG_EXCLUSIVE;
4704 __add_wait_queue_tail(&x->wait, &wait);
4705 do {
4706 if (signal_pending_state(state, current)) {
4707 timeout = -ERESTARTSYS;
4708 break;
4710 __set_current_state(state);
4711 spin_unlock_irq(&x->wait.lock);
4712 timeout = schedule_timeout(timeout);
4713 spin_lock_irq(&x->wait.lock);
4714 } while (!x->done && timeout);
4715 __remove_wait_queue(&x->wait, &wait);
4716 if (!x->done)
4717 return timeout;
4719 x->done--;
4720 return timeout ?: 1;
4723 static long __sched
4724 wait_for_common(struct completion *x, long timeout, int state)
4726 might_sleep();
4728 spin_lock_irq(&x->wait.lock);
4729 timeout = do_wait_for_common(x, timeout, state);
4730 spin_unlock_irq(&x->wait.lock);
4731 return timeout;
4735 * wait_for_completion: - waits for completion of a task
4736 * @x: holds the state of this particular completion
4738 * This waits to be signaled for completion of a specific task. It is NOT
4739 * interruptible and there is no timeout.
4741 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4742 * and interrupt capability. Also see complete().
4744 void __sched wait_for_completion(struct completion *x)
4746 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4748 EXPORT_SYMBOL(wait_for_completion);
4751 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4752 * @x: holds the state of this particular completion
4753 * @timeout: timeout value in jiffies
4755 * This waits for either a completion of a specific task to be signaled or for a
4756 * specified timeout to expire. The timeout is in jiffies. It is not
4757 * interruptible.
4759 unsigned long __sched
4760 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4762 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4764 EXPORT_SYMBOL(wait_for_completion_timeout);
4767 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4768 * @x: holds the state of this particular completion
4770 * This waits for completion of a specific task to be signaled. It is
4771 * interruptible.
4773 int __sched wait_for_completion_interruptible(struct completion *x)
4775 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4776 if (t == -ERESTARTSYS)
4777 return t;
4778 return 0;
4780 EXPORT_SYMBOL(wait_for_completion_interruptible);
4783 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4784 * @x: holds the state of this particular completion
4785 * @timeout: timeout value in jiffies
4787 * This waits for either a completion of a specific task to be signaled or for a
4788 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4790 unsigned long __sched
4791 wait_for_completion_interruptible_timeout(struct completion *x,
4792 unsigned long timeout)
4794 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4796 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4799 * wait_for_completion_killable: - waits for completion of a task (killable)
4800 * @x: holds the state of this particular completion
4802 * This waits to be signaled for completion of a specific task. It can be
4803 * interrupted by a kill signal.
4805 int __sched wait_for_completion_killable(struct completion *x)
4807 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4808 if (t == -ERESTARTSYS)
4809 return t;
4810 return 0;
4812 EXPORT_SYMBOL(wait_for_completion_killable);
4815 * try_wait_for_completion - try to decrement a completion without blocking
4816 * @x: completion structure
4818 * Returns: 0 if a decrement cannot be done without blocking
4819 * 1 if a decrement succeeded.
4821 * If a completion is being used as a counting completion,
4822 * attempt to decrement the counter without blocking. This
4823 * enables us to avoid waiting if the resource the completion
4824 * is protecting is not available.
4826 bool try_wait_for_completion(struct completion *x)
4828 int ret = 1;
4830 spin_lock_irq(&x->wait.lock);
4831 if (!x->done)
4832 ret = 0;
4833 else
4834 x->done--;
4835 spin_unlock_irq(&x->wait.lock);
4836 return ret;
4838 EXPORT_SYMBOL(try_wait_for_completion);
4841 * completion_done - Test to see if a completion has any waiters
4842 * @x: completion structure
4844 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4845 * 1 if there are no waiters.
4848 bool completion_done(struct completion *x)
4850 int ret = 1;
4852 spin_lock_irq(&x->wait.lock);
4853 if (!x->done)
4854 ret = 0;
4855 spin_unlock_irq(&x->wait.lock);
4856 return ret;
4858 EXPORT_SYMBOL(completion_done);
4860 static long __sched
4861 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4863 unsigned long flags;
4864 wait_queue_t wait;
4866 init_waitqueue_entry(&wait, current);
4868 __set_current_state(state);
4870 spin_lock_irqsave(&q->lock, flags);
4871 __add_wait_queue(q, &wait);
4872 spin_unlock(&q->lock);
4873 timeout = schedule_timeout(timeout);
4874 spin_lock_irq(&q->lock);
4875 __remove_wait_queue(q, &wait);
4876 spin_unlock_irqrestore(&q->lock, flags);
4878 return timeout;
4881 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4883 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4885 EXPORT_SYMBOL(interruptible_sleep_on);
4887 long __sched
4888 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4890 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4892 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4894 void __sched sleep_on(wait_queue_head_t *q)
4896 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4898 EXPORT_SYMBOL(sleep_on);
4900 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4902 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4904 EXPORT_SYMBOL(sleep_on_timeout);
4906 #ifdef CONFIG_RT_MUTEXES
4909 * rt_mutex_setprio - set the current priority of a task
4910 * @p: task
4911 * @prio: prio value (kernel-internal form)
4913 * This function changes the 'effective' priority of a task. It does
4914 * not touch ->normal_prio like __setscheduler().
4916 * Used by the rt_mutex code to implement priority inheritance logic.
4918 void rt_mutex_setprio(struct task_struct *p, int prio)
4920 unsigned long flags;
4921 int oldprio, on_rq, running;
4922 struct rq *rq;
4923 const struct sched_class *prev_class = p->sched_class;
4925 BUG_ON(prio < 0 || prio > MAX_PRIO);
4927 rq = task_rq_lock(p, &flags);
4928 update_rq_clock(rq);
4930 oldprio = p->prio;
4931 on_rq = p->se.on_rq;
4932 running = task_current(rq, p);
4933 if (on_rq)
4934 dequeue_task(rq, p, 0);
4935 if (running)
4936 p->sched_class->put_prev_task(rq, p);
4938 if (rt_prio(prio))
4939 p->sched_class = &rt_sched_class;
4940 else
4941 p->sched_class = &fair_sched_class;
4943 p->prio = prio;
4945 if (running)
4946 p->sched_class->set_curr_task(rq);
4947 if (on_rq) {
4948 enqueue_task(rq, p, 0);
4950 check_class_changed(rq, p, prev_class, oldprio, running);
4952 task_rq_unlock(rq, &flags);
4955 #endif
4957 void set_user_nice(struct task_struct *p, long nice)
4959 int old_prio, delta, on_rq;
4960 unsigned long flags;
4961 struct rq *rq;
4963 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4964 return;
4966 * We have to be careful, if called from sys_setpriority(),
4967 * the task might be in the middle of scheduling on another CPU.
4969 rq = task_rq_lock(p, &flags);
4970 update_rq_clock(rq);
4972 * The RT priorities are set via sched_setscheduler(), but we still
4973 * allow the 'normal' nice value to be set - but as expected
4974 * it wont have any effect on scheduling until the task is
4975 * SCHED_FIFO/SCHED_RR:
4977 if (task_has_rt_policy(p)) {
4978 p->static_prio = NICE_TO_PRIO(nice);
4979 goto out_unlock;
4981 on_rq = p->se.on_rq;
4982 if (on_rq)
4983 dequeue_task(rq, p, 0);
4985 p->static_prio = NICE_TO_PRIO(nice);
4986 set_load_weight(p);
4987 old_prio = p->prio;
4988 p->prio = effective_prio(p);
4989 delta = p->prio - old_prio;
4991 if (on_rq) {
4992 enqueue_task(rq, p, 0);
4994 * If the task increased its priority or is running and
4995 * lowered its priority, then reschedule its CPU:
4997 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4998 resched_task(rq->curr);
5000 out_unlock:
5001 task_rq_unlock(rq, &flags);
5003 EXPORT_SYMBOL(set_user_nice);
5006 * can_nice - check if a task can reduce its nice value
5007 * @p: task
5008 * @nice: nice value
5010 int can_nice(const struct task_struct *p, const int nice)
5012 /* convert nice value [19,-20] to rlimit style value [1,40] */
5013 int nice_rlim = 20 - nice;
5015 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5016 capable(CAP_SYS_NICE));
5019 #ifdef __ARCH_WANT_SYS_NICE
5022 * sys_nice - change the priority of the current process.
5023 * @increment: priority increment
5025 * sys_setpriority is a more generic, but much slower function that
5026 * does similar things.
5028 asmlinkage long sys_nice(int increment)
5030 long nice, retval;
5033 * Setpriority might change our priority at the same moment.
5034 * We don't have to worry. Conceptually one call occurs first
5035 * and we have a single winner.
5037 if (increment < -40)
5038 increment = -40;
5039 if (increment > 40)
5040 increment = 40;
5042 nice = PRIO_TO_NICE(current->static_prio) + increment;
5043 if (nice < -20)
5044 nice = -20;
5045 if (nice > 19)
5046 nice = 19;
5048 if (increment < 0 && !can_nice(current, nice))
5049 return -EPERM;
5051 retval = security_task_setnice(current, nice);
5052 if (retval)
5053 return retval;
5055 set_user_nice(current, nice);
5056 return 0;
5059 #endif
5062 * task_prio - return the priority value of a given task.
5063 * @p: the task in question.
5065 * This is the priority value as seen by users in /proc.
5066 * RT tasks are offset by -200. Normal tasks are centered
5067 * around 0, value goes from -16 to +15.
5069 int task_prio(const struct task_struct *p)
5071 return p->prio - MAX_RT_PRIO;
5075 * task_nice - return the nice value of a given task.
5076 * @p: the task in question.
5078 int task_nice(const struct task_struct *p)
5080 return TASK_NICE(p);
5082 EXPORT_SYMBOL(task_nice);
5085 * idle_cpu - is a given cpu idle currently?
5086 * @cpu: the processor in question.
5088 int idle_cpu(int cpu)
5090 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5094 * idle_task - return the idle task for a given cpu.
5095 * @cpu: the processor in question.
5097 struct task_struct *idle_task(int cpu)
5099 return cpu_rq(cpu)->idle;
5103 * find_process_by_pid - find a process with a matching PID value.
5104 * @pid: the pid in question.
5106 static struct task_struct *find_process_by_pid(pid_t pid)
5108 return pid ? find_task_by_vpid(pid) : current;
5111 /* Actually do priority change: must hold rq lock. */
5112 static void
5113 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5115 BUG_ON(p->se.on_rq);
5117 p->policy = policy;
5118 switch (p->policy) {
5119 case SCHED_NORMAL:
5120 case SCHED_BATCH:
5121 case SCHED_IDLE:
5122 p->sched_class = &fair_sched_class;
5123 break;
5124 case SCHED_FIFO:
5125 case SCHED_RR:
5126 p->sched_class = &rt_sched_class;
5127 break;
5130 p->rt_priority = prio;
5131 p->normal_prio = normal_prio(p);
5132 /* we are holding p->pi_lock already */
5133 p->prio = rt_mutex_getprio(p);
5134 set_load_weight(p);
5137 static int __sched_setscheduler(struct task_struct *p, int policy,
5138 struct sched_param *param, bool user)
5140 int retval, oldprio, oldpolicy = -1, on_rq, running;
5141 unsigned long flags;
5142 const struct sched_class *prev_class = p->sched_class;
5143 struct rq *rq;
5145 /* may grab non-irq protected spin_locks */
5146 BUG_ON(in_interrupt());
5147 recheck:
5148 /* double check policy once rq lock held */
5149 if (policy < 0)
5150 policy = oldpolicy = p->policy;
5151 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5152 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5153 policy != SCHED_IDLE)
5154 return -EINVAL;
5156 * Valid priorities for SCHED_FIFO and SCHED_RR are
5157 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5158 * SCHED_BATCH and SCHED_IDLE is 0.
5160 if (param->sched_priority < 0 ||
5161 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5162 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5163 return -EINVAL;
5164 if (rt_policy(policy) != (param->sched_priority != 0))
5165 return -EINVAL;
5168 * Allow unprivileged RT tasks to decrease priority:
5170 if (user && !capable(CAP_SYS_NICE)) {
5171 if (rt_policy(policy)) {
5172 unsigned long rlim_rtprio;
5174 if (!lock_task_sighand(p, &flags))
5175 return -ESRCH;
5176 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5177 unlock_task_sighand(p, &flags);
5179 /* can't set/change the rt policy */
5180 if (policy != p->policy && !rlim_rtprio)
5181 return -EPERM;
5183 /* can't increase priority */
5184 if (param->sched_priority > p->rt_priority &&
5185 param->sched_priority > rlim_rtprio)
5186 return -EPERM;
5189 * Like positive nice levels, dont allow tasks to
5190 * move out of SCHED_IDLE either:
5192 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5193 return -EPERM;
5195 /* can't change other user's priorities */
5196 if ((current->euid != p->euid) &&
5197 (current->euid != p->uid))
5198 return -EPERM;
5201 if (user) {
5202 #ifdef CONFIG_RT_GROUP_SCHED
5204 * Do not allow realtime tasks into groups that have no runtime
5205 * assigned.
5207 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5208 task_group(p)->rt_bandwidth.rt_runtime == 0)
5209 return -EPERM;
5210 #endif
5212 retval = security_task_setscheduler(p, policy, param);
5213 if (retval)
5214 return retval;
5218 * make sure no PI-waiters arrive (or leave) while we are
5219 * changing the priority of the task:
5221 spin_lock_irqsave(&p->pi_lock, flags);
5223 * To be able to change p->policy safely, the apropriate
5224 * runqueue lock must be held.
5226 rq = __task_rq_lock(p);
5227 /* recheck policy now with rq lock held */
5228 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5229 policy = oldpolicy = -1;
5230 __task_rq_unlock(rq);
5231 spin_unlock_irqrestore(&p->pi_lock, flags);
5232 goto recheck;
5234 update_rq_clock(rq);
5235 on_rq = p->se.on_rq;
5236 running = task_current(rq, p);
5237 if (on_rq)
5238 deactivate_task(rq, p, 0);
5239 if (running)
5240 p->sched_class->put_prev_task(rq, p);
5242 oldprio = p->prio;
5243 __setscheduler(rq, p, policy, param->sched_priority);
5245 if (running)
5246 p->sched_class->set_curr_task(rq);
5247 if (on_rq) {
5248 activate_task(rq, p, 0);
5250 check_class_changed(rq, p, prev_class, oldprio, running);
5252 __task_rq_unlock(rq);
5253 spin_unlock_irqrestore(&p->pi_lock, flags);
5255 rt_mutex_adjust_pi(p);
5257 return 0;
5261 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5262 * @p: the task in question.
5263 * @policy: new policy.
5264 * @param: structure containing the new RT priority.
5266 * NOTE that the task may be already dead.
5268 int sched_setscheduler(struct task_struct *p, int policy,
5269 struct sched_param *param)
5271 return __sched_setscheduler(p, policy, param, true);
5273 EXPORT_SYMBOL_GPL(sched_setscheduler);
5276 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5277 * @p: the task in question.
5278 * @policy: new policy.
5279 * @param: structure containing the new RT priority.
5281 * Just like sched_setscheduler, only don't bother checking if the
5282 * current context has permission. For example, this is needed in
5283 * stop_machine(): we create temporary high priority worker threads,
5284 * but our caller might not have that capability.
5286 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5287 struct sched_param *param)
5289 return __sched_setscheduler(p, policy, param, false);
5292 static int
5293 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5295 struct sched_param lparam;
5296 struct task_struct *p;
5297 int retval;
5299 if (!param || pid < 0)
5300 return -EINVAL;
5301 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5302 return -EFAULT;
5304 rcu_read_lock();
5305 retval = -ESRCH;
5306 p = find_process_by_pid(pid);
5307 if (p != NULL)
5308 retval = sched_setscheduler(p, policy, &lparam);
5309 rcu_read_unlock();
5311 return retval;
5315 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5316 * @pid: the pid in question.
5317 * @policy: new policy.
5318 * @param: structure containing the new RT priority.
5320 asmlinkage long
5321 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5323 /* negative values for policy are not valid */
5324 if (policy < 0)
5325 return -EINVAL;
5327 return do_sched_setscheduler(pid, policy, param);
5331 * sys_sched_setparam - set/change the RT priority of a thread
5332 * @pid: the pid in question.
5333 * @param: structure containing the new RT priority.
5335 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5337 return do_sched_setscheduler(pid, -1, param);
5341 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5342 * @pid: the pid in question.
5344 asmlinkage long sys_sched_getscheduler(pid_t pid)
5346 struct task_struct *p;
5347 int retval;
5349 if (pid < 0)
5350 return -EINVAL;
5352 retval = -ESRCH;
5353 read_lock(&tasklist_lock);
5354 p = find_process_by_pid(pid);
5355 if (p) {
5356 retval = security_task_getscheduler(p);
5357 if (!retval)
5358 retval = p->policy;
5360 read_unlock(&tasklist_lock);
5361 return retval;
5365 * sys_sched_getscheduler - get the RT priority of a thread
5366 * @pid: the pid in question.
5367 * @param: structure containing the RT priority.
5369 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5371 struct sched_param lp;
5372 struct task_struct *p;
5373 int retval;
5375 if (!param || pid < 0)
5376 return -EINVAL;
5378 read_lock(&tasklist_lock);
5379 p = find_process_by_pid(pid);
5380 retval = -ESRCH;
5381 if (!p)
5382 goto out_unlock;
5384 retval = security_task_getscheduler(p);
5385 if (retval)
5386 goto out_unlock;
5388 lp.sched_priority = p->rt_priority;
5389 read_unlock(&tasklist_lock);
5392 * This one might sleep, we cannot do it with a spinlock held ...
5394 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5396 return retval;
5398 out_unlock:
5399 read_unlock(&tasklist_lock);
5400 return retval;
5403 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5405 cpumask_t cpus_allowed;
5406 cpumask_t new_mask = *in_mask;
5407 struct task_struct *p;
5408 int retval;
5410 get_online_cpus();
5411 read_lock(&tasklist_lock);
5413 p = find_process_by_pid(pid);
5414 if (!p) {
5415 read_unlock(&tasklist_lock);
5416 put_online_cpus();
5417 return -ESRCH;
5421 * It is not safe to call set_cpus_allowed with the
5422 * tasklist_lock held. We will bump the task_struct's
5423 * usage count and then drop tasklist_lock.
5425 get_task_struct(p);
5426 read_unlock(&tasklist_lock);
5428 retval = -EPERM;
5429 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5430 !capable(CAP_SYS_NICE))
5431 goto out_unlock;
5433 retval = security_task_setscheduler(p, 0, NULL);
5434 if (retval)
5435 goto out_unlock;
5437 cpuset_cpus_allowed(p, &cpus_allowed);
5438 cpus_and(new_mask, new_mask, cpus_allowed);
5439 again:
5440 retval = set_cpus_allowed_ptr(p, &new_mask);
5442 if (!retval) {
5443 cpuset_cpus_allowed(p, &cpus_allowed);
5444 if (!cpus_subset(new_mask, cpus_allowed)) {
5446 * We must have raced with a concurrent cpuset
5447 * update. Just reset the cpus_allowed to the
5448 * cpuset's cpus_allowed
5450 new_mask = cpus_allowed;
5451 goto again;
5454 out_unlock:
5455 put_task_struct(p);
5456 put_online_cpus();
5457 return retval;
5460 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5461 cpumask_t *new_mask)
5463 if (len < sizeof(cpumask_t)) {
5464 memset(new_mask, 0, sizeof(cpumask_t));
5465 } else if (len > sizeof(cpumask_t)) {
5466 len = sizeof(cpumask_t);
5468 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5472 * sys_sched_setaffinity - set the cpu affinity of a process
5473 * @pid: pid of the process
5474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5475 * @user_mask_ptr: user-space pointer to the new cpu mask
5477 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5478 unsigned long __user *user_mask_ptr)
5480 cpumask_t new_mask;
5481 int retval;
5483 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5484 if (retval)
5485 return retval;
5487 return sched_setaffinity(pid, &new_mask);
5490 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5492 struct task_struct *p;
5493 int retval;
5495 get_online_cpus();
5496 read_lock(&tasklist_lock);
5498 retval = -ESRCH;
5499 p = find_process_by_pid(pid);
5500 if (!p)
5501 goto out_unlock;
5503 retval = security_task_getscheduler(p);
5504 if (retval)
5505 goto out_unlock;
5507 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5509 out_unlock:
5510 read_unlock(&tasklist_lock);
5511 put_online_cpus();
5513 return retval;
5517 * sys_sched_getaffinity - get the cpu affinity of a process
5518 * @pid: pid of the process
5519 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5520 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5522 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5523 unsigned long __user *user_mask_ptr)
5525 int ret;
5526 cpumask_t mask;
5528 if (len < sizeof(cpumask_t))
5529 return -EINVAL;
5531 ret = sched_getaffinity(pid, &mask);
5532 if (ret < 0)
5533 return ret;
5535 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5536 return -EFAULT;
5538 return sizeof(cpumask_t);
5542 * sys_sched_yield - yield the current processor to other threads.
5544 * This function yields the current CPU to other tasks. If there are no
5545 * other threads running on this CPU then this function will return.
5547 asmlinkage long sys_sched_yield(void)
5549 struct rq *rq = this_rq_lock();
5551 schedstat_inc(rq, yld_count);
5552 current->sched_class->yield_task(rq);
5555 * Since we are going to call schedule() anyway, there's
5556 * no need to preempt or enable interrupts:
5558 __release(rq->lock);
5559 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5560 _raw_spin_unlock(&rq->lock);
5561 preempt_enable_no_resched();
5563 schedule();
5565 return 0;
5568 static void __cond_resched(void)
5570 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5571 __might_sleep(__FILE__, __LINE__);
5572 #endif
5574 * The BKS might be reacquired before we have dropped
5575 * PREEMPT_ACTIVE, which could trigger a second
5576 * cond_resched() call.
5578 do {
5579 add_preempt_count(PREEMPT_ACTIVE);
5580 schedule();
5581 sub_preempt_count(PREEMPT_ACTIVE);
5582 } while (need_resched());
5585 int __sched _cond_resched(void)
5587 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5588 system_state == SYSTEM_RUNNING) {
5589 __cond_resched();
5590 return 1;
5592 return 0;
5594 EXPORT_SYMBOL(_cond_resched);
5597 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5598 * call schedule, and on return reacquire the lock.
5600 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5601 * operations here to prevent schedule() from being called twice (once via
5602 * spin_unlock(), once by hand).
5604 int cond_resched_lock(spinlock_t *lock)
5606 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5607 int ret = 0;
5609 if (spin_needbreak(lock) || resched) {
5610 spin_unlock(lock);
5611 if (resched && need_resched())
5612 __cond_resched();
5613 else
5614 cpu_relax();
5615 ret = 1;
5616 spin_lock(lock);
5618 return ret;
5620 EXPORT_SYMBOL(cond_resched_lock);
5622 int __sched cond_resched_softirq(void)
5624 BUG_ON(!in_softirq());
5626 if (need_resched() && system_state == SYSTEM_RUNNING) {
5627 local_bh_enable();
5628 __cond_resched();
5629 local_bh_disable();
5630 return 1;
5632 return 0;
5634 EXPORT_SYMBOL(cond_resched_softirq);
5637 * yield - yield the current processor to other threads.
5639 * This is a shortcut for kernel-space yielding - it marks the
5640 * thread runnable and calls sys_sched_yield().
5642 void __sched yield(void)
5644 set_current_state(TASK_RUNNING);
5645 sys_sched_yield();
5647 EXPORT_SYMBOL(yield);
5650 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5651 * that process accounting knows that this is a task in IO wait state.
5653 * But don't do that if it is a deliberate, throttling IO wait (this task
5654 * has set its backing_dev_info: the queue against which it should throttle)
5656 void __sched io_schedule(void)
5658 struct rq *rq = &__raw_get_cpu_var(runqueues);
5660 delayacct_blkio_start();
5661 atomic_inc(&rq->nr_iowait);
5662 schedule();
5663 atomic_dec(&rq->nr_iowait);
5664 delayacct_blkio_end();
5666 EXPORT_SYMBOL(io_schedule);
5668 long __sched io_schedule_timeout(long timeout)
5670 struct rq *rq = &__raw_get_cpu_var(runqueues);
5671 long ret;
5673 delayacct_blkio_start();
5674 atomic_inc(&rq->nr_iowait);
5675 ret = schedule_timeout(timeout);
5676 atomic_dec(&rq->nr_iowait);
5677 delayacct_blkio_end();
5678 return ret;
5682 * sys_sched_get_priority_max - return maximum RT priority.
5683 * @policy: scheduling class.
5685 * this syscall returns the maximum rt_priority that can be used
5686 * by a given scheduling class.
5688 asmlinkage long sys_sched_get_priority_max(int policy)
5690 int ret = -EINVAL;
5692 switch (policy) {
5693 case SCHED_FIFO:
5694 case SCHED_RR:
5695 ret = MAX_USER_RT_PRIO-1;
5696 break;
5697 case SCHED_NORMAL:
5698 case SCHED_BATCH:
5699 case SCHED_IDLE:
5700 ret = 0;
5701 break;
5703 return ret;
5707 * sys_sched_get_priority_min - return minimum RT priority.
5708 * @policy: scheduling class.
5710 * this syscall returns the minimum rt_priority that can be used
5711 * by a given scheduling class.
5713 asmlinkage long sys_sched_get_priority_min(int policy)
5715 int ret = -EINVAL;
5717 switch (policy) {
5718 case SCHED_FIFO:
5719 case SCHED_RR:
5720 ret = 1;
5721 break;
5722 case SCHED_NORMAL:
5723 case SCHED_BATCH:
5724 case SCHED_IDLE:
5725 ret = 0;
5727 return ret;
5731 * sys_sched_rr_get_interval - return the default timeslice of a process.
5732 * @pid: pid of the process.
5733 * @interval: userspace pointer to the timeslice value.
5735 * this syscall writes the default timeslice value of a given process
5736 * into the user-space timespec buffer. A value of '0' means infinity.
5738 asmlinkage
5739 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5741 struct task_struct *p;
5742 unsigned int time_slice;
5743 int retval;
5744 struct timespec t;
5746 if (pid < 0)
5747 return -EINVAL;
5749 retval = -ESRCH;
5750 read_lock(&tasklist_lock);
5751 p = find_process_by_pid(pid);
5752 if (!p)
5753 goto out_unlock;
5755 retval = security_task_getscheduler(p);
5756 if (retval)
5757 goto out_unlock;
5760 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5761 * tasks that are on an otherwise idle runqueue:
5763 time_slice = 0;
5764 if (p->policy == SCHED_RR) {
5765 time_slice = DEF_TIMESLICE;
5766 } else if (p->policy != SCHED_FIFO) {
5767 struct sched_entity *se = &p->se;
5768 unsigned long flags;
5769 struct rq *rq;
5771 rq = task_rq_lock(p, &flags);
5772 if (rq->cfs.load.weight)
5773 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5774 task_rq_unlock(rq, &flags);
5776 read_unlock(&tasklist_lock);
5777 jiffies_to_timespec(time_slice, &t);
5778 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5779 return retval;
5781 out_unlock:
5782 read_unlock(&tasklist_lock);
5783 return retval;
5786 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5788 void sched_show_task(struct task_struct *p)
5790 unsigned long free = 0;
5791 unsigned state;
5793 state = p->state ? __ffs(p->state) + 1 : 0;
5794 printk(KERN_INFO "%-13.13s %c", p->comm,
5795 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5796 #if BITS_PER_LONG == 32
5797 if (state == TASK_RUNNING)
5798 printk(KERN_CONT " running ");
5799 else
5800 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5801 #else
5802 if (state == TASK_RUNNING)
5803 printk(KERN_CONT " running task ");
5804 else
5805 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5806 #endif
5807 #ifdef CONFIG_DEBUG_STACK_USAGE
5809 unsigned long *n = end_of_stack(p);
5810 while (!*n)
5811 n++;
5812 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5814 #endif
5815 printk(KERN_CONT "%5lu %5d %6d\n", free,
5816 task_pid_nr(p), task_pid_nr(p->real_parent));
5818 show_stack(p, NULL);
5821 void show_state_filter(unsigned long state_filter)
5823 struct task_struct *g, *p;
5825 #if BITS_PER_LONG == 32
5826 printk(KERN_INFO
5827 " task PC stack pid father\n");
5828 #else
5829 printk(KERN_INFO
5830 " task PC stack pid father\n");
5831 #endif
5832 read_lock(&tasklist_lock);
5833 do_each_thread(g, p) {
5835 * reset the NMI-timeout, listing all files on a slow
5836 * console might take alot of time:
5838 touch_nmi_watchdog();
5839 if (!state_filter || (p->state & state_filter))
5840 sched_show_task(p);
5841 } while_each_thread(g, p);
5843 touch_all_softlockup_watchdogs();
5845 #ifdef CONFIG_SCHED_DEBUG
5846 sysrq_sched_debug_show();
5847 #endif
5848 read_unlock(&tasklist_lock);
5850 * Only show locks if all tasks are dumped:
5852 if (state_filter == -1)
5853 debug_show_all_locks();
5856 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5858 idle->sched_class = &idle_sched_class;
5862 * init_idle - set up an idle thread for a given CPU
5863 * @idle: task in question
5864 * @cpu: cpu the idle task belongs to
5866 * NOTE: this function does not set the idle thread's NEED_RESCHED
5867 * flag, to make booting more robust.
5869 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5871 struct rq *rq = cpu_rq(cpu);
5872 unsigned long flags;
5874 spin_lock_irqsave(&rq->lock, flags);
5876 __sched_fork(idle);
5877 idle->se.exec_start = sched_clock();
5879 idle->prio = idle->normal_prio = MAX_PRIO;
5880 idle->cpus_allowed = cpumask_of_cpu(cpu);
5881 __set_task_cpu(idle, cpu);
5883 rq->curr = rq->idle = idle;
5884 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5885 idle->oncpu = 1;
5886 #endif
5887 spin_unlock_irqrestore(&rq->lock, flags);
5889 /* Set the preempt count _outside_ the spinlocks! */
5890 #if defined(CONFIG_PREEMPT)
5891 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5892 #else
5893 task_thread_info(idle)->preempt_count = 0;
5894 #endif
5896 * The idle tasks have their own, simple scheduling class:
5898 idle->sched_class = &idle_sched_class;
5902 * In a system that switches off the HZ timer nohz_cpu_mask
5903 * indicates which cpus entered this state. This is used
5904 * in the rcu update to wait only for active cpus. For system
5905 * which do not switch off the HZ timer nohz_cpu_mask should
5906 * always be CPU_MASK_NONE.
5908 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5911 * Increase the granularity value when there are more CPUs,
5912 * because with more CPUs the 'effective latency' as visible
5913 * to users decreases. But the relationship is not linear,
5914 * so pick a second-best guess by going with the log2 of the
5915 * number of CPUs.
5917 * This idea comes from the SD scheduler of Con Kolivas:
5919 static inline void sched_init_granularity(void)
5921 unsigned int factor = 1 + ilog2(num_online_cpus());
5922 const unsigned long limit = 200000000;
5924 sysctl_sched_min_granularity *= factor;
5925 if (sysctl_sched_min_granularity > limit)
5926 sysctl_sched_min_granularity = limit;
5928 sysctl_sched_latency *= factor;
5929 if (sysctl_sched_latency > limit)
5930 sysctl_sched_latency = limit;
5932 sysctl_sched_wakeup_granularity *= factor;
5934 sysctl_sched_shares_ratelimit *= factor;
5937 #ifdef CONFIG_SMP
5939 * This is how migration works:
5941 * 1) we queue a struct migration_req structure in the source CPU's
5942 * runqueue and wake up that CPU's migration thread.
5943 * 2) we down() the locked semaphore => thread blocks.
5944 * 3) migration thread wakes up (implicitly it forces the migrated
5945 * thread off the CPU)
5946 * 4) it gets the migration request and checks whether the migrated
5947 * task is still in the wrong runqueue.
5948 * 5) if it's in the wrong runqueue then the migration thread removes
5949 * it and puts it into the right queue.
5950 * 6) migration thread up()s the semaphore.
5951 * 7) we wake up and the migration is done.
5955 * Change a given task's CPU affinity. Migrate the thread to a
5956 * proper CPU and schedule it away if the CPU it's executing on
5957 * is removed from the allowed bitmask.
5959 * NOTE: the caller must have a valid reference to the task, the
5960 * task must not exit() & deallocate itself prematurely. The
5961 * call is not atomic; no spinlocks may be held.
5963 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5965 struct migration_req req;
5966 unsigned long flags;
5967 struct rq *rq;
5968 int ret = 0;
5970 rq = task_rq_lock(p, &flags);
5971 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5972 ret = -EINVAL;
5973 goto out;
5976 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5977 !cpus_equal(p->cpus_allowed, *new_mask))) {
5978 ret = -EINVAL;
5979 goto out;
5982 if (p->sched_class->set_cpus_allowed)
5983 p->sched_class->set_cpus_allowed(p, new_mask);
5984 else {
5985 p->cpus_allowed = *new_mask;
5986 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5989 /* Can the task run on the task's current CPU? If so, we're done */
5990 if (cpu_isset(task_cpu(p), *new_mask))
5991 goto out;
5993 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5994 /* Need help from migration thread: drop lock and wait. */
5995 task_rq_unlock(rq, &flags);
5996 wake_up_process(rq->migration_thread);
5997 wait_for_completion(&req.done);
5998 tlb_migrate_finish(p->mm);
5999 return 0;
6001 out:
6002 task_rq_unlock(rq, &flags);
6004 return ret;
6006 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6009 * Move (not current) task off this cpu, onto dest cpu. We're doing
6010 * this because either it can't run here any more (set_cpus_allowed()
6011 * away from this CPU, or CPU going down), or because we're
6012 * attempting to rebalance this task on exec (sched_exec).
6014 * So we race with normal scheduler movements, but that's OK, as long
6015 * as the task is no longer on this CPU.
6017 * Returns non-zero if task was successfully migrated.
6019 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6021 struct rq *rq_dest, *rq_src;
6022 int ret = 0, on_rq;
6024 if (unlikely(!cpu_active(dest_cpu)))
6025 return ret;
6027 rq_src = cpu_rq(src_cpu);
6028 rq_dest = cpu_rq(dest_cpu);
6030 double_rq_lock(rq_src, rq_dest);
6031 /* Already moved. */
6032 if (task_cpu(p) != src_cpu)
6033 goto done;
6034 /* Affinity changed (again). */
6035 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6036 goto fail;
6038 on_rq = p->se.on_rq;
6039 if (on_rq)
6040 deactivate_task(rq_src, p, 0);
6042 set_task_cpu(p, dest_cpu);
6043 if (on_rq) {
6044 activate_task(rq_dest, p, 0);
6045 check_preempt_curr(rq_dest, p, 0);
6047 done:
6048 ret = 1;
6049 fail:
6050 double_rq_unlock(rq_src, rq_dest);
6051 return ret;
6055 * migration_thread - this is a highprio system thread that performs
6056 * thread migration by bumping thread off CPU then 'pushing' onto
6057 * another runqueue.
6059 static int migration_thread(void *data)
6061 int cpu = (long)data;
6062 struct rq *rq;
6064 rq = cpu_rq(cpu);
6065 BUG_ON(rq->migration_thread != current);
6067 set_current_state(TASK_INTERRUPTIBLE);
6068 while (!kthread_should_stop()) {
6069 struct migration_req *req;
6070 struct list_head *head;
6072 spin_lock_irq(&rq->lock);
6074 if (cpu_is_offline(cpu)) {
6075 spin_unlock_irq(&rq->lock);
6076 goto wait_to_die;
6079 if (rq->active_balance) {
6080 active_load_balance(rq, cpu);
6081 rq->active_balance = 0;
6084 head = &rq->migration_queue;
6086 if (list_empty(head)) {
6087 spin_unlock_irq(&rq->lock);
6088 schedule();
6089 set_current_state(TASK_INTERRUPTIBLE);
6090 continue;
6092 req = list_entry(head->next, struct migration_req, list);
6093 list_del_init(head->next);
6095 spin_unlock(&rq->lock);
6096 __migrate_task(req->task, cpu, req->dest_cpu);
6097 local_irq_enable();
6099 complete(&req->done);
6101 __set_current_state(TASK_RUNNING);
6102 return 0;
6104 wait_to_die:
6105 /* Wait for kthread_stop */
6106 set_current_state(TASK_INTERRUPTIBLE);
6107 while (!kthread_should_stop()) {
6108 schedule();
6109 set_current_state(TASK_INTERRUPTIBLE);
6111 __set_current_state(TASK_RUNNING);
6112 return 0;
6115 #ifdef CONFIG_HOTPLUG_CPU
6117 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6119 int ret;
6121 local_irq_disable();
6122 ret = __migrate_task(p, src_cpu, dest_cpu);
6123 local_irq_enable();
6124 return ret;
6128 * Figure out where task on dead CPU should go, use force if necessary.
6129 * NOTE: interrupts should be disabled by the caller
6131 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6133 unsigned long flags;
6134 cpumask_t mask;
6135 struct rq *rq;
6136 int dest_cpu;
6138 do {
6139 /* On same node? */
6140 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6141 cpus_and(mask, mask, p->cpus_allowed);
6142 dest_cpu = any_online_cpu(mask);
6144 /* On any allowed CPU? */
6145 if (dest_cpu >= nr_cpu_ids)
6146 dest_cpu = any_online_cpu(p->cpus_allowed);
6148 /* No more Mr. Nice Guy. */
6149 if (dest_cpu >= nr_cpu_ids) {
6150 cpumask_t cpus_allowed;
6152 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6154 * Try to stay on the same cpuset, where the
6155 * current cpuset may be a subset of all cpus.
6156 * The cpuset_cpus_allowed_locked() variant of
6157 * cpuset_cpus_allowed() will not block. It must be
6158 * called within calls to cpuset_lock/cpuset_unlock.
6160 rq = task_rq_lock(p, &flags);
6161 p->cpus_allowed = cpus_allowed;
6162 dest_cpu = any_online_cpu(p->cpus_allowed);
6163 task_rq_unlock(rq, &flags);
6166 * Don't tell them about moving exiting tasks or
6167 * kernel threads (both mm NULL), since they never
6168 * leave kernel.
6170 if (p->mm && printk_ratelimit()) {
6171 printk(KERN_INFO "process %d (%s) no "
6172 "longer affine to cpu%d\n",
6173 task_pid_nr(p), p->comm, dead_cpu);
6176 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6180 * While a dead CPU has no uninterruptible tasks queued at this point,
6181 * it might still have a nonzero ->nr_uninterruptible counter, because
6182 * for performance reasons the counter is not stricly tracking tasks to
6183 * their home CPUs. So we just add the counter to another CPU's counter,
6184 * to keep the global sum constant after CPU-down:
6186 static void migrate_nr_uninterruptible(struct rq *rq_src)
6188 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6189 unsigned long flags;
6191 local_irq_save(flags);
6192 double_rq_lock(rq_src, rq_dest);
6193 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6194 rq_src->nr_uninterruptible = 0;
6195 double_rq_unlock(rq_src, rq_dest);
6196 local_irq_restore(flags);
6199 /* Run through task list and migrate tasks from the dead cpu. */
6200 static void migrate_live_tasks(int src_cpu)
6202 struct task_struct *p, *t;
6204 read_lock(&tasklist_lock);
6206 do_each_thread(t, p) {
6207 if (p == current)
6208 continue;
6210 if (task_cpu(p) == src_cpu)
6211 move_task_off_dead_cpu(src_cpu, p);
6212 } while_each_thread(t, p);
6214 read_unlock(&tasklist_lock);
6218 * Schedules idle task to be the next runnable task on current CPU.
6219 * It does so by boosting its priority to highest possible.
6220 * Used by CPU offline code.
6222 void sched_idle_next(void)
6224 int this_cpu = smp_processor_id();
6225 struct rq *rq = cpu_rq(this_cpu);
6226 struct task_struct *p = rq->idle;
6227 unsigned long flags;
6229 /* cpu has to be offline */
6230 BUG_ON(cpu_online(this_cpu));
6233 * Strictly not necessary since rest of the CPUs are stopped by now
6234 * and interrupts disabled on the current cpu.
6236 spin_lock_irqsave(&rq->lock, flags);
6238 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6240 update_rq_clock(rq);
6241 activate_task(rq, p, 0);
6243 spin_unlock_irqrestore(&rq->lock, flags);
6247 * Ensures that the idle task is using init_mm right before its cpu goes
6248 * offline.
6250 void idle_task_exit(void)
6252 struct mm_struct *mm = current->active_mm;
6254 BUG_ON(cpu_online(smp_processor_id()));
6256 if (mm != &init_mm)
6257 switch_mm(mm, &init_mm, current);
6258 mmdrop(mm);
6261 /* called under rq->lock with disabled interrupts */
6262 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6264 struct rq *rq = cpu_rq(dead_cpu);
6266 /* Must be exiting, otherwise would be on tasklist. */
6267 BUG_ON(!p->exit_state);
6269 /* Cannot have done final schedule yet: would have vanished. */
6270 BUG_ON(p->state == TASK_DEAD);
6272 get_task_struct(p);
6275 * Drop lock around migration; if someone else moves it,
6276 * that's OK. No task can be added to this CPU, so iteration is
6277 * fine.
6279 spin_unlock_irq(&rq->lock);
6280 move_task_off_dead_cpu(dead_cpu, p);
6281 spin_lock_irq(&rq->lock);
6283 put_task_struct(p);
6286 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6287 static void migrate_dead_tasks(unsigned int dead_cpu)
6289 struct rq *rq = cpu_rq(dead_cpu);
6290 struct task_struct *next;
6292 for ( ; ; ) {
6293 if (!rq->nr_running)
6294 break;
6295 update_rq_clock(rq);
6296 next = pick_next_task(rq, rq->curr);
6297 if (!next)
6298 break;
6299 next->sched_class->put_prev_task(rq, next);
6300 migrate_dead(dead_cpu, next);
6304 #endif /* CONFIG_HOTPLUG_CPU */
6306 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6308 static struct ctl_table sd_ctl_dir[] = {
6310 .procname = "sched_domain",
6311 .mode = 0555,
6313 {0, },
6316 static struct ctl_table sd_ctl_root[] = {
6318 .ctl_name = CTL_KERN,
6319 .procname = "kernel",
6320 .mode = 0555,
6321 .child = sd_ctl_dir,
6323 {0, },
6326 static struct ctl_table *sd_alloc_ctl_entry(int n)
6328 struct ctl_table *entry =
6329 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6331 return entry;
6334 static void sd_free_ctl_entry(struct ctl_table **tablep)
6336 struct ctl_table *entry;
6339 * In the intermediate directories, both the child directory and
6340 * procname are dynamically allocated and could fail but the mode
6341 * will always be set. In the lowest directory the names are
6342 * static strings and all have proc handlers.
6344 for (entry = *tablep; entry->mode; entry++) {
6345 if (entry->child)
6346 sd_free_ctl_entry(&entry->child);
6347 if (entry->proc_handler == NULL)
6348 kfree(entry->procname);
6351 kfree(*tablep);
6352 *tablep = NULL;
6355 static void
6356 set_table_entry(struct ctl_table *entry,
6357 const char *procname, void *data, int maxlen,
6358 mode_t mode, proc_handler *proc_handler)
6360 entry->procname = procname;
6361 entry->data = data;
6362 entry->maxlen = maxlen;
6363 entry->mode = mode;
6364 entry->proc_handler = proc_handler;
6367 static struct ctl_table *
6368 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6370 struct ctl_table *table = sd_alloc_ctl_entry(13);
6372 if (table == NULL)
6373 return NULL;
6375 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6376 sizeof(long), 0644, proc_doulongvec_minmax);
6377 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6378 sizeof(long), 0644, proc_doulongvec_minmax);
6379 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6380 sizeof(int), 0644, proc_dointvec_minmax);
6381 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6382 sizeof(int), 0644, proc_dointvec_minmax);
6383 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6384 sizeof(int), 0644, proc_dointvec_minmax);
6385 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6386 sizeof(int), 0644, proc_dointvec_minmax);
6387 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6388 sizeof(int), 0644, proc_dointvec_minmax);
6389 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6390 sizeof(int), 0644, proc_dointvec_minmax);
6391 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6392 sizeof(int), 0644, proc_dointvec_minmax);
6393 set_table_entry(&table[9], "cache_nice_tries",
6394 &sd->cache_nice_tries,
6395 sizeof(int), 0644, proc_dointvec_minmax);
6396 set_table_entry(&table[10], "flags", &sd->flags,
6397 sizeof(int), 0644, proc_dointvec_minmax);
6398 set_table_entry(&table[11], "name", sd->name,
6399 CORENAME_MAX_SIZE, 0444, proc_dostring);
6400 /* &table[12] is terminator */
6402 return table;
6405 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6407 struct ctl_table *entry, *table;
6408 struct sched_domain *sd;
6409 int domain_num = 0, i;
6410 char buf[32];
6412 for_each_domain(cpu, sd)
6413 domain_num++;
6414 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6415 if (table == NULL)
6416 return NULL;
6418 i = 0;
6419 for_each_domain(cpu, sd) {
6420 snprintf(buf, 32, "domain%d", i);
6421 entry->procname = kstrdup(buf, GFP_KERNEL);
6422 entry->mode = 0555;
6423 entry->child = sd_alloc_ctl_domain_table(sd);
6424 entry++;
6425 i++;
6427 return table;
6430 static struct ctl_table_header *sd_sysctl_header;
6431 static void register_sched_domain_sysctl(void)
6433 int i, cpu_num = num_online_cpus();
6434 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6435 char buf[32];
6437 WARN_ON(sd_ctl_dir[0].child);
6438 sd_ctl_dir[0].child = entry;
6440 if (entry == NULL)
6441 return;
6443 for_each_online_cpu(i) {
6444 snprintf(buf, 32, "cpu%d", i);
6445 entry->procname = kstrdup(buf, GFP_KERNEL);
6446 entry->mode = 0555;
6447 entry->child = sd_alloc_ctl_cpu_table(i);
6448 entry++;
6451 WARN_ON(sd_sysctl_header);
6452 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6455 /* may be called multiple times per register */
6456 static void unregister_sched_domain_sysctl(void)
6458 if (sd_sysctl_header)
6459 unregister_sysctl_table(sd_sysctl_header);
6460 sd_sysctl_header = NULL;
6461 if (sd_ctl_dir[0].child)
6462 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6464 #else
6465 static void register_sched_domain_sysctl(void)
6468 static void unregister_sched_domain_sysctl(void)
6471 #endif
6473 static void set_rq_online(struct rq *rq)
6475 if (!rq->online) {
6476 const struct sched_class *class;
6478 cpu_set(rq->cpu, rq->rd->online);
6479 rq->online = 1;
6481 for_each_class(class) {
6482 if (class->rq_online)
6483 class->rq_online(rq);
6488 static void set_rq_offline(struct rq *rq)
6490 if (rq->online) {
6491 const struct sched_class *class;
6493 for_each_class(class) {
6494 if (class->rq_offline)
6495 class->rq_offline(rq);
6498 cpu_clear(rq->cpu, rq->rd->online);
6499 rq->online = 0;
6504 * migration_call - callback that gets triggered when a CPU is added.
6505 * Here we can start up the necessary migration thread for the new CPU.
6507 static int __cpuinit
6508 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6510 struct task_struct *p;
6511 int cpu = (long)hcpu;
6512 unsigned long flags;
6513 struct rq *rq;
6515 switch (action) {
6517 case CPU_UP_PREPARE:
6518 case CPU_UP_PREPARE_FROZEN:
6519 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6520 if (IS_ERR(p))
6521 return NOTIFY_BAD;
6522 kthread_bind(p, cpu);
6523 /* Must be high prio: stop_machine expects to yield to it. */
6524 rq = task_rq_lock(p, &flags);
6525 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6526 task_rq_unlock(rq, &flags);
6527 cpu_rq(cpu)->migration_thread = p;
6528 break;
6530 case CPU_ONLINE:
6531 case CPU_ONLINE_FROZEN:
6532 /* Strictly unnecessary, as first user will wake it. */
6533 wake_up_process(cpu_rq(cpu)->migration_thread);
6535 /* Update our root-domain */
6536 rq = cpu_rq(cpu);
6537 spin_lock_irqsave(&rq->lock, flags);
6538 if (rq->rd) {
6539 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6541 set_rq_online(rq);
6543 spin_unlock_irqrestore(&rq->lock, flags);
6544 break;
6546 #ifdef CONFIG_HOTPLUG_CPU
6547 case CPU_UP_CANCELED:
6548 case CPU_UP_CANCELED_FROZEN:
6549 if (!cpu_rq(cpu)->migration_thread)
6550 break;
6551 /* Unbind it from offline cpu so it can run. Fall thru. */
6552 kthread_bind(cpu_rq(cpu)->migration_thread,
6553 any_online_cpu(cpu_online_map));
6554 kthread_stop(cpu_rq(cpu)->migration_thread);
6555 cpu_rq(cpu)->migration_thread = NULL;
6556 break;
6558 case CPU_DEAD:
6559 case CPU_DEAD_FROZEN:
6560 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6561 migrate_live_tasks(cpu);
6562 rq = cpu_rq(cpu);
6563 kthread_stop(rq->migration_thread);
6564 rq->migration_thread = NULL;
6565 /* Idle task back to normal (off runqueue, low prio) */
6566 spin_lock_irq(&rq->lock);
6567 update_rq_clock(rq);
6568 deactivate_task(rq, rq->idle, 0);
6569 rq->idle->static_prio = MAX_PRIO;
6570 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6571 rq->idle->sched_class = &idle_sched_class;
6572 migrate_dead_tasks(cpu);
6573 spin_unlock_irq(&rq->lock);
6574 cpuset_unlock();
6575 migrate_nr_uninterruptible(rq);
6576 BUG_ON(rq->nr_running != 0);
6579 * No need to migrate the tasks: it was best-effort if
6580 * they didn't take sched_hotcpu_mutex. Just wake up
6581 * the requestors.
6583 spin_lock_irq(&rq->lock);
6584 while (!list_empty(&rq->migration_queue)) {
6585 struct migration_req *req;
6587 req = list_entry(rq->migration_queue.next,
6588 struct migration_req, list);
6589 list_del_init(&req->list);
6590 spin_unlock_irq(&rq->lock);
6591 complete(&req->done);
6592 spin_lock_irq(&rq->lock);
6594 spin_unlock_irq(&rq->lock);
6595 break;
6597 case CPU_DYING:
6598 case CPU_DYING_FROZEN:
6599 /* Update our root-domain */
6600 rq = cpu_rq(cpu);
6601 spin_lock_irqsave(&rq->lock, flags);
6602 if (rq->rd) {
6603 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6604 set_rq_offline(rq);
6606 spin_unlock_irqrestore(&rq->lock, flags);
6607 break;
6608 #endif
6610 return NOTIFY_OK;
6613 /* Register at highest priority so that task migration (migrate_all_tasks)
6614 * happens before everything else.
6616 static struct notifier_block __cpuinitdata migration_notifier = {
6617 .notifier_call = migration_call,
6618 .priority = 10
6621 static int __init migration_init(void)
6623 void *cpu = (void *)(long)smp_processor_id();
6624 int err;
6626 /* Start one for the boot CPU: */
6627 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6628 BUG_ON(err == NOTIFY_BAD);
6629 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6630 register_cpu_notifier(&migration_notifier);
6632 return err;
6634 early_initcall(migration_init);
6635 #endif
6637 #ifdef CONFIG_SMP
6639 #ifdef CONFIG_SCHED_DEBUG
6641 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6643 switch (lvl) {
6644 case SD_LV_NONE:
6645 return "NONE";
6646 case SD_LV_SIBLING:
6647 return "SIBLING";
6648 case SD_LV_MC:
6649 return "MC";
6650 case SD_LV_CPU:
6651 return "CPU";
6652 case SD_LV_NODE:
6653 return "NODE";
6654 case SD_LV_ALLNODES:
6655 return "ALLNODES";
6656 case SD_LV_MAX:
6657 return "MAX";
6660 return "MAX";
6663 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6664 cpumask_t *groupmask)
6666 struct sched_group *group = sd->groups;
6667 char str[256];
6669 cpulist_scnprintf(str, sizeof(str), sd->span);
6670 cpus_clear(*groupmask);
6672 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6674 if (!(sd->flags & SD_LOAD_BALANCE)) {
6675 printk("does not load-balance\n");
6676 if (sd->parent)
6677 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6678 " has parent");
6679 return -1;
6682 printk(KERN_CONT "span %s level %s\n",
6683 str, sd_level_to_string(sd->level));
6685 if (!cpu_isset(cpu, sd->span)) {
6686 printk(KERN_ERR "ERROR: domain->span does not contain "
6687 "CPU%d\n", cpu);
6689 if (!cpu_isset(cpu, group->cpumask)) {
6690 printk(KERN_ERR "ERROR: domain->groups does not contain"
6691 " CPU%d\n", cpu);
6694 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6695 do {
6696 if (!group) {
6697 printk("\n");
6698 printk(KERN_ERR "ERROR: group is NULL\n");
6699 break;
6702 if (!group->__cpu_power) {
6703 printk(KERN_CONT "\n");
6704 printk(KERN_ERR "ERROR: domain->cpu_power not "
6705 "set\n");
6706 break;
6709 if (!cpus_weight(group->cpumask)) {
6710 printk(KERN_CONT "\n");
6711 printk(KERN_ERR "ERROR: empty group\n");
6712 break;
6715 if (cpus_intersects(*groupmask, group->cpumask)) {
6716 printk(KERN_CONT "\n");
6717 printk(KERN_ERR "ERROR: repeated CPUs\n");
6718 break;
6721 cpus_or(*groupmask, *groupmask, group->cpumask);
6723 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6724 printk(KERN_CONT " %s", str);
6726 group = group->next;
6727 } while (group != sd->groups);
6728 printk(KERN_CONT "\n");
6730 if (!cpus_equal(sd->span, *groupmask))
6731 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6733 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6734 printk(KERN_ERR "ERROR: parent span is not a superset "
6735 "of domain->span\n");
6736 return 0;
6739 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6741 cpumask_t *groupmask;
6742 int level = 0;
6744 if (!sd) {
6745 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6746 return;
6749 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6751 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6752 if (!groupmask) {
6753 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6754 return;
6757 for (;;) {
6758 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6759 break;
6760 level++;
6761 sd = sd->parent;
6762 if (!sd)
6763 break;
6765 kfree(groupmask);
6767 #else /* !CONFIG_SCHED_DEBUG */
6768 # define sched_domain_debug(sd, cpu) do { } while (0)
6769 #endif /* CONFIG_SCHED_DEBUG */
6771 static int sd_degenerate(struct sched_domain *sd)
6773 if (cpus_weight(sd->span) == 1)
6774 return 1;
6776 /* Following flags need at least 2 groups */
6777 if (sd->flags & (SD_LOAD_BALANCE |
6778 SD_BALANCE_NEWIDLE |
6779 SD_BALANCE_FORK |
6780 SD_BALANCE_EXEC |
6781 SD_SHARE_CPUPOWER |
6782 SD_SHARE_PKG_RESOURCES)) {
6783 if (sd->groups != sd->groups->next)
6784 return 0;
6787 /* Following flags don't use groups */
6788 if (sd->flags & (SD_WAKE_IDLE |
6789 SD_WAKE_AFFINE |
6790 SD_WAKE_BALANCE))
6791 return 0;
6793 return 1;
6796 static int
6797 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6799 unsigned long cflags = sd->flags, pflags = parent->flags;
6801 if (sd_degenerate(parent))
6802 return 1;
6804 if (!cpus_equal(sd->span, parent->span))
6805 return 0;
6807 /* Does parent contain flags not in child? */
6808 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6809 if (cflags & SD_WAKE_AFFINE)
6810 pflags &= ~SD_WAKE_BALANCE;
6811 /* Flags needing groups don't count if only 1 group in parent */
6812 if (parent->groups == parent->groups->next) {
6813 pflags &= ~(SD_LOAD_BALANCE |
6814 SD_BALANCE_NEWIDLE |
6815 SD_BALANCE_FORK |
6816 SD_BALANCE_EXEC |
6817 SD_SHARE_CPUPOWER |
6818 SD_SHARE_PKG_RESOURCES);
6820 if (~cflags & pflags)
6821 return 0;
6823 return 1;
6826 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6828 unsigned long flags;
6830 spin_lock_irqsave(&rq->lock, flags);
6832 if (rq->rd) {
6833 struct root_domain *old_rd = rq->rd;
6835 if (cpu_isset(rq->cpu, old_rd->online))
6836 set_rq_offline(rq);
6838 cpu_clear(rq->cpu, old_rd->span);
6840 if (atomic_dec_and_test(&old_rd->refcount))
6841 kfree(old_rd);
6844 atomic_inc(&rd->refcount);
6845 rq->rd = rd;
6847 cpu_set(rq->cpu, rd->span);
6848 if (cpu_isset(rq->cpu, cpu_online_map))
6849 set_rq_online(rq);
6851 spin_unlock_irqrestore(&rq->lock, flags);
6854 static void init_rootdomain(struct root_domain *rd)
6856 memset(rd, 0, sizeof(*rd));
6858 cpus_clear(rd->span);
6859 cpus_clear(rd->online);
6861 cpupri_init(&rd->cpupri);
6864 static void init_defrootdomain(void)
6866 init_rootdomain(&def_root_domain);
6867 atomic_set(&def_root_domain.refcount, 1);
6870 static struct root_domain *alloc_rootdomain(void)
6872 struct root_domain *rd;
6874 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6875 if (!rd)
6876 return NULL;
6878 init_rootdomain(rd);
6880 return rd;
6884 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6885 * hold the hotplug lock.
6887 static void
6888 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6890 struct rq *rq = cpu_rq(cpu);
6891 struct sched_domain *tmp;
6893 /* Remove the sched domains which do not contribute to scheduling. */
6894 for (tmp = sd; tmp; ) {
6895 struct sched_domain *parent = tmp->parent;
6896 if (!parent)
6897 break;
6899 if (sd_parent_degenerate(tmp, parent)) {
6900 tmp->parent = parent->parent;
6901 if (parent->parent)
6902 parent->parent->child = tmp;
6903 } else
6904 tmp = tmp->parent;
6907 if (sd && sd_degenerate(sd)) {
6908 sd = sd->parent;
6909 if (sd)
6910 sd->child = NULL;
6913 sched_domain_debug(sd, cpu);
6915 rq_attach_root(rq, rd);
6916 rcu_assign_pointer(rq->sd, sd);
6919 /* cpus with isolated domains */
6920 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6922 /* Setup the mask of cpus configured for isolated domains */
6923 static int __init isolated_cpu_setup(char *str)
6925 static int __initdata ints[NR_CPUS];
6926 int i;
6928 str = get_options(str, ARRAY_SIZE(ints), ints);
6929 cpus_clear(cpu_isolated_map);
6930 for (i = 1; i <= ints[0]; i++)
6931 if (ints[i] < NR_CPUS)
6932 cpu_set(ints[i], cpu_isolated_map);
6933 return 1;
6936 __setup("isolcpus=", isolated_cpu_setup);
6939 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6940 * to a function which identifies what group(along with sched group) a CPU
6941 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6942 * (due to the fact that we keep track of groups covered with a cpumask_t).
6944 * init_sched_build_groups will build a circular linked list of the groups
6945 * covered by the given span, and will set each group's ->cpumask correctly,
6946 * and ->cpu_power to 0.
6948 static void
6949 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6950 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6951 struct sched_group **sg,
6952 cpumask_t *tmpmask),
6953 cpumask_t *covered, cpumask_t *tmpmask)
6955 struct sched_group *first = NULL, *last = NULL;
6956 int i;
6958 cpus_clear(*covered);
6960 for_each_cpu_mask_nr(i, *span) {
6961 struct sched_group *sg;
6962 int group = group_fn(i, cpu_map, &sg, tmpmask);
6963 int j;
6965 if (cpu_isset(i, *covered))
6966 continue;
6968 cpus_clear(sg->cpumask);
6969 sg->__cpu_power = 0;
6971 for_each_cpu_mask_nr(j, *span) {
6972 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6973 continue;
6975 cpu_set(j, *covered);
6976 cpu_set(j, sg->cpumask);
6978 if (!first)
6979 first = sg;
6980 if (last)
6981 last->next = sg;
6982 last = sg;
6984 last->next = first;
6987 #define SD_NODES_PER_DOMAIN 16
6989 #ifdef CONFIG_NUMA
6992 * find_next_best_node - find the next node to include in a sched_domain
6993 * @node: node whose sched_domain we're building
6994 * @used_nodes: nodes already in the sched_domain
6996 * Find the next node to include in a given scheduling domain. Simply
6997 * finds the closest node not already in the @used_nodes map.
6999 * Should use nodemask_t.
7001 static int find_next_best_node(int node, nodemask_t *used_nodes)
7003 int i, n, val, min_val, best_node = 0;
7005 min_val = INT_MAX;
7007 for (i = 0; i < nr_node_ids; i++) {
7008 /* Start at @node */
7009 n = (node + i) % nr_node_ids;
7011 if (!nr_cpus_node(n))
7012 continue;
7014 /* Skip already used nodes */
7015 if (node_isset(n, *used_nodes))
7016 continue;
7018 /* Simple min distance search */
7019 val = node_distance(node, n);
7021 if (val < min_val) {
7022 min_val = val;
7023 best_node = n;
7027 node_set(best_node, *used_nodes);
7028 return best_node;
7032 * sched_domain_node_span - get a cpumask for a node's sched_domain
7033 * @node: node whose cpumask we're constructing
7034 * @span: resulting cpumask
7036 * Given a node, construct a good cpumask for its sched_domain to span. It
7037 * should be one that prevents unnecessary balancing, but also spreads tasks
7038 * out optimally.
7040 static void sched_domain_node_span(int node, cpumask_t *span)
7042 nodemask_t used_nodes;
7043 node_to_cpumask_ptr(nodemask, node);
7044 int i;
7046 cpus_clear(*span);
7047 nodes_clear(used_nodes);
7049 cpus_or(*span, *span, *nodemask);
7050 node_set(node, used_nodes);
7052 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7053 int next_node = find_next_best_node(node, &used_nodes);
7055 node_to_cpumask_ptr_next(nodemask, next_node);
7056 cpus_or(*span, *span, *nodemask);
7059 #endif /* CONFIG_NUMA */
7061 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7064 * SMT sched-domains:
7066 #ifdef CONFIG_SCHED_SMT
7067 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7068 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7070 static int
7071 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7072 cpumask_t *unused)
7074 if (sg)
7075 *sg = &per_cpu(sched_group_cpus, cpu);
7076 return cpu;
7078 #endif /* CONFIG_SCHED_SMT */
7081 * multi-core sched-domains:
7083 #ifdef CONFIG_SCHED_MC
7084 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7085 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7086 #endif /* CONFIG_SCHED_MC */
7088 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7089 static int
7090 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7091 cpumask_t *mask)
7093 int group;
7095 *mask = per_cpu(cpu_sibling_map, cpu);
7096 cpus_and(*mask, *mask, *cpu_map);
7097 group = first_cpu(*mask);
7098 if (sg)
7099 *sg = &per_cpu(sched_group_core, group);
7100 return group;
7102 #elif defined(CONFIG_SCHED_MC)
7103 static int
7104 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7105 cpumask_t *unused)
7107 if (sg)
7108 *sg = &per_cpu(sched_group_core, cpu);
7109 return cpu;
7111 #endif
7113 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7114 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7116 static int
7117 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7118 cpumask_t *mask)
7120 int group;
7121 #ifdef CONFIG_SCHED_MC
7122 *mask = cpu_coregroup_map(cpu);
7123 cpus_and(*mask, *mask, *cpu_map);
7124 group = first_cpu(*mask);
7125 #elif defined(CONFIG_SCHED_SMT)
7126 *mask = per_cpu(cpu_sibling_map, cpu);
7127 cpus_and(*mask, *mask, *cpu_map);
7128 group = first_cpu(*mask);
7129 #else
7130 group = cpu;
7131 #endif
7132 if (sg)
7133 *sg = &per_cpu(sched_group_phys, group);
7134 return group;
7137 #ifdef CONFIG_NUMA
7139 * The init_sched_build_groups can't handle what we want to do with node
7140 * groups, so roll our own. Now each node has its own list of groups which
7141 * gets dynamically allocated.
7143 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7144 static struct sched_group ***sched_group_nodes_bycpu;
7146 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7147 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7149 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7150 struct sched_group **sg, cpumask_t *nodemask)
7152 int group;
7154 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7155 cpus_and(*nodemask, *nodemask, *cpu_map);
7156 group = first_cpu(*nodemask);
7158 if (sg)
7159 *sg = &per_cpu(sched_group_allnodes, group);
7160 return group;
7163 static void init_numa_sched_groups_power(struct sched_group *group_head)
7165 struct sched_group *sg = group_head;
7166 int j;
7168 if (!sg)
7169 return;
7170 do {
7171 for_each_cpu_mask_nr(j, sg->cpumask) {
7172 struct sched_domain *sd;
7174 sd = &per_cpu(phys_domains, j);
7175 if (j != first_cpu(sd->groups->cpumask)) {
7177 * Only add "power" once for each
7178 * physical package.
7180 continue;
7183 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7185 sg = sg->next;
7186 } while (sg != group_head);
7188 #endif /* CONFIG_NUMA */
7190 #ifdef CONFIG_NUMA
7191 /* Free memory allocated for various sched_group structures */
7192 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7194 int cpu, i;
7196 for_each_cpu_mask_nr(cpu, *cpu_map) {
7197 struct sched_group **sched_group_nodes
7198 = sched_group_nodes_bycpu[cpu];
7200 if (!sched_group_nodes)
7201 continue;
7203 for (i = 0; i < nr_node_ids; i++) {
7204 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7206 *nodemask = node_to_cpumask(i);
7207 cpus_and(*nodemask, *nodemask, *cpu_map);
7208 if (cpus_empty(*nodemask))
7209 continue;
7211 if (sg == NULL)
7212 continue;
7213 sg = sg->next;
7214 next_sg:
7215 oldsg = sg;
7216 sg = sg->next;
7217 kfree(oldsg);
7218 if (oldsg != sched_group_nodes[i])
7219 goto next_sg;
7221 kfree(sched_group_nodes);
7222 sched_group_nodes_bycpu[cpu] = NULL;
7225 #else /* !CONFIG_NUMA */
7226 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7229 #endif /* CONFIG_NUMA */
7232 * Initialize sched groups cpu_power.
7234 * cpu_power indicates the capacity of sched group, which is used while
7235 * distributing the load between different sched groups in a sched domain.
7236 * Typically cpu_power for all the groups in a sched domain will be same unless
7237 * there are asymmetries in the topology. If there are asymmetries, group
7238 * having more cpu_power will pickup more load compared to the group having
7239 * less cpu_power.
7241 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7242 * the maximum number of tasks a group can handle in the presence of other idle
7243 * or lightly loaded groups in the same sched domain.
7245 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7247 struct sched_domain *child;
7248 struct sched_group *group;
7250 WARN_ON(!sd || !sd->groups);
7252 if (cpu != first_cpu(sd->groups->cpumask))
7253 return;
7255 child = sd->child;
7257 sd->groups->__cpu_power = 0;
7260 * For perf policy, if the groups in child domain share resources
7261 * (for example cores sharing some portions of the cache hierarchy
7262 * or SMT), then set this domain groups cpu_power such that each group
7263 * can handle only one task, when there are other idle groups in the
7264 * same sched domain.
7266 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7267 (child->flags &
7268 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7269 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7270 return;
7274 * add cpu_power of each child group to this groups cpu_power
7276 group = child->groups;
7277 do {
7278 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7279 group = group->next;
7280 } while (group != child->groups);
7284 * Initializers for schedule domains
7285 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7288 #ifdef CONFIG_SCHED_DEBUG
7289 # define SD_INIT_NAME(sd, type) sd->name = #type
7290 #else
7291 # define SD_INIT_NAME(sd, type) do { } while (0)
7292 #endif
7294 #define SD_INIT(sd, type) sd_init_##type(sd)
7296 #define SD_INIT_FUNC(type) \
7297 static noinline void sd_init_##type(struct sched_domain *sd) \
7299 memset(sd, 0, sizeof(*sd)); \
7300 *sd = SD_##type##_INIT; \
7301 sd->level = SD_LV_##type; \
7302 SD_INIT_NAME(sd, type); \
7305 SD_INIT_FUNC(CPU)
7306 #ifdef CONFIG_NUMA
7307 SD_INIT_FUNC(ALLNODES)
7308 SD_INIT_FUNC(NODE)
7309 #endif
7310 #ifdef CONFIG_SCHED_SMT
7311 SD_INIT_FUNC(SIBLING)
7312 #endif
7313 #ifdef CONFIG_SCHED_MC
7314 SD_INIT_FUNC(MC)
7315 #endif
7318 * To minimize stack usage kmalloc room for cpumasks and share the
7319 * space as the usage in build_sched_domains() dictates. Used only
7320 * if the amount of space is significant.
7322 struct allmasks {
7323 cpumask_t tmpmask; /* make this one first */
7324 union {
7325 cpumask_t nodemask;
7326 cpumask_t this_sibling_map;
7327 cpumask_t this_core_map;
7329 cpumask_t send_covered;
7331 #ifdef CONFIG_NUMA
7332 cpumask_t domainspan;
7333 cpumask_t covered;
7334 cpumask_t notcovered;
7335 #endif
7338 #if NR_CPUS > 128
7339 #define SCHED_CPUMASK_ALLOC 1
7340 #define SCHED_CPUMASK_FREE(v) kfree(v)
7341 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7342 #else
7343 #define SCHED_CPUMASK_ALLOC 0
7344 #define SCHED_CPUMASK_FREE(v)
7345 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7346 #endif
7348 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7349 ((unsigned long)(a) + offsetof(struct allmasks, v))
7351 static int default_relax_domain_level = -1;
7353 static int __init setup_relax_domain_level(char *str)
7355 unsigned long val;
7357 val = simple_strtoul(str, NULL, 0);
7358 if (val < SD_LV_MAX)
7359 default_relax_domain_level = val;
7361 return 1;
7363 __setup("relax_domain_level=", setup_relax_domain_level);
7365 static void set_domain_attribute(struct sched_domain *sd,
7366 struct sched_domain_attr *attr)
7368 int request;
7370 if (!attr || attr->relax_domain_level < 0) {
7371 if (default_relax_domain_level < 0)
7372 return;
7373 else
7374 request = default_relax_domain_level;
7375 } else
7376 request = attr->relax_domain_level;
7377 if (request < sd->level) {
7378 /* turn off idle balance on this domain */
7379 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7380 } else {
7381 /* turn on idle balance on this domain */
7382 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7387 * Build sched domains for a given set of cpus and attach the sched domains
7388 * to the individual cpus
7390 static int __build_sched_domains(const cpumask_t *cpu_map,
7391 struct sched_domain_attr *attr)
7393 int i;
7394 struct root_domain *rd;
7395 SCHED_CPUMASK_DECLARE(allmasks);
7396 cpumask_t *tmpmask;
7397 #ifdef CONFIG_NUMA
7398 struct sched_group **sched_group_nodes = NULL;
7399 int sd_allnodes = 0;
7402 * Allocate the per-node list of sched groups
7404 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7405 GFP_KERNEL);
7406 if (!sched_group_nodes) {
7407 printk(KERN_WARNING "Can not alloc sched group node list\n");
7408 return -ENOMEM;
7410 #endif
7412 rd = alloc_rootdomain();
7413 if (!rd) {
7414 printk(KERN_WARNING "Cannot alloc root domain\n");
7415 #ifdef CONFIG_NUMA
7416 kfree(sched_group_nodes);
7417 #endif
7418 return -ENOMEM;
7421 #if SCHED_CPUMASK_ALLOC
7422 /* get space for all scratch cpumask variables */
7423 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7424 if (!allmasks) {
7425 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7426 kfree(rd);
7427 #ifdef CONFIG_NUMA
7428 kfree(sched_group_nodes);
7429 #endif
7430 return -ENOMEM;
7432 #endif
7433 tmpmask = (cpumask_t *)allmasks;
7436 #ifdef CONFIG_NUMA
7437 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7438 #endif
7441 * Set up domains for cpus specified by the cpu_map.
7443 for_each_cpu_mask_nr(i, *cpu_map) {
7444 struct sched_domain *sd = NULL, *p;
7445 SCHED_CPUMASK_VAR(nodemask, allmasks);
7447 *nodemask = node_to_cpumask(cpu_to_node(i));
7448 cpus_and(*nodemask, *nodemask, *cpu_map);
7450 #ifdef CONFIG_NUMA
7451 if (cpus_weight(*cpu_map) >
7452 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7453 sd = &per_cpu(allnodes_domains, i);
7454 SD_INIT(sd, ALLNODES);
7455 set_domain_attribute(sd, attr);
7456 sd->span = *cpu_map;
7457 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7458 p = sd;
7459 sd_allnodes = 1;
7460 } else
7461 p = NULL;
7463 sd = &per_cpu(node_domains, i);
7464 SD_INIT(sd, NODE);
7465 set_domain_attribute(sd, attr);
7466 sched_domain_node_span(cpu_to_node(i), &sd->span);
7467 sd->parent = p;
7468 if (p)
7469 p->child = sd;
7470 cpus_and(sd->span, sd->span, *cpu_map);
7471 #endif
7473 p = sd;
7474 sd = &per_cpu(phys_domains, i);
7475 SD_INIT(sd, CPU);
7476 set_domain_attribute(sd, attr);
7477 sd->span = *nodemask;
7478 sd->parent = p;
7479 if (p)
7480 p->child = sd;
7481 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7483 #ifdef CONFIG_SCHED_MC
7484 p = sd;
7485 sd = &per_cpu(core_domains, i);
7486 SD_INIT(sd, MC);
7487 set_domain_attribute(sd, attr);
7488 sd->span = cpu_coregroup_map(i);
7489 cpus_and(sd->span, sd->span, *cpu_map);
7490 sd->parent = p;
7491 p->child = sd;
7492 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7493 #endif
7495 #ifdef CONFIG_SCHED_SMT
7496 p = sd;
7497 sd = &per_cpu(cpu_domains, i);
7498 SD_INIT(sd, SIBLING);
7499 set_domain_attribute(sd, attr);
7500 sd->span = per_cpu(cpu_sibling_map, i);
7501 cpus_and(sd->span, sd->span, *cpu_map);
7502 sd->parent = p;
7503 p->child = sd;
7504 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7505 #endif
7508 #ifdef CONFIG_SCHED_SMT
7509 /* Set up CPU (sibling) groups */
7510 for_each_cpu_mask_nr(i, *cpu_map) {
7511 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7512 SCHED_CPUMASK_VAR(send_covered, allmasks);
7514 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7515 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7516 if (i != first_cpu(*this_sibling_map))
7517 continue;
7519 init_sched_build_groups(this_sibling_map, cpu_map,
7520 &cpu_to_cpu_group,
7521 send_covered, tmpmask);
7523 #endif
7525 #ifdef CONFIG_SCHED_MC
7526 /* Set up multi-core groups */
7527 for_each_cpu_mask_nr(i, *cpu_map) {
7528 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7529 SCHED_CPUMASK_VAR(send_covered, allmasks);
7531 *this_core_map = cpu_coregroup_map(i);
7532 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7533 if (i != first_cpu(*this_core_map))
7534 continue;
7536 init_sched_build_groups(this_core_map, cpu_map,
7537 &cpu_to_core_group,
7538 send_covered, tmpmask);
7540 #endif
7542 /* Set up physical groups */
7543 for (i = 0; i < nr_node_ids; i++) {
7544 SCHED_CPUMASK_VAR(nodemask, allmasks);
7545 SCHED_CPUMASK_VAR(send_covered, allmasks);
7547 *nodemask = node_to_cpumask(i);
7548 cpus_and(*nodemask, *nodemask, *cpu_map);
7549 if (cpus_empty(*nodemask))
7550 continue;
7552 init_sched_build_groups(nodemask, cpu_map,
7553 &cpu_to_phys_group,
7554 send_covered, tmpmask);
7557 #ifdef CONFIG_NUMA
7558 /* Set up node groups */
7559 if (sd_allnodes) {
7560 SCHED_CPUMASK_VAR(send_covered, allmasks);
7562 init_sched_build_groups(cpu_map, cpu_map,
7563 &cpu_to_allnodes_group,
7564 send_covered, tmpmask);
7567 for (i = 0; i < nr_node_ids; i++) {
7568 /* Set up node groups */
7569 struct sched_group *sg, *prev;
7570 SCHED_CPUMASK_VAR(nodemask, allmasks);
7571 SCHED_CPUMASK_VAR(domainspan, allmasks);
7572 SCHED_CPUMASK_VAR(covered, allmasks);
7573 int j;
7575 *nodemask = node_to_cpumask(i);
7576 cpus_clear(*covered);
7578 cpus_and(*nodemask, *nodemask, *cpu_map);
7579 if (cpus_empty(*nodemask)) {
7580 sched_group_nodes[i] = NULL;
7581 continue;
7584 sched_domain_node_span(i, domainspan);
7585 cpus_and(*domainspan, *domainspan, *cpu_map);
7587 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7588 if (!sg) {
7589 printk(KERN_WARNING "Can not alloc domain group for "
7590 "node %d\n", i);
7591 goto error;
7593 sched_group_nodes[i] = sg;
7594 for_each_cpu_mask_nr(j, *nodemask) {
7595 struct sched_domain *sd;
7597 sd = &per_cpu(node_domains, j);
7598 sd->groups = sg;
7600 sg->__cpu_power = 0;
7601 sg->cpumask = *nodemask;
7602 sg->next = sg;
7603 cpus_or(*covered, *covered, *nodemask);
7604 prev = sg;
7606 for (j = 0; j < nr_node_ids; j++) {
7607 SCHED_CPUMASK_VAR(notcovered, allmasks);
7608 int n = (i + j) % nr_node_ids;
7609 node_to_cpumask_ptr(pnodemask, n);
7611 cpus_complement(*notcovered, *covered);
7612 cpus_and(*tmpmask, *notcovered, *cpu_map);
7613 cpus_and(*tmpmask, *tmpmask, *domainspan);
7614 if (cpus_empty(*tmpmask))
7615 break;
7617 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7618 if (cpus_empty(*tmpmask))
7619 continue;
7621 sg = kmalloc_node(sizeof(struct sched_group),
7622 GFP_KERNEL, i);
7623 if (!sg) {
7624 printk(KERN_WARNING
7625 "Can not alloc domain group for node %d\n", j);
7626 goto error;
7628 sg->__cpu_power = 0;
7629 sg->cpumask = *tmpmask;
7630 sg->next = prev->next;
7631 cpus_or(*covered, *covered, *tmpmask);
7632 prev->next = sg;
7633 prev = sg;
7636 #endif
7638 /* Calculate CPU power for physical packages and nodes */
7639 #ifdef CONFIG_SCHED_SMT
7640 for_each_cpu_mask_nr(i, *cpu_map) {
7641 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7643 init_sched_groups_power(i, sd);
7645 #endif
7646 #ifdef CONFIG_SCHED_MC
7647 for_each_cpu_mask_nr(i, *cpu_map) {
7648 struct sched_domain *sd = &per_cpu(core_domains, i);
7650 init_sched_groups_power(i, sd);
7652 #endif
7654 for_each_cpu_mask_nr(i, *cpu_map) {
7655 struct sched_domain *sd = &per_cpu(phys_domains, i);
7657 init_sched_groups_power(i, sd);
7660 #ifdef CONFIG_NUMA
7661 for (i = 0; i < nr_node_ids; i++)
7662 init_numa_sched_groups_power(sched_group_nodes[i]);
7664 if (sd_allnodes) {
7665 struct sched_group *sg;
7667 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7668 tmpmask);
7669 init_numa_sched_groups_power(sg);
7671 #endif
7673 /* Attach the domains */
7674 for_each_cpu_mask_nr(i, *cpu_map) {
7675 struct sched_domain *sd;
7676 #ifdef CONFIG_SCHED_SMT
7677 sd = &per_cpu(cpu_domains, i);
7678 #elif defined(CONFIG_SCHED_MC)
7679 sd = &per_cpu(core_domains, i);
7680 #else
7681 sd = &per_cpu(phys_domains, i);
7682 #endif
7683 cpu_attach_domain(sd, rd, i);
7686 SCHED_CPUMASK_FREE((void *)allmasks);
7687 return 0;
7689 #ifdef CONFIG_NUMA
7690 error:
7691 free_sched_groups(cpu_map, tmpmask);
7692 SCHED_CPUMASK_FREE((void *)allmasks);
7693 kfree(rd);
7694 return -ENOMEM;
7695 #endif
7698 static int build_sched_domains(const cpumask_t *cpu_map)
7700 return __build_sched_domains(cpu_map, NULL);
7703 static cpumask_t *doms_cur; /* current sched domains */
7704 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7705 static struct sched_domain_attr *dattr_cur;
7706 /* attribues of custom domains in 'doms_cur' */
7709 * Special case: If a kmalloc of a doms_cur partition (array of
7710 * cpumask_t) fails, then fallback to a single sched domain,
7711 * as determined by the single cpumask_t fallback_doms.
7713 static cpumask_t fallback_doms;
7715 void __attribute__((weak)) arch_update_cpu_topology(void)
7720 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7721 * For now this just excludes isolated cpus, but could be used to
7722 * exclude other special cases in the future.
7724 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7726 int err;
7728 arch_update_cpu_topology();
7729 ndoms_cur = 1;
7730 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7731 if (!doms_cur)
7732 doms_cur = &fallback_doms;
7733 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7734 dattr_cur = NULL;
7735 err = build_sched_domains(doms_cur);
7736 register_sched_domain_sysctl();
7738 return err;
7741 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7742 cpumask_t *tmpmask)
7744 free_sched_groups(cpu_map, tmpmask);
7748 * Detach sched domains from a group of cpus specified in cpu_map
7749 * These cpus will now be attached to the NULL domain
7751 static void detach_destroy_domains(const cpumask_t *cpu_map)
7753 cpumask_t tmpmask;
7754 int i;
7756 unregister_sched_domain_sysctl();
7758 for_each_cpu_mask_nr(i, *cpu_map)
7759 cpu_attach_domain(NULL, &def_root_domain, i);
7760 synchronize_sched();
7761 arch_destroy_sched_domains(cpu_map, &tmpmask);
7764 /* handle null as "default" */
7765 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7766 struct sched_domain_attr *new, int idx_new)
7768 struct sched_domain_attr tmp;
7770 /* fast path */
7771 if (!new && !cur)
7772 return 1;
7774 tmp = SD_ATTR_INIT;
7775 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7776 new ? (new + idx_new) : &tmp,
7777 sizeof(struct sched_domain_attr));
7781 * Partition sched domains as specified by the 'ndoms_new'
7782 * cpumasks in the array doms_new[] of cpumasks. This compares
7783 * doms_new[] to the current sched domain partitioning, doms_cur[].
7784 * It destroys each deleted domain and builds each new domain.
7786 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7787 * The masks don't intersect (don't overlap.) We should setup one
7788 * sched domain for each mask. CPUs not in any of the cpumasks will
7789 * not be load balanced. If the same cpumask appears both in the
7790 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7791 * it as it is.
7793 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7794 * ownership of it and will kfree it when done with it. If the caller
7795 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7796 * ndoms_new == 1, and partition_sched_domains() will fallback to
7797 * the single partition 'fallback_doms', it also forces the domains
7798 * to be rebuilt.
7800 * If doms_new == NULL it will be replaced with cpu_online_map.
7801 * ndoms_new == 0 is a special case for destroying existing domains,
7802 * and it will not create the default domain.
7804 * Call with hotplug lock held
7806 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7807 struct sched_domain_attr *dattr_new)
7809 int i, j, n;
7811 mutex_lock(&sched_domains_mutex);
7813 /* always unregister in case we don't destroy any domains */
7814 unregister_sched_domain_sysctl();
7816 n = doms_new ? ndoms_new : 0;
7818 /* Destroy deleted domains */
7819 for (i = 0; i < ndoms_cur; i++) {
7820 for (j = 0; j < n; j++) {
7821 if (cpus_equal(doms_cur[i], doms_new[j])
7822 && dattrs_equal(dattr_cur, i, dattr_new, j))
7823 goto match1;
7825 /* no match - a current sched domain not in new doms_new[] */
7826 detach_destroy_domains(doms_cur + i);
7827 match1:
7831 if (doms_new == NULL) {
7832 ndoms_cur = 0;
7833 doms_new = &fallback_doms;
7834 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7835 dattr_new = NULL;
7838 /* Build new domains */
7839 for (i = 0; i < ndoms_new; i++) {
7840 for (j = 0; j < ndoms_cur; j++) {
7841 if (cpus_equal(doms_new[i], doms_cur[j])
7842 && dattrs_equal(dattr_new, i, dattr_cur, j))
7843 goto match2;
7845 /* no match - add a new doms_new */
7846 __build_sched_domains(doms_new + i,
7847 dattr_new ? dattr_new + i : NULL);
7848 match2:
7852 /* Remember the new sched domains */
7853 if (doms_cur != &fallback_doms)
7854 kfree(doms_cur);
7855 kfree(dattr_cur); /* kfree(NULL) is safe */
7856 doms_cur = doms_new;
7857 dattr_cur = dattr_new;
7858 ndoms_cur = ndoms_new;
7860 register_sched_domain_sysctl();
7862 mutex_unlock(&sched_domains_mutex);
7865 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7866 int arch_reinit_sched_domains(void)
7868 get_online_cpus();
7870 /* Destroy domains first to force the rebuild */
7871 partition_sched_domains(0, NULL, NULL);
7873 rebuild_sched_domains();
7874 put_online_cpus();
7876 return 0;
7879 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7881 int ret;
7883 if (buf[0] != '0' && buf[0] != '1')
7884 return -EINVAL;
7886 if (smt)
7887 sched_smt_power_savings = (buf[0] == '1');
7888 else
7889 sched_mc_power_savings = (buf[0] == '1');
7891 ret = arch_reinit_sched_domains();
7893 return ret ? ret : count;
7896 #ifdef CONFIG_SCHED_MC
7897 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7898 char *page)
7900 return sprintf(page, "%u\n", sched_mc_power_savings);
7902 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7903 const char *buf, size_t count)
7905 return sched_power_savings_store(buf, count, 0);
7907 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7908 sched_mc_power_savings_show,
7909 sched_mc_power_savings_store);
7910 #endif
7912 #ifdef CONFIG_SCHED_SMT
7913 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7914 char *page)
7916 return sprintf(page, "%u\n", sched_smt_power_savings);
7918 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7919 const char *buf, size_t count)
7921 return sched_power_savings_store(buf, count, 1);
7923 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7924 sched_smt_power_savings_show,
7925 sched_smt_power_savings_store);
7926 #endif
7928 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7930 int err = 0;
7932 #ifdef CONFIG_SCHED_SMT
7933 if (smt_capable())
7934 err = sysfs_create_file(&cls->kset.kobj,
7935 &attr_sched_smt_power_savings.attr);
7936 #endif
7937 #ifdef CONFIG_SCHED_MC
7938 if (!err && mc_capable())
7939 err = sysfs_create_file(&cls->kset.kobj,
7940 &attr_sched_mc_power_savings.attr);
7941 #endif
7942 return err;
7944 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7946 #ifndef CONFIG_CPUSETS
7948 * Add online and remove offline CPUs from the scheduler domains.
7949 * When cpusets are enabled they take over this function.
7951 static int update_sched_domains(struct notifier_block *nfb,
7952 unsigned long action, void *hcpu)
7954 switch (action) {
7955 case CPU_ONLINE:
7956 case CPU_ONLINE_FROZEN:
7957 case CPU_DEAD:
7958 case CPU_DEAD_FROZEN:
7959 partition_sched_domains(1, NULL, NULL);
7960 return NOTIFY_OK;
7962 default:
7963 return NOTIFY_DONE;
7966 #endif
7968 static int update_runtime(struct notifier_block *nfb,
7969 unsigned long action, void *hcpu)
7971 int cpu = (int)(long)hcpu;
7973 switch (action) {
7974 case CPU_DOWN_PREPARE:
7975 case CPU_DOWN_PREPARE_FROZEN:
7976 disable_runtime(cpu_rq(cpu));
7977 return NOTIFY_OK;
7979 case CPU_DOWN_FAILED:
7980 case CPU_DOWN_FAILED_FROZEN:
7981 case CPU_ONLINE:
7982 case CPU_ONLINE_FROZEN:
7983 enable_runtime(cpu_rq(cpu));
7984 return NOTIFY_OK;
7986 default:
7987 return NOTIFY_DONE;
7991 void __init sched_init_smp(void)
7993 cpumask_t non_isolated_cpus;
7995 #if defined(CONFIG_NUMA)
7996 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7997 GFP_KERNEL);
7998 BUG_ON(sched_group_nodes_bycpu == NULL);
7999 #endif
8000 get_online_cpus();
8001 mutex_lock(&sched_domains_mutex);
8002 arch_init_sched_domains(&cpu_online_map);
8003 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8004 if (cpus_empty(non_isolated_cpus))
8005 cpu_set(smp_processor_id(), non_isolated_cpus);
8006 mutex_unlock(&sched_domains_mutex);
8007 put_online_cpus();
8009 #ifndef CONFIG_CPUSETS
8010 /* XXX: Theoretical race here - CPU may be hotplugged now */
8011 hotcpu_notifier(update_sched_domains, 0);
8012 #endif
8014 /* RT runtime code needs to handle some hotplug events */
8015 hotcpu_notifier(update_runtime, 0);
8017 init_hrtick();
8019 /* Move init over to a non-isolated CPU */
8020 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8021 BUG();
8022 sched_init_granularity();
8024 #else
8025 void __init sched_init_smp(void)
8027 sched_init_granularity();
8029 #endif /* CONFIG_SMP */
8031 int in_sched_functions(unsigned long addr)
8033 return in_lock_functions(addr) ||
8034 (addr >= (unsigned long)__sched_text_start
8035 && addr < (unsigned long)__sched_text_end);
8038 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8040 cfs_rq->tasks_timeline = RB_ROOT;
8041 INIT_LIST_HEAD(&cfs_rq->tasks);
8042 #ifdef CONFIG_FAIR_GROUP_SCHED
8043 cfs_rq->rq = rq;
8044 #endif
8045 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8048 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8050 struct rt_prio_array *array;
8051 int i;
8053 array = &rt_rq->active;
8054 for (i = 0; i < MAX_RT_PRIO; i++) {
8055 INIT_LIST_HEAD(array->queue + i);
8056 __clear_bit(i, array->bitmap);
8058 /* delimiter for bitsearch: */
8059 __set_bit(MAX_RT_PRIO, array->bitmap);
8061 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8062 rt_rq->highest_prio = MAX_RT_PRIO;
8063 #endif
8064 #ifdef CONFIG_SMP
8065 rt_rq->rt_nr_migratory = 0;
8066 rt_rq->overloaded = 0;
8067 #endif
8069 rt_rq->rt_time = 0;
8070 rt_rq->rt_throttled = 0;
8071 rt_rq->rt_runtime = 0;
8072 spin_lock_init(&rt_rq->rt_runtime_lock);
8074 #ifdef CONFIG_RT_GROUP_SCHED
8075 rt_rq->rt_nr_boosted = 0;
8076 rt_rq->rq = rq;
8077 #endif
8080 #ifdef CONFIG_FAIR_GROUP_SCHED
8081 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8082 struct sched_entity *se, int cpu, int add,
8083 struct sched_entity *parent)
8085 struct rq *rq = cpu_rq(cpu);
8086 tg->cfs_rq[cpu] = cfs_rq;
8087 init_cfs_rq(cfs_rq, rq);
8088 cfs_rq->tg = tg;
8089 if (add)
8090 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8092 tg->se[cpu] = se;
8093 /* se could be NULL for init_task_group */
8094 if (!se)
8095 return;
8097 if (!parent)
8098 se->cfs_rq = &rq->cfs;
8099 else
8100 se->cfs_rq = parent->my_q;
8102 se->my_q = cfs_rq;
8103 se->load.weight = tg->shares;
8104 se->load.inv_weight = 0;
8105 se->parent = parent;
8107 #endif
8109 #ifdef CONFIG_RT_GROUP_SCHED
8110 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8111 struct sched_rt_entity *rt_se, int cpu, int add,
8112 struct sched_rt_entity *parent)
8114 struct rq *rq = cpu_rq(cpu);
8116 tg->rt_rq[cpu] = rt_rq;
8117 init_rt_rq(rt_rq, rq);
8118 rt_rq->tg = tg;
8119 rt_rq->rt_se = rt_se;
8120 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8121 if (add)
8122 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8124 tg->rt_se[cpu] = rt_se;
8125 if (!rt_se)
8126 return;
8128 if (!parent)
8129 rt_se->rt_rq = &rq->rt;
8130 else
8131 rt_se->rt_rq = parent->my_q;
8133 rt_se->my_q = rt_rq;
8134 rt_se->parent = parent;
8135 INIT_LIST_HEAD(&rt_se->run_list);
8137 #endif
8139 void __init sched_init(void)
8141 int i, j;
8142 unsigned long alloc_size = 0, ptr;
8144 #ifdef CONFIG_FAIR_GROUP_SCHED
8145 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8146 #endif
8147 #ifdef CONFIG_RT_GROUP_SCHED
8148 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8149 #endif
8150 #ifdef CONFIG_USER_SCHED
8151 alloc_size *= 2;
8152 #endif
8154 * As sched_init() is called before page_alloc is setup,
8155 * we use alloc_bootmem().
8157 if (alloc_size) {
8158 ptr = (unsigned long)alloc_bootmem(alloc_size);
8160 #ifdef CONFIG_FAIR_GROUP_SCHED
8161 init_task_group.se = (struct sched_entity **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8164 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8165 ptr += nr_cpu_ids * sizeof(void **);
8167 #ifdef CONFIG_USER_SCHED
8168 root_task_group.se = (struct sched_entity **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
8171 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8172 ptr += nr_cpu_ids * sizeof(void **);
8173 #endif /* CONFIG_USER_SCHED */
8174 #endif /* CONFIG_FAIR_GROUP_SCHED */
8175 #ifdef CONFIG_RT_GROUP_SCHED
8176 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8177 ptr += nr_cpu_ids * sizeof(void **);
8179 init_task_group.rt_rq = (struct rt_rq **)ptr;
8180 ptr += nr_cpu_ids * sizeof(void **);
8182 #ifdef CONFIG_USER_SCHED
8183 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8184 ptr += nr_cpu_ids * sizeof(void **);
8186 root_task_group.rt_rq = (struct rt_rq **)ptr;
8187 ptr += nr_cpu_ids * sizeof(void **);
8188 #endif /* CONFIG_USER_SCHED */
8189 #endif /* CONFIG_RT_GROUP_SCHED */
8192 #ifdef CONFIG_SMP
8193 init_defrootdomain();
8194 #endif
8196 init_rt_bandwidth(&def_rt_bandwidth,
8197 global_rt_period(), global_rt_runtime());
8199 #ifdef CONFIG_RT_GROUP_SCHED
8200 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8201 global_rt_period(), global_rt_runtime());
8202 #ifdef CONFIG_USER_SCHED
8203 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8204 global_rt_period(), RUNTIME_INF);
8205 #endif /* CONFIG_USER_SCHED */
8206 #endif /* CONFIG_RT_GROUP_SCHED */
8208 #ifdef CONFIG_GROUP_SCHED
8209 list_add(&init_task_group.list, &task_groups);
8210 INIT_LIST_HEAD(&init_task_group.children);
8212 #ifdef CONFIG_USER_SCHED
8213 INIT_LIST_HEAD(&root_task_group.children);
8214 init_task_group.parent = &root_task_group;
8215 list_add(&init_task_group.siblings, &root_task_group.children);
8216 #endif /* CONFIG_USER_SCHED */
8217 #endif /* CONFIG_GROUP_SCHED */
8219 for_each_possible_cpu(i) {
8220 struct rq *rq;
8222 rq = cpu_rq(i);
8223 spin_lock_init(&rq->lock);
8224 rq->nr_running = 0;
8225 init_cfs_rq(&rq->cfs, rq);
8226 init_rt_rq(&rq->rt, rq);
8227 #ifdef CONFIG_FAIR_GROUP_SCHED
8228 init_task_group.shares = init_task_group_load;
8229 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8230 #ifdef CONFIG_CGROUP_SCHED
8232 * How much cpu bandwidth does init_task_group get?
8234 * In case of task-groups formed thr' the cgroup filesystem, it
8235 * gets 100% of the cpu resources in the system. This overall
8236 * system cpu resource is divided among the tasks of
8237 * init_task_group and its child task-groups in a fair manner,
8238 * based on each entity's (task or task-group's) weight
8239 * (se->load.weight).
8241 * In other words, if init_task_group has 10 tasks of weight
8242 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8243 * then A0's share of the cpu resource is:
8245 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8247 * We achieve this by letting init_task_group's tasks sit
8248 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8250 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8251 #elif defined CONFIG_USER_SCHED
8252 root_task_group.shares = NICE_0_LOAD;
8253 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8255 * In case of task-groups formed thr' the user id of tasks,
8256 * init_task_group represents tasks belonging to root user.
8257 * Hence it forms a sibling of all subsequent groups formed.
8258 * In this case, init_task_group gets only a fraction of overall
8259 * system cpu resource, based on the weight assigned to root
8260 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8261 * by letting tasks of init_task_group sit in a separate cfs_rq
8262 * (init_cfs_rq) and having one entity represent this group of
8263 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8265 init_tg_cfs_entry(&init_task_group,
8266 &per_cpu(init_cfs_rq, i),
8267 &per_cpu(init_sched_entity, i), i, 1,
8268 root_task_group.se[i]);
8270 #endif
8271 #endif /* CONFIG_FAIR_GROUP_SCHED */
8273 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8274 #ifdef CONFIG_RT_GROUP_SCHED
8275 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8276 #ifdef CONFIG_CGROUP_SCHED
8277 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8278 #elif defined CONFIG_USER_SCHED
8279 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8280 init_tg_rt_entry(&init_task_group,
8281 &per_cpu(init_rt_rq, i),
8282 &per_cpu(init_sched_rt_entity, i), i, 1,
8283 root_task_group.rt_se[i]);
8284 #endif
8285 #endif
8287 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8288 rq->cpu_load[j] = 0;
8289 #ifdef CONFIG_SMP
8290 rq->sd = NULL;
8291 rq->rd = NULL;
8292 rq->active_balance = 0;
8293 rq->next_balance = jiffies;
8294 rq->push_cpu = 0;
8295 rq->cpu = i;
8296 rq->online = 0;
8297 rq->migration_thread = NULL;
8298 INIT_LIST_HEAD(&rq->migration_queue);
8299 rq_attach_root(rq, &def_root_domain);
8300 #endif
8301 init_rq_hrtick(rq);
8302 atomic_set(&rq->nr_iowait, 0);
8305 set_load_weight(&init_task);
8307 #ifdef CONFIG_PREEMPT_NOTIFIERS
8308 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8309 #endif
8311 #ifdef CONFIG_SMP
8312 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8313 #endif
8315 #ifdef CONFIG_RT_MUTEXES
8316 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8317 #endif
8320 * The boot idle thread does lazy MMU switching as well:
8322 atomic_inc(&init_mm.mm_count);
8323 enter_lazy_tlb(&init_mm, current);
8326 * Make us the idle thread. Technically, schedule() should not be
8327 * called from this thread, however somewhere below it might be,
8328 * but because we are the idle thread, we just pick up running again
8329 * when this runqueue becomes "idle".
8331 init_idle(current, smp_processor_id());
8333 * During early bootup we pretend to be a normal task:
8335 current->sched_class = &fair_sched_class;
8337 scheduler_running = 1;
8340 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8341 void __might_sleep(char *file, int line)
8343 #ifdef in_atomic
8344 static unsigned long prev_jiffy; /* ratelimiting */
8346 if ((!in_atomic() && !irqs_disabled()) ||
8347 system_state != SYSTEM_RUNNING || oops_in_progress)
8348 return;
8349 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8350 return;
8351 prev_jiffy = jiffies;
8353 printk(KERN_ERR
8354 "BUG: sleeping function called from invalid context at %s:%d\n",
8355 file, line);
8356 printk(KERN_ERR
8357 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8358 in_atomic(), irqs_disabled(),
8359 current->pid, current->comm);
8361 debug_show_held_locks(current);
8362 if (irqs_disabled())
8363 print_irqtrace_events(current);
8364 dump_stack();
8365 #endif
8367 EXPORT_SYMBOL(__might_sleep);
8368 #endif
8370 #ifdef CONFIG_MAGIC_SYSRQ
8371 static void normalize_task(struct rq *rq, struct task_struct *p)
8373 int on_rq;
8375 update_rq_clock(rq);
8376 on_rq = p->se.on_rq;
8377 if (on_rq)
8378 deactivate_task(rq, p, 0);
8379 __setscheduler(rq, p, SCHED_NORMAL, 0);
8380 if (on_rq) {
8381 activate_task(rq, p, 0);
8382 resched_task(rq->curr);
8386 void normalize_rt_tasks(void)
8388 struct task_struct *g, *p;
8389 unsigned long flags;
8390 struct rq *rq;
8392 read_lock_irqsave(&tasklist_lock, flags);
8393 do_each_thread(g, p) {
8395 * Only normalize user tasks:
8397 if (!p->mm)
8398 continue;
8400 p->se.exec_start = 0;
8401 #ifdef CONFIG_SCHEDSTATS
8402 p->se.wait_start = 0;
8403 p->se.sleep_start = 0;
8404 p->se.block_start = 0;
8405 #endif
8407 if (!rt_task(p)) {
8409 * Renice negative nice level userspace
8410 * tasks back to 0:
8412 if (TASK_NICE(p) < 0 && p->mm)
8413 set_user_nice(p, 0);
8414 continue;
8417 spin_lock(&p->pi_lock);
8418 rq = __task_rq_lock(p);
8420 normalize_task(rq, p);
8422 __task_rq_unlock(rq);
8423 spin_unlock(&p->pi_lock);
8424 } while_each_thread(g, p);
8426 read_unlock_irqrestore(&tasklist_lock, flags);
8429 #endif /* CONFIG_MAGIC_SYSRQ */
8431 #ifdef CONFIG_IA64
8433 * These functions are only useful for the IA64 MCA handling.
8435 * They can only be called when the whole system has been
8436 * stopped - every CPU needs to be quiescent, and no scheduling
8437 * activity can take place. Using them for anything else would
8438 * be a serious bug, and as a result, they aren't even visible
8439 * under any other configuration.
8443 * curr_task - return the current task for a given cpu.
8444 * @cpu: the processor in question.
8446 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8448 struct task_struct *curr_task(int cpu)
8450 return cpu_curr(cpu);
8454 * set_curr_task - set the current task for a given cpu.
8455 * @cpu: the processor in question.
8456 * @p: the task pointer to set.
8458 * Description: This function must only be used when non-maskable interrupts
8459 * are serviced on a separate stack. It allows the architecture to switch the
8460 * notion of the current task on a cpu in a non-blocking manner. This function
8461 * must be called with all CPU's synchronized, and interrupts disabled, the
8462 * and caller must save the original value of the current task (see
8463 * curr_task() above) and restore that value before reenabling interrupts and
8464 * re-starting the system.
8466 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8468 void set_curr_task(int cpu, struct task_struct *p)
8470 cpu_curr(cpu) = p;
8473 #endif
8475 #ifdef CONFIG_FAIR_GROUP_SCHED
8476 static void free_fair_sched_group(struct task_group *tg)
8478 int i;
8480 for_each_possible_cpu(i) {
8481 if (tg->cfs_rq)
8482 kfree(tg->cfs_rq[i]);
8483 if (tg->se)
8484 kfree(tg->se[i]);
8487 kfree(tg->cfs_rq);
8488 kfree(tg->se);
8491 static
8492 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8494 struct cfs_rq *cfs_rq;
8495 struct sched_entity *se, *parent_se;
8496 struct rq *rq;
8497 int i;
8499 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8500 if (!tg->cfs_rq)
8501 goto err;
8502 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8503 if (!tg->se)
8504 goto err;
8506 tg->shares = NICE_0_LOAD;
8508 for_each_possible_cpu(i) {
8509 rq = cpu_rq(i);
8511 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8512 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8513 if (!cfs_rq)
8514 goto err;
8516 se = kmalloc_node(sizeof(struct sched_entity),
8517 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8518 if (!se)
8519 goto err;
8521 parent_se = parent ? parent->se[i] : NULL;
8522 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8525 return 1;
8527 err:
8528 return 0;
8531 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8533 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8534 &cpu_rq(cpu)->leaf_cfs_rq_list);
8537 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8539 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8541 #else /* !CONFG_FAIR_GROUP_SCHED */
8542 static inline void free_fair_sched_group(struct task_group *tg)
8546 static inline
8547 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8549 return 1;
8552 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8556 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8559 #endif /* CONFIG_FAIR_GROUP_SCHED */
8561 #ifdef CONFIG_RT_GROUP_SCHED
8562 static void free_rt_sched_group(struct task_group *tg)
8564 int i;
8566 destroy_rt_bandwidth(&tg->rt_bandwidth);
8568 for_each_possible_cpu(i) {
8569 if (tg->rt_rq)
8570 kfree(tg->rt_rq[i]);
8571 if (tg->rt_se)
8572 kfree(tg->rt_se[i]);
8575 kfree(tg->rt_rq);
8576 kfree(tg->rt_se);
8579 static
8580 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8582 struct rt_rq *rt_rq;
8583 struct sched_rt_entity *rt_se, *parent_se;
8584 struct rq *rq;
8585 int i;
8587 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8588 if (!tg->rt_rq)
8589 goto err;
8590 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8591 if (!tg->rt_se)
8592 goto err;
8594 init_rt_bandwidth(&tg->rt_bandwidth,
8595 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8597 for_each_possible_cpu(i) {
8598 rq = cpu_rq(i);
8600 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8601 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8602 if (!rt_rq)
8603 goto err;
8605 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8606 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8607 if (!rt_se)
8608 goto err;
8610 parent_se = parent ? parent->rt_se[i] : NULL;
8611 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8614 return 1;
8616 err:
8617 return 0;
8620 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8622 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8623 &cpu_rq(cpu)->leaf_rt_rq_list);
8626 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8628 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8630 #else /* !CONFIG_RT_GROUP_SCHED */
8631 static inline void free_rt_sched_group(struct task_group *tg)
8635 static inline
8636 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8638 return 1;
8641 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8645 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8648 #endif /* CONFIG_RT_GROUP_SCHED */
8650 #ifdef CONFIG_GROUP_SCHED
8651 static void free_sched_group(struct task_group *tg)
8653 free_fair_sched_group(tg);
8654 free_rt_sched_group(tg);
8655 kfree(tg);
8658 /* allocate runqueue etc for a new task group */
8659 struct task_group *sched_create_group(struct task_group *parent)
8661 struct task_group *tg;
8662 unsigned long flags;
8663 int i;
8665 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8666 if (!tg)
8667 return ERR_PTR(-ENOMEM);
8669 if (!alloc_fair_sched_group(tg, parent))
8670 goto err;
8672 if (!alloc_rt_sched_group(tg, parent))
8673 goto err;
8675 spin_lock_irqsave(&task_group_lock, flags);
8676 for_each_possible_cpu(i) {
8677 register_fair_sched_group(tg, i);
8678 register_rt_sched_group(tg, i);
8680 list_add_rcu(&tg->list, &task_groups);
8682 WARN_ON(!parent); /* root should already exist */
8684 tg->parent = parent;
8685 INIT_LIST_HEAD(&tg->children);
8686 list_add_rcu(&tg->siblings, &parent->children);
8687 spin_unlock_irqrestore(&task_group_lock, flags);
8689 return tg;
8691 err:
8692 free_sched_group(tg);
8693 return ERR_PTR(-ENOMEM);
8696 /* rcu callback to free various structures associated with a task group */
8697 static void free_sched_group_rcu(struct rcu_head *rhp)
8699 /* now it should be safe to free those cfs_rqs */
8700 free_sched_group(container_of(rhp, struct task_group, rcu));
8703 /* Destroy runqueue etc associated with a task group */
8704 void sched_destroy_group(struct task_group *tg)
8706 unsigned long flags;
8707 int i;
8709 spin_lock_irqsave(&task_group_lock, flags);
8710 for_each_possible_cpu(i) {
8711 unregister_fair_sched_group(tg, i);
8712 unregister_rt_sched_group(tg, i);
8714 list_del_rcu(&tg->list);
8715 list_del_rcu(&tg->siblings);
8716 spin_unlock_irqrestore(&task_group_lock, flags);
8718 /* wait for possible concurrent references to cfs_rqs complete */
8719 call_rcu(&tg->rcu, free_sched_group_rcu);
8722 /* change task's runqueue when it moves between groups.
8723 * The caller of this function should have put the task in its new group
8724 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8725 * reflect its new group.
8727 void sched_move_task(struct task_struct *tsk)
8729 int on_rq, running;
8730 unsigned long flags;
8731 struct rq *rq;
8733 rq = task_rq_lock(tsk, &flags);
8735 update_rq_clock(rq);
8737 running = task_current(rq, tsk);
8738 on_rq = tsk->se.on_rq;
8740 if (on_rq)
8741 dequeue_task(rq, tsk, 0);
8742 if (unlikely(running))
8743 tsk->sched_class->put_prev_task(rq, tsk);
8745 set_task_rq(tsk, task_cpu(tsk));
8747 #ifdef CONFIG_FAIR_GROUP_SCHED
8748 if (tsk->sched_class->moved_group)
8749 tsk->sched_class->moved_group(tsk);
8750 #endif
8752 if (unlikely(running))
8753 tsk->sched_class->set_curr_task(rq);
8754 if (on_rq)
8755 enqueue_task(rq, tsk, 0);
8757 task_rq_unlock(rq, &flags);
8759 #endif /* CONFIG_GROUP_SCHED */
8761 #ifdef CONFIG_FAIR_GROUP_SCHED
8762 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8764 struct cfs_rq *cfs_rq = se->cfs_rq;
8765 int on_rq;
8767 on_rq = se->on_rq;
8768 if (on_rq)
8769 dequeue_entity(cfs_rq, se, 0);
8771 se->load.weight = shares;
8772 se->load.inv_weight = 0;
8774 if (on_rq)
8775 enqueue_entity(cfs_rq, se, 0);
8778 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8780 struct cfs_rq *cfs_rq = se->cfs_rq;
8781 struct rq *rq = cfs_rq->rq;
8782 unsigned long flags;
8784 spin_lock_irqsave(&rq->lock, flags);
8785 __set_se_shares(se, shares);
8786 spin_unlock_irqrestore(&rq->lock, flags);
8789 static DEFINE_MUTEX(shares_mutex);
8791 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8793 int i;
8794 unsigned long flags;
8797 * We can't change the weight of the root cgroup.
8799 if (!tg->se[0])
8800 return -EINVAL;
8802 if (shares < MIN_SHARES)
8803 shares = MIN_SHARES;
8804 else if (shares > MAX_SHARES)
8805 shares = MAX_SHARES;
8807 mutex_lock(&shares_mutex);
8808 if (tg->shares == shares)
8809 goto done;
8811 spin_lock_irqsave(&task_group_lock, flags);
8812 for_each_possible_cpu(i)
8813 unregister_fair_sched_group(tg, i);
8814 list_del_rcu(&tg->siblings);
8815 spin_unlock_irqrestore(&task_group_lock, flags);
8817 /* wait for any ongoing reference to this group to finish */
8818 synchronize_sched();
8821 * Now we are free to modify the group's share on each cpu
8822 * w/o tripping rebalance_share or load_balance_fair.
8824 tg->shares = shares;
8825 for_each_possible_cpu(i) {
8827 * force a rebalance
8829 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8830 set_se_shares(tg->se[i], shares);
8834 * Enable load balance activity on this group, by inserting it back on
8835 * each cpu's rq->leaf_cfs_rq_list.
8837 spin_lock_irqsave(&task_group_lock, flags);
8838 for_each_possible_cpu(i)
8839 register_fair_sched_group(tg, i);
8840 list_add_rcu(&tg->siblings, &tg->parent->children);
8841 spin_unlock_irqrestore(&task_group_lock, flags);
8842 done:
8843 mutex_unlock(&shares_mutex);
8844 return 0;
8847 unsigned long sched_group_shares(struct task_group *tg)
8849 return tg->shares;
8851 #endif
8853 #ifdef CONFIG_RT_GROUP_SCHED
8855 * Ensure that the real time constraints are schedulable.
8857 static DEFINE_MUTEX(rt_constraints_mutex);
8859 static unsigned long to_ratio(u64 period, u64 runtime)
8861 if (runtime == RUNTIME_INF)
8862 return 1ULL << 20;
8864 return div64_u64(runtime << 20, period);
8867 /* Must be called with tasklist_lock held */
8868 static inline int tg_has_rt_tasks(struct task_group *tg)
8870 struct task_struct *g, *p;
8872 do_each_thread(g, p) {
8873 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8874 return 1;
8875 } while_each_thread(g, p);
8877 return 0;
8880 struct rt_schedulable_data {
8881 struct task_group *tg;
8882 u64 rt_period;
8883 u64 rt_runtime;
8886 static int tg_schedulable(struct task_group *tg, void *data)
8888 struct rt_schedulable_data *d = data;
8889 struct task_group *child;
8890 unsigned long total, sum = 0;
8891 u64 period, runtime;
8893 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8894 runtime = tg->rt_bandwidth.rt_runtime;
8896 if (tg == d->tg) {
8897 period = d->rt_period;
8898 runtime = d->rt_runtime;
8902 * Cannot have more runtime than the period.
8904 if (runtime > period && runtime != RUNTIME_INF)
8905 return -EINVAL;
8908 * Ensure we don't starve existing RT tasks.
8910 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8911 return -EBUSY;
8913 total = to_ratio(period, runtime);
8916 * Nobody can have more than the global setting allows.
8918 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8919 return -EINVAL;
8922 * The sum of our children's runtime should not exceed our own.
8924 list_for_each_entry_rcu(child, &tg->children, siblings) {
8925 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8926 runtime = child->rt_bandwidth.rt_runtime;
8928 if (child == d->tg) {
8929 period = d->rt_period;
8930 runtime = d->rt_runtime;
8933 sum += to_ratio(period, runtime);
8936 if (sum > total)
8937 return -EINVAL;
8939 return 0;
8942 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8944 struct rt_schedulable_data data = {
8945 .tg = tg,
8946 .rt_period = period,
8947 .rt_runtime = runtime,
8950 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8953 static int tg_set_bandwidth(struct task_group *tg,
8954 u64 rt_period, u64 rt_runtime)
8956 int i, err = 0;
8958 mutex_lock(&rt_constraints_mutex);
8959 read_lock(&tasklist_lock);
8960 err = __rt_schedulable(tg, rt_period, rt_runtime);
8961 if (err)
8962 goto unlock;
8964 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8965 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8966 tg->rt_bandwidth.rt_runtime = rt_runtime;
8968 for_each_possible_cpu(i) {
8969 struct rt_rq *rt_rq = tg->rt_rq[i];
8971 spin_lock(&rt_rq->rt_runtime_lock);
8972 rt_rq->rt_runtime = rt_runtime;
8973 spin_unlock(&rt_rq->rt_runtime_lock);
8975 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8976 unlock:
8977 read_unlock(&tasklist_lock);
8978 mutex_unlock(&rt_constraints_mutex);
8980 return err;
8983 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8985 u64 rt_runtime, rt_period;
8987 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8988 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8989 if (rt_runtime_us < 0)
8990 rt_runtime = RUNTIME_INF;
8992 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8995 long sched_group_rt_runtime(struct task_group *tg)
8997 u64 rt_runtime_us;
8999 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9000 return -1;
9002 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9003 do_div(rt_runtime_us, NSEC_PER_USEC);
9004 return rt_runtime_us;
9007 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9009 u64 rt_runtime, rt_period;
9011 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9012 rt_runtime = tg->rt_bandwidth.rt_runtime;
9014 if (rt_period == 0)
9015 return -EINVAL;
9017 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9020 long sched_group_rt_period(struct task_group *tg)
9022 u64 rt_period_us;
9024 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9025 do_div(rt_period_us, NSEC_PER_USEC);
9026 return rt_period_us;
9029 static int sched_rt_global_constraints(void)
9031 u64 runtime, period;
9032 int ret = 0;
9034 if (sysctl_sched_rt_period <= 0)
9035 return -EINVAL;
9037 runtime = global_rt_runtime();
9038 period = global_rt_period();
9041 * Sanity check on the sysctl variables.
9043 if (runtime > period && runtime != RUNTIME_INF)
9044 return -EINVAL;
9046 mutex_lock(&rt_constraints_mutex);
9047 read_lock(&tasklist_lock);
9048 ret = __rt_schedulable(NULL, 0, 0);
9049 read_unlock(&tasklist_lock);
9050 mutex_unlock(&rt_constraints_mutex);
9052 return ret;
9054 #else /* !CONFIG_RT_GROUP_SCHED */
9055 static int sched_rt_global_constraints(void)
9057 unsigned long flags;
9058 int i;
9060 if (sysctl_sched_rt_period <= 0)
9061 return -EINVAL;
9063 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9064 for_each_possible_cpu(i) {
9065 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9067 spin_lock(&rt_rq->rt_runtime_lock);
9068 rt_rq->rt_runtime = global_rt_runtime();
9069 spin_unlock(&rt_rq->rt_runtime_lock);
9071 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9073 return 0;
9075 #endif /* CONFIG_RT_GROUP_SCHED */
9077 int sched_rt_handler(struct ctl_table *table, int write,
9078 struct file *filp, void __user *buffer, size_t *lenp,
9079 loff_t *ppos)
9081 int ret;
9082 int old_period, old_runtime;
9083 static DEFINE_MUTEX(mutex);
9085 mutex_lock(&mutex);
9086 old_period = sysctl_sched_rt_period;
9087 old_runtime = sysctl_sched_rt_runtime;
9089 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9091 if (!ret && write) {
9092 ret = sched_rt_global_constraints();
9093 if (ret) {
9094 sysctl_sched_rt_period = old_period;
9095 sysctl_sched_rt_runtime = old_runtime;
9096 } else {
9097 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9098 def_rt_bandwidth.rt_period =
9099 ns_to_ktime(global_rt_period());
9102 mutex_unlock(&mutex);
9104 return ret;
9107 #ifdef CONFIG_CGROUP_SCHED
9109 /* return corresponding task_group object of a cgroup */
9110 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9112 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9113 struct task_group, css);
9116 static struct cgroup_subsys_state *
9117 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9119 struct task_group *tg, *parent;
9121 if (!cgrp->parent) {
9122 /* This is early initialization for the top cgroup */
9123 return &init_task_group.css;
9126 parent = cgroup_tg(cgrp->parent);
9127 tg = sched_create_group(parent);
9128 if (IS_ERR(tg))
9129 return ERR_PTR(-ENOMEM);
9131 return &tg->css;
9134 static void
9135 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9137 struct task_group *tg = cgroup_tg(cgrp);
9139 sched_destroy_group(tg);
9142 static int
9143 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9144 struct task_struct *tsk)
9146 #ifdef CONFIG_RT_GROUP_SCHED
9147 /* Don't accept realtime tasks when there is no way for them to run */
9148 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9149 return -EINVAL;
9150 #else
9151 /* We don't support RT-tasks being in separate groups */
9152 if (tsk->sched_class != &fair_sched_class)
9153 return -EINVAL;
9154 #endif
9156 return 0;
9159 static void
9160 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9161 struct cgroup *old_cont, struct task_struct *tsk)
9163 sched_move_task(tsk);
9166 #ifdef CONFIG_FAIR_GROUP_SCHED
9167 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9168 u64 shareval)
9170 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9173 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9175 struct task_group *tg = cgroup_tg(cgrp);
9177 return (u64) tg->shares;
9179 #endif /* CONFIG_FAIR_GROUP_SCHED */
9181 #ifdef CONFIG_RT_GROUP_SCHED
9182 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9183 s64 val)
9185 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9188 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9190 return sched_group_rt_runtime(cgroup_tg(cgrp));
9193 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9194 u64 rt_period_us)
9196 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9199 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9201 return sched_group_rt_period(cgroup_tg(cgrp));
9203 #endif /* CONFIG_RT_GROUP_SCHED */
9205 static struct cftype cpu_files[] = {
9206 #ifdef CONFIG_FAIR_GROUP_SCHED
9208 .name = "shares",
9209 .read_u64 = cpu_shares_read_u64,
9210 .write_u64 = cpu_shares_write_u64,
9212 #endif
9213 #ifdef CONFIG_RT_GROUP_SCHED
9215 .name = "rt_runtime_us",
9216 .read_s64 = cpu_rt_runtime_read,
9217 .write_s64 = cpu_rt_runtime_write,
9220 .name = "rt_period_us",
9221 .read_u64 = cpu_rt_period_read_uint,
9222 .write_u64 = cpu_rt_period_write_uint,
9224 #endif
9227 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9229 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9232 struct cgroup_subsys cpu_cgroup_subsys = {
9233 .name = "cpu",
9234 .create = cpu_cgroup_create,
9235 .destroy = cpu_cgroup_destroy,
9236 .can_attach = cpu_cgroup_can_attach,
9237 .attach = cpu_cgroup_attach,
9238 .populate = cpu_cgroup_populate,
9239 .subsys_id = cpu_cgroup_subsys_id,
9240 .early_init = 1,
9243 #endif /* CONFIG_CGROUP_SCHED */
9245 #ifdef CONFIG_CGROUP_CPUACCT
9248 * CPU accounting code for task groups.
9250 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9251 * (balbir@in.ibm.com).
9254 /* track cpu usage of a group of tasks */
9255 struct cpuacct {
9256 struct cgroup_subsys_state css;
9257 /* cpuusage holds pointer to a u64-type object on every cpu */
9258 u64 *cpuusage;
9261 struct cgroup_subsys cpuacct_subsys;
9263 /* return cpu accounting group corresponding to this container */
9264 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9266 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9267 struct cpuacct, css);
9270 /* return cpu accounting group to which this task belongs */
9271 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9273 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9274 struct cpuacct, css);
9277 /* create a new cpu accounting group */
9278 static struct cgroup_subsys_state *cpuacct_create(
9279 struct cgroup_subsys *ss, struct cgroup *cgrp)
9281 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9283 if (!ca)
9284 return ERR_PTR(-ENOMEM);
9286 ca->cpuusage = alloc_percpu(u64);
9287 if (!ca->cpuusage) {
9288 kfree(ca);
9289 return ERR_PTR(-ENOMEM);
9292 return &ca->css;
9295 /* destroy an existing cpu accounting group */
9296 static void
9297 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9299 struct cpuacct *ca = cgroup_ca(cgrp);
9301 free_percpu(ca->cpuusage);
9302 kfree(ca);
9305 /* return total cpu usage (in nanoseconds) of a group */
9306 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9308 struct cpuacct *ca = cgroup_ca(cgrp);
9309 u64 totalcpuusage = 0;
9310 int i;
9312 for_each_possible_cpu(i) {
9313 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9316 * Take rq->lock to make 64-bit addition safe on 32-bit
9317 * platforms.
9319 spin_lock_irq(&cpu_rq(i)->lock);
9320 totalcpuusage += *cpuusage;
9321 spin_unlock_irq(&cpu_rq(i)->lock);
9324 return totalcpuusage;
9327 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9328 u64 reset)
9330 struct cpuacct *ca = cgroup_ca(cgrp);
9331 int err = 0;
9332 int i;
9334 if (reset) {
9335 err = -EINVAL;
9336 goto out;
9339 for_each_possible_cpu(i) {
9340 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9342 spin_lock_irq(&cpu_rq(i)->lock);
9343 *cpuusage = 0;
9344 spin_unlock_irq(&cpu_rq(i)->lock);
9346 out:
9347 return err;
9350 static struct cftype files[] = {
9352 .name = "usage",
9353 .read_u64 = cpuusage_read,
9354 .write_u64 = cpuusage_write,
9358 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9360 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9364 * charge this task's execution time to its accounting group.
9366 * called with rq->lock held.
9368 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9370 struct cpuacct *ca;
9372 if (!cpuacct_subsys.active)
9373 return;
9375 ca = task_ca(tsk);
9376 if (ca) {
9377 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9379 *cpuusage += cputime;
9383 struct cgroup_subsys cpuacct_subsys = {
9384 .name = "cpuacct",
9385 .create = cpuacct_create,
9386 .destroy = cpuacct_destroy,
9387 .populate = cpuacct_populate,
9388 .subsys_id = cpuacct_subsys_id,
9390 #endif /* CONFIG_CGROUP_CPUACCT */