ext4: avoid potential hang in mpage_submit_io() when blocksize < pagesize
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob5dbdb6b91ae7bea237aa07539ddf36b4c5c9262a
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
55 trace_ext4_begin_ordered_truncate(inode, new_size);
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
78 * Test whether an inode is a fast symlink.
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 (inode->i_sb->s_blocksize >> 9) : 0;
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 int nblocks)
96 int ret;
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 jbd_debug(2, "restarting handle %p\n", handle);
106 up_write(&EXT4_I(inode)->i_data_sem);
107 ret = ext4_journal_restart(handle, nblocks);
108 down_write(&EXT4_I(inode)->i_data_sem);
109 ext4_discard_preallocations(inode);
111 return ret;
115 * Called at the last iput() if i_nlink is zero.
117 void ext4_evict_inode(struct inode *inode)
119 handle_t *handle;
120 int err;
122 trace_ext4_evict_inode(inode);
124 ext4_ioend_wait(inode);
126 if (inode->i_nlink) {
128 * When journalling data dirty buffers are tracked only in the
129 * journal. So although mm thinks everything is clean and
130 * ready for reaping the inode might still have some pages to
131 * write in the running transaction or waiting to be
132 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 * (via truncate_inode_pages()) to discard these buffers can
134 * cause data loss. Also even if we did not discard these
135 * buffers, we would have no way to find them after the inode
136 * is reaped and thus user could see stale data if he tries to
137 * read them before the transaction is checkpointed. So be
138 * careful and force everything to disk here... We use
139 * ei->i_datasync_tid to store the newest transaction
140 * containing inode's data.
142 * Note that directories do not have this problem because they
143 * don't use page cache.
145 if (ext4_should_journal_data(inode) &&
146 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
147 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
148 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150 jbd2_log_start_commit(journal, commit_tid);
151 jbd2_log_wait_commit(journal, commit_tid);
152 filemap_write_and_wait(&inode->i_data);
154 truncate_inode_pages(&inode->i_data, 0);
155 goto no_delete;
158 if (!is_bad_inode(inode))
159 dquot_initialize(inode);
161 if (ext4_should_order_data(inode))
162 ext4_begin_ordered_truncate(inode, 0);
163 truncate_inode_pages(&inode->i_data, 0);
165 if (is_bad_inode(inode))
166 goto no_delete;
168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169 if (IS_ERR(handle)) {
170 ext4_std_error(inode->i_sb, PTR_ERR(handle));
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
174 * cleaned up.
176 ext4_orphan_del(NULL, inode);
177 goto no_delete;
180 if (IS_SYNC(inode))
181 ext4_handle_sync(handle);
182 inode->i_size = 0;
183 err = ext4_mark_inode_dirty(handle, inode);
184 if (err) {
185 ext4_warning(inode->i_sb,
186 "couldn't mark inode dirty (err %d)", err);
187 goto stop_handle;
189 if (inode->i_blocks)
190 ext4_truncate(inode);
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
198 if (!ext4_handle_has_enough_credits(handle, 3)) {
199 err = ext4_journal_extend(handle, 3);
200 if (err > 0)
201 err = ext4_journal_restart(handle, 3);
202 if (err != 0) {
203 ext4_warning(inode->i_sb,
204 "couldn't extend journal (err %d)", err);
205 stop_handle:
206 ext4_journal_stop(handle);
207 ext4_orphan_del(NULL, inode);
208 goto no_delete;
213 * Kill off the orphan record which ext4_truncate created.
214 * AKPM: I think this can be inside the above `if'.
215 * Note that ext4_orphan_del() has to be able to cope with the
216 * deletion of a non-existent orphan - this is because we don't
217 * know if ext4_truncate() actually created an orphan record.
218 * (Well, we could do this if we need to, but heck - it works)
220 ext4_orphan_del(handle, inode);
221 EXT4_I(inode)->i_dtime = get_seconds();
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
228 * fails.
230 if (ext4_mark_inode_dirty(handle, inode))
231 /* If that failed, just do the required in-core inode clear. */
232 ext4_clear_inode(inode);
233 else
234 ext4_free_inode(handle, inode);
235 ext4_journal_stop(handle);
236 return;
237 no_delete:
238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
241 #ifdef CONFIG_QUOTA
242 qsize_t *ext4_get_reserved_space(struct inode *inode)
244 return &EXT4_I(inode)->i_reserved_quota;
246 #endif
249 * Calculate the number of metadata blocks need to reserve
250 * to allocate a block located at @lblock
252 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255 return ext4_ext_calc_metadata_amount(inode, lblock);
257 return ext4_ind_calc_metadata_amount(inode, lblock);
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
264 void ext4_da_update_reserve_space(struct inode *inode,
265 int used, int quota_claim)
267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 struct ext4_inode_info *ei = EXT4_I(inode);
270 spin_lock(&ei->i_block_reservation_lock);
271 trace_ext4_da_update_reserve_space(inode, used);
272 if (unlikely(used > ei->i_reserved_data_blocks)) {
273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks\n",
275 __func__, inode->i_ino, used,
276 ei->i_reserved_data_blocks);
277 WARN_ON(1);
278 used = ei->i_reserved_data_blocks;
281 /* Update per-inode reservations */
282 ei->i_reserved_data_blocks -= used;
283 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
285 used + ei->i_allocated_meta_blocks);
286 ei->i_allocated_meta_blocks = 0;
288 if (ei->i_reserved_data_blocks == 0) {
290 * We can release all of the reserved metadata blocks
291 * only when we have written all of the delayed
292 * allocation blocks.
294 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
295 ei->i_reserved_meta_blocks);
296 ei->i_reserved_meta_blocks = 0;
297 ei->i_da_metadata_calc_len = 0;
299 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
301 /* Update quota subsystem for data blocks */
302 if (quota_claim)
303 dquot_claim_block(inode, used);
304 else {
306 * We did fallocate with an offset that is already delayed
307 * allocated. So on delayed allocated writeback we should
308 * not re-claim the quota for fallocated blocks.
310 dquot_release_reservation_block(inode, used);
314 * If we have done all the pending block allocations and if
315 * there aren't any writers on the inode, we can discard the
316 * inode's preallocations.
318 if ((ei->i_reserved_data_blocks == 0) &&
319 (atomic_read(&inode->i_writecount) == 0))
320 ext4_discard_preallocations(inode);
323 static int __check_block_validity(struct inode *inode, const char *func,
324 unsigned int line,
325 struct ext4_map_blocks *map)
327 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
328 map->m_len)) {
329 ext4_error_inode(inode, func, line, map->m_pblk,
330 "lblock %lu mapped to illegal pblock "
331 "(length %d)", (unsigned long) map->m_lblk,
332 map->m_len);
333 return -EIO;
335 return 0;
338 #define check_block_validity(inode, map) \
339 __check_block_validity((inode), __func__, __LINE__, (map))
342 * Return the number of contiguous dirty pages in a given inode
343 * starting at page frame idx.
345 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
346 unsigned int max_pages)
348 struct address_space *mapping = inode->i_mapping;
349 pgoff_t index;
350 struct pagevec pvec;
351 pgoff_t num = 0;
352 int i, nr_pages, done = 0;
354 if (max_pages == 0)
355 return 0;
356 pagevec_init(&pvec, 0);
357 while (!done) {
358 index = idx;
359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
360 PAGECACHE_TAG_DIRTY,
361 (pgoff_t)PAGEVEC_SIZE);
362 if (nr_pages == 0)
363 break;
364 for (i = 0; i < nr_pages; i++) {
365 struct page *page = pvec.pages[i];
366 struct buffer_head *bh, *head;
368 lock_page(page);
369 if (unlikely(page->mapping != mapping) ||
370 !PageDirty(page) ||
371 PageWriteback(page) ||
372 page->index != idx) {
373 done = 1;
374 unlock_page(page);
375 break;
377 if (page_has_buffers(page)) {
378 bh = head = page_buffers(page);
379 do {
380 if (!buffer_delay(bh) &&
381 !buffer_unwritten(bh))
382 done = 1;
383 bh = bh->b_this_page;
384 } while (!done && (bh != head));
386 unlock_page(page);
387 if (done)
388 break;
389 idx++;
390 num++;
391 if (num >= max_pages) {
392 done = 1;
393 break;
396 pagevec_release(&pvec);
398 return num;
402 * The ext4_map_blocks() function tries to look up the requested blocks,
403 * and returns if the blocks are already mapped.
405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406 * and store the allocated blocks in the result buffer head and mark it
407 * mapped.
409 * If file type is extents based, it will call ext4_ext_map_blocks(),
410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411 * based files
413 * On success, it returns the number of blocks being mapped or allocate.
414 * if create==0 and the blocks are pre-allocated and uninitialized block,
415 * the result buffer head is unmapped. If the create ==1, it will make sure
416 * the buffer head is mapped.
418 * It returns 0 if plain look up failed (blocks have not been allocated), in
419 * that casem, buffer head is unmapped
421 * It returns the error in case of allocation failure.
423 int ext4_map_blocks(handle_t *handle, struct inode *inode,
424 struct ext4_map_blocks *map, int flags)
426 int retval;
428 map->m_flags = 0;
429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 "logical block %lu\n", inode->i_ino, flags, map->m_len,
431 (unsigned long) map->m_lblk);
433 * Try to see if we can get the block without requesting a new
434 * file system block.
436 down_read((&EXT4_I(inode)->i_data_sem));
437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 retval = ext4_ext_map_blocks(handle, inode, map, 0);
439 } else {
440 retval = ext4_ind_map_blocks(handle, inode, map, 0);
442 up_read((&EXT4_I(inode)->i_data_sem));
444 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445 int ret = check_block_validity(inode, map);
446 if (ret != 0)
447 return ret;
450 /* If it is only a block(s) look up */
451 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 return retval;
455 * Returns if the blocks have already allocated
457 * Note that if blocks have been preallocated
458 * ext4_ext_get_block() returns th create = 0
459 * with buffer head unmapped.
461 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 return retval;
465 * When we call get_blocks without the create flag, the
466 * BH_Unwritten flag could have gotten set if the blocks
467 * requested were part of a uninitialized extent. We need to
468 * clear this flag now that we are committed to convert all or
469 * part of the uninitialized extent to be an initialized
470 * extent. This is because we need to avoid the combination
471 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 * set on the buffer_head.
474 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
477 * New blocks allocate and/or writing to uninitialized extent
478 * will possibly result in updating i_data, so we take
479 * the write lock of i_data_sem, and call get_blocks()
480 * with create == 1 flag.
482 down_write((&EXT4_I(inode)->i_data_sem));
485 * if the caller is from delayed allocation writeout path
486 * we have already reserved fs blocks for allocation
487 * let the underlying get_block() function know to
488 * avoid double accounting
490 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
493 * We need to check for EXT4 here because migrate
494 * could have changed the inode type in between
496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497 retval = ext4_ext_map_blocks(handle, inode, map, flags);
498 } else {
499 retval = ext4_ind_map_blocks(handle, inode, map, flags);
501 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
503 * We allocated new blocks which will result in
504 * i_data's format changing. Force the migrate
505 * to fail by clearing migrate flags
507 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
511 * Update reserved blocks/metadata blocks after successful
512 * block allocation which had been deferred till now. We don't
513 * support fallocate for non extent files. So we can update
514 * reserve space here.
516 if ((retval > 0) &&
517 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 ext4_da_update_reserve_space(inode, retval, 1);
520 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
523 up_write((&EXT4_I(inode)->i_data_sem));
524 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525 int ret = check_block_validity(inode, map);
526 if (ret != 0)
527 return ret;
529 return retval;
532 /* Maximum number of blocks we map for direct IO at once. */
533 #define DIO_MAX_BLOCKS 4096
535 static int _ext4_get_block(struct inode *inode, sector_t iblock,
536 struct buffer_head *bh, int flags)
538 handle_t *handle = ext4_journal_current_handle();
539 struct ext4_map_blocks map;
540 int ret = 0, started = 0;
541 int dio_credits;
543 map.m_lblk = iblock;
544 map.m_len = bh->b_size >> inode->i_blkbits;
546 if (flags && !handle) {
547 /* Direct IO write... */
548 if (map.m_len > DIO_MAX_BLOCKS)
549 map.m_len = DIO_MAX_BLOCKS;
550 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551 handle = ext4_journal_start(inode, dio_credits);
552 if (IS_ERR(handle)) {
553 ret = PTR_ERR(handle);
554 return ret;
556 started = 1;
559 ret = ext4_map_blocks(handle, inode, &map, flags);
560 if (ret > 0) {
561 map_bh(bh, inode->i_sb, map.m_pblk);
562 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
563 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
564 ret = 0;
566 if (started)
567 ext4_journal_stop(handle);
568 return ret;
571 int ext4_get_block(struct inode *inode, sector_t iblock,
572 struct buffer_head *bh, int create)
574 return _ext4_get_block(inode, iblock, bh,
575 create ? EXT4_GET_BLOCKS_CREATE : 0);
579 * `handle' can be NULL if create is zero
581 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
582 ext4_lblk_t block, int create, int *errp)
584 struct ext4_map_blocks map;
585 struct buffer_head *bh;
586 int fatal = 0, err;
588 J_ASSERT(handle != NULL || create == 0);
590 map.m_lblk = block;
591 map.m_len = 1;
592 err = ext4_map_blocks(handle, inode, &map,
593 create ? EXT4_GET_BLOCKS_CREATE : 0);
595 if (err < 0)
596 *errp = err;
597 if (err <= 0)
598 return NULL;
599 *errp = 0;
601 bh = sb_getblk(inode->i_sb, map.m_pblk);
602 if (!bh) {
603 *errp = -EIO;
604 return NULL;
606 if (map.m_flags & EXT4_MAP_NEW) {
607 J_ASSERT(create != 0);
608 J_ASSERT(handle != NULL);
611 * Now that we do not always journal data, we should
612 * keep in mind whether this should always journal the
613 * new buffer as metadata. For now, regular file
614 * writes use ext4_get_block instead, so it's not a
615 * problem.
617 lock_buffer(bh);
618 BUFFER_TRACE(bh, "call get_create_access");
619 fatal = ext4_journal_get_create_access(handle, bh);
620 if (!fatal && !buffer_uptodate(bh)) {
621 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
622 set_buffer_uptodate(bh);
624 unlock_buffer(bh);
625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
626 err = ext4_handle_dirty_metadata(handle, inode, bh);
627 if (!fatal)
628 fatal = err;
629 } else {
630 BUFFER_TRACE(bh, "not a new buffer");
632 if (fatal) {
633 *errp = fatal;
634 brelse(bh);
635 bh = NULL;
637 return bh;
640 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
641 ext4_lblk_t block, int create, int *err)
643 struct buffer_head *bh;
645 bh = ext4_getblk(handle, inode, block, create, err);
646 if (!bh)
647 return bh;
648 if (buffer_uptodate(bh))
649 return bh;
650 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
651 wait_on_buffer(bh);
652 if (buffer_uptodate(bh))
653 return bh;
654 put_bh(bh);
655 *err = -EIO;
656 return NULL;
659 static int walk_page_buffers(handle_t *handle,
660 struct buffer_head *head,
661 unsigned from,
662 unsigned to,
663 int *partial,
664 int (*fn)(handle_t *handle,
665 struct buffer_head *bh))
667 struct buffer_head *bh;
668 unsigned block_start, block_end;
669 unsigned blocksize = head->b_size;
670 int err, ret = 0;
671 struct buffer_head *next;
673 for (bh = head, block_start = 0;
674 ret == 0 && (bh != head || !block_start);
675 block_start = block_end, bh = next) {
676 next = bh->b_this_page;
677 block_end = block_start + blocksize;
678 if (block_end <= from || block_start >= to) {
679 if (partial && !buffer_uptodate(bh))
680 *partial = 1;
681 continue;
683 err = (*fn)(handle, bh);
684 if (!ret)
685 ret = err;
687 return ret;
691 * To preserve ordering, it is essential that the hole instantiation and
692 * the data write be encapsulated in a single transaction. We cannot
693 * close off a transaction and start a new one between the ext4_get_block()
694 * and the commit_write(). So doing the jbd2_journal_start at the start of
695 * prepare_write() is the right place.
697 * Also, this function can nest inside ext4_writepage() ->
698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 * has generated enough buffer credits to do the whole page. So we won't
700 * block on the journal in that case, which is good, because the caller may
701 * be PF_MEMALLOC.
703 * By accident, ext4 can be reentered when a transaction is open via
704 * quota file writes. If we were to commit the transaction while thus
705 * reentered, there can be a deadlock - we would be holding a quota
706 * lock, and the commit would never complete if another thread had a
707 * transaction open and was blocking on the quota lock - a ranking
708 * violation.
710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 * will _not_ run commit under these circumstances because handle->h_ref
712 * is elevated. We'll still have enough credits for the tiny quotafile
713 * write.
715 static int do_journal_get_write_access(handle_t *handle,
716 struct buffer_head *bh)
718 int dirty = buffer_dirty(bh);
719 int ret;
721 if (!buffer_mapped(bh) || buffer_freed(bh))
722 return 0;
724 * __block_write_begin() could have dirtied some buffers. Clean
725 * the dirty bit as jbd2_journal_get_write_access() could complain
726 * otherwise about fs integrity issues. Setting of the dirty bit
727 * by __block_write_begin() isn't a real problem here as we clear
728 * the bit before releasing a page lock and thus writeback cannot
729 * ever write the buffer.
731 if (dirty)
732 clear_buffer_dirty(bh);
733 ret = ext4_journal_get_write_access(handle, bh);
734 if (!ret && dirty)
735 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 return ret;
739 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
740 struct buffer_head *bh_result, int create);
741 static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 loff_t pos, unsigned len, unsigned flags,
743 struct page **pagep, void **fsdata)
745 struct inode *inode = mapping->host;
746 int ret, needed_blocks;
747 handle_t *handle;
748 int retries = 0;
749 struct page *page;
750 pgoff_t index;
751 unsigned from, to;
753 trace_ext4_write_begin(inode, pos, len, flags);
755 * Reserve one block more for addition to orphan list in case
756 * we allocate blocks but write fails for some reason
758 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759 index = pos >> PAGE_CACHE_SHIFT;
760 from = pos & (PAGE_CACHE_SIZE - 1);
761 to = from + len;
763 retry:
764 handle = ext4_journal_start(inode, needed_blocks);
765 if (IS_ERR(handle)) {
766 ret = PTR_ERR(handle);
767 goto out;
770 /* We cannot recurse into the filesystem as the transaction is already
771 * started */
772 flags |= AOP_FLAG_NOFS;
774 page = grab_cache_page_write_begin(mapping, index, flags);
775 if (!page) {
776 ext4_journal_stop(handle);
777 ret = -ENOMEM;
778 goto out;
780 *pagep = page;
782 if (ext4_should_dioread_nolock(inode))
783 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784 else
785 ret = __block_write_begin(page, pos, len, ext4_get_block);
787 if (!ret && ext4_should_journal_data(inode)) {
788 ret = walk_page_buffers(handle, page_buffers(page),
789 from, to, NULL, do_journal_get_write_access);
792 if (ret) {
793 unlock_page(page);
794 page_cache_release(page);
796 * __block_write_begin may have instantiated a few blocks
797 * outside i_size. Trim these off again. Don't need
798 * i_size_read because we hold i_mutex.
800 * Add inode to orphan list in case we crash before
801 * truncate finishes
803 if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 ext4_orphan_add(handle, inode);
806 ext4_journal_stop(handle);
807 if (pos + len > inode->i_size) {
808 ext4_truncate_failed_write(inode);
810 * If truncate failed early the inode might
811 * still be on the orphan list; we need to
812 * make sure the inode is removed from the
813 * orphan list in that case.
815 if (inode->i_nlink)
816 ext4_orphan_del(NULL, inode);
820 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821 goto retry;
822 out:
823 return ret;
826 /* For write_end() in data=journal mode */
827 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
829 if (!buffer_mapped(bh) || buffer_freed(bh))
830 return 0;
831 set_buffer_uptodate(bh);
832 return ext4_handle_dirty_metadata(handle, NULL, bh);
835 static int ext4_generic_write_end(struct file *file,
836 struct address_space *mapping,
837 loff_t pos, unsigned len, unsigned copied,
838 struct page *page, void *fsdata)
840 int i_size_changed = 0;
841 struct inode *inode = mapping->host;
842 handle_t *handle = ext4_journal_current_handle();
844 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
847 * No need to use i_size_read() here, the i_size
848 * cannot change under us because we hold i_mutex.
850 * But it's important to update i_size while still holding page lock:
851 * page writeout could otherwise come in and zero beyond i_size.
853 if (pos + copied > inode->i_size) {
854 i_size_write(inode, pos + copied);
855 i_size_changed = 1;
858 if (pos + copied > EXT4_I(inode)->i_disksize) {
859 /* We need to mark inode dirty even if
860 * new_i_size is less that inode->i_size
861 * bu greater than i_disksize.(hint delalloc)
863 ext4_update_i_disksize(inode, (pos + copied));
864 i_size_changed = 1;
866 unlock_page(page);
867 page_cache_release(page);
870 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 * makes the holding time of page lock longer. Second, it forces lock
872 * ordering of page lock and transaction start for journaling
873 * filesystems.
875 if (i_size_changed)
876 ext4_mark_inode_dirty(handle, inode);
878 return copied;
882 * We need to pick up the new inode size which generic_commit_write gave us
883 * `file' can be NULL - eg, when called from page_symlink().
885 * ext4 never places buffers on inode->i_mapping->private_list. metadata
886 * buffers are managed internally.
888 static int ext4_ordered_write_end(struct file *file,
889 struct address_space *mapping,
890 loff_t pos, unsigned len, unsigned copied,
891 struct page *page, void *fsdata)
893 handle_t *handle = ext4_journal_current_handle();
894 struct inode *inode = mapping->host;
895 int ret = 0, ret2;
897 trace_ext4_ordered_write_end(inode, pos, len, copied);
898 ret = ext4_jbd2_file_inode(handle, inode);
900 if (ret == 0) {
901 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
902 page, fsdata);
903 copied = ret2;
904 if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 /* if we have allocated more blocks and copied
906 * less. We will have blocks allocated outside
907 * inode->i_size. So truncate them
909 ext4_orphan_add(handle, inode);
910 if (ret2 < 0)
911 ret = ret2;
913 ret2 = ext4_journal_stop(handle);
914 if (!ret)
915 ret = ret2;
917 if (pos + len > inode->i_size) {
918 ext4_truncate_failed_write(inode);
920 * If truncate failed early the inode might still be
921 * on the orphan list; we need to make sure the inode
922 * is removed from the orphan list in that case.
924 if (inode->i_nlink)
925 ext4_orphan_del(NULL, inode);
929 return ret ? ret : copied;
932 static int ext4_writeback_write_end(struct file *file,
933 struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned copied,
935 struct page *page, void *fsdata)
937 handle_t *handle = ext4_journal_current_handle();
938 struct inode *inode = mapping->host;
939 int ret = 0, ret2;
941 trace_ext4_writeback_write_end(inode, pos, len, copied);
942 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
943 page, fsdata);
944 copied = ret2;
945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 /* if we have allocated more blocks and copied
947 * less. We will have blocks allocated outside
948 * inode->i_size. So truncate them
950 ext4_orphan_add(handle, inode);
952 if (ret2 < 0)
953 ret = ret2;
955 ret2 = ext4_journal_stop(handle);
956 if (!ret)
957 ret = ret2;
959 if (pos + len > inode->i_size) {
960 ext4_truncate_failed_write(inode);
962 * If truncate failed early the inode might still be
963 * on the orphan list; we need to make sure the inode
964 * is removed from the orphan list in that case.
966 if (inode->i_nlink)
967 ext4_orphan_del(NULL, inode);
970 return ret ? ret : copied;
973 static int ext4_journalled_write_end(struct file *file,
974 struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned copied,
976 struct page *page, void *fsdata)
978 handle_t *handle = ext4_journal_current_handle();
979 struct inode *inode = mapping->host;
980 int ret = 0, ret2;
981 int partial = 0;
982 unsigned from, to;
983 loff_t new_i_size;
985 trace_ext4_journalled_write_end(inode, pos, len, copied);
986 from = pos & (PAGE_CACHE_SIZE - 1);
987 to = from + len;
989 BUG_ON(!ext4_handle_valid(handle));
991 if (copied < len) {
992 if (!PageUptodate(page))
993 copied = 0;
994 page_zero_new_buffers(page, from+copied, to);
997 ret = walk_page_buffers(handle, page_buffers(page), from,
998 to, &partial, write_end_fn);
999 if (!partial)
1000 SetPageUptodate(page);
1001 new_i_size = pos + copied;
1002 if (new_i_size > inode->i_size)
1003 i_size_write(inode, pos+copied);
1004 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 if (new_i_size > EXT4_I(inode)->i_disksize) {
1007 ext4_update_i_disksize(inode, new_i_size);
1008 ret2 = ext4_mark_inode_dirty(handle, inode);
1009 if (!ret)
1010 ret = ret2;
1013 unlock_page(page);
1014 page_cache_release(page);
1015 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 /* if we have allocated more blocks and copied
1017 * less. We will have blocks allocated outside
1018 * inode->i_size. So truncate them
1020 ext4_orphan_add(handle, inode);
1022 ret2 = ext4_journal_stop(handle);
1023 if (!ret)
1024 ret = ret2;
1025 if (pos + len > inode->i_size) {
1026 ext4_truncate_failed_write(inode);
1028 * If truncate failed early the inode might still be
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1032 if (inode->i_nlink)
1033 ext4_orphan_del(NULL, inode);
1036 return ret ? ret : copied;
1040 * Reserve a single block located at lblock
1042 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1044 int retries = 0;
1045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046 struct ext4_inode_info *ei = EXT4_I(inode);
1047 unsigned long md_needed;
1048 int ret;
1051 * recalculate the amount of metadata blocks to reserve
1052 * in order to allocate nrblocks
1053 * worse case is one extent per block
1055 repeat:
1056 spin_lock(&ei->i_block_reservation_lock);
1057 md_needed = ext4_calc_metadata_amount(inode, lblock);
1058 trace_ext4_da_reserve_space(inode, md_needed);
1059 spin_unlock(&ei->i_block_reservation_lock);
1062 * We will charge metadata quota at writeout time; this saves
1063 * us from metadata over-estimation, though we may go over by
1064 * a small amount in the end. Here we just reserve for data.
1066 ret = dquot_reserve_block(inode, 1);
1067 if (ret)
1068 return ret;
1070 * We do still charge estimated metadata to the sb though;
1071 * we cannot afford to run out of free blocks.
1073 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074 dquot_release_reservation_block(inode, 1);
1075 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 yield();
1077 goto repeat;
1079 return -ENOSPC;
1081 spin_lock(&ei->i_block_reservation_lock);
1082 ei->i_reserved_data_blocks++;
1083 ei->i_reserved_meta_blocks += md_needed;
1084 spin_unlock(&ei->i_block_reservation_lock);
1086 return 0; /* success */
1089 static void ext4_da_release_space(struct inode *inode, int to_free)
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 struct ext4_inode_info *ei = EXT4_I(inode);
1094 if (!to_free)
1095 return; /* Nothing to release, exit */
1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1099 trace_ext4_da_release_space(inode, to_free);
1100 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1102 * if there aren't enough reserved blocks, then the
1103 * counter is messed up somewhere. Since this
1104 * function is called from invalidate page, it's
1105 * harmless to return without any action.
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108 "ino %lu, to_free %d with only %d reserved "
1109 "data blocks\n", inode->i_ino, to_free,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 to_free = ei->i_reserved_data_blocks;
1114 ei->i_reserved_data_blocks -= to_free;
1116 if (ei->i_reserved_data_blocks == 0) {
1118 * We can release all of the reserved metadata blocks
1119 * only when we have written all of the delayed
1120 * allocation blocks.
1122 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123 ei->i_reserved_meta_blocks);
1124 ei->i_reserved_meta_blocks = 0;
1125 ei->i_da_metadata_calc_len = 0;
1128 /* update fs dirty data blocks counter */
1129 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1131 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1133 dquot_release_reservation_block(inode, to_free);
1136 static void ext4_da_page_release_reservation(struct page *page,
1137 unsigned long offset)
1139 int to_release = 0;
1140 struct buffer_head *head, *bh;
1141 unsigned int curr_off = 0;
1143 head = page_buffers(page);
1144 bh = head;
1145 do {
1146 unsigned int next_off = curr_off + bh->b_size;
1148 if ((offset <= curr_off) && (buffer_delay(bh))) {
1149 to_release++;
1150 clear_buffer_delay(bh);
1152 curr_off = next_off;
1153 } while ((bh = bh->b_this_page) != head);
1154 ext4_da_release_space(page->mapping->host, to_release);
1158 * Delayed allocation stuff
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1172 * As pages are already locked by write_cache_pages(), we can't use it
1174 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175 struct ext4_map_blocks *map)
1177 struct pagevec pvec;
1178 unsigned long index, end;
1179 int ret = 0, err, nr_pages, i;
1180 struct inode *inode = mpd->inode;
1181 struct address_space *mapping = inode->i_mapping;
1182 loff_t size = i_size_read(inode);
1183 unsigned int len, block_start;
1184 struct buffer_head *bh, *page_bufs = NULL;
1185 int journal_data = ext4_should_journal_data(inode);
1186 sector_t pblock = 0, cur_logical = 0;
1187 struct ext4_io_submit io_submit;
1189 BUG_ON(mpd->next_page <= mpd->first_page);
1190 memset(&io_submit, 0, sizeof(io_submit));
1192 * We need to start from the first_page to the next_page - 1
1193 * to make sure we also write the mapped dirty buffer_heads.
1194 * If we look at mpd->b_blocknr we would only be looking
1195 * at the currently mapped buffer_heads.
1197 index = mpd->first_page;
1198 end = mpd->next_page - 1;
1200 pagevec_init(&pvec, 0);
1201 while (index <= end) {
1202 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203 if (nr_pages == 0)
1204 break;
1205 for (i = 0; i < nr_pages; i++) {
1206 int commit_write = 0, skip_page = 0;
1207 struct page *page = pvec.pages[i];
1209 index = page->index;
1210 if (index > end)
1211 break;
1213 if (index == size >> PAGE_CACHE_SHIFT)
1214 len = size & ~PAGE_CACHE_MASK;
1215 else
1216 len = PAGE_CACHE_SIZE;
1217 if (map) {
1218 cur_logical = index << (PAGE_CACHE_SHIFT -
1219 inode->i_blkbits);
1220 pblock = map->m_pblk + (cur_logical -
1221 map->m_lblk);
1223 index++;
1225 BUG_ON(!PageLocked(page));
1226 BUG_ON(PageWriteback(page));
1229 * If the page does not have buffers (for
1230 * whatever reason), try to create them using
1231 * __block_write_begin. If this fails,
1232 * skip the page and move on.
1234 if (!page_has_buffers(page)) {
1235 if (__block_write_begin(page, 0, len,
1236 noalloc_get_block_write)) {
1237 skip_page:
1238 unlock_page(page);
1239 continue;
1241 commit_write = 1;
1244 bh = page_bufs = page_buffers(page);
1245 block_start = 0;
1246 do {
1247 if (!bh)
1248 goto skip_page;
1249 if (map && (cur_logical >= map->m_lblk) &&
1250 (cur_logical <= (map->m_lblk +
1251 (map->m_len - 1)))) {
1252 if (buffer_delay(bh)) {
1253 clear_buffer_delay(bh);
1254 bh->b_blocknr = pblock;
1256 if (buffer_unwritten(bh) ||
1257 buffer_mapped(bh))
1258 BUG_ON(bh->b_blocknr != pblock);
1259 if (map->m_flags & EXT4_MAP_UNINIT)
1260 set_buffer_uninit(bh);
1261 clear_buffer_unwritten(bh);
1265 * skip page if block allocation undone and
1266 * block is dirty
1268 if (ext4_bh_delay_or_unwritten(NULL, bh))
1269 skip_page = 1;
1270 bh = bh->b_this_page;
1271 block_start += bh->b_size;
1272 cur_logical++;
1273 pblock++;
1274 } while (bh != page_bufs);
1276 if (skip_page)
1277 goto skip_page;
1279 if (commit_write)
1280 /* mark the buffer_heads as dirty & uptodate */
1281 block_commit_write(page, 0, len);
1283 clear_page_dirty_for_io(page);
1285 * Delalloc doesn't support data journalling,
1286 * but eventually maybe we'll lift this
1287 * restriction.
1289 if (unlikely(journal_data && PageChecked(page)))
1290 err = __ext4_journalled_writepage(page, len);
1291 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1292 err = ext4_bio_write_page(&io_submit, page,
1293 len, mpd->wbc);
1294 else if (buffer_uninit(page_bufs)) {
1295 ext4_set_bh_endio(page_bufs, inode);
1296 err = block_write_full_page_endio(page,
1297 noalloc_get_block_write,
1298 mpd->wbc, ext4_end_io_buffer_write);
1299 } else
1300 err = block_write_full_page(page,
1301 noalloc_get_block_write, mpd->wbc);
1303 if (!err)
1304 mpd->pages_written++;
1306 * In error case, we have to continue because
1307 * remaining pages are still locked
1309 if (ret == 0)
1310 ret = err;
1312 pagevec_release(&pvec);
1314 ext4_io_submit(&io_submit);
1315 return ret;
1318 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1320 int nr_pages, i;
1321 pgoff_t index, end;
1322 struct pagevec pvec;
1323 struct inode *inode = mpd->inode;
1324 struct address_space *mapping = inode->i_mapping;
1326 index = mpd->first_page;
1327 end = mpd->next_page - 1;
1328 while (index <= end) {
1329 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1330 if (nr_pages == 0)
1331 break;
1332 for (i = 0; i < nr_pages; i++) {
1333 struct page *page = pvec.pages[i];
1334 if (page->index > end)
1335 break;
1336 BUG_ON(!PageLocked(page));
1337 BUG_ON(PageWriteback(page));
1338 block_invalidatepage(page, 0);
1339 ClearPageUptodate(page);
1340 unlock_page(page);
1342 index = pvec.pages[nr_pages - 1]->index + 1;
1343 pagevec_release(&pvec);
1345 return;
1348 static void ext4_print_free_blocks(struct inode *inode)
1350 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1351 printk(KERN_CRIT "Total free blocks count %lld\n",
1352 ext4_count_free_blocks(inode->i_sb));
1353 printk(KERN_CRIT "Free/Dirty block details\n");
1354 printk(KERN_CRIT "free_blocks=%lld\n",
1355 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1356 printk(KERN_CRIT "dirty_blocks=%lld\n",
1357 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1358 printk(KERN_CRIT "Block reservation details\n");
1359 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1360 EXT4_I(inode)->i_reserved_data_blocks);
1361 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1362 EXT4_I(inode)->i_reserved_meta_blocks);
1363 return;
1367 * mpage_da_map_and_submit - go through given space, map them
1368 * if necessary, and then submit them for I/O
1370 * @mpd - bh describing space
1372 * The function skips space we know is already mapped to disk blocks.
1375 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1377 int err, blks, get_blocks_flags;
1378 struct ext4_map_blocks map, *mapp = NULL;
1379 sector_t next = mpd->b_blocknr;
1380 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1381 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1382 handle_t *handle = NULL;
1385 * If the blocks are mapped already, or we couldn't accumulate
1386 * any blocks, then proceed immediately to the submission stage.
1388 if ((mpd->b_size == 0) ||
1389 ((mpd->b_state & (1 << BH_Mapped)) &&
1390 !(mpd->b_state & (1 << BH_Delay)) &&
1391 !(mpd->b_state & (1 << BH_Unwritten))))
1392 goto submit_io;
1394 handle = ext4_journal_current_handle();
1395 BUG_ON(!handle);
1398 * Call ext4_map_blocks() to allocate any delayed allocation
1399 * blocks, or to convert an uninitialized extent to be
1400 * initialized (in the case where we have written into
1401 * one or more preallocated blocks).
1403 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1404 * indicate that we are on the delayed allocation path. This
1405 * affects functions in many different parts of the allocation
1406 * call path. This flag exists primarily because we don't
1407 * want to change *many* call functions, so ext4_map_blocks()
1408 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1409 * inode's allocation semaphore is taken.
1411 * If the blocks in questions were delalloc blocks, set
1412 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1413 * variables are updated after the blocks have been allocated.
1415 map.m_lblk = next;
1416 map.m_len = max_blocks;
1417 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1418 if (ext4_should_dioread_nolock(mpd->inode))
1419 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1420 if (mpd->b_state & (1 << BH_Delay))
1421 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1423 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1424 if (blks < 0) {
1425 struct super_block *sb = mpd->inode->i_sb;
1427 err = blks;
1429 * If get block returns EAGAIN or ENOSPC and there
1430 * appears to be free blocks we will just let
1431 * mpage_da_submit_io() unlock all of the pages.
1433 if (err == -EAGAIN)
1434 goto submit_io;
1436 if (err == -ENOSPC &&
1437 ext4_count_free_blocks(sb)) {
1438 mpd->retval = err;
1439 goto submit_io;
1443 * get block failure will cause us to loop in
1444 * writepages, because a_ops->writepage won't be able
1445 * to make progress. The page will be redirtied by
1446 * writepage and writepages will again try to write
1447 * the same.
1449 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1450 ext4_msg(sb, KERN_CRIT,
1451 "delayed block allocation failed for inode %lu "
1452 "at logical offset %llu with max blocks %zd "
1453 "with error %d", mpd->inode->i_ino,
1454 (unsigned long long) next,
1455 mpd->b_size >> mpd->inode->i_blkbits, err);
1456 ext4_msg(sb, KERN_CRIT,
1457 "This should not happen!! Data will be lost\n");
1458 if (err == -ENOSPC)
1459 ext4_print_free_blocks(mpd->inode);
1461 /* invalidate all the pages */
1462 ext4_da_block_invalidatepages(mpd);
1464 /* Mark this page range as having been completed */
1465 mpd->io_done = 1;
1466 return;
1468 BUG_ON(blks == 0);
1470 mapp = &map;
1471 if (map.m_flags & EXT4_MAP_NEW) {
1472 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1473 int i;
1475 for (i = 0; i < map.m_len; i++)
1476 unmap_underlying_metadata(bdev, map.m_pblk + i);
1479 if (ext4_should_order_data(mpd->inode)) {
1480 err = ext4_jbd2_file_inode(handle, mpd->inode);
1481 if (err)
1482 /* This only happens if the journal is aborted */
1483 return;
1487 * Update on-disk size along with block allocation.
1489 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1490 if (disksize > i_size_read(mpd->inode))
1491 disksize = i_size_read(mpd->inode);
1492 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1493 ext4_update_i_disksize(mpd->inode, disksize);
1494 err = ext4_mark_inode_dirty(handle, mpd->inode);
1495 if (err)
1496 ext4_error(mpd->inode->i_sb,
1497 "Failed to mark inode %lu dirty",
1498 mpd->inode->i_ino);
1501 submit_io:
1502 mpage_da_submit_io(mpd, mapp);
1503 mpd->io_done = 1;
1506 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1507 (1 << BH_Delay) | (1 << BH_Unwritten))
1510 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1512 * @mpd->lbh - extent of blocks
1513 * @logical - logical number of the block in the file
1514 * @bh - bh of the block (used to access block's state)
1516 * the function is used to collect contig. blocks in same state
1518 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1519 sector_t logical, size_t b_size,
1520 unsigned long b_state)
1522 sector_t next;
1523 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1526 * XXX Don't go larger than mballoc is willing to allocate
1527 * This is a stopgap solution. We eventually need to fold
1528 * mpage_da_submit_io() into this function and then call
1529 * ext4_map_blocks() multiple times in a loop
1531 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1532 goto flush_it;
1534 /* check if thereserved journal credits might overflow */
1535 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1536 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1538 * With non-extent format we are limited by the journal
1539 * credit available. Total credit needed to insert
1540 * nrblocks contiguous blocks is dependent on the
1541 * nrblocks. So limit nrblocks.
1543 goto flush_it;
1544 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1545 EXT4_MAX_TRANS_DATA) {
1547 * Adding the new buffer_head would make it cross the
1548 * allowed limit for which we have journal credit
1549 * reserved. So limit the new bh->b_size
1551 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1552 mpd->inode->i_blkbits;
1553 /* we will do mpage_da_submit_io in the next loop */
1557 * First block in the extent
1559 if (mpd->b_size == 0) {
1560 mpd->b_blocknr = logical;
1561 mpd->b_size = b_size;
1562 mpd->b_state = b_state & BH_FLAGS;
1563 return;
1566 next = mpd->b_blocknr + nrblocks;
1568 * Can we merge the block to our big extent?
1570 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1571 mpd->b_size += b_size;
1572 return;
1575 flush_it:
1577 * We couldn't merge the block to our extent, so we
1578 * need to flush current extent and start new one
1580 mpage_da_map_and_submit(mpd);
1581 return;
1584 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1586 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1590 * This is a special get_blocks_t callback which is used by
1591 * ext4_da_write_begin(). It will either return mapped block or
1592 * reserve space for a single block.
1594 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1595 * We also have b_blocknr = -1 and b_bdev initialized properly
1597 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1598 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1599 * initialized properly.
1601 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1602 struct buffer_head *bh, int create)
1604 struct ext4_map_blocks map;
1605 int ret = 0;
1606 sector_t invalid_block = ~((sector_t) 0xffff);
1608 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1609 invalid_block = ~0;
1611 BUG_ON(create == 0);
1612 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1614 map.m_lblk = iblock;
1615 map.m_len = 1;
1618 * first, we need to know whether the block is allocated already
1619 * preallocated blocks are unmapped but should treated
1620 * the same as allocated blocks.
1622 ret = ext4_map_blocks(NULL, inode, &map, 0);
1623 if (ret < 0)
1624 return ret;
1625 if (ret == 0) {
1626 if (buffer_delay(bh))
1627 return 0; /* Not sure this could or should happen */
1629 * XXX: __block_write_begin() unmaps passed block, is it OK?
1631 ret = ext4_da_reserve_space(inode, iblock);
1632 if (ret)
1633 /* not enough space to reserve */
1634 return ret;
1636 map_bh(bh, inode->i_sb, invalid_block);
1637 set_buffer_new(bh);
1638 set_buffer_delay(bh);
1639 return 0;
1642 map_bh(bh, inode->i_sb, map.m_pblk);
1643 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1645 if (buffer_unwritten(bh)) {
1646 /* A delayed write to unwritten bh should be marked
1647 * new and mapped. Mapped ensures that we don't do
1648 * get_block multiple times when we write to the same
1649 * offset and new ensures that we do proper zero out
1650 * for partial write.
1652 set_buffer_new(bh);
1653 set_buffer_mapped(bh);
1655 return 0;
1659 * This function is used as a standard get_block_t calback function
1660 * when there is no desire to allocate any blocks. It is used as a
1661 * callback function for block_write_begin() and block_write_full_page().
1662 * These functions should only try to map a single block at a time.
1664 * Since this function doesn't do block allocations even if the caller
1665 * requests it by passing in create=1, it is critically important that
1666 * any caller checks to make sure that any buffer heads are returned
1667 * by this function are either all already mapped or marked for
1668 * delayed allocation before calling block_write_full_page(). Otherwise,
1669 * b_blocknr could be left unitialized, and the page write functions will
1670 * be taken by surprise.
1672 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1673 struct buffer_head *bh_result, int create)
1675 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1676 return _ext4_get_block(inode, iblock, bh_result, 0);
1679 static int bget_one(handle_t *handle, struct buffer_head *bh)
1681 get_bh(bh);
1682 return 0;
1685 static int bput_one(handle_t *handle, struct buffer_head *bh)
1687 put_bh(bh);
1688 return 0;
1691 static int __ext4_journalled_writepage(struct page *page,
1692 unsigned int len)
1694 struct address_space *mapping = page->mapping;
1695 struct inode *inode = mapping->host;
1696 struct buffer_head *page_bufs;
1697 handle_t *handle = NULL;
1698 int ret = 0;
1699 int err;
1701 ClearPageChecked(page);
1702 page_bufs = page_buffers(page);
1703 BUG_ON(!page_bufs);
1704 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1705 /* As soon as we unlock the page, it can go away, but we have
1706 * references to buffers so we are safe */
1707 unlock_page(page);
1709 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1710 if (IS_ERR(handle)) {
1711 ret = PTR_ERR(handle);
1712 goto out;
1715 BUG_ON(!ext4_handle_valid(handle));
1717 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718 do_journal_get_write_access);
1720 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1721 write_end_fn);
1722 if (ret == 0)
1723 ret = err;
1724 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1725 err = ext4_journal_stop(handle);
1726 if (!ret)
1727 ret = err;
1729 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1730 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1731 out:
1732 return ret;
1735 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1736 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1739 * Note that we don't need to start a transaction unless we're journaling data
1740 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1741 * need to file the inode to the transaction's list in ordered mode because if
1742 * we are writing back data added by write(), the inode is already there and if
1743 * we are writing back data modified via mmap(), no one guarantees in which
1744 * transaction the data will hit the disk. In case we are journaling data, we
1745 * cannot start transaction directly because transaction start ranks above page
1746 * lock so we have to do some magic.
1748 * This function can get called via...
1749 * - ext4_da_writepages after taking page lock (have journal handle)
1750 * - journal_submit_inode_data_buffers (no journal handle)
1751 * - shrink_page_list via pdflush (no journal handle)
1752 * - grab_page_cache when doing write_begin (have journal handle)
1754 * We don't do any block allocation in this function. If we have page with
1755 * multiple blocks we need to write those buffer_heads that are mapped. This
1756 * is important for mmaped based write. So if we do with blocksize 1K
1757 * truncate(f, 1024);
1758 * a = mmap(f, 0, 4096);
1759 * a[0] = 'a';
1760 * truncate(f, 4096);
1761 * we have in the page first buffer_head mapped via page_mkwrite call back
1762 * but other bufer_heads would be unmapped but dirty(dirty done via the
1763 * do_wp_page). So writepage should write the first block. If we modify
1764 * the mmap area beyond 1024 we will again get a page_fault and the
1765 * page_mkwrite callback will do the block allocation and mark the
1766 * buffer_heads mapped.
1768 * We redirty the page if we have any buffer_heads that is either delay or
1769 * unwritten in the page.
1771 * We can get recursively called as show below.
1773 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1774 * ext4_writepage()
1776 * But since we don't do any block allocation we should not deadlock.
1777 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1779 static int ext4_writepage(struct page *page,
1780 struct writeback_control *wbc)
1782 int ret = 0, commit_write = 0;
1783 loff_t size;
1784 unsigned int len;
1785 struct buffer_head *page_bufs = NULL;
1786 struct inode *inode = page->mapping->host;
1788 trace_ext4_writepage(page);
1789 size = i_size_read(inode);
1790 if (page->index == size >> PAGE_CACHE_SHIFT)
1791 len = size & ~PAGE_CACHE_MASK;
1792 else
1793 len = PAGE_CACHE_SIZE;
1796 * If the page does not have buffers (for whatever reason),
1797 * try to create them using __block_write_begin. If this
1798 * fails, redirty the page and move on.
1800 if (!page_has_buffers(page)) {
1801 if (__block_write_begin(page, 0, len,
1802 noalloc_get_block_write)) {
1803 redirty_page:
1804 redirty_page_for_writepage(wbc, page);
1805 unlock_page(page);
1806 return 0;
1808 commit_write = 1;
1810 page_bufs = page_buffers(page);
1811 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1812 ext4_bh_delay_or_unwritten)) {
1814 * We don't want to do block allocation, so redirty
1815 * the page and return. We may reach here when we do
1816 * a journal commit via journal_submit_inode_data_buffers.
1817 * We can also reach here via shrink_page_list
1819 goto redirty_page;
1821 if (commit_write)
1822 /* now mark the buffer_heads as dirty and uptodate */
1823 block_commit_write(page, 0, len);
1825 if (PageChecked(page) && ext4_should_journal_data(inode))
1827 * It's mmapped pagecache. Add buffers and journal it. There
1828 * doesn't seem much point in redirtying the page here.
1830 return __ext4_journalled_writepage(page, len);
1832 if (buffer_uninit(page_bufs)) {
1833 ext4_set_bh_endio(page_bufs, inode);
1834 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1835 wbc, ext4_end_io_buffer_write);
1836 } else
1837 ret = block_write_full_page(page, noalloc_get_block_write,
1838 wbc);
1840 return ret;
1844 * This is called via ext4_da_writepages() to
1845 * calculate the total number of credits to reserve to fit
1846 * a single extent allocation into a single transaction,
1847 * ext4_da_writpeages() will loop calling this before
1848 * the block allocation.
1851 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1853 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1856 * With non-extent format the journal credit needed to
1857 * insert nrblocks contiguous block is dependent on
1858 * number of contiguous block. So we will limit
1859 * number of contiguous block to a sane value
1861 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1862 (max_blocks > EXT4_MAX_TRANS_DATA))
1863 max_blocks = EXT4_MAX_TRANS_DATA;
1865 return ext4_chunk_trans_blocks(inode, max_blocks);
1869 * write_cache_pages_da - walk the list of dirty pages of the given
1870 * address space and accumulate pages that need writing, and call
1871 * mpage_da_map_and_submit to map a single contiguous memory region
1872 * and then write them.
1874 static int write_cache_pages_da(struct address_space *mapping,
1875 struct writeback_control *wbc,
1876 struct mpage_da_data *mpd,
1877 pgoff_t *done_index)
1879 struct buffer_head *bh, *head;
1880 struct inode *inode = mapping->host;
1881 struct pagevec pvec;
1882 unsigned int nr_pages;
1883 sector_t logical;
1884 pgoff_t index, end;
1885 long nr_to_write = wbc->nr_to_write;
1886 int i, tag, ret = 0;
1888 memset(mpd, 0, sizeof(struct mpage_da_data));
1889 mpd->wbc = wbc;
1890 mpd->inode = inode;
1891 pagevec_init(&pvec, 0);
1892 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1893 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1895 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1896 tag = PAGECACHE_TAG_TOWRITE;
1897 else
1898 tag = PAGECACHE_TAG_DIRTY;
1900 *done_index = index;
1901 while (index <= end) {
1902 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1903 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1904 if (nr_pages == 0)
1905 return 0;
1907 for (i = 0; i < nr_pages; i++) {
1908 struct page *page = pvec.pages[i];
1911 * At this point, the page may be truncated or
1912 * invalidated (changing page->mapping to NULL), or
1913 * even swizzled back from swapper_space to tmpfs file
1914 * mapping. However, page->index will not change
1915 * because we have a reference on the page.
1917 if (page->index > end)
1918 goto out;
1920 *done_index = page->index + 1;
1923 * If we can't merge this page, and we have
1924 * accumulated an contiguous region, write it
1926 if ((mpd->next_page != page->index) &&
1927 (mpd->next_page != mpd->first_page)) {
1928 mpage_da_map_and_submit(mpd);
1929 goto ret_extent_tail;
1932 lock_page(page);
1935 * If the page is no longer dirty, or its
1936 * mapping no longer corresponds to inode we
1937 * are writing (which means it has been
1938 * truncated or invalidated), or the page is
1939 * already under writeback and we are not
1940 * doing a data integrity writeback, skip the page
1942 if (!PageDirty(page) ||
1943 (PageWriteback(page) &&
1944 (wbc->sync_mode == WB_SYNC_NONE)) ||
1945 unlikely(page->mapping != mapping)) {
1946 unlock_page(page);
1947 continue;
1950 wait_on_page_writeback(page);
1951 BUG_ON(PageWriteback(page));
1953 if (mpd->next_page != page->index)
1954 mpd->first_page = page->index;
1955 mpd->next_page = page->index + 1;
1956 logical = (sector_t) page->index <<
1957 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1959 if (!page_has_buffers(page)) {
1960 mpage_add_bh_to_extent(mpd, logical,
1961 PAGE_CACHE_SIZE,
1962 (1 << BH_Dirty) | (1 << BH_Uptodate));
1963 if (mpd->io_done)
1964 goto ret_extent_tail;
1965 } else {
1967 * Page with regular buffer heads,
1968 * just add all dirty ones
1970 head = page_buffers(page);
1971 bh = head;
1972 do {
1973 BUG_ON(buffer_locked(bh));
1975 * We need to try to allocate
1976 * unmapped blocks in the same page.
1977 * Otherwise we won't make progress
1978 * with the page in ext4_writepage
1980 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1981 mpage_add_bh_to_extent(mpd, logical,
1982 bh->b_size,
1983 bh->b_state);
1984 if (mpd->io_done)
1985 goto ret_extent_tail;
1986 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1988 * mapped dirty buffer. We need
1989 * to update the b_state
1990 * because we look at b_state
1991 * in mpage_da_map_blocks. We
1992 * don't update b_size because
1993 * if we find an unmapped
1994 * buffer_head later we need to
1995 * use the b_state flag of that
1996 * buffer_head.
1998 if (mpd->b_size == 0)
1999 mpd->b_state = bh->b_state & BH_FLAGS;
2001 logical++;
2002 } while ((bh = bh->b_this_page) != head);
2005 if (nr_to_write > 0) {
2006 nr_to_write--;
2007 if (nr_to_write == 0 &&
2008 wbc->sync_mode == WB_SYNC_NONE)
2010 * We stop writing back only if we are
2011 * not doing integrity sync. In case of
2012 * integrity sync we have to keep going
2013 * because someone may be concurrently
2014 * dirtying pages, and we might have
2015 * synced a lot of newly appeared dirty
2016 * pages, but have not synced all of the
2017 * old dirty pages.
2019 goto out;
2022 pagevec_release(&pvec);
2023 cond_resched();
2025 return 0;
2026 ret_extent_tail:
2027 ret = MPAGE_DA_EXTENT_TAIL;
2028 out:
2029 pagevec_release(&pvec);
2030 cond_resched();
2031 return ret;
2035 static int ext4_da_writepages(struct address_space *mapping,
2036 struct writeback_control *wbc)
2038 pgoff_t index;
2039 int range_whole = 0;
2040 handle_t *handle = NULL;
2041 struct mpage_da_data mpd;
2042 struct inode *inode = mapping->host;
2043 int pages_written = 0;
2044 unsigned int max_pages;
2045 int range_cyclic, cycled = 1, io_done = 0;
2046 int needed_blocks, ret = 0;
2047 long desired_nr_to_write, nr_to_writebump = 0;
2048 loff_t range_start = wbc->range_start;
2049 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2050 pgoff_t done_index = 0;
2051 pgoff_t end;
2053 trace_ext4_da_writepages(inode, wbc);
2056 * No pages to write? This is mainly a kludge to avoid starting
2057 * a transaction for special inodes like journal inode on last iput()
2058 * because that could violate lock ordering on umount
2060 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2061 return 0;
2064 * If the filesystem has aborted, it is read-only, so return
2065 * right away instead of dumping stack traces later on that
2066 * will obscure the real source of the problem. We test
2067 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2068 * the latter could be true if the filesystem is mounted
2069 * read-only, and in that case, ext4_da_writepages should
2070 * *never* be called, so if that ever happens, we would want
2071 * the stack trace.
2073 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2074 return -EROFS;
2076 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2077 range_whole = 1;
2079 range_cyclic = wbc->range_cyclic;
2080 if (wbc->range_cyclic) {
2081 index = mapping->writeback_index;
2082 if (index)
2083 cycled = 0;
2084 wbc->range_start = index << PAGE_CACHE_SHIFT;
2085 wbc->range_end = LLONG_MAX;
2086 wbc->range_cyclic = 0;
2087 end = -1;
2088 } else {
2089 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2090 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2094 * This works around two forms of stupidity. The first is in
2095 * the writeback code, which caps the maximum number of pages
2096 * written to be 1024 pages. This is wrong on multiple
2097 * levels; different architectues have a different page size,
2098 * which changes the maximum amount of data which gets
2099 * written. Secondly, 4 megabytes is way too small. XFS
2100 * forces this value to be 16 megabytes by multiplying
2101 * nr_to_write parameter by four, and then relies on its
2102 * allocator to allocate larger extents to make them
2103 * contiguous. Unfortunately this brings us to the second
2104 * stupidity, which is that ext4's mballoc code only allocates
2105 * at most 2048 blocks. So we force contiguous writes up to
2106 * the number of dirty blocks in the inode, or
2107 * sbi->max_writeback_mb_bump whichever is smaller.
2109 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2110 if (!range_cyclic && range_whole) {
2111 if (wbc->nr_to_write == LONG_MAX)
2112 desired_nr_to_write = wbc->nr_to_write;
2113 else
2114 desired_nr_to_write = wbc->nr_to_write * 8;
2115 } else
2116 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2117 max_pages);
2118 if (desired_nr_to_write > max_pages)
2119 desired_nr_to_write = max_pages;
2121 if (wbc->nr_to_write < desired_nr_to_write) {
2122 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2123 wbc->nr_to_write = desired_nr_to_write;
2126 retry:
2127 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2128 tag_pages_for_writeback(mapping, index, end);
2130 while (!ret && wbc->nr_to_write > 0) {
2133 * we insert one extent at a time. So we need
2134 * credit needed for single extent allocation.
2135 * journalled mode is currently not supported
2136 * by delalloc
2138 BUG_ON(ext4_should_journal_data(inode));
2139 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2141 /* start a new transaction*/
2142 handle = ext4_journal_start(inode, needed_blocks);
2143 if (IS_ERR(handle)) {
2144 ret = PTR_ERR(handle);
2145 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2146 "%ld pages, ino %lu; err %d", __func__,
2147 wbc->nr_to_write, inode->i_ino, ret);
2148 goto out_writepages;
2152 * Now call write_cache_pages_da() to find the next
2153 * contiguous region of logical blocks that need
2154 * blocks to be allocated by ext4 and submit them.
2156 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2158 * If we have a contiguous extent of pages and we
2159 * haven't done the I/O yet, map the blocks and submit
2160 * them for I/O.
2162 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2163 mpage_da_map_and_submit(&mpd);
2164 ret = MPAGE_DA_EXTENT_TAIL;
2166 trace_ext4_da_write_pages(inode, &mpd);
2167 wbc->nr_to_write -= mpd.pages_written;
2169 ext4_journal_stop(handle);
2171 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2172 /* commit the transaction which would
2173 * free blocks released in the transaction
2174 * and try again
2176 jbd2_journal_force_commit_nested(sbi->s_journal);
2177 ret = 0;
2178 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2180 * got one extent now try with
2181 * rest of the pages
2183 pages_written += mpd.pages_written;
2184 ret = 0;
2185 io_done = 1;
2186 } else if (wbc->nr_to_write)
2188 * There is no more writeout needed
2189 * or we requested for a noblocking writeout
2190 * and we found the device congested
2192 break;
2194 if (!io_done && !cycled) {
2195 cycled = 1;
2196 index = 0;
2197 wbc->range_start = index << PAGE_CACHE_SHIFT;
2198 wbc->range_end = mapping->writeback_index - 1;
2199 goto retry;
2202 /* Update index */
2203 wbc->range_cyclic = range_cyclic;
2204 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2206 * set the writeback_index so that range_cyclic
2207 * mode will write it back later
2209 mapping->writeback_index = done_index;
2211 out_writepages:
2212 wbc->nr_to_write -= nr_to_writebump;
2213 wbc->range_start = range_start;
2214 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2215 return ret;
2218 #define FALL_BACK_TO_NONDELALLOC 1
2219 static int ext4_nonda_switch(struct super_block *sb)
2221 s64 free_blocks, dirty_blocks;
2222 struct ext4_sb_info *sbi = EXT4_SB(sb);
2225 * switch to non delalloc mode if we are running low
2226 * on free block. The free block accounting via percpu
2227 * counters can get slightly wrong with percpu_counter_batch getting
2228 * accumulated on each CPU without updating global counters
2229 * Delalloc need an accurate free block accounting. So switch
2230 * to non delalloc when we are near to error range.
2232 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2233 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2234 if (2 * free_blocks < 3 * dirty_blocks ||
2235 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2237 * free block count is less than 150% of dirty blocks
2238 * or free blocks is less than watermark
2240 return 1;
2243 * Even if we don't switch but are nearing capacity,
2244 * start pushing delalloc when 1/2 of free blocks are dirty.
2246 if (free_blocks < 2 * dirty_blocks)
2247 writeback_inodes_sb_if_idle(sb);
2249 return 0;
2252 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2253 loff_t pos, unsigned len, unsigned flags,
2254 struct page **pagep, void **fsdata)
2256 int ret, retries = 0;
2257 struct page *page;
2258 pgoff_t index;
2259 struct inode *inode = mapping->host;
2260 handle_t *handle;
2262 index = pos >> PAGE_CACHE_SHIFT;
2264 if (ext4_nonda_switch(inode->i_sb)) {
2265 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2266 return ext4_write_begin(file, mapping, pos,
2267 len, flags, pagep, fsdata);
2269 *fsdata = (void *)0;
2270 trace_ext4_da_write_begin(inode, pos, len, flags);
2271 retry:
2273 * With delayed allocation, we don't log the i_disksize update
2274 * if there is delayed block allocation. But we still need
2275 * to journalling the i_disksize update if writes to the end
2276 * of file which has an already mapped buffer.
2278 handle = ext4_journal_start(inode, 1);
2279 if (IS_ERR(handle)) {
2280 ret = PTR_ERR(handle);
2281 goto out;
2283 /* We cannot recurse into the filesystem as the transaction is already
2284 * started */
2285 flags |= AOP_FLAG_NOFS;
2287 page = grab_cache_page_write_begin(mapping, index, flags);
2288 if (!page) {
2289 ext4_journal_stop(handle);
2290 ret = -ENOMEM;
2291 goto out;
2293 *pagep = page;
2295 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2296 if (ret < 0) {
2297 unlock_page(page);
2298 ext4_journal_stop(handle);
2299 page_cache_release(page);
2301 * block_write_begin may have instantiated a few blocks
2302 * outside i_size. Trim these off again. Don't need
2303 * i_size_read because we hold i_mutex.
2305 if (pos + len > inode->i_size)
2306 ext4_truncate_failed_write(inode);
2309 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2310 goto retry;
2311 out:
2312 return ret;
2316 * Check if we should update i_disksize
2317 * when write to the end of file but not require block allocation
2319 static int ext4_da_should_update_i_disksize(struct page *page,
2320 unsigned long offset)
2322 struct buffer_head *bh;
2323 struct inode *inode = page->mapping->host;
2324 unsigned int idx;
2325 int i;
2327 bh = page_buffers(page);
2328 idx = offset >> inode->i_blkbits;
2330 for (i = 0; i < idx; i++)
2331 bh = bh->b_this_page;
2333 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2334 return 0;
2335 return 1;
2338 static int ext4_da_write_end(struct file *file,
2339 struct address_space *mapping,
2340 loff_t pos, unsigned len, unsigned copied,
2341 struct page *page, void *fsdata)
2343 struct inode *inode = mapping->host;
2344 int ret = 0, ret2;
2345 handle_t *handle = ext4_journal_current_handle();
2346 loff_t new_i_size;
2347 unsigned long start, end;
2348 int write_mode = (int)(unsigned long)fsdata;
2350 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2351 if (ext4_should_order_data(inode)) {
2352 return ext4_ordered_write_end(file, mapping, pos,
2353 len, copied, page, fsdata);
2354 } else if (ext4_should_writeback_data(inode)) {
2355 return ext4_writeback_write_end(file, mapping, pos,
2356 len, copied, page, fsdata);
2357 } else {
2358 BUG();
2362 trace_ext4_da_write_end(inode, pos, len, copied);
2363 start = pos & (PAGE_CACHE_SIZE - 1);
2364 end = start + copied - 1;
2367 * generic_write_end() will run mark_inode_dirty() if i_size
2368 * changes. So let's piggyback the i_disksize mark_inode_dirty
2369 * into that.
2372 new_i_size = pos + copied;
2373 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2374 if (ext4_da_should_update_i_disksize(page, end)) {
2375 down_write(&EXT4_I(inode)->i_data_sem);
2376 if (new_i_size > EXT4_I(inode)->i_disksize) {
2378 * Updating i_disksize when extending file
2379 * without needing block allocation
2381 if (ext4_should_order_data(inode))
2382 ret = ext4_jbd2_file_inode(handle,
2383 inode);
2385 EXT4_I(inode)->i_disksize = new_i_size;
2387 up_write(&EXT4_I(inode)->i_data_sem);
2388 /* We need to mark inode dirty even if
2389 * new_i_size is less that inode->i_size
2390 * bu greater than i_disksize.(hint delalloc)
2392 ext4_mark_inode_dirty(handle, inode);
2395 ret2 = generic_write_end(file, mapping, pos, len, copied,
2396 page, fsdata);
2397 copied = ret2;
2398 if (ret2 < 0)
2399 ret = ret2;
2400 ret2 = ext4_journal_stop(handle);
2401 if (!ret)
2402 ret = ret2;
2404 return ret ? ret : copied;
2407 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2410 * Drop reserved blocks
2412 BUG_ON(!PageLocked(page));
2413 if (!page_has_buffers(page))
2414 goto out;
2416 ext4_da_page_release_reservation(page, offset);
2418 out:
2419 ext4_invalidatepage(page, offset);
2421 return;
2425 * Force all delayed allocation blocks to be allocated for a given inode.
2427 int ext4_alloc_da_blocks(struct inode *inode)
2429 trace_ext4_alloc_da_blocks(inode);
2431 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2432 !EXT4_I(inode)->i_reserved_meta_blocks)
2433 return 0;
2436 * We do something simple for now. The filemap_flush() will
2437 * also start triggering a write of the data blocks, which is
2438 * not strictly speaking necessary (and for users of
2439 * laptop_mode, not even desirable). However, to do otherwise
2440 * would require replicating code paths in:
2442 * ext4_da_writepages() ->
2443 * write_cache_pages() ---> (via passed in callback function)
2444 * __mpage_da_writepage() -->
2445 * mpage_add_bh_to_extent()
2446 * mpage_da_map_blocks()
2448 * The problem is that write_cache_pages(), located in
2449 * mm/page-writeback.c, marks pages clean in preparation for
2450 * doing I/O, which is not desirable if we're not planning on
2451 * doing I/O at all.
2453 * We could call write_cache_pages(), and then redirty all of
2454 * the pages by calling redirty_page_for_writepage() but that
2455 * would be ugly in the extreme. So instead we would need to
2456 * replicate parts of the code in the above functions,
2457 * simplifying them because we wouldn't actually intend to
2458 * write out the pages, but rather only collect contiguous
2459 * logical block extents, call the multi-block allocator, and
2460 * then update the buffer heads with the block allocations.
2462 * For now, though, we'll cheat by calling filemap_flush(),
2463 * which will map the blocks, and start the I/O, but not
2464 * actually wait for the I/O to complete.
2466 return filemap_flush(inode->i_mapping);
2470 * bmap() is special. It gets used by applications such as lilo and by
2471 * the swapper to find the on-disk block of a specific piece of data.
2473 * Naturally, this is dangerous if the block concerned is still in the
2474 * journal. If somebody makes a swapfile on an ext4 data-journaling
2475 * filesystem and enables swap, then they may get a nasty shock when the
2476 * data getting swapped to that swapfile suddenly gets overwritten by
2477 * the original zero's written out previously to the journal and
2478 * awaiting writeback in the kernel's buffer cache.
2480 * So, if we see any bmap calls here on a modified, data-journaled file,
2481 * take extra steps to flush any blocks which might be in the cache.
2483 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2485 struct inode *inode = mapping->host;
2486 journal_t *journal;
2487 int err;
2489 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2490 test_opt(inode->i_sb, DELALLOC)) {
2492 * With delalloc we want to sync the file
2493 * so that we can make sure we allocate
2494 * blocks for file
2496 filemap_write_and_wait(mapping);
2499 if (EXT4_JOURNAL(inode) &&
2500 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2502 * This is a REALLY heavyweight approach, but the use of
2503 * bmap on dirty files is expected to be extremely rare:
2504 * only if we run lilo or swapon on a freshly made file
2505 * do we expect this to happen.
2507 * (bmap requires CAP_SYS_RAWIO so this does not
2508 * represent an unprivileged user DOS attack --- we'd be
2509 * in trouble if mortal users could trigger this path at
2510 * will.)
2512 * NB. EXT4_STATE_JDATA is not set on files other than
2513 * regular files. If somebody wants to bmap a directory
2514 * or symlink and gets confused because the buffer
2515 * hasn't yet been flushed to disk, they deserve
2516 * everything they get.
2519 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2520 journal = EXT4_JOURNAL(inode);
2521 jbd2_journal_lock_updates(journal);
2522 err = jbd2_journal_flush(journal);
2523 jbd2_journal_unlock_updates(journal);
2525 if (err)
2526 return 0;
2529 return generic_block_bmap(mapping, block, ext4_get_block);
2532 static int ext4_readpage(struct file *file, struct page *page)
2534 trace_ext4_readpage(page);
2535 return mpage_readpage(page, ext4_get_block);
2538 static int
2539 ext4_readpages(struct file *file, struct address_space *mapping,
2540 struct list_head *pages, unsigned nr_pages)
2542 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2545 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2547 struct buffer_head *head, *bh;
2548 unsigned int curr_off = 0;
2550 if (!page_has_buffers(page))
2551 return;
2552 head = bh = page_buffers(page);
2553 do {
2554 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2555 && bh->b_private) {
2556 ext4_free_io_end(bh->b_private);
2557 bh->b_private = NULL;
2558 bh->b_end_io = NULL;
2560 curr_off = curr_off + bh->b_size;
2561 bh = bh->b_this_page;
2562 } while (bh != head);
2565 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2567 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2569 trace_ext4_invalidatepage(page, offset);
2572 * free any io_end structure allocated for buffers to be discarded
2574 if (ext4_should_dioread_nolock(page->mapping->host))
2575 ext4_invalidatepage_free_endio(page, offset);
2577 * If it's a full truncate we just forget about the pending dirtying
2579 if (offset == 0)
2580 ClearPageChecked(page);
2582 if (journal)
2583 jbd2_journal_invalidatepage(journal, page, offset);
2584 else
2585 block_invalidatepage(page, offset);
2588 static int ext4_releasepage(struct page *page, gfp_t wait)
2590 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2592 trace_ext4_releasepage(page);
2594 WARN_ON(PageChecked(page));
2595 if (!page_has_buffers(page))
2596 return 0;
2597 if (journal)
2598 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2599 else
2600 return try_to_free_buffers(page);
2604 * ext4_get_block used when preparing for a DIO write or buffer write.
2605 * We allocate an uinitialized extent if blocks haven't been allocated.
2606 * The extent will be converted to initialized after the IO is complete.
2608 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2609 struct buffer_head *bh_result, int create)
2611 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2612 inode->i_ino, create);
2613 return _ext4_get_block(inode, iblock, bh_result,
2614 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2617 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2618 ssize_t size, void *private, int ret,
2619 bool is_async)
2621 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2622 ext4_io_end_t *io_end = iocb->private;
2623 struct workqueue_struct *wq;
2624 unsigned long flags;
2625 struct ext4_inode_info *ei;
2627 /* if not async direct IO or dio with 0 bytes write, just return */
2628 if (!io_end || !size)
2629 goto out;
2631 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2632 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2633 iocb->private, io_end->inode->i_ino, iocb, offset,
2634 size);
2636 iocb->private = NULL;
2638 /* if not aio dio with unwritten extents, just free io and return */
2639 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2640 ext4_free_io_end(io_end);
2641 out:
2642 if (is_async)
2643 aio_complete(iocb, ret, 0);
2644 inode_dio_done(inode);
2645 return;
2648 io_end->offset = offset;
2649 io_end->size = size;
2650 if (is_async) {
2651 io_end->iocb = iocb;
2652 io_end->result = ret;
2654 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2656 /* Add the io_end to per-inode completed aio dio list*/
2657 ei = EXT4_I(io_end->inode);
2658 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2659 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2660 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2662 /* queue the work to convert unwritten extents to written */
2663 queue_work(wq, &io_end->work);
2665 /* XXX: probably should move into the real I/O completion handler */
2666 inode_dio_done(inode);
2669 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2671 ext4_io_end_t *io_end = bh->b_private;
2672 struct workqueue_struct *wq;
2673 struct inode *inode;
2674 unsigned long flags;
2676 if (!test_clear_buffer_uninit(bh) || !io_end)
2677 goto out;
2679 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2680 printk("sb umounted, discard end_io request for inode %lu\n",
2681 io_end->inode->i_ino);
2682 ext4_free_io_end(io_end);
2683 goto out;
2687 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2688 * but being more careful is always safe for the future change.
2690 inode = io_end->inode;
2691 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2692 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2693 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2696 /* Add the io_end to per-inode completed io list*/
2697 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2698 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2699 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2701 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2702 /* queue the work to convert unwritten extents to written */
2703 queue_work(wq, &io_end->work);
2704 out:
2705 bh->b_private = NULL;
2706 bh->b_end_io = NULL;
2707 clear_buffer_uninit(bh);
2708 end_buffer_async_write(bh, uptodate);
2711 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2713 ext4_io_end_t *io_end;
2714 struct page *page = bh->b_page;
2715 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2716 size_t size = bh->b_size;
2718 retry:
2719 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2720 if (!io_end) {
2721 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2722 schedule();
2723 goto retry;
2725 io_end->offset = offset;
2726 io_end->size = size;
2728 * We need to hold a reference to the page to make sure it
2729 * doesn't get evicted before ext4_end_io_work() has a chance
2730 * to convert the extent from written to unwritten.
2732 io_end->page = page;
2733 get_page(io_end->page);
2735 bh->b_private = io_end;
2736 bh->b_end_io = ext4_end_io_buffer_write;
2737 return 0;
2741 * For ext4 extent files, ext4 will do direct-io write to holes,
2742 * preallocated extents, and those write extend the file, no need to
2743 * fall back to buffered IO.
2745 * For holes, we fallocate those blocks, mark them as uninitialized
2746 * If those blocks were preallocated, we mark sure they are splited, but
2747 * still keep the range to write as uninitialized.
2749 * The unwrritten extents will be converted to written when DIO is completed.
2750 * For async direct IO, since the IO may still pending when return, we
2751 * set up an end_io call back function, which will do the conversion
2752 * when async direct IO completed.
2754 * If the O_DIRECT write will extend the file then add this inode to the
2755 * orphan list. So recovery will truncate it back to the original size
2756 * if the machine crashes during the write.
2759 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2760 const struct iovec *iov, loff_t offset,
2761 unsigned long nr_segs)
2763 struct file *file = iocb->ki_filp;
2764 struct inode *inode = file->f_mapping->host;
2765 ssize_t ret;
2766 size_t count = iov_length(iov, nr_segs);
2768 loff_t final_size = offset + count;
2769 if (rw == WRITE && final_size <= inode->i_size) {
2771 * We could direct write to holes and fallocate.
2773 * Allocated blocks to fill the hole are marked as uninitialized
2774 * to prevent parallel buffered read to expose the stale data
2775 * before DIO complete the data IO.
2777 * As to previously fallocated extents, ext4 get_block
2778 * will just simply mark the buffer mapped but still
2779 * keep the extents uninitialized.
2781 * for non AIO case, we will convert those unwritten extents
2782 * to written after return back from blockdev_direct_IO.
2784 * for async DIO, the conversion needs to be defered when
2785 * the IO is completed. The ext4 end_io callback function
2786 * will be called to take care of the conversion work.
2787 * Here for async case, we allocate an io_end structure to
2788 * hook to the iocb.
2790 iocb->private = NULL;
2791 EXT4_I(inode)->cur_aio_dio = NULL;
2792 if (!is_sync_kiocb(iocb)) {
2793 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2794 if (!iocb->private)
2795 return -ENOMEM;
2797 * we save the io structure for current async
2798 * direct IO, so that later ext4_map_blocks()
2799 * could flag the io structure whether there
2800 * is a unwritten extents needs to be converted
2801 * when IO is completed.
2803 EXT4_I(inode)->cur_aio_dio = iocb->private;
2806 ret = __blockdev_direct_IO(rw, iocb, inode,
2807 inode->i_sb->s_bdev, iov,
2808 offset, nr_segs,
2809 ext4_get_block_write,
2810 ext4_end_io_dio,
2811 NULL,
2812 DIO_LOCKING | DIO_SKIP_HOLES);
2813 if (iocb->private)
2814 EXT4_I(inode)->cur_aio_dio = NULL;
2816 * The io_end structure takes a reference to the inode,
2817 * that structure needs to be destroyed and the
2818 * reference to the inode need to be dropped, when IO is
2819 * complete, even with 0 byte write, or failed.
2821 * In the successful AIO DIO case, the io_end structure will be
2822 * desctroyed and the reference to the inode will be dropped
2823 * after the end_io call back function is called.
2825 * In the case there is 0 byte write, or error case, since
2826 * VFS direct IO won't invoke the end_io call back function,
2827 * we need to free the end_io structure here.
2829 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2830 ext4_free_io_end(iocb->private);
2831 iocb->private = NULL;
2832 } else if (ret > 0 && ext4_test_inode_state(inode,
2833 EXT4_STATE_DIO_UNWRITTEN)) {
2834 int err;
2836 * for non AIO case, since the IO is already
2837 * completed, we could do the conversion right here
2839 err = ext4_convert_unwritten_extents(inode,
2840 offset, ret);
2841 if (err < 0)
2842 ret = err;
2843 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2845 return ret;
2848 /* for write the the end of file case, we fall back to old way */
2849 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2852 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2853 const struct iovec *iov, loff_t offset,
2854 unsigned long nr_segs)
2856 struct file *file = iocb->ki_filp;
2857 struct inode *inode = file->f_mapping->host;
2858 ssize_t ret;
2860 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2861 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2862 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2863 else
2864 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2865 trace_ext4_direct_IO_exit(inode, offset,
2866 iov_length(iov, nr_segs), rw, ret);
2867 return ret;
2871 * Pages can be marked dirty completely asynchronously from ext4's journalling
2872 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2873 * much here because ->set_page_dirty is called under VFS locks. The page is
2874 * not necessarily locked.
2876 * We cannot just dirty the page and leave attached buffers clean, because the
2877 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2878 * or jbddirty because all the journalling code will explode.
2880 * So what we do is to mark the page "pending dirty" and next time writepage
2881 * is called, propagate that into the buffers appropriately.
2883 static int ext4_journalled_set_page_dirty(struct page *page)
2885 SetPageChecked(page);
2886 return __set_page_dirty_nobuffers(page);
2889 static const struct address_space_operations ext4_ordered_aops = {
2890 .readpage = ext4_readpage,
2891 .readpages = ext4_readpages,
2892 .writepage = ext4_writepage,
2893 .write_begin = ext4_write_begin,
2894 .write_end = ext4_ordered_write_end,
2895 .bmap = ext4_bmap,
2896 .invalidatepage = ext4_invalidatepage,
2897 .releasepage = ext4_releasepage,
2898 .direct_IO = ext4_direct_IO,
2899 .migratepage = buffer_migrate_page,
2900 .is_partially_uptodate = block_is_partially_uptodate,
2901 .error_remove_page = generic_error_remove_page,
2904 static const struct address_space_operations ext4_writeback_aops = {
2905 .readpage = ext4_readpage,
2906 .readpages = ext4_readpages,
2907 .writepage = ext4_writepage,
2908 .write_begin = ext4_write_begin,
2909 .write_end = ext4_writeback_write_end,
2910 .bmap = ext4_bmap,
2911 .invalidatepage = ext4_invalidatepage,
2912 .releasepage = ext4_releasepage,
2913 .direct_IO = ext4_direct_IO,
2914 .migratepage = buffer_migrate_page,
2915 .is_partially_uptodate = block_is_partially_uptodate,
2916 .error_remove_page = generic_error_remove_page,
2919 static const struct address_space_operations ext4_journalled_aops = {
2920 .readpage = ext4_readpage,
2921 .readpages = ext4_readpages,
2922 .writepage = ext4_writepage,
2923 .write_begin = ext4_write_begin,
2924 .write_end = ext4_journalled_write_end,
2925 .set_page_dirty = ext4_journalled_set_page_dirty,
2926 .bmap = ext4_bmap,
2927 .invalidatepage = ext4_invalidatepage,
2928 .releasepage = ext4_releasepage,
2929 .is_partially_uptodate = block_is_partially_uptodate,
2930 .error_remove_page = generic_error_remove_page,
2933 static const struct address_space_operations ext4_da_aops = {
2934 .readpage = ext4_readpage,
2935 .readpages = ext4_readpages,
2936 .writepage = ext4_writepage,
2937 .writepages = ext4_da_writepages,
2938 .write_begin = ext4_da_write_begin,
2939 .write_end = ext4_da_write_end,
2940 .bmap = ext4_bmap,
2941 .invalidatepage = ext4_da_invalidatepage,
2942 .releasepage = ext4_releasepage,
2943 .direct_IO = ext4_direct_IO,
2944 .migratepage = buffer_migrate_page,
2945 .is_partially_uptodate = block_is_partially_uptodate,
2946 .error_remove_page = generic_error_remove_page,
2949 void ext4_set_aops(struct inode *inode)
2951 if (ext4_should_order_data(inode) &&
2952 test_opt(inode->i_sb, DELALLOC))
2953 inode->i_mapping->a_ops = &ext4_da_aops;
2954 else if (ext4_should_order_data(inode))
2955 inode->i_mapping->a_ops = &ext4_ordered_aops;
2956 else if (ext4_should_writeback_data(inode) &&
2957 test_opt(inode->i_sb, DELALLOC))
2958 inode->i_mapping->a_ops = &ext4_da_aops;
2959 else if (ext4_should_writeback_data(inode))
2960 inode->i_mapping->a_ops = &ext4_writeback_aops;
2961 else
2962 inode->i_mapping->a_ops = &ext4_journalled_aops;
2966 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2967 * up to the end of the block which corresponds to `from'.
2968 * This required during truncate. We need to physically zero the tail end
2969 * of that block so it doesn't yield old data if the file is later grown.
2971 int ext4_block_truncate_page(handle_t *handle,
2972 struct address_space *mapping, loff_t from)
2974 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2975 unsigned length;
2976 unsigned blocksize;
2977 struct inode *inode = mapping->host;
2979 blocksize = inode->i_sb->s_blocksize;
2980 length = blocksize - (offset & (blocksize - 1));
2982 return ext4_block_zero_page_range(handle, mapping, from, length);
2986 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2987 * starting from file offset 'from'. The range to be zero'd must
2988 * be contained with in one block. If the specified range exceeds
2989 * the end of the block it will be shortened to end of the block
2990 * that cooresponds to 'from'
2992 int ext4_block_zero_page_range(handle_t *handle,
2993 struct address_space *mapping, loff_t from, loff_t length)
2995 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2996 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2997 unsigned blocksize, max, pos;
2998 ext4_lblk_t iblock;
2999 struct inode *inode = mapping->host;
3000 struct buffer_head *bh;
3001 struct page *page;
3002 int err = 0;
3004 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3005 mapping_gfp_mask(mapping) & ~__GFP_FS);
3006 if (!page)
3007 return -EINVAL;
3009 blocksize = inode->i_sb->s_blocksize;
3010 max = blocksize - (offset & (blocksize - 1));
3013 * correct length if it does not fall between
3014 * 'from' and the end of the block
3016 if (length > max || length < 0)
3017 length = max;
3019 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3021 if (!page_has_buffers(page))
3022 create_empty_buffers(page, blocksize, 0);
3024 /* Find the buffer that contains "offset" */
3025 bh = page_buffers(page);
3026 pos = blocksize;
3027 while (offset >= pos) {
3028 bh = bh->b_this_page;
3029 iblock++;
3030 pos += blocksize;
3033 err = 0;
3034 if (buffer_freed(bh)) {
3035 BUFFER_TRACE(bh, "freed: skip");
3036 goto unlock;
3039 if (!buffer_mapped(bh)) {
3040 BUFFER_TRACE(bh, "unmapped");
3041 ext4_get_block(inode, iblock, bh, 0);
3042 /* unmapped? It's a hole - nothing to do */
3043 if (!buffer_mapped(bh)) {
3044 BUFFER_TRACE(bh, "still unmapped");
3045 goto unlock;
3049 /* Ok, it's mapped. Make sure it's up-to-date */
3050 if (PageUptodate(page))
3051 set_buffer_uptodate(bh);
3053 if (!buffer_uptodate(bh)) {
3054 err = -EIO;
3055 ll_rw_block(READ, 1, &bh);
3056 wait_on_buffer(bh);
3057 /* Uhhuh. Read error. Complain and punt. */
3058 if (!buffer_uptodate(bh))
3059 goto unlock;
3062 if (ext4_should_journal_data(inode)) {
3063 BUFFER_TRACE(bh, "get write access");
3064 err = ext4_journal_get_write_access(handle, bh);
3065 if (err)
3066 goto unlock;
3069 zero_user(page, offset, length);
3071 BUFFER_TRACE(bh, "zeroed end of block");
3073 err = 0;
3074 if (ext4_should_journal_data(inode)) {
3075 err = ext4_handle_dirty_metadata(handle, inode, bh);
3076 } else {
3077 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3078 err = ext4_jbd2_file_inode(handle, inode);
3079 mark_buffer_dirty(bh);
3082 unlock:
3083 unlock_page(page);
3084 page_cache_release(page);
3085 return err;
3088 int ext4_can_truncate(struct inode *inode)
3090 if (S_ISREG(inode->i_mode))
3091 return 1;
3092 if (S_ISDIR(inode->i_mode))
3093 return 1;
3094 if (S_ISLNK(inode->i_mode))
3095 return !ext4_inode_is_fast_symlink(inode);
3096 return 0;
3100 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3101 * associated with the given offset and length
3103 * @inode: File inode
3104 * @offset: The offset where the hole will begin
3105 * @len: The length of the hole
3107 * Returns: 0 on sucess or negative on failure
3110 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3112 struct inode *inode = file->f_path.dentry->d_inode;
3113 if (!S_ISREG(inode->i_mode))
3114 return -ENOTSUPP;
3116 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3117 /* TODO: Add support for non extent hole punching */
3118 return -ENOTSUPP;
3121 return ext4_ext_punch_hole(file, offset, length);
3125 * ext4_truncate()
3127 * We block out ext4_get_block() block instantiations across the entire
3128 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3129 * simultaneously on behalf of the same inode.
3131 * As we work through the truncate and commmit bits of it to the journal there
3132 * is one core, guiding principle: the file's tree must always be consistent on
3133 * disk. We must be able to restart the truncate after a crash.
3135 * The file's tree may be transiently inconsistent in memory (although it
3136 * probably isn't), but whenever we close off and commit a journal transaction,
3137 * the contents of (the filesystem + the journal) must be consistent and
3138 * restartable. It's pretty simple, really: bottom up, right to left (although
3139 * left-to-right works OK too).
3141 * Note that at recovery time, journal replay occurs *before* the restart of
3142 * truncate against the orphan inode list.
3144 * The committed inode has the new, desired i_size (which is the same as
3145 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3146 * that this inode's truncate did not complete and it will again call
3147 * ext4_truncate() to have another go. So there will be instantiated blocks
3148 * to the right of the truncation point in a crashed ext4 filesystem. But
3149 * that's fine - as long as they are linked from the inode, the post-crash
3150 * ext4_truncate() run will find them and release them.
3152 void ext4_truncate(struct inode *inode)
3154 trace_ext4_truncate_enter(inode);
3156 if (!ext4_can_truncate(inode))
3157 return;
3159 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3161 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3162 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3164 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3165 ext4_ext_truncate(inode);
3166 else
3167 ext4_ind_truncate(inode);
3169 trace_ext4_truncate_exit(inode);
3173 * ext4_get_inode_loc returns with an extra refcount against the inode's
3174 * underlying buffer_head on success. If 'in_mem' is true, we have all
3175 * data in memory that is needed to recreate the on-disk version of this
3176 * inode.
3178 static int __ext4_get_inode_loc(struct inode *inode,
3179 struct ext4_iloc *iloc, int in_mem)
3181 struct ext4_group_desc *gdp;
3182 struct buffer_head *bh;
3183 struct super_block *sb = inode->i_sb;
3184 ext4_fsblk_t block;
3185 int inodes_per_block, inode_offset;
3187 iloc->bh = NULL;
3188 if (!ext4_valid_inum(sb, inode->i_ino))
3189 return -EIO;
3191 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3192 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3193 if (!gdp)
3194 return -EIO;
3197 * Figure out the offset within the block group inode table
3199 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3200 inode_offset = ((inode->i_ino - 1) %
3201 EXT4_INODES_PER_GROUP(sb));
3202 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3203 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3205 bh = sb_getblk(sb, block);
3206 if (!bh) {
3207 EXT4_ERROR_INODE_BLOCK(inode, block,
3208 "unable to read itable block");
3209 return -EIO;
3211 if (!buffer_uptodate(bh)) {
3212 lock_buffer(bh);
3215 * If the buffer has the write error flag, we have failed
3216 * to write out another inode in the same block. In this
3217 * case, we don't have to read the block because we may
3218 * read the old inode data successfully.
3220 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3221 set_buffer_uptodate(bh);
3223 if (buffer_uptodate(bh)) {
3224 /* someone brought it uptodate while we waited */
3225 unlock_buffer(bh);
3226 goto has_buffer;
3230 * If we have all information of the inode in memory and this
3231 * is the only valid inode in the block, we need not read the
3232 * block.
3234 if (in_mem) {
3235 struct buffer_head *bitmap_bh;
3236 int i, start;
3238 start = inode_offset & ~(inodes_per_block - 1);
3240 /* Is the inode bitmap in cache? */
3241 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3242 if (!bitmap_bh)
3243 goto make_io;
3246 * If the inode bitmap isn't in cache then the
3247 * optimisation may end up performing two reads instead
3248 * of one, so skip it.
3250 if (!buffer_uptodate(bitmap_bh)) {
3251 brelse(bitmap_bh);
3252 goto make_io;
3254 for (i = start; i < start + inodes_per_block; i++) {
3255 if (i == inode_offset)
3256 continue;
3257 if (ext4_test_bit(i, bitmap_bh->b_data))
3258 break;
3260 brelse(bitmap_bh);
3261 if (i == start + inodes_per_block) {
3262 /* all other inodes are free, so skip I/O */
3263 memset(bh->b_data, 0, bh->b_size);
3264 set_buffer_uptodate(bh);
3265 unlock_buffer(bh);
3266 goto has_buffer;
3270 make_io:
3272 * If we need to do any I/O, try to pre-readahead extra
3273 * blocks from the inode table.
3275 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3276 ext4_fsblk_t b, end, table;
3277 unsigned num;
3279 table = ext4_inode_table(sb, gdp);
3280 /* s_inode_readahead_blks is always a power of 2 */
3281 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3282 if (table > b)
3283 b = table;
3284 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3285 num = EXT4_INODES_PER_GROUP(sb);
3286 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3287 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3288 num -= ext4_itable_unused_count(sb, gdp);
3289 table += num / inodes_per_block;
3290 if (end > table)
3291 end = table;
3292 while (b <= end)
3293 sb_breadahead(sb, b++);
3297 * There are other valid inodes in the buffer, this inode
3298 * has in-inode xattrs, or we don't have this inode in memory.
3299 * Read the block from disk.
3301 trace_ext4_load_inode(inode);
3302 get_bh(bh);
3303 bh->b_end_io = end_buffer_read_sync;
3304 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3305 wait_on_buffer(bh);
3306 if (!buffer_uptodate(bh)) {
3307 EXT4_ERROR_INODE_BLOCK(inode, block,
3308 "unable to read itable block");
3309 brelse(bh);
3310 return -EIO;
3313 has_buffer:
3314 iloc->bh = bh;
3315 return 0;
3318 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3320 /* We have all inode data except xattrs in memory here. */
3321 return __ext4_get_inode_loc(inode, iloc,
3322 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3325 void ext4_set_inode_flags(struct inode *inode)
3327 unsigned int flags = EXT4_I(inode)->i_flags;
3329 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3330 if (flags & EXT4_SYNC_FL)
3331 inode->i_flags |= S_SYNC;
3332 if (flags & EXT4_APPEND_FL)
3333 inode->i_flags |= S_APPEND;
3334 if (flags & EXT4_IMMUTABLE_FL)
3335 inode->i_flags |= S_IMMUTABLE;
3336 if (flags & EXT4_NOATIME_FL)
3337 inode->i_flags |= S_NOATIME;
3338 if (flags & EXT4_DIRSYNC_FL)
3339 inode->i_flags |= S_DIRSYNC;
3342 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3343 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3345 unsigned int vfs_fl;
3346 unsigned long old_fl, new_fl;
3348 do {
3349 vfs_fl = ei->vfs_inode.i_flags;
3350 old_fl = ei->i_flags;
3351 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3352 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3353 EXT4_DIRSYNC_FL);
3354 if (vfs_fl & S_SYNC)
3355 new_fl |= EXT4_SYNC_FL;
3356 if (vfs_fl & S_APPEND)
3357 new_fl |= EXT4_APPEND_FL;
3358 if (vfs_fl & S_IMMUTABLE)
3359 new_fl |= EXT4_IMMUTABLE_FL;
3360 if (vfs_fl & S_NOATIME)
3361 new_fl |= EXT4_NOATIME_FL;
3362 if (vfs_fl & S_DIRSYNC)
3363 new_fl |= EXT4_DIRSYNC_FL;
3364 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3367 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3368 struct ext4_inode_info *ei)
3370 blkcnt_t i_blocks ;
3371 struct inode *inode = &(ei->vfs_inode);
3372 struct super_block *sb = inode->i_sb;
3374 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3375 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3376 /* we are using combined 48 bit field */
3377 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3378 le32_to_cpu(raw_inode->i_blocks_lo);
3379 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3380 /* i_blocks represent file system block size */
3381 return i_blocks << (inode->i_blkbits - 9);
3382 } else {
3383 return i_blocks;
3385 } else {
3386 return le32_to_cpu(raw_inode->i_blocks_lo);
3390 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3392 struct ext4_iloc iloc;
3393 struct ext4_inode *raw_inode;
3394 struct ext4_inode_info *ei;
3395 struct inode *inode;
3396 journal_t *journal = EXT4_SB(sb)->s_journal;
3397 long ret;
3398 int block;
3400 inode = iget_locked(sb, ino);
3401 if (!inode)
3402 return ERR_PTR(-ENOMEM);
3403 if (!(inode->i_state & I_NEW))
3404 return inode;
3406 ei = EXT4_I(inode);
3407 iloc.bh = NULL;
3409 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3410 if (ret < 0)
3411 goto bad_inode;
3412 raw_inode = ext4_raw_inode(&iloc);
3413 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3414 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3415 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3416 if (!(test_opt(inode->i_sb, NO_UID32))) {
3417 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3418 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3420 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3422 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3423 ei->i_dir_start_lookup = 0;
3424 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3425 /* We now have enough fields to check if the inode was active or not.
3426 * This is needed because nfsd might try to access dead inodes
3427 * the test is that same one that e2fsck uses
3428 * NeilBrown 1999oct15
3430 if (inode->i_nlink == 0) {
3431 if (inode->i_mode == 0 ||
3432 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3433 /* this inode is deleted */
3434 ret = -ESTALE;
3435 goto bad_inode;
3437 /* The only unlinked inodes we let through here have
3438 * valid i_mode and are being read by the orphan
3439 * recovery code: that's fine, we're about to complete
3440 * the process of deleting those. */
3442 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3443 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3444 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3445 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3446 ei->i_file_acl |=
3447 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3448 inode->i_size = ext4_isize(raw_inode);
3449 ei->i_disksize = inode->i_size;
3450 #ifdef CONFIG_QUOTA
3451 ei->i_reserved_quota = 0;
3452 #endif
3453 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3454 ei->i_block_group = iloc.block_group;
3455 ei->i_last_alloc_group = ~0;
3457 * NOTE! The in-memory inode i_data array is in little-endian order
3458 * even on big-endian machines: we do NOT byteswap the block numbers!
3460 for (block = 0; block < EXT4_N_BLOCKS; block++)
3461 ei->i_data[block] = raw_inode->i_block[block];
3462 INIT_LIST_HEAD(&ei->i_orphan);
3465 * Set transaction id's of transactions that have to be committed
3466 * to finish f[data]sync. We set them to currently running transaction
3467 * as we cannot be sure that the inode or some of its metadata isn't
3468 * part of the transaction - the inode could have been reclaimed and
3469 * now it is reread from disk.
3471 if (journal) {
3472 transaction_t *transaction;
3473 tid_t tid;
3475 read_lock(&journal->j_state_lock);
3476 if (journal->j_running_transaction)
3477 transaction = journal->j_running_transaction;
3478 else
3479 transaction = journal->j_committing_transaction;
3480 if (transaction)
3481 tid = transaction->t_tid;
3482 else
3483 tid = journal->j_commit_sequence;
3484 read_unlock(&journal->j_state_lock);
3485 ei->i_sync_tid = tid;
3486 ei->i_datasync_tid = tid;
3489 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3490 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3491 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3492 EXT4_INODE_SIZE(inode->i_sb)) {
3493 ret = -EIO;
3494 goto bad_inode;
3496 if (ei->i_extra_isize == 0) {
3497 /* The extra space is currently unused. Use it. */
3498 ei->i_extra_isize = sizeof(struct ext4_inode) -
3499 EXT4_GOOD_OLD_INODE_SIZE;
3500 } else {
3501 __le32 *magic = (void *)raw_inode +
3502 EXT4_GOOD_OLD_INODE_SIZE +
3503 ei->i_extra_isize;
3504 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3505 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3507 } else
3508 ei->i_extra_isize = 0;
3510 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3511 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3512 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3513 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3515 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3516 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3517 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3518 inode->i_version |=
3519 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3522 ret = 0;
3523 if (ei->i_file_acl &&
3524 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3525 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3526 ei->i_file_acl);
3527 ret = -EIO;
3528 goto bad_inode;
3529 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3530 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3531 (S_ISLNK(inode->i_mode) &&
3532 !ext4_inode_is_fast_symlink(inode)))
3533 /* Validate extent which is part of inode */
3534 ret = ext4_ext_check_inode(inode);
3535 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3536 (S_ISLNK(inode->i_mode) &&
3537 !ext4_inode_is_fast_symlink(inode))) {
3538 /* Validate block references which are part of inode */
3539 ret = ext4_ind_check_inode(inode);
3541 if (ret)
3542 goto bad_inode;
3544 if (S_ISREG(inode->i_mode)) {
3545 inode->i_op = &ext4_file_inode_operations;
3546 inode->i_fop = &ext4_file_operations;
3547 ext4_set_aops(inode);
3548 } else if (S_ISDIR(inode->i_mode)) {
3549 inode->i_op = &ext4_dir_inode_operations;
3550 inode->i_fop = &ext4_dir_operations;
3551 } else if (S_ISLNK(inode->i_mode)) {
3552 if (ext4_inode_is_fast_symlink(inode)) {
3553 inode->i_op = &ext4_fast_symlink_inode_operations;
3554 nd_terminate_link(ei->i_data, inode->i_size,
3555 sizeof(ei->i_data) - 1);
3556 } else {
3557 inode->i_op = &ext4_symlink_inode_operations;
3558 ext4_set_aops(inode);
3560 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3561 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3562 inode->i_op = &ext4_special_inode_operations;
3563 if (raw_inode->i_block[0])
3564 init_special_inode(inode, inode->i_mode,
3565 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3566 else
3567 init_special_inode(inode, inode->i_mode,
3568 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3569 } else {
3570 ret = -EIO;
3571 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3572 goto bad_inode;
3574 brelse(iloc.bh);
3575 ext4_set_inode_flags(inode);
3576 unlock_new_inode(inode);
3577 return inode;
3579 bad_inode:
3580 brelse(iloc.bh);
3581 iget_failed(inode);
3582 return ERR_PTR(ret);
3585 static int ext4_inode_blocks_set(handle_t *handle,
3586 struct ext4_inode *raw_inode,
3587 struct ext4_inode_info *ei)
3589 struct inode *inode = &(ei->vfs_inode);
3590 u64 i_blocks = inode->i_blocks;
3591 struct super_block *sb = inode->i_sb;
3593 if (i_blocks <= ~0U) {
3595 * i_blocks can be represnted in a 32 bit variable
3596 * as multiple of 512 bytes
3598 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3599 raw_inode->i_blocks_high = 0;
3600 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3601 return 0;
3603 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3604 return -EFBIG;
3606 if (i_blocks <= 0xffffffffffffULL) {
3608 * i_blocks can be represented in a 48 bit variable
3609 * as multiple of 512 bytes
3611 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3612 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3613 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3614 } else {
3615 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3616 /* i_block is stored in file system block size */
3617 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3618 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3619 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3621 return 0;
3625 * Post the struct inode info into an on-disk inode location in the
3626 * buffer-cache. This gobbles the caller's reference to the
3627 * buffer_head in the inode location struct.
3629 * The caller must have write access to iloc->bh.
3631 static int ext4_do_update_inode(handle_t *handle,
3632 struct inode *inode,
3633 struct ext4_iloc *iloc)
3635 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3636 struct ext4_inode_info *ei = EXT4_I(inode);
3637 struct buffer_head *bh = iloc->bh;
3638 int err = 0, rc, block;
3640 /* For fields not not tracking in the in-memory inode,
3641 * initialise them to zero for new inodes. */
3642 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3643 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3645 ext4_get_inode_flags(ei);
3646 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3647 if (!(test_opt(inode->i_sb, NO_UID32))) {
3648 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3649 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3651 * Fix up interoperability with old kernels. Otherwise, old inodes get
3652 * re-used with the upper 16 bits of the uid/gid intact
3654 if (!ei->i_dtime) {
3655 raw_inode->i_uid_high =
3656 cpu_to_le16(high_16_bits(inode->i_uid));
3657 raw_inode->i_gid_high =
3658 cpu_to_le16(high_16_bits(inode->i_gid));
3659 } else {
3660 raw_inode->i_uid_high = 0;
3661 raw_inode->i_gid_high = 0;
3663 } else {
3664 raw_inode->i_uid_low =
3665 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3666 raw_inode->i_gid_low =
3667 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3668 raw_inode->i_uid_high = 0;
3669 raw_inode->i_gid_high = 0;
3671 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3673 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3674 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3675 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3676 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3678 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3679 goto out_brelse;
3680 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3681 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3682 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3683 cpu_to_le32(EXT4_OS_HURD))
3684 raw_inode->i_file_acl_high =
3685 cpu_to_le16(ei->i_file_acl >> 32);
3686 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3687 ext4_isize_set(raw_inode, ei->i_disksize);
3688 if (ei->i_disksize > 0x7fffffffULL) {
3689 struct super_block *sb = inode->i_sb;
3690 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3691 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3692 EXT4_SB(sb)->s_es->s_rev_level ==
3693 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3694 /* If this is the first large file
3695 * created, add a flag to the superblock.
3697 err = ext4_journal_get_write_access(handle,
3698 EXT4_SB(sb)->s_sbh);
3699 if (err)
3700 goto out_brelse;
3701 ext4_update_dynamic_rev(sb);
3702 EXT4_SET_RO_COMPAT_FEATURE(sb,
3703 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3704 sb->s_dirt = 1;
3705 ext4_handle_sync(handle);
3706 err = ext4_handle_dirty_metadata(handle, NULL,
3707 EXT4_SB(sb)->s_sbh);
3710 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3711 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3712 if (old_valid_dev(inode->i_rdev)) {
3713 raw_inode->i_block[0] =
3714 cpu_to_le32(old_encode_dev(inode->i_rdev));
3715 raw_inode->i_block[1] = 0;
3716 } else {
3717 raw_inode->i_block[0] = 0;
3718 raw_inode->i_block[1] =
3719 cpu_to_le32(new_encode_dev(inode->i_rdev));
3720 raw_inode->i_block[2] = 0;
3722 } else
3723 for (block = 0; block < EXT4_N_BLOCKS; block++)
3724 raw_inode->i_block[block] = ei->i_data[block];
3726 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3727 if (ei->i_extra_isize) {
3728 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3729 raw_inode->i_version_hi =
3730 cpu_to_le32(inode->i_version >> 32);
3731 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3734 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3735 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3736 if (!err)
3737 err = rc;
3738 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3740 ext4_update_inode_fsync_trans(handle, inode, 0);
3741 out_brelse:
3742 brelse(bh);
3743 ext4_std_error(inode->i_sb, err);
3744 return err;
3748 * ext4_write_inode()
3750 * We are called from a few places:
3752 * - Within generic_file_write() for O_SYNC files.
3753 * Here, there will be no transaction running. We wait for any running
3754 * trasnaction to commit.
3756 * - Within sys_sync(), kupdate and such.
3757 * We wait on commit, if tol to.
3759 * - Within prune_icache() (PF_MEMALLOC == true)
3760 * Here we simply return. We can't afford to block kswapd on the
3761 * journal commit.
3763 * In all cases it is actually safe for us to return without doing anything,
3764 * because the inode has been copied into a raw inode buffer in
3765 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3766 * knfsd.
3768 * Note that we are absolutely dependent upon all inode dirtiers doing the
3769 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3770 * which we are interested.
3772 * It would be a bug for them to not do this. The code:
3774 * mark_inode_dirty(inode)
3775 * stuff();
3776 * inode->i_size = expr;
3778 * is in error because a kswapd-driven write_inode() could occur while
3779 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3780 * will no longer be on the superblock's dirty inode list.
3782 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
3784 int err;
3786 if (current->flags & PF_MEMALLOC)
3787 return 0;
3789 if (EXT4_SB(inode->i_sb)->s_journal) {
3790 if (ext4_journal_current_handle()) {
3791 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3792 dump_stack();
3793 return -EIO;
3796 if (wbc->sync_mode != WB_SYNC_ALL)
3797 return 0;
3799 err = ext4_force_commit(inode->i_sb);
3800 } else {
3801 struct ext4_iloc iloc;
3803 err = __ext4_get_inode_loc(inode, &iloc, 0);
3804 if (err)
3805 return err;
3806 if (wbc->sync_mode == WB_SYNC_ALL)
3807 sync_dirty_buffer(iloc.bh);
3808 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
3809 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
3810 "IO error syncing inode");
3811 err = -EIO;
3813 brelse(iloc.bh);
3815 return err;
3819 * ext4_setattr()
3821 * Called from notify_change.
3823 * We want to trap VFS attempts to truncate the file as soon as
3824 * possible. In particular, we want to make sure that when the VFS
3825 * shrinks i_size, we put the inode on the orphan list and modify
3826 * i_disksize immediately, so that during the subsequent flushing of
3827 * dirty pages and freeing of disk blocks, we can guarantee that any
3828 * commit will leave the blocks being flushed in an unused state on
3829 * disk. (On recovery, the inode will get truncated and the blocks will
3830 * be freed, so we have a strong guarantee that no future commit will
3831 * leave these blocks visible to the user.)
3833 * Another thing we have to assure is that if we are in ordered mode
3834 * and inode is still attached to the committing transaction, we must
3835 * we start writeout of all the dirty pages which are being truncated.
3836 * This way we are sure that all the data written in the previous
3837 * transaction are already on disk (truncate waits for pages under
3838 * writeback).
3840 * Called with inode->i_mutex down.
3842 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3844 struct inode *inode = dentry->d_inode;
3845 int error, rc = 0;
3846 int orphan = 0;
3847 const unsigned int ia_valid = attr->ia_valid;
3849 error = inode_change_ok(inode, attr);
3850 if (error)
3851 return error;
3853 if (is_quota_modification(inode, attr))
3854 dquot_initialize(inode);
3855 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3856 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3857 handle_t *handle;
3859 /* (user+group)*(old+new) structure, inode write (sb,
3860 * inode block, ? - but truncate inode update has it) */
3861 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3862 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
3863 if (IS_ERR(handle)) {
3864 error = PTR_ERR(handle);
3865 goto err_out;
3867 error = dquot_transfer(inode, attr);
3868 if (error) {
3869 ext4_journal_stop(handle);
3870 return error;
3872 /* Update corresponding info in inode so that everything is in
3873 * one transaction */
3874 if (attr->ia_valid & ATTR_UID)
3875 inode->i_uid = attr->ia_uid;
3876 if (attr->ia_valid & ATTR_GID)
3877 inode->i_gid = attr->ia_gid;
3878 error = ext4_mark_inode_dirty(handle, inode);
3879 ext4_journal_stop(handle);
3882 if (attr->ia_valid & ATTR_SIZE) {
3883 inode_dio_wait(inode);
3885 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3886 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3888 if (attr->ia_size > sbi->s_bitmap_maxbytes)
3889 return -EFBIG;
3893 if (S_ISREG(inode->i_mode) &&
3894 attr->ia_valid & ATTR_SIZE &&
3895 (attr->ia_size < inode->i_size)) {
3896 handle_t *handle;
3898 handle = ext4_journal_start(inode, 3);
3899 if (IS_ERR(handle)) {
3900 error = PTR_ERR(handle);
3901 goto err_out;
3903 if (ext4_handle_valid(handle)) {
3904 error = ext4_orphan_add(handle, inode);
3905 orphan = 1;
3907 EXT4_I(inode)->i_disksize = attr->ia_size;
3908 rc = ext4_mark_inode_dirty(handle, inode);
3909 if (!error)
3910 error = rc;
3911 ext4_journal_stop(handle);
3913 if (ext4_should_order_data(inode)) {
3914 error = ext4_begin_ordered_truncate(inode,
3915 attr->ia_size);
3916 if (error) {
3917 /* Do as much error cleanup as possible */
3918 handle = ext4_journal_start(inode, 3);
3919 if (IS_ERR(handle)) {
3920 ext4_orphan_del(NULL, inode);
3921 goto err_out;
3923 ext4_orphan_del(handle, inode);
3924 orphan = 0;
3925 ext4_journal_stop(handle);
3926 goto err_out;
3931 if (attr->ia_valid & ATTR_SIZE) {
3932 if (attr->ia_size != i_size_read(inode)) {
3933 truncate_setsize(inode, attr->ia_size);
3934 ext4_truncate(inode);
3935 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3936 ext4_truncate(inode);
3939 if (!rc) {
3940 setattr_copy(inode, attr);
3941 mark_inode_dirty(inode);
3945 * If the call to ext4_truncate failed to get a transaction handle at
3946 * all, we need to clean up the in-core orphan list manually.
3948 if (orphan && inode->i_nlink)
3949 ext4_orphan_del(NULL, inode);
3951 if (!rc && (ia_valid & ATTR_MODE))
3952 rc = ext4_acl_chmod(inode);
3954 err_out:
3955 ext4_std_error(inode->i_sb, error);
3956 if (!error)
3957 error = rc;
3958 return error;
3961 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
3962 struct kstat *stat)
3964 struct inode *inode;
3965 unsigned long delalloc_blocks;
3967 inode = dentry->d_inode;
3968 generic_fillattr(inode, stat);
3971 * We can't update i_blocks if the block allocation is delayed
3972 * otherwise in the case of system crash before the real block
3973 * allocation is done, we will have i_blocks inconsistent with
3974 * on-disk file blocks.
3975 * We always keep i_blocks updated together with real
3976 * allocation. But to not confuse with user, stat
3977 * will return the blocks that include the delayed allocation
3978 * blocks for this file.
3980 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3982 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
3983 return 0;
3986 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
3988 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3989 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
3990 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
3994 * Account for index blocks, block groups bitmaps and block group
3995 * descriptor blocks if modify datablocks and index blocks
3996 * worse case, the indexs blocks spread over different block groups
3998 * If datablocks are discontiguous, they are possible to spread over
3999 * different block groups too. If they are contiuguous, with flexbg,
4000 * they could still across block group boundary.
4002 * Also account for superblock, inode, quota and xattr blocks
4004 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4006 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4007 int gdpblocks;
4008 int idxblocks;
4009 int ret = 0;
4012 * How many index blocks need to touch to modify nrblocks?
4013 * The "Chunk" flag indicating whether the nrblocks is
4014 * physically contiguous on disk
4016 * For Direct IO and fallocate, they calls get_block to allocate
4017 * one single extent at a time, so they could set the "Chunk" flag
4019 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4021 ret = idxblocks;
4024 * Now let's see how many group bitmaps and group descriptors need
4025 * to account
4027 groups = idxblocks;
4028 if (chunk)
4029 groups += 1;
4030 else
4031 groups += nrblocks;
4033 gdpblocks = groups;
4034 if (groups > ngroups)
4035 groups = ngroups;
4036 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4037 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4039 /* bitmaps and block group descriptor blocks */
4040 ret += groups + gdpblocks;
4042 /* Blocks for super block, inode, quota and xattr blocks */
4043 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4045 return ret;
4049 * Calculate the total number of credits to reserve to fit
4050 * the modification of a single pages into a single transaction,
4051 * which may include multiple chunks of block allocations.
4053 * This could be called via ext4_write_begin()
4055 * We need to consider the worse case, when
4056 * one new block per extent.
4058 int ext4_writepage_trans_blocks(struct inode *inode)
4060 int bpp = ext4_journal_blocks_per_page(inode);
4061 int ret;
4063 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4065 /* Account for data blocks for journalled mode */
4066 if (ext4_should_journal_data(inode))
4067 ret += bpp;
4068 return ret;
4072 * Calculate the journal credits for a chunk of data modification.
4074 * This is called from DIO, fallocate or whoever calling
4075 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4077 * journal buffers for data blocks are not included here, as DIO
4078 * and fallocate do no need to journal data buffers.
4080 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4082 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4086 * The caller must have previously called ext4_reserve_inode_write().
4087 * Give this, we know that the caller already has write access to iloc->bh.
4089 int ext4_mark_iloc_dirty(handle_t *handle,
4090 struct inode *inode, struct ext4_iloc *iloc)
4092 int err = 0;
4094 if (test_opt(inode->i_sb, I_VERSION))
4095 inode_inc_iversion(inode);
4097 /* the do_update_inode consumes one bh->b_count */
4098 get_bh(iloc->bh);
4100 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4101 err = ext4_do_update_inode(handle, inode, iloc);
4102 put_bh(iloc->bh);
4103 return err;
4107 * On success, We end up with an outstanding reference count against
4108 * iloc->bh. This _must_ be cleaned up later.
4112 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4113 struct ext4_iloc *iloc)
4115 int err;
4117 err = ext4_get_inode_loc(inode, iloc);
4118 if (!err) {
4119 BUFFER_TRACE(iloc->bh, "get_write_access");
4120 err = ext4_journal_get_write_access(handle, iloc->bh);
4121 if (err) {
4122 brelse(iloc->bh);
4123 iloc->bh = NULL;
4126 ext4_std_error(inode->i_sb, err);
4127 return err;
4131 * Expand an inode by new_extra_isize bytes.
4132 * Returns 0 on success or negative error number on failure.
4134 static int ext4_expand_extra_isize(struct inode *inode,
4135 unsigned int new_extra_isize,
4136 struct ext4_iloc iloc,
4137 handle_t *handle)
4139 struct ext4_inode *raw_inode;
4140 struct ext4_xattr_ibody_header *header;
4142 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4143 return 0;
4145 raw_inode = ext4_raw_inode(&iloc);
4147 header = IHDR(inode, raw_inode);
4149 /* No extended attributes present */
4150 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4151 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4152 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4153 new_extra_isize);
4154 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4155 return 0;
4158 /* try to expand with EAs present */
4159 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4160 raw_inode, handle);
4164 * What we do here is to mark the in-core inode as clean with respect to inode
4165 * dirtiness (it may still be data-dirty).
4166 * This means that the in-core inode may be reaped by prune_icache
4167 * without having to perform any I/O. This is a very good thing,
4168 * because *any* task may call prune_icache - even ones which
4169 * have a transaction open against a different journal.
4171 * Is this cheating? Not really. Sure, we haven't written the
4172 * inode out, but prune_icache isn't a user-visible syncing function.
4173 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4174 * we start and wait on commits.
4176 * Is this efficient/effective? Well, we're being nice to the system
4177 * by cleaning up our inodes proactively so they can be reaped
4178 * without I/O. But we are potentially leaving up to five seconds'
4179 * worth of inodes floating about which prune_icache wants us to
4180 * write out. One way to fix that would be to get prune_icache()
4181 * to do a write_super() to free up some memory. It has the desired
4182 * effect.
4184 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4186 struct ext4_iloc iloc;
4187 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4188 static unsigned int mnt_count;
4189 int err, ret;
4191 might_sleep();
4192 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4193 err = ext4_reserve_inode_write(handle, inode, &iloc);
4194 if (ext4_handle_valid(handle) &&
4195 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4196 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4198 * We need extra buffer credits since we may write into EA block
4199 * with this same handle. If journal_extend fails, then it will
4200 * only result in a minor loss of functionality for that inode.
4201 * If this is felt to be critical, then e2fsck should be run to
4202 * force a large enough s_min_extra_isize.
4204 if ((jbd2_journal_extend(handle,
4205 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4206 ret = ext4_expand_extra_isize(inode,
4207 sbi->s_want_extra_isize,
4208 iloc, handle);
4209 if (ret) {
4210 ext4_set_inode_state(inode,
4211 EXT4_STATE_NO_EXPAND);
4212 if (mnt_count !=
4213 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4214 ext4_warning(inode->i_sb,
4215 "Unable to expand inode %lu. Delete"
4216 " some EAs or run e2fsck.",
4217 inode->i_ino);
4218 mnt_count =
4219 le16_to_cpu(sbi->s_es->s_mnt_count);
4224 if (!err)
4225 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4226 return err;
4230 * ext4_dirty_inode() is called from __mark_inode_dirty()
4232 * We're really interested in the case where a file is being extended.
4233 * i_size has been changed by generic_commit_write() and we thus need
4234 * to include the updated inode in the current transaction.
4236 * Also, dquot_alloc_block() will always dirty the inode when blocks
4237 * are allocated to the file.
4239 * If the inode is marked synchronous, we don't honour that here - doing
4240 * so would cause a commit on atime updates, which we don't bother doing.
4241 * We handle synchronous inodes at the highest possible level.
4243 void ext4_dirty_inode(struct inode *inode, int flags)
4245 handle_t *handle;
4247 handle = ext4_journal_start(inode, 2);
4248 if (IS_ERR(handle))
4249 goto out;
4251 ext4_mark_inode_dirty(handle, inode);
4253 ext4_journal_stop(handle);
4254 out:
4255 return;
4258 #if 0
4260 * Bind an inode's backing buffer_head into this transaction, to prevent
4261 * it from being flushed to disk early. Unlike
4262 * ext4_reserve_inode_write, this leaves behind no bh reference and
4263 * returns no iloc structure, so the caller needs to repeat the iloc
4264 * lookup to mark the inode dirty later.
4266 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4268 struct ext4_iloc iloc;
4270 int err = 0;
4271 if (handle) {
4272 err = ext4_get_inode_loc(inode, &iloc);
4273 if (!err) {
4274 BUFFER_TRACE(iloc.bh, "get_write_access");
4275 err = jbd2_journal_get_write_access(handle, iloc.bh);
4276 if (!err)
4277 err = ext4_handle_dirty_metadata(handle,
4278 NULL,
4279 iloc.bh);
4280 brelse(iloc.bh);
4283 ext4_std_error(inode->i_sb, err);
4284 return err;
4286 #endif
4288 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4290 journal_t *journal;
4291 handle_t *handle;
4292 int err;
4295 * We have to be very careful here: changing a data block's
4296 * journaling status dynamically is dangerous. If we write a
4297 * data block to the journal, change the status and then delete
4298 * that block, we risk forgetting to revoke the old log record
4299 * from the journal and so a subsequent replay can corrupt data.
4300 * So, first we make sure that the journal is empty and that
4301 * nobody is changing anything.
4304 journal = EXT4_JOURNAL(inode);
4305 if (!journal)
4306 return 0;
4307 if (is_journal_aborted(journal))
4308 return -EROFS;
4310 jbd2_journal_lock_updates(journal);
4311 jbd2_journal_flush(journal);
4314 * OK, there are no updates running now, and all cached data is
4315 * synced to disk. We are now in a completely consistent state
4316 * which doesn't have anything in the journal, and we know that
4317 * no filesystem updates are running, so it is safe to modify
4318 * the inode's in-core data-journaling state flag now.
4321 if (val)
4322 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4323 else
4324 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4325 ext4_set_aops(inode);
4327 jbd2_journal_unlock_updates(journal);
4329 /* Finally we can mark the inode as dirty. */
4331 handle = ext4_journal_start(inode, 1);
4332 if (IS_ERR(handle))
4333 return PTR_ERR(handle);
4335 err = ext4_mark_inode_dirty(handle, inode);
4336 ext4_handle_sync(handle);
4337 ext4_journal_stop(handle);
4338 ext4_std_error(inode->i_sb, err);
4340 return err;
4343 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4345 return !buffer_mapped(bh);
4348 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4350 struct page *page = vmf->page;
4351 loff_t size;
4352 unsigned long len;
4353 int ret;
4354 struct file *file = vma->vm_file;
4355 struct inode *inode = file->f_path.dentry->d_inode;
4356 struct address_space *mapping = inode->i_mapping;
4357 handle_t *handle;
4358 get_block_t *get_block;
4359 int retries = 0;
4362 * This check is racy but catches the common case. We rely on
4363 * __block_page_mkwrite() to do a reliable check.
4365 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4366 /* Delalloc case is easy... */
4367 if (test_opt(inode->i_sb, DELALLOC) &&
4368 !ext4_should_journal_data(inode) &&
4369 !ext4_nonda_switch(inode->i_sb)) {
4370 do {
4371 ret = __block_page_mkwrite(vma, vmf,
4372 ext4_da_get_block_prep);
4373 } while (ret == -ENOSPC &&
4374 ext4_should_retry_alloc(inode->i_sb, &retries));
4375 goto out_ret;
4378 lock_page(page);
4379 size = i_size_read(inode);
4380 /* Page got truncated from under us? */
4381 if (page->mapping != mapping || page_offset(page) > size) {
4382 unlock_page(page);
4383 ret = VM_FAULT_NOPAGE;
4384 goto out;
4387 if (page->index == size >> PAGE_CACHE_SHIFT)
4388 len = size & ~PAGE_CACHE_MASK;
4389 else
4390 len = PAGE_CACHE_SIZE;
4392 * Return if we have all the buffers mapped. This avoids the need to do
4393 * journal_start/journal_stop which can block and take a long time
4395 if (page_has_buffers(page)) {
4396 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4397 ext4_bh_unmapped)) {
4398 /* Wait so that we don't change page under IO */
4399 wait_on_page_writeback(page);
4400 ret = VM_FAULT_LOCKED;
4401 goto out;
4404 unlock_page(page);
4405 /* OK, we need to fill the hole... */
4406 if (ext4_should_dioread_nolock(inode))
4407 get_block = ext4_get_block_write;
4408 else
4409 get_block = ext4_get_block;
4410 retry_alloc:
4411 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4412 if (IS_ERR(handle)) {
4413 ret = VM_FAULT_SIGBUS;
4414 goto out;
4416 ret = __block_page_mkwrite(vma, vmf, get_block);
4417 if (!ret && ext4_should_journal_data(inode)) {
4418 if (walk_page_buffers(handle, page_buffers(page), 0,
4419 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4420 unlock_page(page);
4421 ret = VM_FAULT_SIGBUS;
4422 ext4_journal_stop(handle);
4423 goto out;
4425 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4427 ext4_journal_stop(handle);
4428 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4429 goto retry_alloc;
4430 out_ret:
4431 ret = block_page_mkwrite_return(ret);
4432 out:
4433 return ret;