Linux 2.6.28-rc8
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob2d8be7ebb0f73499f894a1828fd827f0217290f1
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <trace/sched.h>
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
56 static void exit_mm(struct task_struct * tsk);
58 static inline int task_detached(struct task_struct *p)
60 return p->exit_signal == -1;
63 static void __unhash_process(struct task_struct *p)
65 nr_threads--;
66 detach_pid(p, PIDTYPE_PID);
67 if (thread_group_leader(p)) {
68 detach_pid(p, PIDTYPE_PGID);
69 detach_pid(p, PIDTYPE_SID);
71 list_del_rcu(&p->tasks);
72 __get_cpu_var(process_counts)--;
74 list_del_rcu(&p->thread_group);
75 list_del_init(&p->sibling);
79 * This function expects the tasklist_lock write-locked.
81 static void __exit_signal(struct task_struct *tsk)
83 struct signal_struct *sig = tsk->signal;
84 struct sighand_struct *sighand;
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
97 * If there is any task waiting for the group exit
98 * then notify it:
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116 sig->min_flt += tsk->min_flt;
117 sig->maj_flt += tsk->maj_flt;
118 sig->nvcsw += tsk->nvcsw;
119 sig->nivcsw += tsk->nivcsw;
120 sig->inblock += task_io_get_inblock(tsk);
121 sig->oublock += task_io_get_oublock(tsk);
122 task_io_accounting_add(&sig->ioac, &tsk->ioac);
123 sig = NULL; /* Marker for below. */
126 __unhash_process(tsk);
129 * Do this under ->siglock, we can race with another thread
130 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 flush_sigqueue(&tsk->pending);
134 tsk->signal = NULL;
135 tsk->sighand = NULL;
136 spin_unlock(&sighand->siglock);
138 __cleanup_sighand(sighand);
139 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140 if (sig) {
141 flush_sigqueue(&sig->shared_pending);
142 taskstats_tgid_free(sig);
144 * Make sure ->signal can't go away under rq->lock,
145 * see account_group_exec_runtime().
147 task_rq_unlock_wait(tsk);
148 __cleanup_signal(sig);
152 static void delayed_put_task_struct(struct rcu_head *rhp)
154 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
156 trace_sched_process_free(tsk);
157 put_task_struct(tsk);
161 void release_task(struct task_struct * p)
163 struct task_struct *leader;
164 int zap_leader;
165 repeat:
166 tracehook_prepare_release_task(p);
167 atomic_dec(&p->user->processes);
168 proc_flush_task(p);
169 write_lock_irq(&tasklist_lock);
170 tracehook_finish_release_task(p);
171 __exit_signal(p);
174 * If we are the last non-leader member of the thread
175 * group, and the leader is zombie, then notify the
176 * group leader's parent process. (if it wants notification.)
178 zap_leader = 0;
179 leader = p->group_leader;
180 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
181 BUG_ON(task_detached(leader));
182 do_notify_parent(leader, leader->exit_signal);
184 * If we were the last child thread and the leader has
185 * exited already, and the leader's parent ignores SIGCHLD,
186 * then we are the one who should release the leader.
188 * do_notify_parent() will have marked it self-reaping in
189 * that case.
191 zap_leader = task_detached(leader);
194 * This maintains the invariant that release_task()
195 * only runs on a task in EXIT_DEAD, just for sanity.
197 if (zap_leader)
198 leader->exit_state = EXIT_DEAD;
201 write_unlock_irq(&tasklist_lock);
202 release_thread(p);
203 call_rcu(&p->rcu, delayed_put_task_struct);
205 p = leader;
206 if (unlikely(zap_leader))
207 goto repeat;
211 * This checks not only the pgrp, but falls back on the pid if no
212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
213 * without this...
215 * The caller must hold rcu lock or the tasklist lock.
217 struct pid *session_of_pgrp(struct pid *pgrp)
219 struct task_struct *p;
220 struct pid *sid = NULL;
222 p = pid_task(pgrp, PIDTYPE_PGID);
223 if (p == NULL)
224 p = pid_task(pgrp, PIDTYPE_PID);
225 if (p != NULL)
226 sid = task_session(p);
228 return sid;
232 * Determine if a process group is "orphaned", according to the POSIX
233 * definition in 2.2.2.52. Orphaned process groups are not to be affected
234 * by terminal-generated stop signals. Newly orphaned process groups are
235 * to receive a SIGHUP and a SIGCONT.
237 * "I ask you, have you ever known what it is to be an orphan?"
239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
241 struct task_struct *p;
243 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
244 if ((p == ignored_task) ||
245 (p->exit_state && thread_group_empty(p)) ||
246 is_global_init(p->real_parent))
247 continue;
249 if (task_pgrp(p->real_parent) != pgrp &&
250 task_session(p->real_parent) == task_session(p))
251 return 0;
252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 return 1;
257 int is_current_pgrp_orphaned(void)
259 int retval;
261 read_lock(&tasklist_lock);
262 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
263 read_unlock(&tasklist_lock);
265 return retval;
268 static int has_stopped_jobs(struct pid *pgrp)
270 int retval = 0;
271 struct task_struct *p;
273 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 if (!task_is_stopped(p))
275 continue;
276 retval = 1;
277 break;
278 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
279 return retval;
283 * Check to see if any process groups have become orphaned as
284 * a result of our exiting, and if they have any stopped jobs,
285 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
287 static void
288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
290 struct pid *pgrp = task_pgrp(tsk);
291 struct task_struct *ignored_task = tsk;
293 if (!parent)
294 /* exit: our father is in a different pgrp than
295 * we are and we were the only connection outside.
297 parent = tsk->real_parent;
298 else
299 /* reparent: our child is in a different pgrp than
300 * we are, and it was the only connection outside.
302 ignored_task = NULL;
304 if (task_pgrp(parent) != pgrp &&
305 task_session(parent) == task_session(tsk) &&
306 will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 has_stopped_jobs(pgrp)) {
308 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
314 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
316 * If a kernel thread is launched as a result of a system call, or if
317 * it ever exits, it should generally reparent itself to kthreadd so it
318 * isn't in the way of other processes and is correctly cleaned up on exit.
320 * The various task state such as scheduling policy and priority may have
321 * been inherited from a user process, so we reset them to sane values here.
323 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
325 static void reparent_to_kthreadd(void)
327 write_lock_irq(&tasklist_lock);
329 ptrace_unlink(current);
330 /* Reparent to init */
331 current->real_parent = current->parent = kthreadd_task;
332 list_move_tail(&current->sibling, &current->real_parent->children);
334 /* Set the exit signal to SIGCHLD so we signal init on exit */
335 current->exit_signal = SIGCHLD;
337 if (task_nice(current) < 0)
338 set_user_nice(current, 0);
339 /* cpus_allowed? */
340 /* rt_priority? */
341 /* signals? */
342 security_task_reparent_to_init(current);
343 memcpy(current->signal->rlim, init_task.signal->rlim,
344 sizeof(current->signal->rlim));
345 atomic_inc(&(INIT_USER->__count));
346 write_unlock_irq(&tasklist_lock);
347 switch_uid(INIT_USER);
350 void __set_special_pids(struct pid *pid)
352 struct task_struct *curr = current->group_leader;
353 pid_t nr = pid_nr(pid);
355 if (task_session(curr) != pid) {
356 change_pid(curr, PIDTYPE_SID, pid);
357 set_task_session(curr, nr);
359 if (task_pgrp(curr) != pid) {
360 change_pid(curr, PIDTYPE_PGID, pid);
361 set_task_pgrp(curr, nr);
365 static void set_special_pids(struct pid *pid)
367 write_lock_irq(&tasklist_lock);
368 __set_special_pids(pid);
369 write_unlock_irq(&tasklist_lock);
373 * Let kernel threads use this to say that they
374 * allow a certain signal (since daemonize() will
375 * have disabled all of them by default).
377 int allow_signal(int sig)
379 if (!valid_signal(sig) || sig < 1)
380 return -EINVAL;
382 spin_lock_irq(&current->sighand->siglock);
383 sigdelset(&current->blocked, sig);
384 if (!current->mm) {
385 /* Kernel threads handle their own signals.
386 Let the signal code know it'll be handled, so
387 that they don't get converted to SIGKILL or
388 just silently dropped */
389 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
391 recalc_sigpending();
392 spin_unlock_irq(&current->sighand->siglock);
393 return 0;
396 EXPORT_SYMBOL(allow_signal);
398 int disallow_signal(int sig)
400 if (!valid_signal(sig) || sig < 1)
401 return -EINVAL;
403 spin_lock_irq(&current->sighand->siglock);
404 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
405 recalc_sigpending();
406 spin_unlock_irq(&current->sighand->siglock);
407 return 0;
410 EXPORT_SYMBOL(disallow_signal);
413 * Put all the gunge required to become a kernel thread without
414 * attached user resources in one place where it belongs.
417 void daemonize(const char *name, ...)
419 va_list args;
420 struct fs_struct *fs;
421 sigset_t blocked;
423 va_start(args, name);
424 vsnprintf(current->comm, sizeof(current->comm), name, args);
425 va_end(args);
428 * If we were started as result of loading a module, close all of the
429 * user space pages. We don't need them, and if we didn't close them
430 * they would be locked into memory.
432 exit_mm(current);
434 * We don't want to have TIF_FREEZE set if the system-wide hibernation
435 * or suspend transition begins right now.
437 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
439 if (current->nsproxy != &init_nsproxy) {
440 get_nsproxy(&init_nsproxy);
441 switch_task_namespaces(current, &init_nsproxy);
443 set_special_pids(&init_struct_pid);
444 proc_clear_tty(current);
446 /* Block and flush all signals */
447 sigfillset(&blocked);
448 sigprocmask(SIG_BLOCK, &blocked, NULL);
449 flush_signals(current);
451 /* Become as one with the init task */
453 exit_fs(current); /* current->fs->count--; */
454 fs = init_task.fs;
455 current->fs = fs;
456 atomic_inc(&fs->count);
458 exit_files(current);
459 current->files = init_task.files;
460 atomic_inc(&current->files->count);
462 reparent_to_kthreadd();
465 EXPORT_SYMBOL(daemonize);
467 static void close_files(struct files_struct * files)
469 int i, j;
470 struct fdtable *fdt;
472 j = 0;
475 * It is safe to dereference the fd table without RCU or
476 * ->file_lock because this is the last reference to the
477 * files structure.
479 fdt = files_fdtable(files);
480 for (;;) {
481 unsigned long set;
482 i = j * __NFDBITS;
483 if (i >= fdt->max_fds)
484 break;
485 set = fdt->open_fds->fds_bits[j++];
486 while (set) {
487 if (set & 1) {
488 struct file * file = xchg(&fdt->fd[i], NULL);
489 if (file) {
490 filp_close(file, files);
491 cond_resched();
494 i++;
495 set >>= 1;
500 struct files_struct *get_files_struct(struct task_struct *task)
502 struct files_struct *files;
504 task_lock(task);
505 files = task->files;
506 if (files)
507 atomic_inc(&files->count);
508 task_unlock(task);
510 return files;
513 void put_files_struct(struct files_struct *files)
515 struct fdtable *fdt;
517 if (atomic_dec_and_test(&files->count)) {
518 close_files(files);
520 * Free the fd and fdset arrays if we expanded them.
521 * If the fdtable was embedded, pass files for freeing
522 * at the end of the RCU grace period. Otherwise,
523 * you can free files immediately.
525 fdt = files_fdtable(files);
526 if (fdt != &files->fdtab)
527 kmem_cache_free(files_cachep, files);
528 free_fdtable(fdt);
532 void reset_files_struct(struct files_struct *files)
534 struct task_struct *tsk = current;
535 struct files_struct *old;
537 old = tsk->files;
538 task_lock(tsk);
539 tsk->files = files;
540 task_unlock(tsk);
541 put_files_struct(old);
544 void exit_files(struct task_struct *tsk)
546 struct files_struct * files = tsk->files;
548 if (files) {
549 task_lock(tsk);
550 tsk->files = NULL;
551 task_unlock(tsk);
552 put_files_struct(files);
556 void put_fs_struct(struct fs_struct *fs)
558 /* No need to hold fs->lock if we are killing it */
559 if (atomic_dec_and_test(&fs->count)) {
560 path_put(&fs->root);
561 path_put(&fs->pwd);
562 kmem_cache_free(fs_cachep, fs);
566 void exit_fs(struct task_struct *tsk)
568 struct fs_struct * fs = tsk->fs;
570 if (fs) {
571 task_lock(tsk);
572 tsk->fs = NULL;
573 task_unlock(tsk);
574 put_fs_struct(fs);
578 EXPORT_SYMBOL_GPL(exit_fs);
580 #ifdef CONFIG_MM_OWNER
582 * Task p is exiting and it owned mm, lets find a new owner for it
584 static inline int
585 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
588 * If there are other users of the mm and the owner (us) is exiting
589 * we need to find a new owner to take on the responsibility.
591 if (atomic_read(&mm->mm_users) <= 1)
592 return 0;
593 if (mm->owner != p)
594 return 0;
595 return 1;
598 void mm_update_next_owner(struct mm_struct *mm)
600 struct task_struct *c, *g, *p = current;
602 retry:
603 if (!mm_need_new_owner(mm, p))
604 return;
606 read_lock(&tasklist_lock);
608 * Search in the children
610 list_for_each_entry(c, &p->children, sibling) {
611 if (c->mm == mm)
612 goto assign_new_owner;
616 * Search in the siblings
618 list_for_each_entry(c, &p->parent->children, sibling) {
619 if (c->mm == mm)
620 goto assign_new_owner;
624 * Search through everything else. We should not get
625 * here often
627 do_each_thread(g, c) {
628 if (c->mm == mm)
629 goto assign_new_owner;
630 } while_each_thread(g, c);
632 read_unlock(&tasklist_lock);
634 * We found no owner yet mm_users > 1: this implies that we are
635 * most likely racing with swapoff (try_to_unuse()) or /proc or
636 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
637 * so that subsystems can understand the callback and take action.
639 down_write(&mm->mmap_sem);
640 cgroup_mm_owner_callbacks(mm->owner, NULL);
641 mm->owner = NULL;
642 up_write(&mm->mmap_sem);
643 return;
645 assign_new_owner:
646 BUG_ON(c == p);
647 get_task_struct(c);
648 read_unlock(&tasklist_lock);
649 down_write(&mm->mmap_sem);
651 * The task_lock protects c->mm from changing.
652 * We always want mm->owner->mm == mm
654 task_lock(c);
655 if (c->mm != mm) {
656 task_unlock(c);
657 up_write(&mm->mmap_sem);
658 put_task_struct(c);
659 goto retry;
661 cgroup_mm_owner_callbacks(mm->owner, c);
662 mm->owner = c;
663 task_unlock(c);
664 up_write(&mm->mmap_sem);
665 put_task_struct(c);
667 #endif /* CONFIG_MM_OWNER */
670 * Turn us into a lazy TLB process if we
671 * aren't already..
673 static void exit_mm(struct task_struct * tsk)
675 struct mm_struct *mm = tsk->mm;
676 struct core_state *core_state;
678 mm_release(tsk, mm);
679 if (!mm)
680 return;
682 * Serialize with any possible pending coredump.
683 * We must hold mmap_sem around checking core_state
684 * and clearing tsk->mm. The core-inducing thread
685 * will increment ->nr_threads for each thread in the
686 * group with ->mm != NULL.
688 down_read(&mm->mmap_sem);
689 core_state = mm->core_state;
690 if (core_state) {
691 struct core_thread self;
692 up_read(&mm->mmap_sem);
694 self.task = tsk;
695 self.next = xchg(&core_state->dumper.next, &self);
697 * Implies mb(), the result of xchg() must be visible
698 * to core_state->dumper.
700 if (atomic_dec_and_test(&core_state->nr_threads))
701 complete(&core_state->startup);
703 for (;;) {
704 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
705 if (!self.task) /* see coredump_finish() */
706 break;
707 schedule();
709 __set_task_state(tsk, TASK_RUNNING);
710 down_read(&mm->mmap_sem);
712 atomic_inc(&mm->mm_count);
713 BUG_ON(mm != tsk->active_mm);
714 /* more a memory barrier than a real lock */
715 task_lock(tsk);
716 tsk->mm = NULL;
717 up_read(&mm->mmap_sem);
718 enter_lazy_tlb(mm, current);
719 /* We don't want this task to be frozen prematurely */
720 clear_freeze_flag(tsk);
721 task_unlock(tsk);
722 mm_update_next_owner(mm);
723 mmput(mm);
727 * Return nonzero if @parent's children should reap themselves.
729 * Called with write_lock_irq(&tasklist_lock) held.
731 static int ignoring_children(struct task_struct *parent)
733 int ret;
734 struct sighand_struct *psig = parent->sighand;
735 unsigned long flags;
736 spin_lock_irqsave(&psig->siglock, flags);
737 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
738 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
739 spin_unlock_irqrestore(&psig->siglock, flags);
740 return ret;
744 * Detach all tasks we were using ptrace on.
745 * Any that need to be release_task'd are put on the @dead list.
747 * Called with write_lock(&tasklist_lock) held.
749 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
751 struct task_struct *p, *n;
752 int ign = -1;
754 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
755 __ptrace_unlink(p);
757 if (p->exit_state != EXIT_ZOMBIE)
758 continue;
761 * If it's a zombie, our attachedness prevented normal
762 * parent notification or self-reaping. Do notification
763 * now if it would have happened earlier. If it should
764 * reap itself, add it to the @dead list. We can't call
765 * release_task() here because we already hold tasklist_lock.
767 * If it's our own child, there is no notification to do.
768 * But if our normal children self-reap, then this child
769 * was prevented by ptrace and we must reap it now.
771 if (!task_detached(p) && thread_group_empty(p)) {
772 if (!same_thread_group(p->real_parent, parent))
773 do_notify_parent(p, p->exit_signal);
774 else {
775 if (ign < 0)
776 ign = ignoring_children(parent);
777 if (ign)
778 p->exit_signal = -1;
782 if (task_detached(p)) {
784 * Mark it as in the process of being reaped.
786 p->exit_state = EXIT_DEAD;
787 list_add(&p->ptrace_entry, dead);
793 * Finish up exit-time ptrace cleanup.
795 * Called without locks.
797 static void ptrace_exit_finish(struct task_struct *parent,
798 struct list_head *dead)
800 struct task_struct *p, *n;
802 BUG_ON(!list_empty(&parent->ptraced));
804 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
805 list_del_init(&p->ptrace_entry);
806 release_task(p);
810 static void reparent_thread(struct task_struct *p, struct task_struct *father)
812 if (p->pdeath_signal)
813 /* We already hold the tasklist_lock here. */
814 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
816 list_move_tail(&p->sibling, &p->real_parent->children);
818 /* If this is a threaded reparent there is no need to
819 * notify anyone anything has happened.
821 if (same_thread_group(p->real_parent, father))
822 return;
824 /* We don't want people slaying init. */
825 if (!task_detached(p))
826 p->exit_signal = SIGCHLD;
828 /* If we'd notified the old parent about this child's death,
829 * also notify the new parent.
831 if (!ptrace_reparented(p) &&
832 p->exit_state == EXIT_ZOMBIE &&
833 !task_detached(p) && thread_group_empty(p))
834 do_notify_parent(p, p->exit_signal);
836 kill_orphaned_pgrp(p, father);
840 * When we die, we re-parent all our children.
841 * Try to give them to another thread in our thread
842 * group, and if no such member exists, give it to
843 * the child reaper process (ie "init") in our pid
844 * space.
846 static struct task_struct *find_new_reaper(struct task_struct *father)
848 struct pid_namespace *pid_ns = task_active_pid_ns(father);
849 struct task_struct *thread;
851 thread = father;
852 while_each_thread(father, thread) {
853 if (thread->flags & PF_EXITING)
854 continue;
855 if (unlikely(pid_ns->child_reaper == father))
856 pid_ns->child_reaper = thread;
857 return thread;
860 if (unlikely(pid_ns->child_reaper == father)) {
861 write_unlock_irq(&tasklist_lock);
862 if (unlikely(pid_ns == &init_pid_ns))
863 panic("Attempted to kill init!");
865 zap_pid_ns_processes(pid_ns);
866 write_lock_irq(&tasklist_lock);
868 * We can not clear ->child_reaper or leave it alone.
869 * There may by stealth EXIT_DEAD tasks on ->children,
870 * forget_original_parent() must move them somewhere.
872 pid_ns->child_reaper = init_pid_ns.child_reaper;
875 return pid_ns->child_reaper;
878 static void forget_original_parent(struct task_struct *father)
880 struct task_struct *p, *n, *reaper;
881 LIST_HEAD(ptrace_dead);
883 write_lock_irq(&tasklist_lock);
884 reaper = find_new_reaper(father);
886 * First clean up ptrace if we were using it.
888 ptrace_exit(father, &ptrace_dead);
890 list_for_each_entry_safe(p, n, &father->children, sibling) {
891 p->real_parent = reaper;
892 if (p->parent == father) {
893 BUG_ON(p->ptrace);
894 p->parent = p->real_parent;
896 reparent_thread(p, father);
899 write_unlock_irq(&tasklist_lock);
900 BUG_ON(!list_empty(&father->children));
902 ptrace_exit_finish(father, &ptrace_dead);
906 * Send signals to all our closest relatives so that they know
907 * to properly mourn us..
909 static void exit_notify(struct task_struct *tsk, int group_dead)
911 int signal;
912 void *cookie;
915 * This does two things:
917 * A. Make init inherit all the child processes
918 * B. Check to see if any process groups have become orphaned
919 * as a result of our exiting, and if they have any stopped
920 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
922 forget_original_parent(tsk);
923 exit_task_namespaces(tsk);
925 write_lock_irq(&tasklist_lock);
926 if (group_dead)
927 kill_orphaned_pgrp(tsk->group_leader, NULL);
929 /* Let father know we died
931 * Thread signals are configurable, but you aren't going to use
932 * that to send signals to arbitary processes.
933 * That stops right now.
935 * If the parent exec id doesn't match the exec id we saved
936 * when we started then we know the parent has changed security
937 * domain.
939 * If our self_exec id doesn't match our parent_exec_id then
940 * we have changed execution domain as these two values started
941 * the same after a fork.
943 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
944 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
945 tsk->self_exec_id != tsk->parent_exec_id) &&
946 !capable(CAP_KILL))
947 tsk->exit_signal = SIGCHLD;
949 signal = tracehook_notify_death(tsk, &cookie, group_dead);
950 if (signal >= 0)
951 signal = do_notify_parent(tsk, signal);
953 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
955 /* mt-exec, de_thread() is waiting for us */
956 if (thread_group_leader(tsk) &&
957 tsk->signal->group_exit_task &&
958 tsk->signal->notify_count < 0)
959 wake_up_process(tsk->signal->group_exit_task);
961 write_unlock_irq(&tasklist_lock);
963 tracehook_report_death(tsk, signal, cookie, group_dead);
965 /* If the process is dead, release it - nobody will wait for it */
966 if (signal == DEATH_REAP)
967 release_task(tsk);
970 #ifdef CONFIG_DEBUG_STACK_USAGE
971 static void check_stack_usage(void)
973 static DEFINE_SPINLOCK(low_water_lock);
974 static int lowest_to_date = THREAD_SIZE;
975 unsigned long *n = end_of_stack(current);
976 unsigned long free;
978 while (*n == 0)
979 n++;
980 free = (unsigned long)n - (unsigned long)end_of_stack(current);
982 if (free >= lowest_to_date)
983 return;
985 spin_lock(&low_water_lock);
986 if (free < lowest_to_date) {
987 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
988 "left\n",
989 current->comm, free);
990 lowest_to_date = free;
992 spin_unlock(&low_water_lock);
994 #else
995 static inline void check_stack_usage(void) {}
996 #endif
998 NORET_TYPE void do_exit(long code)
1000 struct task_struct *tsk = current;
1001 int group_dead;
1003 profile_task_exit(tsk);
1005 WARN_ON(atomic_read(&tsk->fs_excl));
1007 if (unlikely(in_interrupt()))
1008 panic("Aiee, killing interrupt handler!");
1009 if (unlikely(!tsk->pid))
1010 panic("Attempted to kill the idle task!");
1012 tracehook_report_exit(&code);
1015 * We're taking recursive faults here in do_exit. Safest is to just
1016 * leave this task alone and wait for reboot.
1018 if (unlikely(tsk->flags & PF_EXITING)) {
1019 printk(KERN_ALERT
1020 "Fixing recursive fault but reboot is needed!\n");
1022 * We can do this unlocked here. The futex code uses
1023 * this flag just to verify whether the pi state
1024 * cleanup has been done or not. In the worst case it
1025 * loops once more. We pretend that the cleanup was
1026 * done as there is no way to return. Either the
1027 * OWNER_DIED bit is set by now or we push the blocked
1028 * task into the wait for ever nirwana as well.
1030 tsk->flags |= PF_EXITPIDONE;
1031 if (tsk->io_context)
1032 exit_io_context();
1033 set_current_state(TASK_UNINTERRUPTIBLE);
1034 schedule();
1037 exit_signals(tsk); /* sets PF_EXITING */
1039 * tsk->flags are checked in the futex code to protect against
1040 * an exiting task cleaning up the robust pi futexes.
1042 smp_mb();
1043 spin_unlock_wait(&tsk->pi_lock);
1045 if (unlikely(in_atomic()))
1046 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1047 current->comm, task_pid_nr(current),
1048 preempt_count());
1050 acct_update_integrals(tsk);
1051 if (tsk->mm) {
1052 update_hiwater_rss(tsk->mm);
1053 update_hiwater_vm(tsk->mm);
1055 group_dead = atomic_dec_and_test(&tsk->signal->live);
1056 if (group_dead) {
1057 hrtimer_cancel(&tsk->signal->real_timer);
1058 exit_itimers(tsk->signal);
1060 acct_collect(code, group_dead);
1061 if (group_dead)
1062 tty_audit_exit();
1063 if (unlikely(tsk->audit_context))
1064 audit_free(tsk);
1066 tsk->exit_code = code;
1067 taskstats_exit(tsk, group_dead);
1069 exit_mm(tsk);
1071 if (group_dead)
1072 acct_process();
1073 trace_sched_process_exit(tsk);
1075 exit_sem(tsk);
1076 exit_files(tsk);
1077 exit_fs(tsk);
1078 check_stack_usage();
1079 exit_thread();
1080 cgroup_exit(tsk, 1);
1081 exit_keys(tsk);
1083 if (group_dead && tsk->signal->leader)
1084 disassociate_ctty(1);
1086 module_put(task_thread_info(tsk)->exec_domain->module);
1087 if (tsk->binfmt)
1088 module_put(tsk->binfmt->module);
1090 proc_exit_connector(tsk);
1091 exit_notify(tsk, group_dead);
1092 #ifdef CONFIG_NUMA
1093 mpol_put(tsk->mempolicy);
1094 tsk->mempolicy = NULL;
1095 #endif
1096 #ifdef CONFIG_FUTEX
1098 * This must happen late, after the PID is not
1099 * hashed anymore:
1101 if (unlikely(!list_empty(&tsk->pi_state_list)))
1102 exit_pi_state_list(tsk);
1103 if (unlikely(current->pi_state_cache))
1104 kfree(current->pi_state_cache);
1105 #endif
1107 * Make sure we are holding no locks:
1109 debug_check_no_locks_held(tsk);
1111 * We can do this unlocked here. The futex code uses this flag
1112 * just to verify whether the pi state cleanup has been done
1113 * or not. In the worst case it loops once more.
1115 tsk->flags |= PF_EXITPIDONE;
1117 if (tsk->io_context)
1118 exit_io_context();
1120 if (tsk->splice_pipe)
1121 __free_pipe_info(tsk->splice_pipe);
1123 preempt_disable();
1124 /* causes final put_task_struct in finish_task_switch(). */
1125 tsk->state = TASK_DEAD;
1127 schedule();
1128 BUG();
1129 /* Avoid "noreturn function does return". */
1130 for (;;)
1131 cpu_relax(); /* For when BUG is null */
1134 EXPORT_SYMBOL_GPL(do_exit);
1136 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1138 if (comp)
1139 complete(comp);
1141 do_exit(code);
1144 EXPORT_SYMBOL(complete_and_exit);
1146 asmlinkage long sys_exit(int error_code)
1148 do_exit((error_code&0xff)<<8);
1152 * Take down every thread in the group. This is called by fatal signals
1153 * as well as by sys_exit_group (below).
1155 NORET_TYPE void
1156 do_group_exit(int exit_code)
1158 struct signal_struct *sig = current->signal;
1160 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1162 if (signal_group_exit(sig))
1163 exit_code = sig->group_exit_code;
1164 else if (!thread_group_empty(current)) {
1165 struct sighand_struct *const sighand = current->sighand;
1166 spin_lock_irq(&sighand->siglock);
1167 if (signal_group_exit(sig))
1168 /* Another thread got here before we took the lock. */
1169 exit_code = sig->group_exit_code;
1170 else {
1171 sig->group_exit_code = exit_code;
1172 sig->flags = SIGNAL_GROUP_EXIT;
1173 zap_other_threads(current);
1175 spin_unlock_irq(&sighand->siglock);
1178 do_exit(exit_code);
1179 /* NOTREACHED */
1183 * this kills every thread in the thread group. Note that any externally
1184 * wait4()-ing process will get the correct exit code - even if this
1185 * thread is not the thread group leader.
1187 asmlinkage void sys_exit_group(int error_code)
1189 do_group_exit((error_code & 0xff) << 8);
1192 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1194 struct pid *pid = NULL;
1195 if (type == PIDTYPE_PID)
1196 pid = task->pids[type].pid;
1197 else if (type < PIDTYPE_MAX)
1198 pid = task->group_leader->pids[type].pid;
1199 return pid;
1202 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1203 struct task_struct *p)
1205 int err;
1207 if (type < PIDTYPE_MAX) {
1208 if (task_pid_type(p, type) != pid)
1209 return 0;
1212 /* Wait for all children (clone and not) if __WALL is set;
1213 * otherwise, wait for clone children *only* if __WCLONE is
1214 * set; otherwise, wait for non-clone children *only*. (Note:
1215 * A "clone" child here is one that reports to its parent
1216 * using a signal other than SIGCHLD.) */
1217 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1218 && !(options & __WALL))
1219 return 0;
1221 err = security_task_wait(p);
1222 if (err)
1223 return err;
1225 return 1;
1228 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1229 int why, int status,
1230 struct siginfo __user *infop,
1231 struct rusage __user *rusagep)
1233 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1235 put_task_struct(p);
1236 if (!retval)
1237 retval = put_user(SIGCHLD, &infop->si_signo);
1238 if (!retval)
1239 retval = put_user(0, &infop->si_errno);
1240 if (!retval)
1241 retval = put_user((short)why, &infop->si_code);
1242 if (!retval)
1243 retval = put_user(pid, &infop->si_pid);
1244 if (!retval)
1245 retval = put_user(uid, &infop->si_uid);
1246 if (!retval)
1247 retval = put_user(status, &infop->si_status);
1248 if (!retval)
1249 retval = pid;
1250 return retval;
1254 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1255 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1256 * the lock and this task is uninteresting. If we return nonzero, we have
1257 * released the lock and the system call should return.
1259 static int wait_task_zombie(struct task_struct *p, int options,
1260 struct siginfo __user *infop,
1261 int __user *stat_addr, struct rusage __user *ru)
1263 unsigned long state;
1264 int retval, status, traced;
1265 pid_t pid = task_pid_vnr(p);
1267 if (!likely(options & WEXITED))
1268 return 0;
1270 if (unlikely(options & WNOWAIT)) {
1271 uid_t uid = p->uid;
1272 int exit_code = p->exit_code;
1273 int why, status;
1275 get_task_struct(p);
1276 read_unlock(&tasklist_lock);
1277 if ((exit_code & 0x7f) == 0) {
1278 why = CLD_EXITED;
1279 status = exit_code >> 8;
1280 } else {
1281 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1282 status = exit_code & 0x7f;
1284 return wait_noreap_copyout(p, pid, uid, why,
1285 status, infop, ru);
1289 * Try to move the task's state to DEAD
1290 * only one thread is allowed to do this:
1292 state = xchg(&p->exit_state, EXIT_DEAD);
1293 if (state != EXIT_ZOMBIE) {
1294 BUG_ON(state != EXIT_DEAD);
1295 return 0;
1298 traced = ptrace_reparented(p);
1300 if (likely(!traced)) {
1301 struct signal_struct *psig;
1302 struct signal_struct *sig;
1303 struct task_cputime cputime;
1306 * The resource counters for the group leader are in its
1307 * own task_struct. Those for dead threads in the group
1308 * are in its signal_struct, as are those for the child
1309 * processes it has previously reaped. All these
1310 * accumulate in the parent's signal_struct c* fields.
1312 * We don't bother to take a lock here to protect these
1313 * p->signal fields, because they are only touched by
1314 * __exit_signal, which runs with tasklist_lock
1315 * write-locked anyway, and so is excluded here. We do
1316 * need to protect the access to p->parent->signal fields,
1317 * as other threads in the parent group can be right
1318 * here reaping other children at the same time.
1320 * We use thread_group_cputime() to get times for the thread
1321 * group, which consolidates times for all threads in the
1322 * group including the group leader.
1324 spin_lock_irq(&p->parent->sighand->siglock);
1325 psig = p->parent->signal;
1326 sig = p->signal;
1327 thread_group_cputime(p, &cputime);
1328 psig->cutime =
1329 cputime_add(psig->cutime,
1330 cputime_add(cputime.utime,
1331 sig->cutime));
1332 psig->cstime =
1333 cputime_add(psig->cstime,
1334 cputime_add(cputime.stime,
1335 sig->cstime));
1336 psig->cgtime =
1337 cputime_add(psig->cgtime,
1338 cputime_add(p->gtime,
1339 cputime_add(sig->gtime,
1340 sig->cgtime)));
1341 psig->cmin_flt +=
1342 p->min_flt + sig->min_flt + sig->cmin_flt;
1343 psig->cmaj_flt +=
1344 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1345 psig->cnvcsw +=
1346 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1347 psig->cnivcsw +=
1348 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1349 psig->cinblock +=
1350 task_io_get_inblock(p) +
1351 sig->inblock + sig->cinblock;
1352 psig->coublock +=
1353 task_io_get_oublock(p) +
1354 sig->oublock + sig->coublock;
1355 task_io_accounting_add(&psig->ioac, &p->ioac);
1356 task_io_accounting_add(&psig->ioac, &sig->ioac);
1357 spin_unlock_irq(&p->parent->sighand->siglock);
1361 * Now we are sure this task is interesting, and no other
1362 * thread can reap it because we set its state to EXIT_DEAD.
1364 read_unlock(&tasklist_lock);
1366 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1367 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1368 ? p->signal->group_exit_code : p->exit_code;
1369 if (!retval && stat_addr)
1370 retval = put_user(status, stat_addr);
1371 if (!retval && infop)
1372 retval = put_user(SIGCHLD, &infop->si_signo);
1373 if (!retval && infop)
1374 retval = put_user(0, &infop->si_errno);
1375 if (!retval && infop) {
1376 int why;
1378 if ((status & 0x7f) == 0) {
1379 why = CLD_EXITED;
1380 status >>= 8;
1381 } else {
1382 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1383 status &= 0x7f;
1385 retval = put_user((short)why, &infop->si_code);
1386 if (!retval)
1387 retval = put_user(status, &infop->si_status);
1389 if (!retval && infop)
1390 retval = put_user(pid, &infop->si_pid);
1391 if (!retval && infop)
1392 retval = put_user(p->uid, &infop->si_uid);
1393 if (!retval)
1394 retval = pid;
1396 if (traced) {
1397 write_lock_irq(&tasklist_lock);
1398 /* We dropped tasklist, ptracer could die and untrace */
1399 ptrace_unlink(p);
1401 * If this is not a detached task, notify the parent.
1402 * If it's still not detached after that, don't release
1403 * it now.
1405 if (!task_detached(p)) {
1406 do_notify_parent(p, p->exit_signal);
1407 if (!task_detached(p)) {
1408 p->exit_state = EXIT_ZOMBIE;
1409 p = NULL;
1412 write_unlock_irq(&tasklist_lock);
1414 if (p != NULL)
1415 release_task(p);
1417 return retval;
1421 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1422 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1423 * the lock and this task is uninteresting. If we return nonzero, we have
1424 * released the lock and the system call should return.
1426 static int wait_task_stopped(int ptrace, struct task_struct *p,
1427 int options, struct siginfo __user *infop,
1428 int __user *stat_addr, struct rusage __user *ru)
1430 int retval, exit_code, why;
1431 uid_t uid = 0; /* unneeded, required by compiler */
1432 pid_t pid;
1434 if (!(options & WUNTRACED))
1435 return 0;
1437 exit_code = 0;
1438 spin_lock_irq(&p->sighand->siglock);
1440 if (unlikely(!task_is_stopped_or_traced(p)))
1441 goto unlock_sig;
1443 if (!ptrace && p->signal->group_stop_count > 0)
1445 * A group stop is in progress and this is the group leader.
1446 * We won't report until all threads have stopped.
1448 goto unlock_sig;
1450 exit_code = p->exit_code;
1451 if (!exit_code)
1452 goto unlock_sig;
1454 if (!unlikely(options & WNOWAIT))
1455 p->exit_code = 0;
1457 uid = p->uid;
1458 unlock_sig:
1459 spin_unlock_irq(&p->sighand->siglock);
1460 if (!exit_code)
1461 return 0;
1464 * Now we are pretty sure this task is interesting.
1465 * Make sure it doesn't get reaped out from under us while we
1466 * give up the lock and then examine it below. We don't want to
1467 * keep holding onto the tasklist_lock while we call getrusage and
1468 * possibly take page faults for user memory.
1470 get_task_struct(p);
1471 pid = task_pid_vnr(p);
1472 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1473 read_unlock(&tasklist_lock);
1475 if (unlikely(options & WNOWAIT))
1476 return wait_noreap_copyout(p, pid, uid,
1477 why, exit_code,
1478 infop, ru);
1480 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1481 if (!retval && stat_addr)
1482 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1483 if (!retval && infop)
1484 retval = put_user(SIGCHLD, &infop->si_signo);
1485 if (!retval && infop)
1486 retval = put_user(0, &infop->si_errno);
1487 if (!retval && infop)
1488 retval = put_user((short)why, &infop->si_code);
1489 if (!retval && infop)
1490 retval = put_user(exit_code, &infop->si_status);
1491 if (!retval && infop)
1492 retval = put_user(pid, &infop->si_pid);
1493 if (!retval && infop)
1494 retval = put_user(uid, &infop->si_uid);
1495 if (!retval)
1496 retval = pid;
1497 put_task_struct(p);
1499 BUG_ON(!retval);
1500 return retval;
1504 * Handle do_wait work for one task in a live, non-stopped state.
1505 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1506 * the lock and this task is uninteresting. If we return nonzero, we have
1507 * released the lock and the system call should return.
1509 static int wait_task_continued(struct task_struct *p, int options,
1510 struct siginfo __user *infop,
1511 int __user *stat_addr, struct rusage __user *ru)
1513 int retval;
1514 pid_t pid;
1515 uid_t uid;
1517 if (!unlikely(options & WCONTINUED))
1518 return 0;
1520 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1521 return 0;
1523 spin_lock_irq(&p->sighand->siglock);
1524 /* Re-check with the lock held. */
1525 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1526 spin_unlock_irq(&p->sighand->siglock);
1527 return 0;
1529 if (!unlikely(options & WNOWAIT))
1530 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1531 spin_unlock_irq(&p->sighand->siglock);
1533 pid = task_pid_vnr(p);
1534 uid = p->uid;
1535 get_task_struct(p);
1536 read_unlock(&tasklist_lock);
1538 if (!infop) {
1539 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1540 put_task_struct(p);
1541 if (!retval && stat_addr)
1542 retval = put_user(0xffff, stat_addr);
1543 if (!retval)
1544 retval = pid;
1545 } else {
1546 retval = wait_noreap_copyout(p, pid, uid,
1547 CLD_CONTINUED, SIGCONT,
1548 infop, ru);
1549 BUG_ON(retval == 0);
1552 return retval;
1556 * Consider @p for a wait by @parent.
1558 * -ECHILD should be in *@notask_error before the first call.
1559 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1560 * Returns zero if the search for a child should continue;
1561 * then *@notask_error is 0 if @p is an eligible child,
1562 * or another error from security_task_wait(), or still -ECHILD.
1564 static int wait_consider_task(struct task_struct *parent, int ptrace,
1565 struct task_struct *p, int *notask_error,
1566 enum pid_type type, struct pid *pid, int options,
1567 struct siginfo __user *infop,
1568 int __user *stat_addr, struct rusage __user *ru)
1570 int ret = eligible_child(type, pid, options, p);
1571 if (!ret)
1572 return ret;
1574 if (unlikely(ret < 0)) {
1576 * If we have not yet seen any eligible child,
1577 * then let this error code replace -ECHILD.
1578 * A permission error will give the user a clue
1579 * to look for security policy problems, rather
1580 * than for mysterious wait bugs.
1582 if (*notask_error)
1583 *notask_error = ret;
1586 if (likely(!ptrace) && unlikely(p->ptrace)) {
1588 * This child is hidden by ptrace.
1589 * We aren't allowed to see it now, but eventually we will.
1591 *notask_error = 0;
1592 return 0;
1595 if (p->exit_state == EXIT_DEAD)
1596 return 0;
1599 * We don't reap group leaders with subthreads.
1601 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1602 return wait_task_zombie(p, options, infop, stat_addr, ru);
1605 * It's stopped or running now, so it might
1606 * later continue, exit, or stop again.
1608 *notask_error = 0;
1610 if (task_is_stopped_or_traced(p))
1611 return wait_task_stopped(ptrace, p, options,
1612 infop, stat_addr, ru);
1614 return wait_task_continued(p, options, infop, stat_addr, ru);
1618 * Do the work of do_wait() for one thread in the group, @tsk.
1620 * -ECHILD should be in *@notask_error before the first call.
1621 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1622 * Returns zero if the search for a child should continue; then
1623 * *@notask_error is 0 if there were any eligible children,
1624 * or another error from security_task_wait(), or still -ECHILD.
1626 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1627 enum pid_type type, struct pid *pid, int options,
1628 struct siginfo __user *infop, int __user *stat_addr,
1629 struct rusage __user *ru)
1631 struct task_struct *p;
1633 list_for_each_entry(p, &tsk->children, sibling) {
1635 * Do not consider detached threads.
1637 if (!task_detached(p)) {
1638 int ret = wait_consider_task(tsk, 0, p, notask_error,
1639 type, pid, options,
1640 infop, stat_addr, ru);
1641 if (ret)
1642 return ret;
1646 return 0;
1649 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1650 enum pid_type type, struct pid *pid, int options,
1651 struct siginfo __user *infop, int __user *stat_addr,
1652 struct rusage __user *ru)
1654 struct task_struct *p;
1657 * Traditionally we see ptrace'd stopped tasks regardless of options.
1659 options |= WUNTRACED;
1661 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1662 int ret = wait_consider_task(tsk, 1, p, notask_error,
1663 type, pid, options,
1664 infop, stat_addr, ru);
1665 if (ret)
1666 return ret;
1669 return 0;
1672 static long do_wait(enum pid_type type, struct pid *pid, int options,
1673 struct siginfo __user *infop, int __user *stat_addr,
1674 struct rusage __user *ru)
1676 DECLARE_WAITQUEUE(wait, current);
1677 struct task_struct *tsk;
1678 int retval;
1680 trace_sched_process_wait(pid);
1682 add_wait_queue(&current->signal->wait_chldexit,&wait);
1683 repeat:
1685 * If there is nothing that can match our critiera just get out.
1686 * We will clear @retval to zero if we see any child that might later
1687 * match our criteria, even if we are not able to reap it yet.
1689 retval = -ECHILD;
1690 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1691 goto end;
1693 current->state = TASK_INTERRUPTIBLE;
1694 read_lock(&tasklist_lock);
1695 tsk = current;
1696 do {
1697 int tsk_result = do_wait_thread(tsk, &retval,
1698 type, pid, options,
1699 infop, stat_addr, ru);
1700 if (!tsk_result)
1701 tsk_result = ptrace_do_wait(tsk, &retval,
1702 type, pid, options,
1703 infop, stat_addr, ru);
1704 if (tsk_result) {
1706 * tasklist_lock is unlocked and we have a final result.
1708 retval = tsk_result;
1709 goto end;
1712 if (options & __WNOTHREAD)
1713 break;
1714 tsk = next_thread(tsk);
1715 BUG_ON(tsk->signal != current->signal);
1716 } while (tsk != current);
1717 read_unlock(&tasklist_lock);
1719 if (!retval && !(options & WNOHANG)) {
1720 retval = -ERESTARTSYS;
1721 if (!signal_pending(current)) {
1722 schedule();
1723 goto repeat;
1727 end:
1728 current->state = TASK_RUNNING;
1729 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1730 if (infop) {
1731 if (retval > 0)
1732 retval = 0;
1733 else {
1735 * For a WNOHANG return, clear out all the fields
1736 * we would set so the user can easily tell the
1737 * difference.
1739 if (!retval)
1740 retval = put_user(0, &infop->si_signo);
1741 if (!retval)
1742 retval = put_user(0, &infop->si_errno);
1743 if (!retval)
1744 retval = put_user(0, &infop->si_code);
1745 if (!retval)
1746 retval = put_user(0, &infop->si_pid);
1747 if (!retval)
1748 retval = put_user(0, &infop->si_uid);
1749 if (!retval)
1750 retval = put_user(0, &infop->si_status);
1753 return retval;
1756 asmlinkage long sys_waitid(int which, pid_t upid,
1757 struct siginfo __user *infop, int options,
1758 struct rusage __user *ru)
1760 struct pid *pid = NULL;
1761 enum pid_type type;
1762 long ret;
1764 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1765 return -EINVAL;
1766 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1767 return -EINVAL;
1769 switch (which) {
1770 case P_ALL:
1771 type = PIDTYPE_MAX;
1772 break;
1773 case P_PID:
1774 type = PIDTYPE_PID;
1775 if (upid <= 0)
1776 return -EINVAL;
1777 break;
1778 case P_PGID:
1779 type = PIDTYPE_PGID;
1780 if (upid <= 0)
1781 return -EINVAL;
1782 break;
1783 default:
1784 return -EINVAL;
1787 if (type < PIDTYPE_MAX)
1788 pid = find_get_pid(upid);
1789 ret = do_wait(type, pid, options, infop, NULL, ru);
1790 put_pid(pid);
1792 /* avoid REGPARM breakage on x86: */
1793 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1794 return ret;
1797 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1798 int options, struct rusage __user *ru)
1800 struct pid *pid = NULL;
1801 enum pid_type type;
1802 long ret;
1804 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1805 __WNOTHREAD|__WCLONE|__WALL))
1806 return -EINVAL;
1808 if (upid == -1)
1809 type = PIDTYPE_MAX;
1810 else if (upid < 0) {
1811 type = PIDTYPE_PGID;
1812 pid = find_get_pid(-upid);
1813 } else if (upid == 0) {
1814 type = PIDTYPE_PGID;
1815 pid = get_pid(task_pgrp(current));
1816 } else /* upid > 0 */ {
1817 type = PIDTYPE_PID;
1818 pid = find_get_pid(upid);
1821 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1822 put_pid(pid);
1824 /* avoid REGPARM breakage on x86: */
1825 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1826 return ret;
1829 #ifdef __ARCH_WANT_SYS_WAITPID
1832 * sys_waitpid() remains for compatibility. waitpid() should be
1833 * implemented by calling sys_wait4() from libc.a.
1835 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1837 return sys_wait4(pid, stat_addr, options, NULL);
1840 #endif