s2io.c: Convert skipped nic->config.tx_cfg[i]. to tx_cfg->
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / s2io.c
blob1d13f60a9f522d050a21ecf11de39931578a1fd7
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <net/tcp.h>
84 #include <asm/system.h>
85 #include <asm/div64.h>
86 #include <asm/irq.h>
88 /* local include */
89 #include "s2io.h"
90 #include "s2io-regs.h"
92 #define DRV_VERSION "2.0.26.25"
94 /* S2io Driver name & version. */
95 static char s2io_driver_name[] = "Neterion";
96 static char s2io_driver_version[] = DRV_VERSION;
98 static int rxd_size[2] = {32, 48};
99 static int rxd_count[2] = {127, 85};
101 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 int ret;
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108 return ret;
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
116 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
129 /* Ethtool related variables and Macros. */
130 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
138 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
148 {"tmac_any_err_frms"},
149 {"tmac_ttl_less_fb_octets"},
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
164 {"rmac_out_rng_len_err_frms"},
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
171 {"rmac_discarded_frms"},
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
210 {"rmac_pause_cnt"},
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
232 {"rxf_wr_cnt"}
235 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
251 {"link_fault_cnt"}
254 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
329 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
333 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
340 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
348 /* copy mac addr to def_mac_addr array */
349 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
359 /* Add the vlan */
360 static void s2io_vlan_rx_register(struct net_device *dev,
361 struct vlan_group *grp)
363 int i;
364 struct s2io_nic *nic = netdev_priv(dev);
365 unsigned long flags[MAX_TX_FIFOS];
366 struct config_param *config = &nic->config;
367 struct mac_info *mac_control = &nic->mac_control;
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
375 nic->vlgrp = grp;
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
384 /* Unregister the vlan */
385 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 int i;
388 struct s2io_nic *nic = netdev_priv(dev);
389 unsigned long flags[MAX_TX_FIFOS];
390 struct config_param *config = &nic->config;
391 struct mac_info *mac_control = &nic->mac_control;
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
414 #define END_SIGN 0x0
415 static const u64 herc_act_dtx_cfg[] = {
416 /* Set address */
417 0x8000051536750000ULL, 0x80000515367500E0ULL,
418 /* Write data */
419 0x8000051536750004ULL, 0x80000515367500E4ULL,
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
436 static const u64 xena_dtx_cfg[] = {
437 /* Set address */
438 0x8000051500000000ULL, 0x80000515000000E0ULL,
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
446 0x8002051500000000ULL, 0x80020515000000E0ULL,
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
449 END_SIGN
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
456 static const u64 fix_mac[] = {
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
474 MODULE_LICENSE("GPL");
475 MODULE_VERSION(DRV_VERSION);
478 /* Module Loadable parameters. */
479 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
480 S2IO_PARM_INT(rx_ring_num, 1);
481 S2IO_PARM_INT(multiq, 0);
482 S2IO_PARM_INT(rx_ring_mode, 1);
483 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484 S2IO_PARM_INT(rmac_pause_time, 0x100);
485 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487 S2IO_PARM_INT(shared_splits, 0);
488 S2IO_PARM_INT(tmac_util_period, 5);
489 S2IO_PARM_INT(rmac_util_period, 5);
490 S2IO_PARM_INT(l3l4hdr_size, 128);
491 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
493 /* Frequency of Rx desc syncs expressed as power of 2 */
494 S2IO_PARM_INT(rxsync_frequency, 3);
495 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
496 S2IO_PARM_INT(intr_type, 2);
497 /* Large receive offload feature */
498 static unsigned int lro_enable;
499 module_param_named(lro, lro_enable, uint, 0);
501 /* Max pkts to be aggregated by LRO at one time. If not specified,
502 * aggregation happens until we hit max IP pkt size(64K)
504 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
505 S2IO_PARM_INT(indicate_max_pkts, 0);
507 S2IO_PARM_INT(napi, 1);
508 S2IO_PARM_INT(ufo, 0);
509 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
512 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
513 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
514 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
515 static unsigned int rts_frm_len[MAX_RX_RINGS] =
516 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518 module_param_array(tx_fifo_len, uint, NULL, 0);
519 module_param_array(rx_ring_sz, uint, NULL, 0);
520 module_param_array(rts_frm_len, uint, NULL, 0);
523 * S2IO device table.
524 * This table lists all the devices that this driver supports.
526 static struct pci_device_id s2io_tbl[] __devinitdata = {
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
534 PCI_ANY_ID, PCI_ANY_ID},
535 {0,}
538 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540 static struct pci_error_handlers s2io_err_handler = {
541 .error_detected = s2io_io_error_detected,
542 .slot_reset = s2io_io_slot_reset,
543 .resume = s2io_io_resume,
546 static struct pci_driver s2io_driver = {
547 .name = "S2IO",
548 .id_table = s2io_tbl,
549 .probe = s2io_init_nic,
550 .remove = __devexit_p(s2io_rem_nic),
551 .err_handler = &s2io_err_handler,
554 /* A simplifier macro used both by init and free shared_mem Fns(). */
555 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557 /* netqueue manipulation helper functions */
558 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 if (!sp->config.multiq) {
561 int i;
563 for (i = 0; i < sp->config.tx_fifo_num; i++)
564 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566 netif_tx_stop_all_queues(sp->dev);
569 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 if (!sp->config.multiq)
572 sp->mac_control.fifos[fifo_no].queue_state =
573 FIFO_QUEUE_STOP;
575 netif_tx_stop_all_queues(sp->dev);
578 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 if (!sp->config.multiq) {
581 int i;
583 for (i = 0; i < sp->config.tx_fifo_num; i++)
584 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586 netif_tx_start_all_queues(sp->dev);
589 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 if (!sp->config.multiq)
592 sp->mac_control.fifos[fifo_no].queue_state =
593 FIFO_QUEUE_START;
595 netif_tx_start_all_queues(sp->dev);
598 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 if (!sp->config.multiq) {
601 int i;
603 for (i = 0; i < sp->config.tx_fifo_num; i++)
604 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606 netif_tx_wake_all_queues(sp->dev);
609 static inline void s2io_wake_tx_queue(
610 struct fifo_info *fifo, int cnt, u8 multiq)
613 if (multiq) {
614 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
615 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
616 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
617 if (netif_queue_stopped(fifo->dev)) {
618 fifo->queue_state = FIFO_QUEUE_START;
619 netif_wake_queue(fifo->dev);
625 * init_shared_mem - Allocation and Initialization of Memory
626 * @nic: Device private variable.
627 * Description: The function allocates all the memory areas shared
628 * between the NIC and the driver. This includes Tx descriptors,
629 * Rx descriptors and the statistics block.
632 static int init_shared_mem(struct s2io_nic *nic)
634 u32 size;
635 void *tmp_v_addr, *tmp_v_addr_next;
636 dma_addr_t tmp_p_addr, tmp_p_addr_next;
637 struct RxD_block *pre_rxd_blk = NULL;
638 int i, j, blk_cnt;
639 int lst_size, lst_per_page;
640 struct net_device *dev = nic->dev;
641 unsigned long tmp;
642 struct buffAdd *ba;
643 struct config_param *config = &nic->config;
644 struct mac_info *mac_control = &nic->mac_control;
645 unsigned long long mem_allocated = 0;
647 /* Allocation and initialization of TXDLs in FIFOs */
648 size = 0;
649 for (i = 0; i < config->tx_fifo_num; i++) {
650 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652 size += tx_cfg->fifo_len;
654 if (size > MAX_AVAILABLE_TXDS) {
655 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
656 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n",
657 size);
658 return -EINVAL;
661 size = 0;
662 for (i = 0; i < config->tx_fifo_num; i++) {
663 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665 size = tx_cfg->fifo_len;
667 * Legal values are from 2 to 8192
669 if (size < 2) {
670 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
671 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
672 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
673 "are 2 to 8192\n");
674 return -EINVAL;
678 lst_size = (sizeof(struct TxD) * config->max_txds);
679 lst_per_page = PAGE_SIZE / lst_size;
681 for (i = 0; i < config->tx_fifo_num; i++) {
682 struct fifo_info *fifo = &mac_control->fifos[i];
683 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684 int fifo_len = tx_cfg->fifo_len;
685 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
687 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688 if (!fifo->list_info) {
689 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690 return -ENOMEM;
692 mem_allocated += list_holder_size;
694 for (i = 0; i < config->tx_fifo_num; i++) {
695 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696 lst_per_page);
697 struct fifo_info *fifo = &mac_control->fifos[i];
698 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
700 fifo->tx_curr_put_info.offset = 0;
701 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702 fifo->tx_curr_get_info.offset = 0;
703 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704 fifo->fifo_no = i;
705 fifo->nic = nic;
706 fifo->max_txds = MAX_SKB_FRAGS + 2;
707 fifo->dev = dev;
709 for (j = 0; j < page_num; j++) {
710 int k = 0;
711 dma_addr_t tmp_p;
712 void *tmp_v;
713 tmp_v = pci_alloc_consistent(nic->pdev,
714 PAGE_SIZE, &tmp_p);
715 if (!tmp_v) {
716 DBG_PRINT(INFO_DBG, "pci_alloc_consistent ");
717 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
718 return -ENOMEM;
720 /* If we got a zero DMA address(can happen on
721 * certain platforms like PPC), reallocate.
722 * Store virtual address of page we don't want,
723 * to be freed later.
725 if (!tmp_p) {
726 mac_control->zerodma_virt_addr = tmp_v;
727 DBG_PRINT(INIT_DBG,
728 "%s: Zero DMA address for TxDL. ",
729 dev->name);
730 DBG_PRINT(INIT_DBG,
731 "Virtual address %p\n", tmp_v);
732 tmp_v = pci_alloc_consistent(nic->pdev,
733 PAGE_SIZE, &tmp_p);
734 if (!tmp_v) {
735 DBG_PRINT(INFO_DBG,
736 "pci_alloc_consistent ");
737 DBG_PRINT(INFO_DBG,
738 "failed for TxDL\n");
739 return -ENOMEM;
741 mem_allocated += PAGE_SIZE;
743 while (k < lst_per_page) {
744 int l = (j * lst_per_page) + k;
745 if (l == tx_cfg->fifo_len)
746 break;
747 fifo->list_info[l].list_virt_addr =
748 tmp_v + (k * lst_size);
749 fifo->list_info[l].list_phy_addr =
750 tmp_p + (k * lst_size);
751 k++;
756 for (i = 0; i < config->tx_fifo_num; i++) {
757 struct fifo_info *fifo = &mac_control->fifos[i];
758 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
760 size = tx_cfg->fifo_len;
761 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
762 if (!fifo->ufo_in_band_v)
763 return -ENOMEM;
764 mem_allocated += (size * sizeof(u64));
767 /* Allocation and initialization of RXDs in Rings */
768 size = 0;
769 for (i = 0; i < config->rx_ring_num; i++) {
770 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
771 struct ring_info *ring = &mac_control->rings[i];
773 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
774 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
775 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", i);
776 DBG_PRINT(ERR_DBG, "RxDs per Block");
777 return FAILURE;
779 size += rx_cfg->num_rxd;
780 ring->block_count = rx_cfg->num_rxd /
781 (rxd_count[nic->rxd_mode] + 1);
782 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
784 if (nic->rxd_mode == RXD_MODE_1)
785 size = (size * (sizeof(struct RxD1)));
786 else
787 size = (size * (sizeof(struct RxD3)));
789 for (i = 0; i < config->rx_ring_num; i++) {
790 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
791 struct ring_info *ring = &mac_control->rings[i];
793 ring->rx_curr_get_info.block_index = 0;
794 ring->rx_curr_get_info.offset = 0;
795 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
796 ring->rx_curr_put_info.block_index = 0;
797 ring->rx_curr_put_info.offset = 0;
798 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
799 ring->nic = nic;
800 ring->ring_no = i;
801 ring->lro = lro_enable;
803 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
804 /* Allocating all the Rx blocks */
805 for (j = 0; j < blk_cnt; j++) {
806 struct rx_block_info *rx_blocks;
807 int l;
809 rx_blocks = &ring->rx_blocks[j];
810 size = SIZE_OF_BLOCK; /* size is always page size */
811 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
812 &tmp_p_addr);
813 if (tmp_v_addr == NULL) {
815 * In case of failure, free_shared_mem()
816 * is called, which should free any
817 * memory that was alloced till the
818 * failure happened.
820 rx_blocks->block_virt_addr = tmp_v_addr;
821 return -ENOMEM;
823 mem_allocated += size;
824 memset(tmp_v_addr, 0, size);
826 size = sizeof(struct rxd_info) *
827 rxd_count[nic->rxd_mode];
828 rx_blocks->block_virt_addr = tmp_v_addr;
829 rx_blocks->block_dma_addr = tmp_p_addr;
830 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
831 if (!rx_blocks->rxds)
832 return -ENOMEM;
833 mem_allocated += size;
834 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
835 rx_blocks->rxds[l].virt_addr =
836 rx_blocks->block_virt_addr +
837 (rxd_size[nic->rxd_mode] * l);
838 rx_blocks->rxds[l].dma_addr =
839 rx_blocks->block_dma_addr +
840 (rxd_size[nic->rxd_mode] * l);
843 /* Interlinking all Rx Blocks */
844 for (j = 0; j < blk_cnt; j++) {
845 int next = (j + 1) % blk_cnt;
846 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
847 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
848 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
849 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
851 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
852 pre_rxd_blk->reserved_2_pNext_RxD_block =
853 (unsigned long)tmp_v_addr_next;
854 pre_rxd_blk->pNext_RxD_Blk_physical =
855 (u64)tmp_p_addr_next;
858 if (nic->rxd_mode == RXD_MODE_3B) {
860 * Allocation of Storages for buffer addresses in 2BUFF mode
861 * and the buffers as well.
863 for (i = 0; i < config->rx_ring_num; i++) {
864 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
865 struct ring_info *ring = &mac_control->rings[i];
867 blk_cnt = rx_cfg->num_rxd /
868 (rxd_count[nic->rxd_mode] + 1);
869 size = sizeof(struct buffAdd *) * blk_cnt;
870 ring->ba = kmalloc(size, GFP_KERNEL);
871 if (!ring->ba)
872 return -ENOMEM;
873 mem_allocated += size;
874 for (j = 0; j < blk_cnt; j++) {
875 int k = 0;
877 size = sizeof(struct buffAdd) *
878 (rxd_count[nic->rxd_mode] + 1);
879 ring->ba[j] = kmalloc(size, GFP_KERNEL);
880 if (!ring->ba[j])
881 return -ENOMEM;
882 mem_allocated += size;
883 while (k != rxd_count[nic->rxd_mode]) {
884 ba = &ring->ba[j][k];
885 size = BUF0_LEN + ALIGN_SIZE;
886 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
887 if (!ba->ba_0_org)
888 return -ENOMEM;
889 mem_allocated += size;
890 tmp = (unsigned long)ba->ba_0_org;
891 tmp += ALIGN_SIZE;
892 tmp &= ~((unsigned long)ALIGN_SIZE);
893 ba->ba_0 = (void *)tmp;
895 size = BUF1_LEN + ALIGN_SIZE;
896 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
897 if (!ba->ba_1_org)
898 return -ENOMEM;
899 mem_allocated += size;
900 tmp = (unsigned long)ba->ba_1_org;
901 tmp += ALIGN_SIZE;
902 tmp &= ~((unsigned long)ALIGN_SIZE);
903 ba->ba_1 = (void *)tmp;
904 k++;
910 /* Allocation and initialization of Statistics block */
911 size = sizeof(struct stat_block);
912 mac_control->stats_mem =
913 pci_alloc_consistent(nic->pdev, size,
914 &mac_control->stats_mem_phy);
916 if (!mac_control->stats_mem) {
918 * In case of failure, free_shared_mem() is called, which
919 * should free any memory that was alloced till the
920 * failure happened.
922 return -ENOMEM;
924 mem_allocated += size;
925 mac_control->stats_mem_sz = size;
927 tmp_v_addr = mac_control->stats_mem;
928 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
929 memset(tmp_v_addr, 0, size);
930 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
931 (unsigned long long)tmp_p_addr);
932 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
933 return SUCCESS;
937 * free_shared_mem - Free the allocated Memory
938 * @nic: Device private variable.
939 * Description: This function is to free all memory locations allocated by
940 * the init_shared_mem() function and return it to the kernel.
943 static void free_shared_mem(struct s2io_nic *nic)
945 int i, j, blk_cnt, size;
946 void *tmp_v_addr;
947 dma_addr_t tmp_p_addr;
948 int lst_size, lst_per_page;
949 struct net_device *dev;
950 int page_num = 0;
951 struct config_param *config;
952 struct mac_info *mac_control;
953 struct stat_block *stats;
954 struct swStat *swstats;
956 if (!nic)
957 return;
959 dev = nic->dev;
961 config = &nic->config;
962 mac_control = &nic->mac_control;
963 stats = mac_control->stats_info;
964 swstats = &stats->sw_stat;
966 lst_size = sizeof(struct TxD) * config->max_txds;
967 lst_per_page = PAGE_SIZE / lst_size;
969 for (i = 0; i < config->tx_fifo_num; i++) {
970 struct fifo_info *fifo = &mac_control->fifos[i];
971 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
973 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
974 for (j = 0; j < page_num; j++) {
975 int mem_blks = (j * lst_per_page);
976 struct list_info_hold *fli;
978 if (!fifo->list_info)
979 return;
981 fli = &fifo->list_info[mem_blks];
982 if (!fli->list_virt_addr)
983 break;
984 pci_free_consistent(nic->pdev, PAGE_SIZE,
985 fli->list_virt_addr,
986 fli->list_phy_addr);
987 swstats->mem_freed += PAGE_SIZE;
989 /* If we got a zero DMA address during allocation,
990 * free the page now
992 if (mac_control->zerodma_virt_addr) {
993 pci_free_consistent(nic->pdev, PAGE_SIZE,
994 mac_control->zerodma_virt_addr,
995 (dma_addr_t)0);
996 DBG_PRINT(INIT_DBG,
997 "%s: Freeing TxDL with zero DMA addr. ",
998 dev->name);
999 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1000 mac_control->zerodma_virt_addr);
1001 swstats->mem_freed += PAGE_SIZE;
1003 kfree(fifo->list_info);
1004 swstats->mem_freed += tx_cfg->fifo_len *
1005 sizeof(struct list_info_hold);
1008 size = SIZE_OF_BLOCK;
1009 for (i = 0; i < config->rx_ring_num; i++) {
1010 struct ring_info *ring = &mac_control->rings[i];
1012 blk_cnt = ring->block_count;
1013 for (j = 0; j < blk_cnt; j++) {
1014 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1015 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1016 if (tmp_v_addr == NULL)
1017 break;
1018 pci_free_consistent(nic->pdev, size,
1019 tmp_v_addr, tmp_p_addr);
1020 swstats->mem_freed += size;
1021 kfree(ring->rx_blocks[j].rxds);
1022 swstats->mem_freed += sizeof(struct rxd_info) *
1023 rxd_count[nic->rxd_mode];
1027 if (nic->rxd_mode == RXD_MODE_3B) {
1028 /* Freeing buffer storage addresses in 2BUFF mode. */
1029 for (i = 0; i < config->rx_ring_num; i++) {
1030 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1031 struct ring_info *ring = &mac_control->rings[i];
1033 blk_cnt = rx_cfg->num_rxd /
1034 (rxd_count[nic->rxd_mode] + 1);
1035 for (j = 0; j < blk_cnt; j++) {
1036 int k = 0;
1037 if (!ring->ba[j])
1038 continue;
1039 while (k != rxd_count[nic->rxd_mode]) {
1040 struct buffAdd *ba = &ring->ba[j][k];
1041 kfree(ba->ba_0_org);
1042 swstats->mem_freed +=
1043 BUF0_LEN + ALIGN_SIZE;
1044 kfree(ba->ba_1_org);
1045 swstats->mem_freed +=
1046 BUF1_LEN + ALIGN_SIZE;
1047 k++;
1049 kfree(ring->ba[j]);
1050 swstats->mem_freed += sizeof(struct buffAdd) *
1051 (rxd_count[nic->rxd_mode] + 1);
1053 kfree(ring->ba);
1054 swstats->mem_freed += sizeof(struct buffAdd *) *
1055 blk_cnt;
1059 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1060 struct fifo_info *fifo = &mac_control->fifos[i];
1061 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1063 if (fifo->ufo_in_band_v) {
1064 swstats->mem_freed += tx_cfg->fifo_len *
1065 sizeof(u64);
1066 kfree(fifo->ufo_in_band_v);
1070 if (mac_control->stats_mem) {
1071 swstats->mem_freed += mac_control->stats_mem_sz;
1072 pci_free_consistent(nic->pdev,
1073 mac_control->stats_mem_sz,
1074 mac_control->stats_mem,
1075 mac_control->stats_mem_phy);
1080 * s2io_verify_pci_mode -
1083 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1085 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1086 register u64 val64 = 0;
1087 int mode;
1089 val64 = readq(&bar0->pci_mode);
1090 mode = (u8)GET_PCI_MODE(val64);
1092 if (val64 & PCI_MODE_UNKNOWN_MODE)
1093 return -1; /* Unknown PCI mode */
1094 return mode;
1097 #define NEC_VENID 0x1033
1098 #define NEC_DEVID 0x0125
1099 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1101 struct pci_dev *tdev = NULL;
1102 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1103 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1104 if (tdev->bus == s2io_pdev->bus->parent) {
1105 pci_dev_put(tdev);
1106 return 1;
1110 return 0;
1113 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1115 * s2io_print_pci_mode -
1117 static int s2io_print_pci_mode(struct s2io_nic *nic)
1119 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1120 register u64 val64 = 0;
1121 int mode;
1122 struct config_param *config = &nic->config;
1124 val64 = readq(&bar0->pci_mode);
1125 mode = (u8)GET_PCI_MODE(val64);
1127 if (val64 & PCI_MODE_UNKNOWN_MODE)
1128 return -1; /* Unknown PCI mode */
1130 config->bus_speed = bus_speed[mode];
1132 if (s2io_on_nec_bridge(nic->pdev)) {
1133 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1134 nic->dev->name);
1135 return mode;
1138 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit ",
1139 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64);
1141 switch (mode) {
1142 case PCI_MODE_PCI_33:
1143 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1144 break;
1145 case PCI_MODE_PCI_66:
1146 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1147 break;
1148 case PCI_MODE_PCIX_M1_66:
1149 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1150 break;
1151 case PCI_MODE_PCIX_M1_100:
1152 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1153 break;
1154 case PCI_MODE_PCIX_M1_133:
1155 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1156 break;
1157 case PCI_MODE_PCIX_M2_66:
1158 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1159 break;
1160 case PCI_MODE_PCIX_M2_100:
1161 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1162 break;
1163 case PCI_MODE_PCIX_M2_133:
1164 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1165 break;
1166 default:
1167 return -1; /* Unsupported bus speed */
1170 return mode;
1174 * init_tti - Initialization transmit traffic interrupt scheme
1175 * @nic: device private variable
1176 * @link: link status (UP/DOWN) used to enable/disable continuous
1177 * transmit interrupts
1178 * Description: The function configures transmit traffic interrupts
1179 * Return Value: SUCCESS on success and
1180 * '-1' on failure
1183 static int init_tti(struct s2io_nic *nic, int link)
1185 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1186 register u64 val64 = 0;
1187 int i;
1188 struct config_param *config = &nic->config;
1190 for (i = 0; i < config->tx_fifo_num; i++) {
1192 * TTI Initialization. Default Tx timer gets us about
1193 * 250 interrupts per sec. Continuous interrupts are enabled
1194 * by default.
1196 if (nic->device_type == XFRAME_II_DEVICE) {
1197 int count = (nic->config.bus_speed * 125)/2;
1198 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1199 } else
1200 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1202 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1203 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1204 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1205 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1206 if (i == 0)
1207 if (use_continuous_tx_intrs && (link == LINK_UP))
1208 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1209 writeq(val64, &bar0->tti_data1_mem);
1211 if (nic->config.intr_type == MSI_X) {
1212 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1213 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1214 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1215 TTI_DATA2_MEM_TX_UFC_D(0x300);
1216 } else {
1217 if ((nic->config.tx_steering_type ==
1218 TX_DEFAULT_STEERING) &&
1219 (config->tx_fifo_num > 1) &&
1220 (i >= nic->udp_fifo_idx) &&
1221 (i < (nic->udp_fifo_idx +
1222 nic->total_udp_fifos)))
1223 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1224 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1225 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1226 TTI_DATA2_MEM_TX_UFC_D(0x120);
1227 else
1228 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1229 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1230 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1231 TTI_DATA2_MEM_TX_UFC_D(0x80);
1234 writeq(val64, &bar0->tti_data2_mem);
1236 val64 = TTI_CMD_MEM_WE |
1237 TTI_CMD_MEM_STROBE_NEW_CMD |
1238 TTI_CMD_MEM_OFFSET(i);
1239 writeq(val64, &bar0->tti_command_mem);
1241 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1242 TTI_CMD_MEM_STROBE_NEW_CMD,
1243 S2IO_BIT_RESET) != SUCCESS)
1244 return FAILURE;
1247 return SUCCESS;
1251 * init_nic - Initialization of hardware
1252 * @nic: device private variable
1253 * Description: The function sequentially configures every block
1254 * of the H/W from their reset values.
1255 * Return Value: SUCCESS on success and
1256 * '-1' on failure (endian settings incorrect).
1259 static int init_nic(struct s2io_nic *nic)
1261 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1262 struct net_device *dev = nic->dev;
1263 register u64 val64 = 0;
1264 void __iomem *add;
1265 u32 time;
1266 int i, j;
1267 int dtx_cnt = 0;
1268 unsigned long long mem_share;
1269 int mem_size;
1270 struct config_param *config = &nic->config;
1271 struct mac_info *mac_control = &nic->mac_control;
1273 /* to set the swapper controle on the card */
1274 if (s2io_set_swapper(nic)) {
1275 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1276 return -EIO;
1280 * Herc requires EOI to be removed from reset before XGXS, so..
1282 if (nic->device_type & XFRAME_II_DEVICE) {
1283 val64 = 0xA500000000ULL;
1284 writeq(val64, &bar0->sw_reset);
1285 msleep(500);
1286 val64 = readq(&bar0->sw_reset);
1289 /* Remove XGXS from reset state */
1290 val64 = 0;
1291 writeq(val64, &bar0->sw_reset);
1292 msleep(500);
1293 val64 = readq(&bar0->sw_reset);
1295 /* Ensure that it's safe to access registers by checking
1296 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1298 if (nic->device_type == XFRAME_II_DEVICE) {
1299 for (i = 0; i < 50; i++) {
1300 val64 = readq(&bar0->adapter_status);
1301 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1302 break;
1303 msleep(10);
1305 if (i == 50)
1306 return -ENODEV;
1309 /* Enable Receiving broadcasts */
1310 add = &bar0->mac_cfg;
1311 val64 = readq(&bar0->mac_cfg);
1312 val64 |= MAC_RMAC_BCAST_ENABLE;
1313 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314 writel((u32)val64, add);
1315 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1316 writel((u32) (val64 >> 32), (add + 4));
1318 /* Read registers in all blocks */
1319 val64 = readq(&bar0->mac_int_mask);
1320 val64 = readq(&bar0->mc_int_mask);
1321 val64 = readq(&bar0->xgxs_int_mask);
1323 /* Set MTU */
1324 val64 = dev->mtu;
1325 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1327 if (nic->device_type & XFRAME_II_DEVICE) {
1328 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1329 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1330 &bar0->dtx_control, UF);
1331 if (dtx_cnt & 0x1)
1332 msleep(1); /* Necessary!! */
1333 dtx_cnt++;
1335 } else {
1336 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1337 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1338 &bar0->dtx_control, UF);
1339 val64 = readq(&bar0->dtx_control);
1340 dtx_cnt++;
1344 /* Tx DMA Initialization */
1345 val64 = 0;
1346 writeq(val64, &bar0->tx_fifo_partition_0);
1347 writeq(val64, &bar0->tx_fifo_partition_1);
1348 writeq(val64, &bar0->tx_fifo_partition_2);
1349 writeq(val64, &bar0->tx_fifo_partition_3);
1351 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1352 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1354 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1355 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1357 if (i == (config->tx_fifo_num - 1)) {
1358 if (i % 2 == 0)
1359 i++;
1362 switch (i) {
1363 case 1:
1364 writeq(val64, &bar0->tx_fifo_partition_0);
1365 val64 = 0;
1366 j = 0;
1367 break;
1368 case 3:
1369 writeq(val64, &bar0->tx_fifo_partition_1);
1370 val64 = 0;
1371 j = 0;
1372 break;
1373 case 5:
1374 writeq(val64, &bar0->tx_fifo_partition_2);
1375 val64 = 0;
1376 j = 0;
1377 break;
1378 case 7:
1379 writeq(val64, &bar0->tx_fifo_partition_3);
1380 val64 = 0;
1381 j = 0;
1382 break;
1383 default:
1384 j++;
1385 break;
1390 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1391 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1393 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1394 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1396 val64 = readq(&bar0->tx_fifo_partition_0);
1397 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1398 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1401 * Initialization of Tx_PA_CONFIG register to ignore packet
1402 * integrity checking.
1404 val64 = readq(&bar0->tx_pa_cfg);
1405 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1406 TX_PA_CFG_IGNORE_SNAP_OUI |
1407 TX_PA_CFG_IGNORE_LLC_CTRL |
1408 TX_PA_CFG_IGNORE_L2_ERR;
1409 writeq(val64, &bar0->tx_pa_cfg);
1411 /* Rx DMA intialization. */
1412 val64 = 0;
1413 for (i = 0; i < config->rx_ring_num; i++) {
1414 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1416 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1418 writeq(val64, &bar0->rx_queue_priority);
1421 * Allocating equal share of memory to all the
1422 * configured Rings.
1424 val64 = 0;
1425 if (nic->device_type & XFRAME_II_DEVICE)
1426 mem_size = 32;
1427 else
1428 mem_size = 64;
1430 for (i = 0; i < config->rx_ring_num; i++) {
1431 switch (i) {
1432 case 0:
1433 mem_share = (mem_size / config->rx_ring_num +
1434 mem_size % config->rx_ring_num);
1435 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1436 continue;
1437 case 1:
1438 mem_share = (mem_size / config->rx_ring_num);
1439 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1440 continue;
1441 case 2:
1442 mem_share = (mem_size / config->rx_ring_num);
1443 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1444 continue;
1445 case 3:
1446 mem_share = (mem_size / config->rx_ring_num);
1447 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1448 continue;
1449 case 4:
1450 mem_share = (mem_size / config->rx_ring_num);
1451 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1452 continue;
1453 case 5:
1454 mem_share = (mem_size / config->rx_ring_num);
1455 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1456 continue;
1457 case 6:
1458 mem_share = (mem_size / config->rx_ring_num);
1459 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1460 continue;
1461 case 7:
1462 mem_share = (mem_size / config->rx_ring_num);
1463 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1464 continue;
1467 writeq(val64, &bar0->rx_queue_cfg);
1470 * Filling Tx round robin registers
1471 * as per the number of FIFOs for equal scheduling priority
1473 switch (config->tx_fifo_num) {
1474 case 1:
1475 val64 = 0x0;
1476 writeq(val64, &bar0->tx_w_round_robin_0);
1477 writeq(val64, &bar0->tx_w_round_robin_1);
1478 writeq(val64, &bar0->tx_w_round_robin_2);
1479 writeq(val64, &bar0->tx_w_round_robin_3);
1480 writeq(val64, &bar0->tx_w_round_robin_4);
1481 break;
1482 case 2:
1483 val64 = 0x0001000100010001ULL;
1484 writeq(val64, &bar0->tx_w_round_robin_0);
1485 writeq(val64, &bar0->tx_w_round_robin_1);
1486 writeq(val64, &bar0->tx_w_round_robin_2);
1487 writeq(val64, &bar0->tx_w_round_robin_3);
1488 val64 = 0x0001000100000000ULL;
1489 writeq(val64, &bar0->tx_w_round_robin_4);
1490 break;
1491 case 3:
1492 val64 = 0x0001020001020001ULL;
1493 writeq(val64, &bar0->tx_w_round_robin_0);
1494 val64 = 0x0200010200010200ULL;
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 val64 = 0x0102000102000102ULL;
1497 writeq(val64, &bar0->tx_w_round_robin_2);
1498 val64 = 0x0001020001020001ULL;
1499 writeq(val64, &bar0->tx_w_round_robin_3);
1500 val64 = 0x0200010200000000ULL;
1501 writeq(val64, &bar0->tx_w_round_robin_4);
1502 break;
1503 case 4:
1504 val64 = 0x0001020300010203ULL;
1505 writeq(val64, &bar0->tx_w_round_robin_0);
1506 writeq(val64, &bar0->tx_w_round_robin_1);
1507 writeq(val64, &bar0->tx_w_round_robin_2);
1508 writeq(val64, &bar0->tx_w_round_robin_3);
1509 val64 = 0x0001020300000000ULL;
1510 writeq(val64, &bar0->tx_w_round_robin_4);
1511 break;
1512 case 5:
1513 val64 = 0x0001020304000102ULL;
1514 writeq(val64, &bar0->tx_w_round_robin_0);
1515 val64 = 0x0304000102030400ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_1);
1517 val64 = 0x0102030400010203ULL;
1518 writeq(val64, &bar0->tx_w_round_robin_2);
1519 val64 = 0x0400010203040001ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_3);
1521 val64 = 0x0203040000000000ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 6:
1525 val64 = 0x0001020304050001ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_0);
1527 val64 = 0x0203040500010203ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_1);
1529 val64 = 0x0405000102030405ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_2);
1531 val64 = 0x0001020304050001ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_3);
1533 val64 = 0x0203040500000000ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 7:
1537 val64 = 0x0001020304050600ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_0);
1539 val64 = 0x0102030405060001ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_1);
1541 val64 = 0x0203040506000102ULL;
1542 writeq(val64, &bar0->tx_w_round_robin_2);
1543 val64 = 0x0304050600010203ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_3);
1545 val64 = 0x0405060000000000ULL;
1546 writeq(val64, &bar0->tx_w_round_robin_4);
1547 break;
1548 case 8:
1549 val64 = 0x0001020304050607ULL;
1550 writeq(val64, &bar0->tx_w_round_robin_0);
1551 writeq(val64, &bar0->tx_w_round_robin_1);
1552 writeq(val64, &bar0->tx_w_round_robin_2);
1553 writeq(val64, &bar0->tx_w_round_robin_3);
1554 val64 = 0x0001020300000000ULL;
1555 writeq(val64, &bar0->tx_w_round_robin_4);
1556 break;
1559 /* Enable all configured Tx FIFO partitions */
1560 val64 = readq(&bar0->tx_fifo_partition_0);
1561 val64 |= (TX_FIFO_PARTITION_EN);
1562 writeq(val64, &bar0->tx_fifo_partition_0);
1564 /* Filling the Rx round robin registers as per the
1565 * number of Rings and steering based on QoS with
1566 * equal priority.
1568 switch (config->rx_ring_num) {
1569 case 1:
1570 val64 = 0x0;
1571 writeq(val64, &bar0->rx_w_round_robin_0);
1572 writeq(val64, &bar0->rx_w_round_robin_1);
1573 writeq(val64, &bar0->rx_w_round_robin_2);
1574 writeq(val64, &bar0->rx_w_round_robin_3);
1575 writeq(val64, &bar0->rx_w_round_robin_4);
1577 val64 = 0x8080808080808080ULL;
1578 writeq(val64, &bar0->rts_qos_steering);
1579 break;
1580 case 2:
1581 val64 = 0x0001000100010001ULL;
1582 writeq(val64, &bar0->rx_w_round_robin_0);
1583 writeq(val64, &bar0->rx_w_round_robin_1);
1584 writeq(val64, &bar0->rx_w_round_robin_2);
1585 writeq(val64, &bar0->rx_w_round_robin_3);
1586 val64 = 0x0001000100000000ULL;
1587 writeq(val64, &bar0->rx_w_round_robin_4);
1589 val64 = 0x8080808040404040ULL;
1590 writeq(val64, &bar0->rts_qos_steering);
1591 break;
1592 case 3:
1593 val64 = 0x0001020001020001ULL;
1594 writeq(val64, &bar0->rx_w_round_robin_0);
1595 val64 = 0x0200010200010200ULL;
1596 writeq(val64, &bar0->rx_w_round_robin_1);
1597 val64 = 0x0102000102000102ULL;
1598 writeq(val64, &bar0->rx_w_round_robin_2);
1599 val64 = 0x0001020001020001ULL;
1600 writeq(val64, &bar0->rx_w_round_robin_3);
1601 val64 = 0x0200010200000000ULL;
1602 writeq(val64, &bar0->rx_w_round_robin_4);
1604 val64 = 0x8080804040402020ULL;
1605 writeq(val64, &bar0->rts_qos_steering);
1606 break;
1607 case 4:
1608 val64 = 0x0001020300010203ULL;
1609 writeq(val64, &bar0->rx_w_round_robin_0);
1610 writeq(val64, &bar0->rx_w_round_robin_1);
1611 writeq(val64, &bar0->rx_w_round_robin_2);
1612 writeq(val64, &bar0->rx_w_round_robin_3);
1613 val64 = 0x0001020300000000ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_4);
1616 val64 = 0x8080404020201010ULL;
1617 writeq(val64, &bar0->rts_qos_steering);
1618 break;
1619 case 5:
1620 val64 = 0x0001020304000102ULL;
1621 writeq(val64, &bar0->rx_w_round_robin_0);
1622 val64 = 0x0304000102030400ULL;
1623 writeq(val64, &bar0->rx_w_round_robin_1);
1624 val64 = 0x0102030400010203ULL;
1625 writeq(val64, &bar0->rx_w_round_robin_2);
1626 val64 = 0x0400010203040001ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_3);
1628 val64 = 0x0203040000000000ULL;
1629 writeq(val64, &bar0->rx_w_round_robin_4);
1631 val64 = 0x8080404020201008ULL;
1632 writeq(val64, &bar0->rts_qos_steering);
1633 break;
1634 case 6:
1635 val64 = 0x0001020304050001ULL;
1636 writeq(val64, &bar0->rx_w_round_robin_0);
1637 val64 = 0x0203040500010203ULL;
1638 writeq(val64, &bar0->rx_w_round_robin_1);
1639 val64 = 0x0405000102030405ULL;
1640 writeq(val64, &bar0->rx_w_round_robin_2);
1641 val64 = 0x0001020304050001ULL;
1642 writeq(val64, &bar0->rx_w_round_robin_3);
1643 val64 = 0x0203040500000000ULL;
1644 writeq(val64, &bar0->rx_w_round_robin_4);
1646 val64 = 0x8080404020100804ULL;
1647 writeq(val64, &bar0->rts_qos_steering);
1648 break;
1649 case 7:
1650 val64 = 0x0001020304050600ULL;
1651 writeq(val64, &bar0->rx_w_round_robin_0);
1652 val64 = 0x0102030405060001ULL;
1653 writeq(val64, &bar0->rx_w_round_robin_1);
1654 val64 = 0x0203040506000102ULL;
1655 writeq(val64, &bar0->rx_w_round_robin_2);
1656 val64 = 0x0304050600010203ULL;
1657 writeq(val64, &bar0->rx_w_round_robin_3);
1658 val64 = 0x0405060000000000ULL;
1659 writeq(val64, &bar0->rx_w_round_robin_4);
1661 val64 = 0x8080402010080402ULL;
1662 writeq(val64, &bar0->rts_qos_steering);
1663 break;
1664 case 8:
1665 val64 = 0x0001020304050607ULL;
1666 writeq(val64, &bar0->rx_w_round_robin_0);
1667 writeq(val64, &bar0->rx_w_round_robin_1);
1668 writeq(val64, &bar0->rx_w_round_robin_2);
1669 writeq(val64, &bar0->rx_w_round_robin_3);
1670 val64 = 0x0001020300000000ULL;
1671 writeq(val64, &bar0->rx_w_round_robin_4);
1673 val64 = 0x8040201008040201ULL;
1674 writeq(val64, &bar0->rts_qos_steering);
1675 break;
1678 /* UDP Fix */
1679 val64 = 0;
1680 for (i = 0; i < 8; i++)
1681 writeq(val64, &bar0->rts_frm_len_n[i]);
1683 /* Set the default rts frame length for the rings configured */
1684 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1685 for (i = 0 ; i < config->rx_ring_num ; i++)
1686 writeq(val64, &bar0->rts_frm_len_n[i]);
1688 /* Set the frame length for the configured rings
1689 * desired by the user
1691 for (i = 0; i < config->rx_ring_num; i++) {
1692 /* If rts_frm_len[i] == 0 then it is assumed that user not
1693 * specified frame length steering.
1694 * If the user provides the frame length then program
1695 * the rts_frm_len register for those values or else
1696 * leave it as it is.
1698 if (rts_frm_len[i] != 0) {
1699 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1700 &bar0->rts_frm_len_n[i]);
1704 /* Disable differentiated services steering logic */
1705 for (i = 0; i < 64; i++) {
1706 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1707 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1708 dev->name);
1709 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1710 return -ENODEV;
1714 /* Program statistics memory */
1715 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1717 if (nic->device_type == XFRAME_II_DEVICE) {
1718 val64 = STAT_BC(0x320);
1719 writeq(val64, &bar0->stat_byte_cnt);
1723 * Initializing the sampling rate for the device to calculate the
1724 * bandwidth utilization.
1726 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1727 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1728 writeq(val64, &bar0->mac_link_util);
1731 * Initializing the Transmit and Receive Traffic Interrupt
1732 * Scheme.
1735 /* Initialize TTI */
1736 if (SUCCESS != init_tti(nic, nic->last_link_state))
1737 return -ENODEV;
1739 /* RTI Initialization */
1740 if (nic->device_type == XFRAME_II_DEVICE) {
1742 * Programmed to generate Apprx 500 Intrs per
1743 * second
1745 int count = (nic->config.bus_speed * 125)/4;
1746 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1747 } else
1748 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1749 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1750 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1751 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1752 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1754 writeq(val64, &bar0->rti_data1_mem);
1756 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1757 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1758 if (nic->config.intr_type == MSI_X)
1759 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x40));
1761 else
1762 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1763 RTI_DATA2_MEM_RX_UFC_D(0x80));
1764 writeq(val64, &bar0->rti_data2_mem);
1766 for (i = 0; i < config->rx_ring_num; i++) {
1767 val64 = RTI_CMD_MEM_WE |
1768 RTI_CMD_MEM_STROBE_NEW_CMD |
1769 RTI_CMD_MEM_OFFSET(i);
1770 writeq(val64, &bar0->rti_command_mem);
1773 * Once the operation completes, the Strobe bit of the
1774 * command register will be reset. We poll for this
1775 * particular condition. We wait for a maximum of 500ms
1776 * for the operation to complete, if it's not complete
1777 * by then we return error.
1779 time = 0;
1780 while (true) {
1781 val64 = readq(&bar0->rti_command_mem);
1782 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1783 break;
1785 if (time > 10) {
1786 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1787 dev->name);
1788 return -ENODEV;
1790 time++;
1791 msleep(50);
1796 * Initializing proper values as Pause threshold into all
1797 * the 8 Queues on Rx side.
1799 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1800 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1802 /* Disable RMAC PAD STRIPPING */
1803 add = &bar0->mac_cfg;
1804 val64 = readq(&bar0->mac_cfg);
1805 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1806 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807 writel((u32) (val64), add);
1808 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1809 writel((u32) (val64 >> 32), (add + 4));
1810 val64 = readq(&bar0->mac_cfg);
1812 /* Enable FCS stripping by adapter */
1813 add = &bar0->mac_cfg;
1814 val64 = readq(&bar0->mac_cfg);
1815 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1816 if (nic->device_type == XFRAME_II_DEVICE)
1817 writeq(val64, &bar0->mac_cfg);
1818 else {
1819 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820 writel((u32) (val64), add);
1821 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1822 writel((u32) (val64 >> 32), (add + 4));
1826 * Set the time value to be inserted in the pause frame
1827 * generated by xena.
1829 val64 = readq(&bar0->rmac_pause_cfg);
1830 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1831 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1832 writeq(val64, &bar0->rmac_pause_cfg);
1835 * Set the Threshold Limit for Generating the pause frame
1836 * If the amount of data in any Queue exceeds ratio of
1837 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1838 * pause frame is generated
1840 val64 = 0;
1841 for (i = 0; i < 4; i++) {
1842 val64 |= (((u64)0xFF00 |
1843 nic->mac_control.mc_pause_threshold_q0q3)
1844 << (i * 2 * 8));
1846 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1848 val64 = 0;
1849 for (i = 0; i < 4; i++) {
1850 val64 |= (((u64)0xFF00 |
1851 nic->mac_control.mc_pause_threshold_q4q7)
1852 << (i * 2 * 8));
1854 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1857 * TxDMA will stop Read request if the number of read split has
1858 * exceeded the limit pointed by shared_splits
1860 val64 = readq(&bar0->pic_control);
1861 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1862 writeq(val64, &bar0->pic_control);
1864 if (nic->config.bus_speed == 266) {
1865 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1866 writeq(0x0, &bar0->read_retry_delay);
1867 writeq(0x0, &bar0->write_retry_delay);
1871 * Programming the Herc to split every write transaction
1872 * that does not start on an ADB to reduce disconnects.
1874 if (nic->device_type == XFRAME_II_DEVICE) {
1875 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1876 MISC_LINK_STABILITY_PRD(3);
1877 writeq(val64, &bar0->misc_control);
1878 val64 = readq(&bar0->pic_control2);
1879 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1880 writeq(val64, &bar0->pic_control2);
1882 if (strstr(nic->product_name, "CX4")) {
1883 val64 = TMAC_AVG_IPG(0x17);
1884 writeq(val64, &bar0->tmac_avg_ipg);
1887 return SUCCESS;
1889 #define LINK_UP_DOWN_INTERRUPT 1
1890 #define MAC_RMAC_ERR_TIMER 2
1892 static int s2io_link_fault_indication(struct s2io_nic *nic)
1894 if (nic->device_type == XFRAME_II_DEVICE)
1895 return LINK_UP_DOWN_INTERRUPT;
1896 else
1897 return MAC_RMAC_ERR_TIMER;
1901 * do_s2io_write_bits - update alarm bits in alarm register
1902 * @value: alarm bits
1903 * @flag: interrupt status
1904 * @addr: address value
1905 * Description: update alarm bits in alarm register
1906 * Return Value:
1907 * NONE.
1909 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1911 u64 temp64;
1913 temp64 = readq(addr);
1915 if (flag == ENABLE_INTRS)
1916 temp64 &= ~((u64)value);
1917 else
1918 temp64 |= ((u64)value);
1919 writeq(temp64, addr);
1922 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1924 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1925 register u64 gen_int_mask = 0;
1926 u64 interruptible;
1928 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1929 if (mask & TX_DMA_INTR) {
1930 gen_int_mask |= TXDMA_INT_M;
1932 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1933 TXDMA_PCC_INT | TXDMA_TTI_INT |
1934 TXDMA_LSO_INT | TXDMA_TPA_INT |
1935 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1937 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1938 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1939 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1940 &bar0->pfc_err_mask);
1942 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1943 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1944 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1946 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1947 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1948 PCC_N_SERR | PCC_6_COF_OV_ERR |
1949 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1950 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1951 PCC_TXB_ECC_SG_ERR,
1952 flag, &bar0->pcc_err_mask);
1954 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1955 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1957 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1958 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1959 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1960 flag, &bar0->lso_err_mask);
1962 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1963 flag, &bar0->tpa_err_mask);
1965 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1968 if (mask & TX_MAC_INTR) {
1969 gen_int_mask |= TXMAC_INT_M;
1970 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1971 &bar0->mac_int_mask);
1972 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1973 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1974 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1975 flag, &bar0->mac_tmac_err_mask);
1978 if (mask & TX_XGXS_INTR) {
1979 gen_int_mask |= TXXGXS_INT_M;
1980 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1981 &bar0->xgxs_int_mask);
1982 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1983 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1984 flag, &bar0->xgxs_txgxs_err_mask);
1987 if (mask & RX_DMA_INTR) {
1988 gen_int_mask |= RXDMA_INT_M;
1989 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1990 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1991 flag, &bar0->rxdma_int_mask);
1992 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1993 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1994 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1995 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1996 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1997 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1998 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1999 &bar0->prc_pcix_err_mask);
2000 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2001 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2002 &bar0->rpa_err_mask);
2003 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2004 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2005 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2006 RDA_FRM_ECC_SG_ERR |
2007 RDA_MISC_ERR|RDA_PCIX_ERR,
2008 flag, &bar0->rda_err_mask);
2009 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2010 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2011 flag, &bar0->rti_err_mask);
2014 if (mask & RX_MAC_INTR) {
2015 gen_int_mask |= RXMAC_INT_M;
2016 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2017 &bar0->mac_int_mask);
2018 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2019 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2020 RMAC_DOUBLE_ECC_ERR);
2021 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2022 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2023 do_s2io_write_bits(interruptible,
2024 flag, &bar0->mac_rmac_err_mask);
2027 if (mask & RX_XGXS_INTR) {
2028 gen_int_mask |= RXXGXS_INT_M;
2029 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2030 &bar0->xgxs_int_mask);
2031 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2032 &bar0->xgxs_rxgxs_err_mask);
2035 if (mask & MC_INTR) {
2036 gen_int_mask |= MC_INT_M;
2037 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2038 flag, &bar0->mc_int_mask);
2039 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2040 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2041 &bar0->mc_err_mask);
2043 nic->general_int_mask = gen_int_mask;
2045 /* Remove this line when alarm interrupts are enabled */
2046 nic->general_int_mask = 0;
2050 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2051 * @nic: device private variable,
2052 * @mask: A mask indicating which Intr block must be modified and,
2053 * @flag: A flag indicating whether to enable or disable the Intrs.
2054 * Description: This function will either disable or enable the interrupts
2055 * depending on the flag argument. The mask argument can be used to
2056 * enable/disable any Intr block.
2057 * Return Value: NONE.
2060 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2062 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2063 register u64 temp64 = 0, intr_mask = 0;
2065 intr_mask = nic->general_int_mask;
2067 /* Top level interrupt classification */
2068 /* PIC Interrupts */
2069 if (mask & TX_PIC_INTR) {
2070 /* Enable PIC Intrs in the general intr mask register */
2071 intr_mask |= TXPIC_INT_M;
2072 if (flag == ENABLE_INTRS) {
2074 * If Hercules adapter enable GPIO otherwise
2075 * disable all PCIX, Flash, MDIO, IIC and GPIO
2076 * interrupts for now.
2077 * TODO
2079 if (s2io_link_fault_indication(nic) ==
2080 LINK_UP_DOWN_INTERRUPT) {
2081 do_s2io_write_bits(PIC_INT_GPIO, flag,
2082 &bar0->pic_int_mask);
2083 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2084 &bar0->gpio_int_mask);
2085 } else
2086 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2087 } else if (flag == DISABLE_INTRS) {
2089 * Disable PIC Intrs in the general
2090 * intr mask register
2092 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2096 /* Tx traffic interrupts */
2097 if (mask & TX_TRAFFIC_INTR) {
2098 intr_mask |= TXTRAFFIC_INT_M;
2099 if (flag == ENABLE_INTRS) {
2101 * Enable all the Tx side interrupts
2102 * writing 0 Enables all 64 TX interrupt levels
2104 writeq(0x0, &bar0->tx_traffic_mask);
2105 } else if (flag == DISABLE_INTRS) {
2107 * Disable Tx Traffic Intrs in the general intr mask
2108 * register.
2110 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2114 /* Rx traffic interrupts */
2115 if (mask & RX_TRAFFIC_INTR) {
2116 intr_mask |= RXTRAFFIC_INT_M;
2117 if (flag == ENABLE_INTRS) {
2118 /* writing 0 Enables all 8 RX interrupt levels */
2119 writeq(0x0, &bar0->rx_traffic_mask);
2120 } else if (flag == DISABLE_INTRS) {
2122 * Disable Rx Traffic Intrs in the general intr mask
2123 * register.
2125 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2129 temp64 = readq(&bar0->general_int_mask);
2130 if (flag == ENABLE_INTRS)
2131 temp64 &= ~((u64)intr_mask);
2132 else
2133 temp64 = DISABLE_ALL_INTRS;
2134 writeq(temp64, &bar0->general_int_mask);
2136 nic->general_int_mask = readq(&bar0->general_int_mask);
2140 * verify_pcc_quiescent- Checks for PCC quiescent state
2141 * Return: 1 If PCC is quiescence
2142 * 0 If PCC is not quiescence
2144 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2146 int ret = 0, herc;
2147 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2148 u64 val64 = readq(&bar0->adapter_status);
2150 herc = (sp->device_type == XFRAME_II_DEVICE);
2152 if (flag == false) {
2153 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2155 ret = 1;
2156 } else {
2157 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2158 ret = 1;
2160 } else {
2161 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2162 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2163 ADAPTER_STATUS_RMAC_PCC_IDLE))
2164 ret = 1;
2165 } else {
2166 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2167 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2168 ret = 1;
2172 return ret;
2175 * verify_xena_quiescence - Checks whether the H/W is ready
2176 * Description: Returns whether the H/W is ready to go or not. Depending
2177 * on whether adapter enable bit was written or not the comparison
2178 * differs and the calling function passes the input argument flag to
2179 * indicate this.
2180 * Return: 1 If xena is quiescence
2181 * 0 If Xena is not quiescence
2184 static int verify_xena_quiescence(struct s2io_nic *sp)
2186 int mode;
2187 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2188 u64 val64 = readq(&bar0->adapter_status);
2189 mode = s2io_verify_pci_mode(sp);
2191 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2192 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2193 return 0;
2195 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2196 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2197 return 0;
2199 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2200 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2201 return 0;
2203 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2204 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2205 return 0;
2207 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2208 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2209 return 0;
2211 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2212 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2213 return 0;
2215 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2216 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2217 return 0;
2219 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2220 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2221 return 0;
2225 * In PCI 33 mode, the P_PLL is not used, and therefore,
2226 * the the P_PLL_LOCK bit in the adapter_status register will
2227 * not be asserted.
2229 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2230 sp->device_type == XFRAME_II_DEVICE &&
2231 mode != PCI_MODE_PCI_33) {
2232 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2233 return 0;
2235 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2236 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2237 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2238 return 0;
2240 return 1;
2244 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2245 * @sp: Pointer to device specifc structure
2246 * Description :
2247 * New procedure to clear mac address reading problems on Alpha platforms
2251 static void fix_mac_address(struct s2io_nic *sp)
2253 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2254 u64 val64;
2255 int i = 0;
2257 while (fix_mac[i] != END_SIGN) {
2258 writeq(fix_mac[i++], &bar0->gpio_control);
2259 udelay(10);
2260 val64 = readq(&bar0->gpio_control);
2265 * start_nic - Turns the device on
2266 * @nic : device private variable.
2267 * Description:
2268 * This function actually turns the device on. Before this function is
2269 * called,all Registers are configured from their reset states
2270 * and shared memory is allocated but the NIC is still quiescent. On
2271 * calling this function, the device interrupts are cleared and the NIC is
2272 * literally switched on by writing into the adapter control register.
2273 * Return Value:
2274 * SUCCESS on success and -1 on failure.
2277 static int start_nic(struct s2io_nic *nic)
2279 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2280 struct net_device *dev = nic->dev;
2281 register u64 val64 = 0;
2282 u16 subid, i;
2283 struct config_param *config = &nic->config;
2284 struct mac_info *mac_control = &nic->mac_control;
2286 /* PRC Initialization and configuration */
2287 for (i = 0; i < config->rx_ring_num; i++) {
2288 struct ring_info *ring = &mac_control->rings[i];
2290 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2291 &bar0->prc_rxd0_n[i]);
2293 val64 = readq(&bar0->prc_ctrl_n[i]);
2294 if (nic->rxd_mode == RXD_MODE_1)
2295 val64 |= PRC_CTRL_RC_ENABLED;
2296 else
2297 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2298 if (nic->device_type == XFRAME_II_DEVICE)
2299 val64 |= PRC_CTRL_GROUP_READS;
2300 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2301 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2302 writeq(val64, &bar0->prc_ctrl_n[i]);
2305 if (nic->rxd_mode == RXD_MODE_3B) {
2306 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2307 val64 = readq(&bar0->rx_pa_cfg);
2308 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2309 writeq(val64, &bar0->rx_pa_cfg);
2312 if (vlan_tag_strip == 0) {
2313 val64 = readq(&bar0->rx_pa_cfg);
2314 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2315 writeq(val64, &bar0->rx_pa_cfg);
2316 nic->vlan_strip_flag = 0;
2320 * Enabling MC-RLDRAM. After enabling the device, we timeout
2321 * for around 100ms, which is approximately the time required
2322 * for the device to be ready for operation.
2324 val64 = readq(&bar0->mc_rldram_mrs);
2325 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2326 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2327 val64 = readq(&bar0->mc_rldram_mrs);
2329 msleep(100); /* Delay by around 100 ms. */
2331 /* Enabling ECC Protection. */
2332 val64 = readq(&bar0->adapter_control);
2333 val64 &= ~ADAPTER_ECC_EN;
2334 writeq(val64, &bar0->adapter_control);
2337 * Verify if the device is ready to be enabled, if so enable
2338 * it.
2340 val64 = readq(&bar0->adapter_status);
2341 if (!verify_xena_quiescence(nic)) {
2342 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2343 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2344 (unsigned long long)val64);
2345 return FAILURE;
2349 * With some switches, link might be already up at this point.
2350 * Because of this weird behavior, when we enable laser,
2351 * we may not get link. We need to handle this. We cannot
2352 * figure out which switch is misbehaving. So we are forced to
2353 * make a global change.
2356 /* Enabling Laser. */
2357 val64 = readq(&bar0->adapter_control);
2358 val64 |= ADAPTER_EOI_TX_ON;
2359 writeq(val64, &bar0->adapter_control);
2361 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2363 * Dont see link state interrupts initally on some switches,
2364 * so directly scheduling the link state task here.
2366 schedule_work(&nic->set_link_task);
2368 /* SXE-002: Initialize link and activity LED */
2369 subid = nic->pdev->subsystem_device;
2370 if (((subid & 0xFF) >= 0x07) &&
2371 (nic->device_type == XFRAME_I_DEVICE)) {
2372 val64 = readq(&bar0->gpio_control);
2373 val64 |= 0x0000800000000000ULL;
2374 writeq(val64, &bar0->gpio_control);
2375 val64 = 0x0411040400000000ULL;
2376 writeq(val64, (void __iomem *)bar0 + 0x2700);
2379 return SUCCESS;
2382 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2384 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2385 struct TxD *txdlp, int get_off)
2387 struct s2io_nic *nic = fifo_data->nic;
2388 struct sk_buff *skb;
2389 struct TxD *txds;
2390 u16 j, frg_cnt;
2392 txds = txdlp;
2393 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2394 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2395 sizeof(u64), PCI_DMA_TODEVICE);
2396 txds++;
2399 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2400 if (!skb) {
2401 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2402 return NULL;
2404 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2405 skb->len - skb->data_len, PCI_DMA_TODEVICE);
2406 frg_cnt = skb_shinfo(skb)->nr_frags;
2407 if (frg_cnt) {
2408 txds++;
2409 for (j = 0; j < frg_cnt; j++, txds++) {
2410 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2411 if (!txds->Buffer_Pointer)
2412 break;
2413 pci_unmap_page(nic->pdev,
2414 (dma_addr_t)txds->Buffer_Pointer,
2415 frag->size, PCI_DMA_TODEVICE);
2418 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2419 return skb;
2423 * free_tx_buffers - Free all queued Tx buffers
2424 * @nic : device private variable.
2425 * Description:
2426 * Free all queued Tx buffers.
2427 * Return Value: void
2430 static void free_tx_buffers(struct s2io_nic *nic)
2432 struct net_device *dev = nic->dev;
2433 struct sk_buff *skb;
2434 struct TxD *txdp;
2435 int i, j;
2436 int cnt = 0;
2437 struct config_param *config = &nic->config;
2438 struct mac_info *mac_control = &nic->mac_control;
2439 struct stat_block *stats = mac_control->stats_info;
2440 struct swStat *swstats = &stats->sw_stat;
2442 for (i = 0; i < config->tx_fifo_num; i++) {
2443 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2444 struct fifo_info *fifo = &mac_control->fifos[i];
2445 unsigned long flags;
2447 spin_lock_irqsave(&fifo->tx_lock, flags);
2448 for (j = 0; j < tx_cfg->fifo_len; j++) {
2449 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2450 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2451 if (skb) {
2452 swstats->mem_freed += skb->truesize;
2453 dev_kfree_skb(skb);
2454 cnt++;
2457 DBG_PRINT(INTR_DBG,
2458 "%s:forcibly freeing %d skbs on FIFO%d\n",
2459 dev->name, cnt, i);
2460 fifo->tx_curr_get_info.offset = 0;
2461 fifo->tx_curr_put_info.offset = 0;
2462 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2467 * stop_nic - To stop the nic
2468 * @nic ; device private variable.
2469 * Description:
2470 * This function does exactly the opposite of what the start_nic()
2471 * function does. This function is called to stop the device.
2472 * Return Value:
2473 * void.
2476 static void stop_nic(struct s2io_nic *nic)
2478 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2479 register u64 val64 = 0;
2480 u16 interruptible;
2482 /* Disable all interrupts */
2483 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2484 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2485 interruptible |= TX_PIC_INTR;
2486 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2488 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2489 val64 = readq(&bar0->adapter_control);
2490 val64 &= ~(ADAPTER_CNTL_EN);
2491 writeq(val64, &bar0->adapter_control);
2495 * fill_rx_buffers - Allocates the Rx side skbs
2496 * @ring_info: per ring structure
2497 * @from_card_up: If this is true, we will map the buffer to get
2498 * the dma address for buf0 and buf1 to give it to the card.
2499 * Else we will sync the already mapped buffer to give it to the card.
2500 * Description:
2501 * The function allocates Rx side skbs and puts the physical
2502 * address of these buffers into the RxD buffer pointers, so that the NIC
2503 * can DMA the received frame into these locations.
2504 * The NIC supports 3 receive modes, viz
2505 * 1. single buffer,
2506 * 2. three buffer and
2507 * 3. Five buffer modes.
2508 * Each mode defines how many fragments the received frame will be split
2509 * up into by the NIC. The frame is split into L3 header, L4 Header,
2510 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2511 * is split into 3 fragments. As of now only single buffer mode is
2512 * supported.
2513 * Return Value:
2514 * SUCCESS on success or an appropriate -ve value on failure.
2516 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2517 int from_card_up)
2519 struct sk_buff *skb;
2520 struct RxD_t *rxdp;
2521 int off, size, block_no, block_no1;
2522 u32 alloc_tab = 0;
2523 u32 alloc_cnt;
2524 u64 tmp;
2525 struct buffAdd *ba;
2526 struct RxD_t *first_rxdp = NULL;
2527 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2528 int rxd_index = 0;
2529 struct RxD1 *rxdp1;
2530 struct RxD3 *rxdp3;
2531 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2533 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2535 block_no1 = ring->rx_curr_get_info.block_index;
2536 while (alloc_tab < alloc_cnt) {
2537 block_no = ring->rx_curr_put_info.block_index;
2539 off = ring->rx_curr_put_info.offset;
2541 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2543 rxd_index = off + 1;
2544 if (block_no)
2545 rxd_index += (block_no * ring->rxd_count);
2547 if ((block_no == block_no1) &&
2548 (off == ring->rx_curr_get_info.offset) &&
2549 (rxdp->Host_Control)) {
2550 DBG_PRINT(INTR_DBG, "%s: Get and Put", ring->dev->name);
2551 DBG_PRINT(INTR_DBG, " info equated\n");
2552 goto end;
2554 if (off && (off == ring->rxd_count)) {
2555 ring->rx_curr_put_info.block_index++;
2556 if (ring->rx_curr_put_info.block_index ==
2557 ring->block_count)
2558 ring->rx_curr_put_info.block_index = 0;
2559 block_no = ring->rx_curr_put_info.block_index;
2560 off = 0;
2561 ring->rx_curr_put_info.offset = off;
2562 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2563 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2564 ring->dev->name, rxdp);
2568 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2569 ((ring->rxd_mode == RXD_MODE_3B) &&
2570 (rxdp->Control_2 & s2BIT(0)))) {
2571 ring->rx_curr_put_info.offset = off;
2572 goto end;
2574 /* calculate size of skb based on ring mode */
2575 size = ring->mtu +
2576 HEADER_ETHERNET_II_802_3_SIZE +
2577 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2578 if (ring->rxd_mode == RXD_MODE_1)
2579 size += NET_IP_ALIGN;
2580 else
2581 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2583 /* allocate skb */
2584 skb = dev_alloc_skb(size);
2585 if (!skb) {
2586 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2587 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2588 if (first_rxdp) {
2589 wmb();
2590 first_rxdp->Control_1 |= RXD_OWN_XENA;
2592 swstats->mem_alloc_fail_cnt++;
2594 return -ENOMEM ;
2596 swstats->mem_allocated += skb->truesize;
2598 if (ring->rxd_mode == RXD_MODE_1) {
2599 /* 1 buffer mode - normal operation mode */
2600 rxdp1 = (struct RxD1 *)rxdp;
2601 memset(rxdp, 0, sizeof(struct RxD1));
2602 skb_reserve(skb, NET_IP_ALIGN);
2603 rxdp1->Buffer0_ptr =
2604 pci_map_single(ring->pdev, skb->data,
2605 size - NET_IP_ALIGN,
2606 PCI_DMA_FROMDEVICE);
2607 if (pci_dma_mapping_error(nic->pdev,
2608 rxdp1->Buffer0_ptr))
2609 goto pci_map_failed;
2611 rxdp->Control_2 =
2612 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2613 rxdp->Host_Control = (unsigned long)skb;
2614 } else if (ring->rxd_mode == RXD_MODE_3B) {
2616 * 2 buffer mode -
2617 * 2 buffer mode provides 128
2618 * byte aligned receive buffers.
2621 rxdp3 = (struct RxD3 *)rxdp;
2622 /* save buffer pointers to avoid frequent dma mapping */
2623 Buffer0_ptr = rxdp3->Buffer0_ptr;
2624 Buffer1_ptr = rxdp3->Buffer1_ptr;
2625 memset(rxdp, 0, sizeof(struct RxD3));
2626 /* restore the buffer pointers for dma sync*/
2627 rxdp3->Buffer0_ptr = Buffer0_ptr;
2628 rxdp3->Buffer1_ptr = Buffer1_ptr;
2630 ba = &ring->ba[block_no][off];
2631 skb_reserve(skb, BUF0_LEN);
2632 tmp = (u64)(unsigned long)skb->data;
2633 tmp += ALIGN_SIZE;
2634 tmp &= ~ALIGN_SIZE;
2635 skb->data = (void *) (unsigned long)tmp;
2636 skb_reset_tail_pointer(skb);
2638 if (from_card_up) {
2639 rxdp3->Buffer0_ptr =
2640 pci_map_single(ring->pdev, ba->ba_0,
2641 BUF0_LEN,
2642 PCI_DMA_FROMDEVICE);
2643 if (pci_dma_mapping_error(nic->pdev,
2644 rxdp3->Buffer0_ptr))
2645 goto pci_map_failed;
2646 } else
2647 pci_dma_sync_single_for_device(ring->pdev,
2648 (dma_addr_t)rxdp3->Buffer0_ptr,
2649 BUF0_LEN,
2650 PCI_DMA_FROMDEVICE);
2652 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2653 if (ring->rxd_mode == RXD_MODE_3B) {
2654 /* Two buffer mode */
2657 * Buffer2 will have L3/L4 header plus
2658 * L4 payload
2660 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2661 skb->data,
2662 ring->mtu + 4,
2663 PCI_DMA_FROMDEVICE);
2665 if (pci_dma_mapping_error(nic->pdev,
2666 rxdp3->Buffer2_ptr))
2667 goto pci_map_failed;
2669 if (from_card_up) {
2670 rxdp3->Buffer1_ptr =
2671 pci_map_single(ring->pdev,
2672 ba->ba_1,
2673 BUF1_LEN,
2674 PCI_DMA_FROMDEVICE);
2676 if (pci_dma_mapping_error(nic->pdev,
2677 rxdp3->Buffer1_ptr)) {
2678 pci_unmap_single(ring->pdev,
2679 (dma_addr_t)(unsigned long)
2680 skb->data,
2681 ring->mtu + 4,
2682 PCI_DMA_FROMDEVICE);
2683 goto pci_map_failed;
2686 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2687 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2688 (ring->mtu + 4);
2690 rxdp->Control_2 |= s2BIT(0);
2691 rxdp->Host_Control = (unsigned long) (skb);
2693 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2694 rxdp->Control_1 |= RXD_OWN_XENA;
2695 off++;
2696 if (off == (ring->rxd_count + 1))
2697 off = 0;
2698 ring->rx_curr_put_info.offset = off;
2700 rxdp->Control_2 |= SET_RXD_MARKER;
2701 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2702 if (first_rxdp) {
2703 wmb();
2704 first_rxdp->Control_1 |= RXD_OWN_XENA;
2706 first_rxdp = rxdp;
2708 ring->rx_bufs_left += 1;
2709 alloc_tab++;
2712 end:
2713 /* Transfer ownership of first descriptor to adapter just before
2714 * exiting. Before that, use memory barrier so that ownership
2715 * and other fields are seen by adapter correctly.
2717 if (first_rxdp) {
2718 wmb();
2719 first_rxdp->Control_1 |= RXD_OWN_XENA;
2722 return SUCCESS;
2724 pci_map_failed:
2725 swstats->pci_map_fail_cnt++;
2726 swstats->mem_freed += skb->truesize;
2727 dev_kfree_skb_irq(skb);
2728 return -ENOMEM;
2731 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2733 struct net_device *dev = sp->dev;
2734 int j;
2735 struct sk_buff *skb;
2736 struct RxD_t *rxdp;
2737 struct buffAdd *ba;
2738 struct RxD1 *rxdp1;
2739 struct RxD3 *rxdp3;
2740 struct mac_info *mac_control = &sp->mac_control;
2741 struct stat_block *stats = mac_control->stats_info;
2742 struct swStat *swstats = &stats->sw_stat;
2744 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2745 rxdp = mac_control->rings[ring_no].
2746 rx_blocks[blk].rxds[j].virt_addr;
2747 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2748 if (!skb)
2749 continue;
2750 if (sp->rxd_mode == RXD_MODE_1) {
2751 rxdp1 = (struct RxD1 *)rxdp;
2752 pci_unmap_single(sp->pdev,
2753 (dma_addr_t)rxdp1->Buffer0_ptr,
2754 dev->mtu +
2755 HEADER_ETHERNET_II_802_3_SIZE +
2756 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2757 PCI_DMA_FROMDEVICE);
2758 memset(rxdp, 0, sizeof(struct RxD1));
2759 } else if (sp->rxd_mode == RXD_MODE_3B) {
2760 rxdp3 = (struct RxD3 *)rxdp;
2761 ba = &mac_control->rings[ring_no].ba[blk][j];
2762 pci_unmap_single(sp->pdev,
2763 (dma_addr_t)rxdp3->Buffer0_ptr,
2764 BUF0_LEN,
2765 PCI_DMA_FROMDEVICE);
2766 pci_unmap_single(sp->pdev,
2767 (dma_addr_t)rxdp3->Buffer1_ptr,
2768 BUF1_LEN,
2769 PCI_DMA_FROMDEVICE);
2770 pci_unmap_single(sp->pdev,
2771 (dma_addr_t)rxdp3->Buffer2_ptr,
2772 dev->mtu + 4,
2773 PCI_DMA_FROMDEVICE);
2774 memset(rxdp, 0, sizeof(struct RxD3));
2776 swstats->mem_freed += skb->truesize;
2777 dev_kfree_skb(skb);
2778 mac_control->rings[ring_no].rx_bufs_left -= 1;
2783 * free_rx_buffers - Frees all Rx buffers
2784 * @sp: device private variable.
2785 * Description:
2786 * This function will free all Rx buffers allocated by host.
2787 * Return Value:
2788 * NONE.
2791 static void free_rx_buffers(struct s2io_nic *sp)
2793 struct net_device *dev = sp->dev;
2794 int i, blk = 0, buf_cnt = 0;
2795 struct config_param *config = &sp->config;
2796 struct mac_info *mac_control = &sp->mac_control;
2798 for (i = 0; i < config->rx_ring_num; i++) {
2799 struct ring_info *ring = &mac_control->rings[i];
2801 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2802 free_rxd_blk(sp, i, blk);
2804 ring->rx_curr_put_info.block_index = 0;
2805 ring->rx_curr_get_info.block_index = 0;
2806 ring->rx_curr_put_info.offset = 0;
2807 ring->rx_curr_get_info.offset = 0;
2808 ring->rx_bufs_left = 0;
2809 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2810 dev->name, buf_cnt, i);
2814 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2816 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2817 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2818 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2820 return 0;
2824 * s2io_poll - Rx interrupt handler for NAPI support
2825 * @napi : pointer to the napi structure.
2826 * @budget : The number of packets that were budgeted to be processed
2827 * during one pass through the 'Poll" function.
2828 * Description:
2829 * Comes into picture only if NAPI support has been incorporated. It does
2830 * the same thing that rx_intr_handler does, but not in a interrupt context
2831 * also It will process only a given number of packets.
2832 * Return value:
2833 * 0 on success and 1 if there are No Rx packets to be processed.
2836 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2838 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2839 struct net_device *dev = ring->dev;
2840 int pkts_processed = 0;
2841 u8 __iomem *addr = NULL;
2842 u8 val8 = 0;
2843 struct s2io_nic *nic = netdev_priv(dev);
2844 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2845 int budget_org = budget;
2847 if (unlikely(!is_s2io_card_up(nic)))
2848 return 0;
2850 pkts_processed = rx_intr_handler(ring, budget);
2851 s2io_chk_rx_buffers(nic, ring);
2853 if (pkts_processed < budget_org) {
2854 napi_complete(napi);
2855 /*Re Enable MSI-Rx Vector*/
2856 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2857 addr += 7 - ring->ring_no;
2858 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2859 writeb(val8, addr);
2860 val8 = readb(addr);
2862 return pkts_processed;
2865 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2867 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2868 int pkts_processed = 0;
2869 int ring_pkts_processed, i;
2870 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2871 int budget_org = budget;
2872 struct config_param *config = &nic->config;
2873 struct mac_info *mac_control = &nic->mac_control;
2875 if (unlikely(!is_s2io_card_up(nic)))
2876 return 0;
2878 for (i = 0; i < config->rx_ring_num; i++) {
2879 struct ring_info *ring = &mac_control->rings[i];
2880 ring_pkts_processed = rx_intr_handler(ring, budget);
2881 s2io_chk_rx_buffers(nic, ring);
2882 pkts_processed += ring_pkts_processed;
2883 budget -= ring_pkts_processed;
2884 if (budget <= 0)
2885 break;
2887 if (pkts_processed < budget_org) {
2888 napi_complete(napi);
2889 /* Re enable the Rx interrupts for the ring */
2890 writeq(0, &bar0->rx_traffic_mask);
2891 readl(&bar0->rx_traffic_mask);
2893 return pkts_processed;
2896 #ifdef CONFIG_NET_POLL_CONTROLLER
2898 * s2io_netpoll - netpoll event handler entry point
2899 * @dev : pointer to the device structure.
2900 * Description:
2901 * This function will be called by upper layer to check for events on the
2902 * interface in situations where interrupts are disabled. It is used for
2903 * specific in-kernel networking tasks, such as remote consoles and kernel
2904 * debugging over the network (example netdump in RedHat).
2906 static void s2io_netpoll(struct net_device *dev)
2908 struct s2io_nic *nic = netdev_priv(dev);
2909 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2910 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2911 int i;
2912 struct config_param *config = &nic->config;
2913 struct mac_info *mac_control = &nic->mac_control;
2915 if (pci_channel_offline(nic->pdev))
2916 return;
2918 disable_irq(dev->irq);
2920 writeq(val64, &bar0->rx_traffic_int);
2921 writeq(val64, &bar0->tx_traffic_int);
2923 /* we need to free up the transmitted skbufs or else netpoll will
2924 * run out of skbs and will fail and eventually netpoll application such
2925 * as netdump will fail.
2927 for (i = 0; i < config->tx_fifo_num; i++)
2928 tx_intr_handler(&mac_control->fifos[i]);
2930 /* check for received packet and indicate up to network */
2931 for (i = 0; i < config->rx_ring_num; i++) {
2932 struct ring_info *ring = &mac_control->rings[i];
2934 rx_intr_handler(ring, 0);
2937 for (i = 0; i < config->rx_ring_num; i++) {
2938 struct ring_info *ring = &mac_control->rings[i];
2940 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2941 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2942 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2943 break;
2946 enable_irq(dev->irq);
2947 return;
2949 #endif
2952 * rx_intr_handler - Rx interrupt handler
2953 * @ring_info: per ring structure.
2954 * @budget: budget for napi processing.
2955 * Description:
2956 * If the interrupt is because of a received frame or if the
2957 * receive ring contains fresh as yet un-processed frames,this function is
2958 * called. It picks out the RxD at which place the last Rx processing had
2959 * stopped and sends the skb to the OSM's Rx handler and then increments
2960 * the offset.
2961 * Return Value:
2962 * No. of napi packets processed.
2964 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2966 int get_block, put_block;
2967 struct rx_curr_get_info get_info, put_info;
2968 struct RxD_t *rxdp;
2969 struct sk_buff *skb;
2970 int pkt_cnt = 0, napi_pkts = 0;
2971 int i;
2972 struct RxD1 *rxdp1;
2973 struct RxD3 *rxdp3;
2975 get_info = ring_data->rx_curr_get_info;
2976 get_block = get_info.block_index;
2977 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2978 put_block = put_info.block_index;
2979 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2981 while (RXD_IS_UP2DT(rxdp)) {
2983 * If your are next to put index then it's
2984 * FIFO full condition
2986 if ((get_block == put_block) &&
2987 (get_info.offset + 1) == put_info.offset) {
2988 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2989 ring_data->dev->name);
2990 break;
2992 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2993 if (skb == NULL) {
2994 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2995 ring_data->dev->name);
2996 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2997 return 0;
2999 if (ring_data->rxd_mode == RXD_MODE_1) {
3000 rxdp1 = (struct RxD1 *)rxdp;
3001 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3002 rxdp1->Buffer0_ptr,
3003 ring_data->mtu +
3004 HEADER_ETHERNET_II_802_3_SIZE +
3005 HEADER_802_2_SIZE +
3006 HEADER_SNAP_SIZE,
3007 PCI_DMA_FROMDEVICE);
3008 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3009 rxdp3 = (struct RxD3 *)rxdp;
3010 pci_dma_sync_single_for_cpu(ring_data->pdev,
3011 (dma_addr_t)rxdp3->Buffer0_ptr,
3012 BUF0_LEN,
3013 PCI_DMA_FROMDEVICE);
3014 pci_unmap_single(ring_data->pdev,
3015 (dma_addr_t)rxdp3->Buffer2_ptr,
3016 ring_data->mtu + 4,
3017 PCI_DMA_FROMDEVICE);
3019 prefetch(skb->data);
3020 rx_osm_handler(ring_data, rxdp);
3021 get_info.offset++;
3022 ring_data->rx_curr_get_info.offset = get_info.offset;
3023 rxdp = ring_data->rx_blocks[get_block].
3024 rxds[get_info.offset].virt_addr;
3025 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3026 get_info.offset = 0;
3027 ring_data->rx_curr_get_info.offset = get_info.offset;
3028 get_block++;
3029 if (get_block == ring_data->block_count)
3030 get_block = 0;
3031 ring_data->rx_curr_get_info.block_index = get_block;
3032 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3035 if (ring_data->nic->config.napi) {
3036 budget--;
3037 napi_pkts++;
3038 if (!budget)
3039 break;
3041 pkt_cnt++;
3042 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3043 break;
3045 if (ring_data->lro) {
3046 /* Clear all LRO sessions before exiting */
3047 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3048 struct lro *lro = &ring_data->lro0_n[i];
3049 if (lro->in_use) {
3050 update_L3L4_header(ring_data->nic, lro);
3051 queue_rx_frame(lro->parent, lro->vlan_tag);
3052 clear_lro_session(lro);
3056 return napi_pkts;
3060 * tx_intr_handler - Transmit interrupt handler
3061 * @nic : device private variable
3062 * Description:
3063 * If an interrupt was raised to indicate DMA complete of the
3064 * Tx packet, this function is called. It identifies the last TxD
3065 * whose buffer was freed and frees all skbs whose data have already
3066 * DMA'ed into the NICs internal memory.
3067 * Return Value:
3068 * NONE
3071 static void tx_intr_handler(struct fifo_info *fifo_data)
3073 struct s2io_nic *nic = fifo_data->nic;
3074 struct tx_curr_get_info get_info, put_info;
3075 struct sk_buff *skb = NULL;
3076 struct TxD *txdlp;
3077 int pkt_cnt = 0;
3078 unsigned long flags = 0;
3079 u8 err_mask;
3080 struct stat_block *stats = nic->mac_control.stats_info;
3081 struct swStat *swstats = &stats->sw_stat;
3083 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3084 return;
3086 get_info = fifo_data->tx_curr_get_info;
3087 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3088 txdlp = (struct TxD *)
3089 fifo_data->list_info[get_info.offset].list_virt_addr;
3090 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3091 (get_info.offset != put_info.offset) &&
3092 (txdlp->Host_Control)) {
3093 /* Check for TxD errors */
3094 if (txdlp->Control_1 & TXD_T_CODE) {
3095 unsigned long long err;
3096 err = txdlp->Control_1 & TXD_T_CODE;
3097 if (err & 0x1) {
3098 swstats->parity_err_cnt++;
3101 /* update t_code statistics */
3102 err_mask = err >> 48;
3103 switch (err_mask) {
3104 case 2:
3105 swstats->tx_buf_abort_cnt++;
3106 break;
3108 case 3:
3109 swstats->tx_desc_abort_cnt++;
3110 break;
3112 case 7:
3113 swstats->tx_parity_err_cnt++;
3114 break;
3116 case 10:
3117 swstats->tx_link_loss_cnt++;
3118 break;
3120 case 15:
3121 swstats->tx_list_proc_err_cnt++;
3122 break;
3126 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3127 if (skb == NULL) {
3128 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3129 DBG_PRINT(ERR_DBG, "%s: Null skb ", __func__);
3130 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3131 return;
3133 pkt_cnt++;
3135 /* Updating the statistics block */
3136 nic->dev->stats.tx_bytes += skb->len;
3137 swstats->mem_freed += skb->truesize;
3138 dev_kfree_skb_irq(skb);
3140 get_info.offset++;
3141 if (get_info.offset == get_info.fifo_len + 1)
3142 get_info.offset = 0;
3143 txdlp = (struct TxD *)
3144 fifo_data->list_info[get_info.offset].list_virt_addr;
3145 fifo_data->tx_curr_get_info.offset = get_info.offset;
3148 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3150 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3154 * s2io_mdio_write - Function to write in to MDIO registers
3155 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3156 * @addr : address value
3157 * @value : data value
3158 * @dev : pointer to net_device structure
3159 * Description:
3160 * This function is used to write values to the MDIO registers
3161 * NONE
3163 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3164 struct net_device *dev)
3166 u64 val64;
3167 struct s2io_nic *sp = netdev_priv(dev);
3168 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3170 /* address transaction */
3171 val64 = MDIO_MMD_INDX_ADDR(addr) |
3172 MDIO_MMD_DEV_ADDR(mmd_type) |
3173 MDIO_MMS_PRT_ADDR(0x0);
3174 writeq(val64, &bar0->mdio_control);
3175 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3176 writeq(val64, &bar0->mdio_control);
3177 udelay(100);
3179 /* Data transaction */
3180 val64 = MDIO_MMD_INDX_ADDR(addr) |
3181 MDIO_MMD_DEV_ADDR(mmd_type) |
3182 MDIO_MMS_PRT_ADDR(0x0) |
3183 MDIO_MDIO_DATA(value) |
3184 MDIO_OP(MDIO_OP_WRITE_TRANS);
3185 writeq(val64, &bar0->mdio_control);
3186 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3187 writeq(val64, &bar0->mdio_control);
3188 udelay(100);
3190 val64 = MDIO_MMD_INDX_ADDR(addr) |
3191 MDIO_MMD_DEV_ADDR(mmd_type) |
3192 MDIO_MMS_PRT_ADDR(0x0) |
3193 MDIO_OP(MDIO_OP_READ_TRANS);
3194 writeq(val64, &bar0->mdio_control);
3195 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3196 writeq(val64, &bar0->mdio_control);
3197 udelay(100);
3201 * s2io_mdio_read - Function to write in to MDIO registers
3202 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3203 * @addr : address value
3204 * @dev : pointer to net_device structure
3205 * Description:
3206 * This function is used to read values to the MDIO registers
3207 * NONE
3209 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3211 u64 val64 = 0x0;
3212 u64 rval64 = 0x0;
3213 struct s2io_nic *sp = netdev_priv(dev);
3214 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3216 /* address transaction */
3217 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3218 | MDIO_MMD_DEV_ADDR(mmd_type)
3219 | MDIO_MMS_PRT_ADDR(0x0));
3220 writeq(val64, &bar0->mdio_control);
3221 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3222 writeq(val64, &bar0->mdio_control);
3223 udelay(100);
3225 /* Data transaction */
3226 val64 = MDIO_MMD_INDX_ADDR(addr) |
3227 MDIO_MMD_DEV_ADDR(mmd_type) |
3228 MDIO_MMS_PRT_ADDR(0x0) |
3229 MDIO_OP(MDIO_OP_READ_TRANS);
3230 writeq(val64, &bar0->mdio_control);
3231 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3232 writeq(val64, &bar0->mdio_control);
3233 udelay(100);
3235 /* Read the value from regs */
3236 rval64 = readq(&bar0->mdio_control);
3237 rval64 = rval64 & 0xFFFF0000;
3238 rval64 = rval64 >> 16;
3239 return rval64;
3243 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3244 * @counter : couter value to be updated
3245 * @flag : flag to indicate the status
3246 * @type : counter type
3247 * Description:
3248 * This function is to check the status of the xpak counters value
3249 * NONE
3252 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3253 u16 flag, u16 type)
3255 u64 mask = 0x3;
3256 u64 val64;
3257 int i;
3258 for (i = 0; i < index; i++)
3259 mask = mask << 0x2;
3261 if (flag > 0) {
3262 *counter = *counter + 1;
3263 val64 = *regs_stat & mask;
3264 val64 = val64 >> (index * 0x2);
3265 val64 = val64 + 1;
3266 if (val64 == 3) {
3267 switch (type) {
3268 case 1:
3269 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3270 "service. Excessive temperatures may "
3271 "result in premature transceiver "
3272 "failure \n");
3273 break;
3274 case 2:
3275 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3276 "service Excessive bias currents may "
3277 "indicate imminent laser diode "
3278 "failure \n");
3279 break;
3280 case 3:
3281 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3282 "service Excessive laser output "
3283 "power may saturate far-end "
3284 "receiver\n");
3285 break;
3286 default:
3287 DBG_PRINT(ERR_DBG,
3288 "Incorrect XPAK Alarm type\n");
3290 val64 = 0x0;
3292 val64 = val64 << (index * 0x2);
3293 *regs_stat = (*regs_stat & (~mask)) | (val64);
3295 } else {
3296 *regs_stat = *regs_stat & (~mask);
3301 * s2io_updt_xpak_counter - Function to update the xpak counters
3302 * @dev : pointer to net_device struct
3303 * Description:
3304 * This function is to upate the status of the xpak counters value
3305 * NONE
3307 static void s2io_updt_xpak_counter(struct net_device *dev)
3309 u16 flag = 0x0;
3310 u16 type = 0x0;
3311 u16 val16 = 0x0;
3312 u64 val64 = 0x0;
3313 u64 addr = 0x0;
3315 struct s2io_nic *sp = netdev_priv(dev);
3316 struct stat_block *stats = sp->mac_control.stats_info;
3317 struct xpakStat *xstats = &stats->xpak_stat;
3319 /* Check the communication with the MDIO slave */
3320 addr = MDIO_CTRL1;
3321 val64 = 0x0;
3322 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3323 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3324 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3325 "Returned %llx\n", (unsigned long long)val64);
3326 return;
3329 /* Check for the expected value of control reg 1 */
3330 if (val64 != MDIO_CTRL1_SPEED10G) {
3331 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3332 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3333 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3334 return;
3337 /* Loading the DOM register to MDIO register */
3338 addr = 0xA100;
3339 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3340 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3342 /* Reading the Alarm flags */
3343 addr = 0xA070;
3344 val64 = 0x0;
3345 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3347 flag = CHECKBIT(val64, 0x7);
3348 type = 1;
3349 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3350 &xstats->xpak_regs_stat,
3351 0x0, flag, type);
3353 if (CHECKBIT(val64, 0x6))
3354 xstats->alarm_transceiver_temp_low++;
3356 flag = CHECKBIT(val64, 0x3);
3357 type = 2;
3358 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3359 &xstats->xpak_regs_stat,
3360 0x2, flag, type);
3362 if (CHECKBIT(val64, 0x2))
3363 xstats->alarm_laser_bias_current_low++;
3365 flag = CHECKBIT(val64, 0x1);
3366 type = 3;
3367 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3368 &xstats->xpak_regs_stat,
3369 0x4, flag, type);
3371 if (CHECKBIT(val64, 0x0))
3372 xstats->alarm_laser_output_power_low++;
3374 /* Reading the Warning flags */
3375 addr = 0xA074;
3376 val64 = 0x0;
3377 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3379 if (CHECKBIT(val64, 0x7))
3380 xstats->warn_transceiver_temp_high++;
3382 if (CHECKBIT(val64, 0x6))
3383 xstats->warn_transceiver_temp_low++;
3385 if (CHECKBIT(val64, 0x3))
3386 xstats->warn_laser_bias_current_high++;
3388 if (CHECKBIT(val64, 0x2))
3389 xstats->warn_laser_bias_current_low++;
3391 if (CHECKBIT(val64, 0x1))
3392 xstats->warn_laser_output_power_high++;
3394 if (CHECKBIT(val64, 0x0))
3395 xstats->warn_laser_output_power_low++;
3399 * wait_for_cmd_complete - waits for a command to complete.
3400 * @sp : private member of the device structure, which is a pointer to the
3401 * s2io_nic structure.
3402 * Description: Function that waits for a command to Write into RMAC
3403 * ADDR DATA registers to be completed and returns either success or
3404 * error depending on whether the command was complete or not.
3405 * Return value:
3406 * SUCCESS on success and FAILURE on failure.
3409 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3410 int bit_state)
3412 int ret = FAILURE, cnt = 0, delay = 1;
3413 u64 val64;
3415 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3416 return FAILURE;
3418 do {
3419 val64 = readq(addr);
3420 if (bit_state == S2IO_BIT_RESET) {
3421 if (!(val64 & busy_bit)) {
3422 ret = SUCCESS;
3423 break;
3425 } else {
3426 if (!(val64 & busy_bit)) {
3427 ret = SUCCESS;
3428 break;
3432 if (in_interrupt())
3433 mdelay(delay);
3434 else
3435 msleep(delay);
3437 if (++cnt >= 10)
3438 delay = 50;
3439 } while (cnt < 20);
3440 return ret;
3443 * check_pci_device_id - Checks if the device id is supported
3444 * @id : device id
3445 * Description: Function to check if the pci device id is supported by driver.
3446 * Return value: Actual device id if supported else PCI_ANY_ID
3448 static u16 check_pci_device_id(u16 id)
3450 switch (id) {
3451 case PCI_DEVICE_ID_HERC_WIN:
3452 case PCI_DEVICE_ID_HERC_UNI:
3453 return XFRAME_II_DEVICE;
3454 case PCI_DEVICE_ID_S2IO_UNI:
3455 case PCI_DEVICE_ID_S2IO_WIN:
3456 return XFRAME_I_DEVICE;
3457 default:
3458 return PCI_ANY_ID;
3463 * s2io_reset - Resets the card.
3464 * @sp : private member of the device structure.
3465 * Description: Function to Reset the card. This function then also
3466 * restores the previously saved PCI configuration space registers as
3467 * the card reset also resets the configuration space.
3468 * Return value:
3469 * void.
3472 static void s2io_reset(struct s2io_nic *sp)
3474 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3475 u64 val64;
3476 u16 subid, pci_cmd;
3477 int i;
3478 u16 val16;
3479 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3480 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3481 struct stat_block *stats;
3482 struct swStat *swstats;
3484 DBG_PRINT(INIT_DBG, "%s - Resetting XFrame card %s\n",
3485 __func__, sp->dev->name);
3487 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3488 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3490 val64 = SW_RESET_ALL;
3491 writeq(val64, &bar0->sw_reset);
3492 if (strstr(sp->product_name, "CX4"))
3493 msleep(750);
3494 msleep(250);
3495 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3497 /* Restore the PCI state saved during initialization. */
3498 pci_restore_state(sp->pdev);
3499 pci_read_config_word(sp->pdev, 0x2, &val16);
3500 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3501 break;
3502 msleep(200);
3505 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3506 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3508 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3510 s2io_init_pci(sp);
3512 /* Set swapper to enable I/O register access */
3513 s2io_set_swapper(sp);
3515 /* restore mac_addr entries */
3516 do_s2io_restore_unicast_mc(sp);
3518 /* Restore the MSIX table entries from local variables */
3519 restore_xmsi_data(sp);
3521 /* Clear certain PCI/PCI-X fields after reset */
3522 if (sp->device_type == XFRAME_II_DEVICE) {
3523 /* Clear "detected parity error" bit */
3524 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3526 /* Clearing PCIX Ecc status register */
3527 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3529 /* Clearing PCI_STATUS error reflected here */
3530 writeq(s2BIT(62), &bar0->txpic_int_reg);
3533 /* Reset device statistics maintained by OS */
3534 memset(&sp->stats, 0, sizeof(struct net_device_stats));
3536 stats = sp->mac_control.stats_info;
3537 swstats = &stats->sw_stat;
3539 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3540 up_cnt = swstats->link_up_cnt;
3541 down_cnt = swstats->link_down_cnt;
3542 up_time = swstats->link_up_time;
3543 down_time = swstats->link_down_time;
3544 reset_cnt = swstats->soft_reset_cnt;
3545 mem_alloc_cnt = swstats->mem_allocated;
3546 mem_free_cnt = swstats->mem_freed;
3547 watchdog_cnt = swstats->watchdog_timer_cnt;
3549 memset(stats, 0, sizeof(struct stat_block));
3551 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3552 swstats->link_up_cnt = up_cnt;
3553 swstats->link_down_cnt = down_cnt;
3554 swstats->link_up_time = up_time;
3555 swstats->link_down_time = down_time;
3556 swstats->soft_reset_cnt = reset_cnt;
3557 swstats->mem_allocated = mem_alloc_cnt;
3558 swstats->mem_freed = mem_free_cnt;
3559 swstats->watchdog_timer_cnt = watchdog_cnt;
3561 /* SXE-002: Configure link and activity LED to turn it off */
3562 subid = sp->pdev->subsystem_device;
3563 if (((subid & 0xFF) >= 0x07) &&
3564 (sp->device_type == XFRAME_I_DEVICE)) {
3565 val64 = readq(&bar0->gpio_control);
3566 val64 |= 0x0000800000000000ULL;
3567 writeq(val64, &bar0->gpio_control);
3568 val64 = 0x0411040400000000ULL;
3569 writeq(val64, (void __iomem *)bar0 + 0x2700);
3573 * Clear spurious ECC interrupts that would have occured on
3574 * XFRAME II cards after reset.
3576 if (sp->device_type == XFRAME_II_DEVICE) {
3577 val64 = readq(&bar0->pcc_err_reg);
3578 writeq(val64, &bar0->pcc_err_reg);
3581 sp->device_enabled_once = false;
3585 * s2io_set_swapper - to set the swapper controle on the card
3586 * @sp : private member of the device structure,
3587 * pointer to the s2io_nic structure.
3588 * Description: Function to set the swapper control on the card
3589 * correctly depending on the 'endianness' of the system.
3590 * Return value:
3591 * SUCCESS on success and FAILURE on failure.
3594 static int s2io_set_swapper(struct s2io_nic *sp)
3596 struct net_device *dev = sp->dev;
3597 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3598 u64 val64, valt, valr;
3601 * Set proper endian settings and verify the same by reading
3602 * the PIF Feed-back register.
3605 val64 = readq(&bar0->pif_rd_swapper_fb);
3606 if (val64 != 0x0123456789ABCDEFULL) {
3607 int i = 0;
3608 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3609 0x8100008181000081ULL, /* FE=1, SE=0 */
3610 0x4200004242000042ULL, /* FE=0, SE=1 */
3611 0}; /* FE=0, SE=0 */
3613 while (i < 4) {
3614 writeq(value[i], &bar0->swapper_ctrl);
3615 val64 = readq(&bar0->pif_rd_swapper_fb);
3616 if (val64 == 0x0123456789ABCDEFULL)
3617 break;
3618 i++;
3620 if (i == 4) {
3621 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3622 dev->name);
3623 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3624 (unsigned long long)val64);
3625 return FAILURE;
3627 valr = value[i];
3628 } else {
3629 valr = readq(&bar0->swapper_ctrl);
3632 valt = 0x0123456789ABCDEFULL;
3633 writeq(valt, &bar0->xmsi_address);
3634 val64 = readq(&bar0->xmsi_address);
3636 if (val64 != valt) {
3637 int i = 0;
3638 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3639 0x0081810000818100ULL, /* FE=1, SE=0 */
3640 0x0042420000424200ULL, /* FE=0, SE=1 */
3641 0}; /* FE=0, SE=0 */
3643 while (i < 4) {
3644 writeq((value[i] | valr), &bar0->swapper_ctrl);
3645 writeq(valt, &bar0->xmsi_address);
3646 val64 = readq(&bar0->xmsi_address);
3647 if (val64 == valt)
3648 break;
3649 i++;
3651 if (i == 4) {
3652 unsigned long long x = val64;
3653 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3654 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3655 return FAILURE;
3658 val64 = readq(&bar0->swapper_ctrl);
3659 val64 &= 0xFFFF000000000000ULL;
3661 #ifdef __BIG_ENDIAN
3663 * The device by default set to a big endian format, so a
3664 * big endian driver need not set anything.
3666 val64 |= (SWAPPER_CTRL_TXP_FE |
3667 SWAPPER_CTRL_TXP_SE |
3668 SWAPPER_CTRL_TXD_R_FE |
3669 SWAPPER_CTRL_TXD_W_FE |
3670 SWAPPER_CTRL_TXF_R_FE |
3671 SWAPPER_CTRL_RXD_R_FE |
3672 SWAPPER_CTRL_RXD_W_FE |
3673 SWAPPER_CTRL_RXF_W_FE |
3674 SWAPPER_CTRL_XMSI_FE |
3675 SWAPPER_CTRL_STATS_FE |
3676 SWAPPER_CTRL_STATS_SE);
3677 if (sp->config.intr_type == INTA)
3678 val64 |= SWAPPER_CTRL_XMSI_SE;
3679 writeq(val64, &bar0->swapper_ctrl);
3680 #else
3682 * Initially we enable all bits to make it accessible by the
3683 * driver, then we selectively enable only those bits that
3684 * we want to set.
3686 val64 |= (SWAPPER_CTRL_TXP_FE |
3687 SWAPPER_CTRL_TXP_SE |
3688 SWAPPER_CTRL_TXD_R_FE |
3689 SWAPPER_CTRL_TXD_R_SE |
3690 SWAPPER_CTRL_TXD_W_FE |
3691 SWAPPER_CTRL_TXD_W_SE |
3692 SWAPPER_CTRL_TXF_R_FE |
3693 SWAPPER_CTRL_RXD_R_FE |
3694 SWAPPER_CTRL_RXD_R_SE |
3695 SWAPPER_CTRL_RXD_W_FE |
3696 SWAPPER_CTRL_RXD_W_SE |
3697 SWAPPER_CTRL_RXF_W_FE |
3698 SWAPPER_CTRL_XMSI_FE |
3699 SWAPPER_CTRL_STATS_FE |
3700 SWAPPER_CTRL_STATS_SE);
3701 if (sp->config.intr_type == INTA)
3702 val64 |= SWAPPER_CTRL_XMSI_SE;
3703 writeq(val64, &bar0->swapper_ctrl);
3704 #endif
3705 val64 = readq(&bar0->swapper_ctrl);
3708 * Verifying if endian settings are accurate by reading a
3709 * feedback register.
3711 val64 = readq(&bar0->pif_rd_swapper_fb);
3712 if (val64 != 0x0123456789ABCDEFULL) {
3713 /* Endian settings are incorrect, calls for another dekko. */
3714 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3715 dev->name);
3716 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3717 (unsigned long long)val64);
3718 return FAILURE;
3721 return SUCCESS;
3724 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3726 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3727 u64 val64;
3728 int ret = 0, cnt = 0;
3730 do {
3731 val64 = readq(&bar0->xmsi_access);
3732 if (!(val64 & s2BIT(15)))
3733 break;
3734 mdelay(1);
3735 cnt++;
3736 } while (cnt < 5);
3737 if (cnt == 5) {
3738 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3739 ret = 1;
3742 return ret;
3745 static void restore_xmsi_data(struct s2io_nic *nic)
3747 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3748 u64 val64;
3749 int i, msix_index;
3751 if (nic->device_type == XFRAME_I_DEVICE)
3752 return;
3754 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3755 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3756 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3757 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3758 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3759 writeq(val64, &bar0->xmsi_access);
3760 if (wait_for_msix_trans(nic, msix_index)) {
3761 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3762 continue;
3767 static void store_xmsi_data(struct s2io_nic *nic)
3769 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3770 u64 val64, addr, data;
3771 int i, msix_index;
3773 if (nic->device_type == XFRAME_I_DEVICE)
3774 return;
3776 /* Store and display */
3777 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3778 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3779 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3780 writeq(val64, &bar0->xmsi_access);
3781 if (wait_for_msix_trans(nic, msix_index)) {
3782 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3783 continue;
3785 addr = readq(&bar0->xmsi_address);
3786 data = readq(&bar0->xmsi_data);
3787 if (addr && data) {
3788 nic->msix_info[i].addr = addr;
3789 nic->msix_info[i].data = data;
3794 static int s2io_enable_msi_x(struct s2io_nic *nic)
3796 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3797 u64 rx_mat;
3798 u16 msi_control; /* Temp variable */
3799 int ret, i, j, msix_indx = 1;
3800 int size;
3801 struct stat_block *stats = nic->mac_control.stats_info;
3802 struct swStat *swstats = &stats->sw_stat;
3804 size = nic->num_entries * sizeof(struct msix_entry);
3805 nic->entries = kzalloc(size, GFP_KERNEL);
3806 if (!nic->entries) {
3807 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3808 __func__);
3809 swstats->mem_alloc_fail_cnt++;
3810 return -ENOMEM;
3812 swstats->mem_allocated += size;
3814 size = nic->num_entries * sizeof(struct s2io_msix_entry);
3815 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3816 if (!nic->s2io_entries) {
3817 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3818 __func__);
3819 swstats->mem_alloc_fail_cnt++;
3820 kfree(nic->entries);
3821 swstats->mem_freed
3822 += (nic->num_entries * sizeof(struct msix_entry));
3823 return -ENOMEM;
3825 swstats->mem_allocated += size;
3827 nic->entries[0].entry = 0;
3828 nic->s2io_entries[0].entry = 0;
3829 nic->s2io_entries[0].in_use = MSIX_FLG;
3830 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3831 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3833 for (i = 1; i < nic->num_entries; i++) {
3834 nic->entries[i].entry = ((i - 1) * 8) + 1;
3835 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3836 nic->s2io_entries[i].arg = NULL;
3837 nic->s2io_entries[i].in_use = 0;
3840 rx_mat = readq(&bar0->rx_mat);
3841 for (j = 0; j < nic->config.rx_ring_num; j++) {
3842 rx_mat |= RX_MAT_SET(j, msix_indx);
3843 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3844 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3845 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3846 msix_indx += 8;
3848 writeq(rx_mat, &bar0->rx_mat);
3849 readq(&bar0->rx_mat);
3851 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3852 /* We fail init if error or we get less vectors than min required */
3853 if (ret) {
3854 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3855 kfree(nic->entries);
3856 swstats->mem_freed += nic->num_entries *
3857 sizeof(struct msix_entry);
3858 kfree(nic->s2io_entries);
3859 swstats->mem_freed += nic->num_entries *
3860 sizeof(struct s2io_msix_entry);
3861 nic->entries = NULL;
3862 nic->s2io_entries = NULL;
3863 return -ENOMEM;
3867 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3868 * in the herc NIC. (Temp change, needs to be removed later)
3870 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3871 msi_control |= 0x1; /* Enable MSI */
3872 pci_write_config_word(nic->pdev, 0x42, msi_control);
3874 return 0;
3877 /* Handle software interrupt used during MSI(X) test */
3878 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3880 struct s2io_nic *sp = dev_id;
3882 sp->msi_detected = 1;
3883 wake_up(&sp->msi_wait);
3885 return IRQ_HANDLED;
3888 /* Test interrupt path by forcing a a software IRQ */
3889 static int s2io_test_msi(struct s2io_nic *sp)
3891 struct pci_dev *pdev = sp->pdev;
3892 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3893 int err;
3894 u64 val64, saved64;
3896 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3897 sp->name, sp);
3898 if (err) {
3899 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3900 sp->dev->name, pci_name(pdev), pdev->irq);
3901 return err;
3904 init_waitqueue_head(&sp->msi_wait);
3905 sp->msi_detected = 0;
3907 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3908 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3909 val64 |= SCHED_INT_CTRL_TIMER_EN;
3910 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3911 writeq(val64, &bar0->scheduled_int_ctrl);
3913 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3915 if (!sp->msi_detected) {
3916 /* MSI(X) test failed, go back to INTx mode */
3917 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3918 "using MSI(X) during test\n", sp->dev->name,
3919 pci_name(pdev));
3921 err = -EOPNOTSUPP;
3924 free_irq(sp->entries[1].vector, sp);
3926 writeq(saved64, &bar0->scheduled_int_ctrl);
3928 return err;
3931 static void remove_msix_isr(struct s2io_nic *sp)
3933 int i;
3934 u16 msi_control;
3936 for (i = 0; i < sp->num_entries; i++) {
3937 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3938 int vector = sp->entries[i].vector;
3939 void *arg = sp->s2io_entries[i].arg;
3940 free_irq(vector, arg);
3944 kfree(sp->entries);
3945 kfree(sp->s2io_entries);
3946 sp->entries = NULL;
3947 sp->s2io_entries = NULL;
3949 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3950 msi_control &= 0xFFFE; /* Disable MSI */
3951 pci_write_config_word(sp->pdev, 0x42, msi_control);
3953 pci_disable_msix(sp->pdev);
3956 static void remove_inta_isr(struct s2io_nic *sp)
3958 struct net_device *dev = sp->dev;
3960 free_irq(sp->pdev->irq, dev);
3963 /* ********************************************************* *
3964 * Functions defined below concern the OS part of the driver *
3965 * ********************************************************* */
3968 * s2io_open - open entry point of the driver
3969 * @dev : pointer to the device structure.
3970 * Description:
3971 * This function is the open entry point of the driver. It mainly calls a
3972 * function to allocate Rx buffers and inserts them into the buffer
3973 * descriptors and then enables the Rx part of the NIC.
3974 * Return value:
3975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3976 * file on failure.
3979 static int s2io_open(struct net_device *dev)
3981 struct s2io_nic *sp = netdev_priv(dev);
3982 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3983 int err = 0;
3986 * Make sure you have link off by default every time
3987 * Nic is initialized
3989 netif_carrier_off(dev);
3990 sp->last_link_state = 0;
3992 /* Initialize H/W and enable interrupts */
3993 err = s2io_card_up(sp);
3994 if (err) {
3995 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3996 dev->name);
3997 goto hw_init_failed;
4000 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4001 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4002 s2io_card_down(sp);
4003 err = -ENODEV;
4004 goto hw_init_failed;
4006 s2io_start_all_tx_queue(sp);
4007 return 0;
4009 hw_init_failed:
4010 if (sp->config.intr_type == MSI_X) {
4011 if (sp->entries) {
4012 kfree(sp->entries);
4013 swstats->mem_freed += sp->num_entries *
4014 sizeof(struct msix_entry);
4016 if (sp->s2io_entries) {
4017 kfree(sp->s2io_entries);
4018 swstats->mem_freed += sp->num_entries *
4019 sizeof(struct s2io_msix_entry);
4022 return err;
4026 * s2io_close -close entry point of the driver
4027 * @dev : device pointer.
4028 * Description:
4029 * This is the stop entry point of the driver. It needs to undo exactly
4030 * whatever was done by the open entry point,thus it's usually referred to
4031 * as the close function.Among other things this function mainly stops the
4032 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4033 * Return value:
4034 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4035 * file on failure.
4038 static int s2io_close(struct net_device *dev)
4040 struct s2io_nic *sp = netdev_priv(dev);
4041 struct config_param *config = &sp->config;
4042 u64 tmp64;
4043 int offset;
4045 /* Return if the device is already closed *
4046 * Can happen when s2io_card_up failed in change_mtu *
4048 if (!is_s2io_card_up(sp))
4049 return 0;
4051 s2io_stop_all_tx_queue(sp);
4052 /* delete all populated mac entries */
4053 for (offset = 1; offset < config->max_mc_addr; offset++) {
4054 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4055 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4056 do_s2io_delete_unicast_mc(sp, tmp64);
4059 s2io_card_down(sp);
4061 return 0;
4065 * s2io_xmit - Tx entry point of te driver
4066 * @skb : the socket buffer containing the Tx data.
4067 * @dev : device pointer.
4068 * Description :
4069 * This function is the Tx entry point of the driver. S2IO NIC supports
4070 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4071 * NOTE: when device cant queue the pkt,just the trans_start variable will
4072 * not be upadted.
4073 * Return value:
4074 * 0 on success & 1 on failure.
4077 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4079 struct s2io_nic *sp = netdev_priv(dev);
4080 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4081 register u64 val64;
4082 struct TxD *txdp;
4083 struct TxFIFO_element __iomem *tx_fifo;
4084 unsigned long flags = 0;
4085 u16 vlan_tag = 0;
4086 struct fifo_info *fifo = NULL;
4087 int do_spin_lock = 1;
4088 int offload_type;
4089 int enable_per_list_interrupt = 0;
4090 struct config_param *config = &sp->config;
4091 struct mac_info *mac_control = &sp->mac_control;
4092 struct stat_block *stats = mac_control->stats_info;
4093 struct swStat *swstats = &stats->sw_stat;
4095 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4097 if (unlikely(skb->len <= 0)) {
4098 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4099 dev_kfree_skb_any(skb);
4100 return NETDEV_TX_OK;
4103 if (!is_s2io_card_up(sp)) {
4104 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4105 dev->name);
4106 dev_kfree_skb(skb);
4107 return NETDEV_TX_OK;
4110 queue = 0;
4111 if (sp->vlgrp && vlan_tx_tag_present(skb))
4112 vlan_tag = vlan_tx_tag_get(skb);
4113 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4114 if (skb->protocol == htons(ETH_P_IP)) {
4115 struct iphdr *ip;
4116 struct tcphdr *th;
4117 ip = ip_hdr(skb);
4119 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4120 th = (struct tcphdr *)(((unsigned char *)ip) +
4121 ip->ihl*4);
4123 if (ip->protocol == IPPROTO_TCP) {
4124 queue_len = sp->total_tcp_fifos;
4125 queue = (ntohs(th->source) +
4126 ntohs(th->dest)) &
4127 sp->fifo_selector[queue_len - 1];
4128 if (queue >= queue_len)
4129 queue = queue_len - 1;
4130 } else if (ip->protocol == IPPROTO_UDP) {
4131 queue_len = sp->total_udp_fifos;
4132 queue = (ntohs(th->source) +
4133 ntohs(th->dest)) &
4134 sp->fifo_selector[queue_len - 1];
4135 if (queue >= queue_len)
4136 queue = queue_len - 1;
4137 queue += sp->udp_fifo_idx;
4138 if (skb->len > 1024)
4139 enable_per_list_interrupt = 1;
4140 do_spin_lock = 0;
4144 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4145 /* get fifo number based on skb->priority value */
4146 queue = config->fifo_mapping
4147 [skb->priority & (MAX_TX_FIFOS - 1)];
4148 fifo = &mac_control->fifos[queue];
4150 if (do_spin_lock)
4151 spin_lock_irqsave(&fifo->tx_lock, flags);
4152 else {
4153 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4154 return NETDEV_TX_LOCKED;
4157 if (sp->config.multiq) {
4158 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4159 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4160 return NETDEV_TX_BUSY;
4162 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4163 if (netif_queue_stopped(dev)) {
4164 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4165 return NETDEV_TX_BUSY;
4169 put_off = (u16)fifo->tx_curr_put_info.offset;
4170 get_off = (u16)fifo->tx_curr_get_info.offset;
4171 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4173 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4174 /* Avoid "put" pointer going beyond "get" pointer */
4175 if (txdp->Host_Control ||
4176 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4177 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4178 s2io_stop_tx_queue(sp, fifo->fifo_no);
4179 dev_kfree_skb(skb);
4180 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4181 return NETDEV_TX_OK;
4184 offload_type = s2io_offload_type(skb);
4185 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4186 txdp->Control_1 |= TXD_TCP_LSO_EN;
4187 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4189 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4190 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4191 TXD_TX_CKO_TCP_EN |
4192 TXD_TX_CKO_UDP_EN);
4194 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4195 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4196 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4197 if (enable_per_list_interrupt)
4198 if (put_off & (queue_len >> 5))
4199 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4200 if (vlan_tag) {
4201 txdp->Control_2 |= TXD_VLAN_ENABLE;
4202 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4205 frg_len = skb->len - skb->data_len;
4206 if (offload_type == SKB_GSO_UDP) {
4207 int ufo_size;
4209 ufo_size = s2io_udp_mss(skb);
4210 ufo_size &= ~7;
4211 txdp->Control_1 |= TXD_UFO_EN;
4212 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4213 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4214 #ifdef __BIG_ENDIAN
4215 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4216 fifo->ufo_in_band_v[put_off] =
4217 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4218 #else
4219 fifo->ufo_in_band_v[put_off] =
4220 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4221 #endif
4222 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4223 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4224 fifo->ufo_in_band_v,
4225 sizeof(u64),
4226 PCI_DMA_TODEVICE);
4227 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4228 goto pci_map_failed;
4229 txdp++;
4232 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4233 frg_len, PCI_DMA_TODEVICE);
4234 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4235 goto pci_map_failed;
4237 txdp->Host_Control = (unsigned long)skb;
4238 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4239 if (offload_type == SKB_GSO_UDP)
4240 txdp->Control_1 |= TXD_UFO_EN;
4242 frg_cnt = skb_shinfo(skb)->nr_frags;
4243 /* For fragmented SKB. */
4244 for (i = 0; i < frg_cnt; i++) {
4245 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4246 /* A '0' length fragment will be ignored */
4247 if (!frag->size)
4248 continue;
4249 txdp++;
4250 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4251 frag->page_offset,
4252 frag->size,
4253 PCI_DMA_TODEVICE);
4254 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4255 if (offload_type == SKB_GSO_UDP)
4256 txdp->Control_1 |= TXD_UFO_EN;
4258 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4260 if (offload_type == SKB_GSO_UDP)
4261 frg_cnt++; /* as Txd0 was used for inband header */
4263 tx_fifo = mac_control->tx_FIFO_start[queue];
4264 val64 = fifo->list_info[put_off].list_phy_addr;
4265 writeq(val64, &tx_fifo->TxDL_Pointer);
4267 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4268 TX_FIFO_LAST_LIST);
4269 if (offload_type)
4270 val64 |= TX_FIFO_SPECIAL_FUNC;
4272 writeq(val64, &tx_fifo->List_Control);
4274 mmiowb();
4276 put_off++;
4277 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4278 put_off = 0;
4279 fifo->tx_curr_put_info.offset = put_off;
4281 /* Avoid "put" pointer going beyond "get" pointer */
4282 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4283 swstats->fifo_full_cnt++;
4284 DBG_PRINT(TX_DBG,
4285 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4286 put_off, get_off);
4287 s2io_stop_tx_queue(sp, fifo->fifo_no);
4289 swstats->mem_allocated += skb->truesize;
4290 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4292 if (sp->config.intr_type == MSI_X)
4293 tx_intr_handler(fifo);
4295 return NETDEV_TX_OK;
4297 pci_map_failed:
4298 swstats->pci_map_fail_cnt++;
4299 s2io_stop_tx_queue(sp, fifo->fifo_no);
4300 swstats->mem_freed += skb->truesize;
4301 dev_kfree_skb(skb);
4302 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4303 return NETDEV_TX_OK;
4306 static void
4307 s2io_alarm_handle(unsigned long data)
4309 struct s2io_nic *sp = (struct s2io_nic *)data;
4310 struct net_device *dev = sp->dev;
4312 s2io_handle_errors(dev);
4313 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4316 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4318 struct ring_info *ring = (struct ring_info *)dev_id;
4319 struct s2io_nic *sp = ring->nic;
4320 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4322 if (unlikely(!is_s2io_card_up(sp)))
4323 return IRQ_HANDLED;
4325 if (sp->config.napi) {
4326 u8 __iomem *addr = NULL;
4327 u8 val8 = 0;
4329 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4330 addr += (7 - ring->ring_no);
4331 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4332 writeb(val8, addr);
4333 val8 = readb(addr);
4334 napi_schedule(&ring->napi);
4335 } else {
4336 rx_intr_handler(ring, 0);
4337 s2io_chk_rx_buffers(sp, ring);
4340 return IRQ_HANDLED;
4343 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4345 int i;
4346 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4347 struct s2io_nic *sp = fifos->nic;
4348 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4349 struct config_param *config = &sp->config;
4350 u64 reason;
4352 if (unlikely(!is_s2io_card_up(sp)))
4353 return IRQ_NONE;
4355 reason = readq(&bar0->general_int_status);
4356 if (unlikely(reason == S2IO_MINUS_ONE))
4357 /* Nothing much can be done. Get out */
4358 return IRQ_HANDLED;
4360 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4361 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4363 if (reason & GEN_INTR_TXPIC)
4364 s2io_txpic_intr_handle(sp);
4366 if (reason & GEN_INTR_TXTRAFFIC)
4367 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4369 for (i = 0; i < config->tx_fifo_num; i++)
4370 tx_intr_handler(&fifos[i]);
4372 writeq(sp->general_int_mask, &bar0->general_int_mask);
4373 readl(&bar0->general_int_status);
4374 return IRQ_HANDLED;
4376 /* The interrupt was not raised by us */
4377 return IRQ_NONE;
4380 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4382 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4383 u64 val64;
4385 val64 = readq(&bar0->pic_int_status);
4386 if (val64 & PIC_INT_GPIO) {
4387 val64 = readq(&bar0->gpio_int_reg);
4388 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4389 (val64 & GPIO_INT_REG_LINK_UP)) {
4391 * This is unstable state so clear both up/down
4392 * interrupt and adapter to re-evaluate the link state.
4394 val64 |= GPIO_INT_REG_LINK_DOWN;
4395 val64 |= GPIO_INT_REG_LINK_UP;
4396 writeq(val64, &bar0->gpio_int_reg);
4397 val64 = readq(&bar0->gpio_int_mask);
4398 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4399 GPIO_INT_MASK_LINK_DOWN);
4400 writeq(val64, &bar0->gpio_int_mask);
4401 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4402 val64 = readq(&bar0->adapter_status);
4403 /* Enable Adapter */
4404 val64 = readq(&bar0->adapter_control);
4405 val64 |= ADAPTER_CNTL_EN;
4406 writeq(val64, &bar0->adapter_control);
4407 val64 |= ADAPTER_LED_ON;
4408 writeq(val64, &bar0->adapter_control);
4409 if (!sp->device_enabled_once)
4410 sp->device_enabled_once = 1;
4412 s2io_link(sp, LINK_UP);
4414 * unmask link down interrupt and mask link-up
4415 * intr
4417 val64 = readq(&bar0->gpio_int_mask);
4418 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4419 val64 |= GPIO_INT_MASK_LINK_UP;
4420 writeq(val64, &bar0->gpio_int_mask);
4422 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4423 val64 = readq(&bar0->adapter_status);
4424 s2io_link(sp, LINK_DOWN);
4425 /* Link is down so unmaks link up interrupt */
4426 val64 = readq(&bar0->gpio_int_mask);
4427 val64 &= ~GPIO_INT_MASK_LINK_UP;
4428 val64 |= GPIO_INT_MASK_LINK_DOWN;
4429 writeq(val64, &bar0->gpio_int_mask);
4431 /* turn off LED */
4432 val64 = readq(&bar0->adapter_control);
4433 val64 = val64 & (~ADAPTER_LED_ON);
4434 writeq(val64, &bar0->adapter_control);
4437 val64 = readq(&bar0->gpio_int_mask);
4441 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4442 * @value: alarm bits
4443 * @addr: address value
4444 * @cnt: counter variable
4445 * Description: Check for alarm and increment the counter
4446 * Return Value:
4447 * 1 - if alarm bit set
4448 * 0 - if alarm bit is not set
4450 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4451 unsigned long long *cnt)
4453 u64 val64;
4454 val64 = readq(addr);
4455 if (val64 & value) {
4456 writeq(val64, addr);
4457 (*cnt)++;
4458 return 1;
4460 return 0;
4465 * s2io_handle_errors - Xframe error indication handler
4466 * @nic: device private variable
4467 * Description: Handle alarms such as loss of link, single or
4468 * double ECC errors, critical and serious errors.
4469 * Return Value:
4470 * NONE
4472 static void s2io_handle_errors(void *dev_id)
4474 struct net_device *dev = (struct net_device *)dev_id;
4475 struct s2io_nic *sp = netdev_priv(dev);
4476 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4477 u64 temp64 = 0, val64 = 0;
4478 int i = 0;
4480 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4481 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4483 if (!is_s2io_card_up(sp))
4484 return;
4486 if (pci_channel_offline(sp->pdev))
4487 return;
4489 memset(&sw_stat->ring_full_cnt, 0,
4490 sizeof(sw_stat->ring_full_cnt));
4492 /* Handling the XPAK counters update */
4493 if (stats->xpak_timer_count < 72000) {
4494 /* waiting for an hour */
4495 stats->xpak_timer_count++;
4496 } else {
4497 s2io_updt_xpak_counter(dev);
4498 /* reset the count to zero */
4499 stats->xpak_timer_count = 0;
4502 /* Handling link status change error Intr */
4503 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4504 val64 = readq(&bar0->mac_rmac_err_reg);
4505 writeq(val64, &bar0->mac_rmac_err_reg);
4506 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4507 schedule_work(&sp->set_link_task);
4510 /* In case of a serious error, the device will be Reset. */
4511 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4512 &sw_stat->serious_err_cnt))
4513 goto reset;
4515 /* Check for data parity error */
4516 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4517 &sw_stat->parity_err_cnt))
4518 goto reset;
4520 /* Check for ring full counter */
4521 if (sp->device_type == XFRAME_II_DEVICE) {
4522 val64 = readq(&bar0->ring_bump_counter1);
4523 for (i = 0; i < 4; i++) {
4524 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4525 temp64 >>= 64 - ((i+1)*16);
4526 sw_stat->ring_full_cnt[i] += temp64;
4529 val64 = readq(&bar0->ring_bump_counter2);
4530 for (i = 0; i < 4; i++) {
4531 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4532 temp64 >>= 64 - ((i+1)*16);
4533 sw_stat->ring_full_cnt[i+4] += temp64;
4537 val64 = readq(&bar0->txdma_int_status);
4538 /*check for pfc_err*/
4539 if (val64 & TXDMA_PFC_INT) {
4540 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4541 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4542 PFC_PCIX_ERR,
4543 &bar0->pfc_err_reg,
4544 &sw_stat->pfc_err_cnt))
4545 goto reset;
4546 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4547 &bar0->pfc_err_reg,
4548 &sw_stat->pfc_err_cnt);
4551 /*check for tda_err*/
4552 if (val64 & TXDMA_TDA_INT) {
4553 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4554 TDA_SM0_ERR_ALARM |
4555 TDA_SM1_ERR_ALARM,
4556 &bar0->tda_err_reg,
4557 &sw_stat->tda_err_cnt))
4558 goto reset;
4559 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4560 &bar0->tda_err_reg,
4561 &sw_stat->tda_err_cnt);
4563 /*check for pcc_err*/
4564 if (val64 & TXDMA_PCC_INT) {
4565 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4566 PCC_N_SERR | PCC_6_COF_OV_ERR |
4567 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4568 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4569 PCC_TXB_ECC_DB_ERR,
4570 &bar0->pcc_err_reg,
4571 &sw_stat->pcc_err_cnt))
4572 goto reset;
4573 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4574 &bar0->pcc_err_reg,
4575 &sw_stat->pcc_err_cnt);
4578 /*check for tti_err*/
4579 if (val64 & TXDMA_TTI_INT) {
4580 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4581 &bar0->tti_err_reg,
4582 &sw_stat->tti_err_cnt))
4583 goto reset;
4584 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4585 &bar0->tti_err_reg,
4586 &sw_stat->tti_err_cnt);
4589 /*check for lso_err*/
4590 if (val64 & TXDMA_LSO_INT) {
4591 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4592 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4593 &bar0->lso_err_reg,
4594 &sw_stat->lso_err_cnt))
4595 goto reset;
4596 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4597 &bar0->lso_err_reg,
4598 &sw_stat->lso_err_cnt);
4601 /*check for tpa_err*/
4602 if (val64 & TXDMA_TPA_INT) {
4603 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4604 &bar0->tpa_err_reg,
4605 &sw_stat->tpa_err_cnt))
4606 goto reset;
4607 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4608 &bar0->tpa_err_reg,
4609 &sw_stat->tpa_err_cnt);
4612 /*check for sm_err*/
4613 if (val64 & TXDMA_SM_INT) {
4614 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4615 &bar0->sm_err_reg,
4616 &sw_stat->sm_err_cnt))
4617 goto reset;
4620 val64 = readq(&bar0->mac_int_status);
4621 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4622 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4623 &bar0->mac_tmac_err_reg,
4624 &sw_stat->mac_tmac_err_cnt))
4625 goto reset;
4626 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4627 TMAC_DESC_ECC_SG_ERR |
4628 TMAC_DESC_ECC_DB_ERR,
4629 &bar0->mac_tmac_err_reg,
4630 &sw_stat->mac_tmac_err_cnt);
4633 val64 = readq(&bar0->xgxs_int_status);
4634 if (val64 & XGXS_INT_STATUS_TXGXS) {
4635 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4636 &bar0->xgxs_txgxs_err_reg,
4637 &sw_stat->xgxs_txgxs_err_cnt))
4638 goto reset;
4639 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4640 &bar0->xgxs_txgxs_err_reg,
4641 &sw_stat->xgxs_txgxs_err_cnt);
4644 val64 = readq(&bar0->rxdma_int_status);
4645 if (val64 & RXDMA_INT_RC_INT_M) {
4646 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4647 RC_FTC_ECC_DB_ERR |
4648 RC_PRCn_SM_ERR_ALARM |
4649 RC_FTC_SM_ERR_ALARM,
4650 &bar0->rc_err_reg,
4651 &sw_stat->rc_err_cnt))
4652 goto reset;
4653 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4654 RC_FTC_ECC_SG_ERR |
4655 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4656 &sw_stat->rc_err_cnt);
4657 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4658 PRC_PCI_AB_WR_Rn |
4659 PRC_PCI_AB_F_WR_Rn,
4660 &bar0->prc_pcix_err_reg,
4661 &sw_stat->prc_pcix_err_cnt))
4662 goto reset;
4663 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4664 PRC_PCI_DP_WR_Rn |
4665 PRC_PCI_DP_F_WR_Rn,
4666 &bar0->prc_pcix_err_reg,
4667 &sw_stat->prc_pcix_err_cnt);
4670 if (val64 & RXDMA_INT_RPA_INT_M) {
4671 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4672 &bar0->rpa_err_reg,
4673 &sw_stat->rpa_err_cnt))
4674 goto reset;
4675 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4676 &bar0->rpa_err_reg,
4677 &sw_stat->rpa_err_cnt);
4680 if (val64 & RXDMA_INT_RDA_INT_M) {
4681 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4682 RDA_FRM_ECC_DB_N_AERR |
4683 RDA_SM1_ERR_ALARM |
4684 RDA_SM0_ERR_ALARM |
4685 RDA_RXD_ECC_DB_SERR,
4686 &bar0->rda_err_reg,
4687 &sw_stat->rda_err_cnt))
4688 goto reset;
4689 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4690 RDA_FRM_ECC_SG_ERR |
4691 RDA_MISC_ERR |
4692 RDA_PCIX_ERR,
4693 &bar0->rda_err_reg,
4694 &sw_stat->rda_err_cnt);
4697 if (val64 & RXDMA_INT_RTI_INT_M) {
4698 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4699 &bar0->rti_err_reg,
4700 &sw_stat->rti_err_cnt))
4701 goto reset;
4702 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4703 &bar0->rti_err_reg,
4704 &sw_stat->rti_err_cnt);
4707 val64 = readq(&bar0->mac_int_status);
4708 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4709 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4710 &bar0->mac_rmac_err_reg,
4711 &sw_stat->mac_rmac_err_cnt))
4712 goto reset;
4713 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4714 RMAC_SINGLE_ECC_ERR |
4715 RMAC_DOUBLE_ECC_ERR,
4716 &bar0->mac_rmac_err_reg,
4717 &sw_stat->mac_rmac_err_cnt);
4720 val64 = readq(&bar0->xgxs_int_status);
4721 if (val64 & XGXS_INT_STATUS_RXGXS) {
4722 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4723 &bar0->xgxs_rxgxs_err_reg,
4724 &sw_stat->xgxs_rxgxs_err_cnt))
4725 goto reset;
4728 val64 = readq(&bar0->mc_int_status);
4729 if (val64 & MC_INT_STATUS_MC_INT) {
4730 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4731 &bar0->mc_err_reg,
4732 &sw_stat->mc_err_cnt))
4733 goto reset;
4735 /* Handling Ecc errors */
4736 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4737 writeq(val64, &bar0->mc_err_reg);
4738 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4739 sw_stat->double_ecc_errs++;
4740 if (sp->device_type != XFRAME_II_DEVICE) {
4742 * Reset XframeI only if critical error
4744 if (val64 &
4745 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4746 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4747 goto reset;
4749 } else
4750 sw_stat->single_ecc_errs++;
4753 return;
4755 reset:
4756 s2io_stop_all_tx_queue(sp);
4757 schedule_work(&sp->rst_timer_task);
4758 sw_stat->soft_reset_cnt++;
4759 return;
4763 * s2io_isr - ISR handler of the device .
4764 * @irq: the irq of the device.
4765 * @dev_id: a void pointer to the dev structure of the NIC.
4766 * Description: This function is the ISR handler of the device. It
4767 * identifies the reason for the interrupt and calls the relevant
4768 * service routines. As a contongency measure, this ISR allocates the
4769 * recv buffers, if their numbers are below the panic value which is
4770 * presently set to 25% of the original number of rcv buffers allocated.
4771 * Return value:
4772 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4773 * IRQ_NONE: will be returned if interrupt is not from our device
4775 static irqreturn_t s2io_isr(int irq, void *dev_id)
4777 struct net_device *dev = (struct net_device *)dev_id;
4778 struct s2io_nic *sp = netdev_priv(dev);
4779 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4780 int i;
4781 u64 reason = 0;
4782 struct mac_info *mac_control;
4783 struct config_param *config;
4785 /* Pretend we handled any irq's from a disconnected card */
4786 if (pci_channel_offline(sp->pdev))
4787 return IRQ_NONE;
4789 if (!is_s2io_card_up(sp))
4790 return IRQ_NONE;
4792 config = &sp->config;
4793 mac_control = &sp->mac_control;
4796 * Identify the cause for interrupt and call the appropriate
4797 * interrupt handler. Causes for the interrupt could be;
4798 * 1. Rx of packet.
4799 * 2. Tx complete.
4800 * 3. Link down.
4802 reason = readq(&bar0->general_int_status);
4804 if (unlikely(reason == S2IO_MINUS_ONE))
4805 return IRQ_HANDLED; /* Nothing much can be done. Get out */
4807 if (reason &
4808 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4809 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4811 if (config->napi) {
4812 if (reason & GEN_INTR_RXTRAFFIC) {
4813 napi_schedule(&sp->napi);
4814 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4815 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4816 readl(&bar0->rx_traffic_int);
4818 } else {
4820 * rx_traffic_int reg is an R1 register, writing all 1's
4821 * will ensure that the actual interrupt causing bit
4822 * get's cleared and hence a read can be avoided.
4824 if (reason & GEN_INTR_RXTRAFFIC)
4825 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4827 for (i = 0; i < config->rx_ring_num; i++) {
4828 struct ring_info *ring = &mac_control->rings[i];
4830 rx_intr_handler(ring, 0);
4835 * tx_traffic_int reg is an R1 register, writing all 1's
4836 * will ensure that the actual interrupt causing bit get's
4837 * cleared and hence a read can be avoided.
4839 if (reason & GEN_INTR_TXTRAFFIC)
4840 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4842 for (i = 0; i < config->tx_fifo_num; i++)
4843 tx_intr_handler(&mac_control->fifos[i]);
4845 if (reason & GEN_INTR_TXPIC)
4846 s2io_txpic_intr_handle(sp);
4849 * Reallocate the buffers from the interrupt handler itself.
4851 if (!config->napi) {
4852 for (i = 0; i < config->rx_ring_num; i++) {
4853 struct ring_info *ring = &mac_control->rings[i];
4855 s2io_chk_rx_buffers(sp, ring);
4858 writeq(sp->general_int_mask, &bar0->general_int_mask);
4859 readl(&bar0->general_int_status);
4861 return IRQ_HANDLED;
4863 } else if (!reason) {
4864 /* The interrupt was not raised by us */
4865 return IRQ_NONE;
4868 return IRQ_HANDLED;
4872 * s2io_updt_stats -
4874 static void s2io_updt_stats(struct s2io_nic *sp)
4876 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4877 u64 val64;
4878 int cnt = 0;
4880 if (is_s2io_card_up(sp)) {
4881 /* Apprx 30us on a 133 MHz bus */
4882 val64 = SET_UPDT_CLICKS(10) |
4883 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4884 writeq(val64, &bar0->stat_cfg);
4885 do {
4886 udelay(100);
4887 val64 = readq(&bar0->stat_cfg);
4888 if (!(val64 & s2BIT(0)))
4889 break;
4890 cnt++;
4891 if (cnt == 5)
4892 break; /* Updt failed */
4893 } while (1);
4898 * s2io_get_stats - Updates the device statistics structure.
4899 * @dev : pointer to the device structure.
4900 * Description:
4901 * This function updates the device statistics structure in the s2io_nic
4902 * structure and returns a pointer to the same.
4903 * Return value:
4904 * pointer to the updated net_device_stats structure.
4907 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4909 struct s2io_nic *sp = netdev_priv(dev);
4910 struct config_param *config = &sp->config;
4911 struct mac_info *mac_control = &sp->mac_control;
4912 struct stat_block *stats = mac_control->stats_info;
4913 int i;
4915 /* Configure Stats for immediate updt */
4916 s2io_updt_stats(sp);
4918 /* Using sp->stats as a staging area, because reset (due to mtu
4919 change, for example) will clear some hardware counters */
4920 dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
4921 sp->stats.tx_packets;
4922 sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4924 dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
4925 sp->stats.tx_errors;
4926 sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4928 dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
4929 sp->stats.rx_errors;
4930 sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4932 dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
4933 sp->stats.multicast;
4934 sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4936 dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
4937 sp->stats.rx_length_errors;
4938 sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
4940 /* collect per-ring rx_packets and rx_bytes */
4941 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4942 for (i = 0; i < config->rx_ring_num; i++) {
4943 struct ring_info *ring = &mac_control->rings[i];
4945 dev->stats.rx_packets += ring->rx_packets;
4946 dev->stats.rx_bytes += ring->rx_bytes;
4949 return &dev->stats;
4953 * s2io_set_multicast - entry point for multicast address enable/disable.
4954 * @dev : pointer to the device structure
4955 * Description:
4956 * This function is a driver entry point which gets called by the kernel
4957 * whenever multicast addresses must be enabled/disabled. This also gets
4958 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4959 * determine, if multicast address must be enabled or if promiscuous mode
4960 * is to be disabled etc.
4961 * Return value:
4962 * void.
4965 static void s2io_set_multicast(struct net_device *dev)
4967 int i, j, prev_cnt;
4968 struct dev_mc_list *mclist;
4969 struct s2io_nic *sp = netdev_priv(dev);
4970 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4971 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4972 0xfeffffffffffULL;
4973 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4974 void __iomem *add;
4975 struct config_param *config = &sp->config;
4977 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4978 /* Enable all Multicast addresses */
4979 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4980 &bar0->rmac_addr_data0_mem);
4981 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4982 &bar0->rmac_addr_data1_mem);
4983 val64 = RMAC_ADDR_CMD_MEM_WE |
4984 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4985 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4986 writeq(val64, &bar0->rmac_addr_cmd_mem);
4987 /* Wait till command completes */
4988 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4989 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4990 S2IO_BIT_RESET);
4992 sp->m_cast_flg = 1;
4993 sp->all_multi_pos = config->max_mc_addr - 1;
4994 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4995 /* Disable all Multicast addresses */
4996 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4997 &bar0->rmac_addr_data0_mem);
4998 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4999 &bar0->rmac_addr_data1_mem);
5000 val64 = RMAC_ADDR_CMD_MEM_WE |
5001 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5002 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5003 writeq(val64, &bar0->rmac_addr_cmd_mem);
5004 /* Wait till command completes */
5005 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5006 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5007 S2IO_BIT_RESET);
5009 sp->m_cast_flg = 0;
5010 sp->all_multi_pos = 0;
5013 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5014 /* Put the NIC into promiscuous mode */
5015 add = &bar0->mac_cfg;
5016 val64 = readq(&bar0->mac_cfg);
5017 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5020 writel((u32)val64, add);
5021 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5022 writel((u32) (val64 >> 32), (add + 4));
5024 if (vlan_tag_strip != 1) {
5025 val64 = readq(&bar0->rx_pa_cfg);
5026 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5027 writeq(val64, &bar0->rx_pa_cfg);
5028 sp->vlan_strip_flag = 0;
5031 val64 = readq(&bar0->mac_cfg);
5032 sp->promisc_flg = 1;
5033 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5034 dev->name);
5035 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5036 /* Remove the NIC from promiscuous mode */
5037 add = &bar0->mac_cfg;
5038 val64 = readq(&bar0->mac_cfg);
5039 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5041 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5042 writel((u32)val64, add);
5043 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5044 writel((u32) (val64 >> 32), (add + 4));
5046 if (vlan_tag_strip != 0) {
5047 val64 = readq(&bar0->rx_pa_cfg);
5048 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5049 writeq(val64, &bar0->rx_pa_cfg);
5050 sp->vlan_strip_flag = 1;
5053 val64 = readq(&bar0->mac_cfg);
5054 sp->promisc_flg = 0;
5055 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5056 dev->name);
5059 /* Update individual M_CAST address list */
5060 if ((!sp->m_cast_flg) && dev->mc_count) {
5061 if (dev->mc_count >
5062 (config->max_mc_addr - config->max_mac_addr)) {
5063 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5064 dev->name);
5065 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5066 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5067 return;
5070 prev_cnt = sp->mc_addr_count;
5071 sp->mc_addr_count = dev->mc_count;
5073 /* Clear out the previous list of Mc in the H/W. */
5074 for (i = 0; i < prev_cnt; i++) {
5075 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5076 &bar0->rmac_addr_data0_mem);
5077 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5078 &bar0->rmac_addr_data1_mem);
5079 val64 = RMAC_ADDR_CMD_MEM_WE |
5080 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5081 RMAC_ADDR_CMD_MEM_OFFSET
5082 (config->mc_start_offset + i);
5083 writeq(val64, &bar0->rmac_addr_cmd_mem);
5085 /* Wait for command completes */
5086 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5087 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5088 S2IO_BIT_RESET)) {
5089 DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name);
5090 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5091 return;
5095 /* Create the new Rx filter list and update the same in H/W. */
5096 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5097 i++, mclist = mclist->next) {
5098 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5099 ETH_ALEN);
5100 mac_addr = 0;
5101 for (j = 0; j < ETH_ALEN; j++) {
5102 mac_addr |= mclist->dmi_addr[j];
5103 mac_addr <<= 8;
5105 mac_addr >>= 8;
5106 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5107 &bar0->rmac_addr_data0_mem);
5108 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5109 &bar0->rmac_addr_data1_mem);
5110 val64 = RMAC_ADDR_CMD_MEM_WE |
5111 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5112 RMAC_ADDR_CMD_MEM_OFFSET
5113 (i + config->mc_start_offset);
5114 writeq(val64, &bar0->rmac_addr_cmd_mem);
5116 /* Wait for command completes */
5117 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5118 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5119 S2IO_BIT_RESET)) {
5120 DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name);
5121 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5122 return;
5128 /* read from CAM unicast & multicast addresses and store it in
5129 * def_mac_addr structure
5131 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5133 int offset;
5134 u64 mac_addr = 0x0;
5135 struct config_param *config = &sp->config;
5137 /* store unicast & multicast mac addresses */
5138 for (offset = 0; offset < config->max_mc_addr; offset++) {
5139 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5140 /* if read fails disable the entry */
5141 if (mac_addr == FAILURE)
5142 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5143 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5147 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5148 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5150 int offset;
5151 struct config_param *config = &sp->config;
5152 /* restore unicast mac address */
5153 for (offset = 0; offset < config->max_mac_addr; offset++)
5154 do_s2io_prog_unicast(sp->dev,
5155 sp->def_mac_addr[offset].mac_addr);
5157 /* restore multicast mac address */
5158 for (offset = config->mc_start_offset;
5159 offset < config->max_mc_addr; offset++)
5160 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5163 /* add a multicast MAC address to CAM */
5164 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5166 int i;
5167 u64 mac_addr = 0;
5168 struct config_param *config = &sp->config;
5170 for (i = 0; i < ETH_ALEN; i++) {
5171 mac_addr <<= 8;
5172 mac_addr |= addr[i];
5174 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5175 return SUCCESS;
5177 /* check if the multicast mac already preset in CAM */
5178 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5179 u64 tmp64;
5180 tmp64 = do_s2io_read_unicast_mc(sp, i);
5181 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5182 break;
5184 if (tmp64 == mac_addr)
5185 return SUCCESS;
5187 if (i == config->max_mc_addr) {
5188 DBG_PRINT(ERR_DBG,
5189 "CAM full no space left for multicast MAC\n");
5190 return FAILURE;
5192 /* Update the internal structure with this new mac address */
5193 do_s2io_copy_mac_addr(sp, i, mac_addr);
5195 return do_s2io_add_mac(sp, mac_addr, i);
5198 /* add MAC address to CAM */
5199 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5201 u64 val64;
5202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5204 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5205 &bar0->rmac_addr_data0_mem);
5207 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5208 RMAC_ADDR_CMD_MEM_OFFSET(off);
5209 writeq(val64, &bar0->rmac_addr_cmd_mem);
5211 /* Wait till command completes */
5212 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5213 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5214 S2IO_BIT_RESET)) {
5215 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5216 return FAILURE;
5218 return SUCCESS;
5220 /* deletes a specified unicast/multicast mac entry from CAM */
5221 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5223 int offset;
5224 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5225 struct config_param *config = &sp->config;
5227 for (offset = 1;
5228 offset < config->max_mc_addr; offset++) {
5229 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5230 if (tmp64 == addr) {
5231 /* disable the entry by writing 0xffffffffffffULL */
5232 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5233 return FAILURE;
5234 /* store the new mac list from CAM */
5235 do_s2io_store_unicast_mc(sp);
5236 return SUCCESS;
5239 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5240 (unsigned long long)addr);
5241 return FAILURE;
5244 /* read mac entries from CAM */
5245 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5247 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5248 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5250 /* read mac addr */
5251 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5252 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5253 writeq(val64, &bar0->rmac_addr_cmd_mem);
5255 /* Wait till command completes */
5256 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5257 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5258 S2IO_BIT_RESET)) {
5259 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5260 return FAILURE;
5262 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5264 return tmp64 >> 16;
5268 * s2io_set_mac_addr driver entry point
5271 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5273 struct sockaddr *addr = p;
5275 if (!is_valid_ether_addr(addr->sa_data))
5276 return -EINVAL;
5278 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5280 /* store the MAC address in CAM */
5281 return do_s2io_prog_unicast(dev, dev->dev_addr);
5284 * do_s2io_prog_unicast - Programs the Xframe mac address
5285 * @dev : pointer to the device structure.
5286 * @addr: a uchar pointer to the new mac address which is to be set.
5287 * Description : This procedure will program the Xframe to receive
5288 * frames with new Mac Address
5289 * Return value: SUCCESS on success and an appropriate (-)ve integer
5290 * as defined in errno.h file on failure.
5293 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5295 struct s2io_nic *sp = netdev_priv(dev);
5296 register u64 mac_addr = 0, perm_addr = 0;
5297 int i;
5298 u64 tmp64;
5299 struct config_param *config = &sp->config;
5302 * Set the new MAC address as the new unicast filter and reflect this
5303 * change on the device address registered with the OS. It will be
5304 * at offset 0.
5306 for (i = 0; i < ETH_ALEN; i++) {
5307 mac_addr <<= 8;
5308 mac_addr |= addr[i];
5309 perm_addr <<= 8;
5310 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5313 /* check if the dev_addr is different than perm_addr */
5314 if (mac_addr == perm_addr)
5315 return SUCCESS;
5317 /* check if the mac already preset in CAM */
5318 for (i = 1; i < config->max_mac_addr; i++) {
5319 tmp64 = do_s2io_read_unicast_mc(sp, i);
5320 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5321 break;
5323 if (tmp64 == mac_addr) {
5324 DBG_PRINT(INFO_DBG,
5325 "MAC addr:0x%llx already present in CAM\n",
5326 (unsigned long long)mac_addr);
5327 return SUCCESS;
5330 if (i == config->max_mac_addr) {
5331 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5332 return FAILURE;
5334 /* Update the internal structure with this new mac address */
5335 do_s2io_copy_mac_addr(sp, i, mac_addr);
5337 return do_s2io_add_mac(sp, mac_addr, i);
5341 * s2io_ethtool_sset - Sets different link parameters.
5342 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5343 * @info: pointer to the structure with parameters given by ethtool to set
5344 * link information.
5345 * Description:
5346 * The function sets different link parameters provided by the user onto
5347 * the NIC.
5348 * Return value:
5349 * 0 on success.
5352 static int s2io_ethtool_sset(struct net_device *dev,
5353 struct ethtool_cmd *info)
5355 struct s2io_nic *sp = netdev_priv(dev);
5356 if ((info->autoneg == AUTONEG_ENABLE) ||
5357 (info->speed != SPEED_10000) ||
5358 (info->duplex != DUPLEX_FULL))
5359 return -EINVAL;
5360 else {
5361 s2io_close(sp->dev);
5362 s2io_open(sp->dev);
5365 return 0;
5369 * s2io_ethtol_gset - Return link specific information.
5370 * @sp : private member of the device structure, pointer to the
5371 * s2io_nic structure.
5372 * @info : pointer to the structure with parameters given by ethtool
5373 * to return link information.
5374 * Description:
5375 * Returns link specific information like speed, duplex etc.. to ethtool.
5376 * Return value :
5377 * return 0 on success.
5380 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5382 struct s2io_nic *sp = netdev_priv(dev);
5383 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5384 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5385 info->port = PORT_FIBRE;
5387 /* info->transceiver */
5388 info->transceiver = XCVR_EXTERNAL;
5390 if (netif_carrier_ok(sp->dev)) {
5391 info->speed = 10000;
5392 info->duplex = DUPLEX_FULL;
5393 } else {
5394 info->speed = -1;
5395 info->duplex = -1;
5398 info->autoneg = AUTONEG_DISABLE;
5399 return 0;
5403 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5404 * @sp : private member of the device structure, which is a pointer to the
5405 * s2io_nic structure.
5406 * @info : pointer to the structure with parameters given by ethtool to
5407 * return driver information.
5408 * Description:
5409 * Returns driver specefic information like name, version etc.. to ethtool.
5410 * Return value:
5411 * void
5414 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5415 struct ethtool_drvinfo *info)
5417 struct s2io_nic *sp = netdev_priv(dev);
5419 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5420 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5421 strncpy(info->fw_version, "", sizeof(info->fw_version));
5422 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5423 info->regdump_len = XENA_REG_SPACE;
5424 info->eedump_len = XENA_EEPROM_SPACE;
5428 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5429 * @sp: private member of the device structure, which is a pointer to the
5430 * s2io_nic structure.
5431 * @regs : pointer to the structure with parameters given by ethtool for
5432 * dumping the registers.
5433 * @reg_space: The input argumnet into which all the registers are dumped.
5434 * Description:
5435 * Dumps the entire register space of xFrame NIC into the user given
5436 * buffer area.
5437 * Return value :
5438 * void .
5441 static void s2io_ethtool_gregs(struct net_device *dev,
5442 struct ethtool_regs *regs, void *space)
5444 int i;
5445 u64 reg;
5446 u8 *reg_space = (u8 *)space;
5447 struct s2io_nic *sp = netdev_priv(dev);
5449 regs->len = XENA_REG_SPACE;
5450 regs->version = sp->pdev->subsystem_device;
5452 for (i = 0; i < regs->len; i += 8) {
5453 reg = readq(sp->bar0 + i);
5454 memcpy((reg_space + i), &reg, 8);
5459 * s2io_phy_id - timer function that alternates adapter LED.
5460 * @data : address of the private member of the device structure, which
5461 * is a pointer to the s2io_nic structure, provided as an u32.
5462 * Description: This is actually the timer function that alternates the
5463 * adapter LED bit of the adapter control bit to set/reset every time on
5464 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5465 * once every second.
5467 static void s2io_phy_id(unsigned long data)
5469 struct s2io_nic *sp = (struct s2io_nic *)data;
5470 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5471 u64 val64 = 0;
5472 u16 subid;
5474 subid = sp->pdev->subsystem_device;
5475 if ((sp->device_type == XFRAME_II_DEVICE) ||
5476 ((subid & 0xFF) >= 0x07)) {
5477 val64 = readq(&bar0->gpio_control);
5478 val64 ^= GPIO_CTRL_GPIO_0;
5479 writeq(val64, &bar0->gpio_control);
5480 } else {
5481 val64 = readq(&bar0->adapter_control);
5482 val64 ^= ADAPTER_LED_ON;
5483 writeq(val64, &bar0->adapter_control);
5486 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5490 * s2io_ethtool_idnic - To physically identify the nic on the system.
5491 * @sp : private member of the device structure, which is a pointer to the
5492 * s2io_nic structure.
5493 * @id : pointer to the structure with identification parameters given by
5494 * ethtool.
5495 * Description: Used to physically identify the NIC on the system.
5496 * The Link LED will blink for a time specified by the user for
5497 * identification.
5498 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5499 * identification is possible only if it's link is up.
5500 * Return value:
5501 * int , returns 0 on success
5504 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5506 u64 val64 = 0, last_gpio_ctrl_val;
5507 struct s2io_nic *sp = netdev_priv(dev);
5508 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5509 u16 subid;
5511 subid = sp->pdev->subsystem_device;
5512 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5513 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5514 val64 = readq(&bar0->adapter_control);
5515 if (!(val64 & ADAPTER_CNTL_EN)) {
5516 pr_err("Adapter Link down, cannot blink LED\n");
5517 return -EFAULT;
5520 if (sp->id_timer.function == NULL) {
5521 init_timer(&sp->id_timer);
5522 sp->id_timer.function = s2io_phy_id;
5523 sp->id_timer.data = (unsigned long)sp;
5525 mod_timer(&sp->id_timer, jiffies);
5526 if (data)
5527 msleep_interruptible(data * HZ);
5528 else
5529 msleep_interruptible(MAX_FLICKER_TIME);
5530 del_timer_sync(&sp->id_timer);
5532 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5533 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5534 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5537 return 0;
5540 static void s2io_ethtool_gringparam(struct net_device *dev,
5541 struct ethtool_ringparam *ering)
5543 struct s2io_nic *sp = netdev_priv(dev);
5544 int i, tx_desc_count = 0, rx_desc_count = 0;
5546 if (sp->rxd_mode == RXD_MODE_1)
5547 ering->rx_max_pending = MAX_RX_DESC_1;
5548 else if (sp->rxd_mode == RXD_MODE_3B)
5549 ering->rx_max_pending = MAX_RX_DESC_2;
5551 ering->tx_max_pending = MAX_TX_DESC;
5552 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5553 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5555 DBG_PRINT(INFO_DBG, "\nmax txds : %d\n", sp->config.max_txds);
5556 ering->tx_pending = tx_desc_count;
5557 rx_desc_count = 0;
5558 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5559 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5561 ering->rx_pending = rx_desc_count;
5563 ering->rx_mini_max_pending = 0;
5564 ering->rx_mini_pending = 0;
5565 if (sp->rxd_mode == RXD_MODE_1)
5566 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5567 else if (sp->rxd_mode == RXD_MODE_3B)
5568 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5569 ering->rx_jumbo_pending = rx_desc_count;
5573 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5574 * @sp : private member of the device structure, which is a pointer to the
5575 * s2io_nic structure.
5576 * @ep : pointer to the structure with pause parameters given by ethtool.
5577 * Description:
5578 * Returns the Pause frame generation and reception capability of the NIC.
5579 * Return value:
5580 * void
5582 static void s2io_ethtool_getpause_data(struct net_device *dev,
5583 struct ethtool_pauseparam *ep)
5585 u64 val64;
5586 struct s2io_nic *sp = netdev_priv(dev);
5587 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5589 val64 = readq(&bar0->rmac_pause_cfg);
5590 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5591 ep->tx_pause = true;
5592 if (val64 & RMAC_PAUSE_RX_ENABLE)
5593 ep->rx_pause = true;
5594 ep->autoneg = false;
5598 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5599 * @sp : private member of the device structure, which is a pointer to the
5600 * s2io_nic structure.
5601 * @ep : pointer to the structure with pause parameters given by ethtool.
5602 * Description:
5603 * It can be used to set or reset Pause frame generation or reception
5604 * support of the NIC.
5605 * Return value:
5606 * int, returns 0 on Success
5609 static int s2io_ethtool_setpause_data(struct net_device *dev,
5610 struct ethtool_pauseparam *ep)
5612 u64 val64;
5613 struct s2io_nic *sp = netdev_priv(dev);
5614 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5616 val64 = readq(&bar0->rmac_pause_cfg);
5617 if (ep->tx_pause)
5618 val64 |= RMAC_PAUSE_GEN_ENABLE;
5619 else
5620 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5621 if (ep->rx_pause)
5622 val64 |= RMAC_PAUSE_RX_ENABLE;
5623 else
5624 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5625 writeq(val64, &bar0->rmac_pause_cfg);
5626 return 0;
5630 * read_eeprom - reads 4 bytes of data from user given offset.
5631 * @sp : private member of the device structure, which is a pointer to the
5632 * s2io_nic structure.
5633 * @off : offset at which the data must be written
5634 * @data : Its an output parameter where the data read at the given
5635 * offset is stored.
5636 * Description:
5637 * Will read 4 bytes of data from the user given offset and return the
5638 * read data.
5639 * NOTE: Will allow to read only part of the EEPROM visible through the
5640 * I2C bus.
5641 * Return value:
5642 * -1 on failure and 0 on success.
5645 #define S2IO_DEV_ID 5
5646 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5648 int ret = -1;
5649 u32 exit_cnt = 0;
5650 u64 val64;
5651 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5653 if (sp->device_type == XFRAME_I_DEVICE) {
5654 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5655 I2C_CONTROL_ADDR(off) |
5656 I2C_CONTROL_BYTE_CNT(0x3) |
5657 I2C_CONTROL_READ |
5658 I2C_CONTROL_CNTL_START;
5659 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5661 while (exit_cnt < 5) {
5662 val64 = readq(&bar0->i2c_control);
5663 if (I2C_CONTROL_CNTL_END(val64)) {
5664 *data = I2C_CONTROL_GET_DATA(val64);
5665 ret = 0;
5666 break;
5668 msleep(50);
5669 exit_cnt++;
5673 if (sp->device_type == XFRAME_II_DEVICE) {
5674 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5675 SPI_CONTROL_BYTECNT(0x3) |
5676 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5677 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5678 val64 |= SPI_CONTROL_REQ;
5679 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5680 while (exit_cnt < 5) {
5681 val64 = readq(&bar0->spi_control);
5682 if (val64 & SPI_CONTROL_NACK) {
5683 ret = 1;
5684 break;
5685 } else if (val64 & SPI_CONTROL_DONE) {
5686 *data = readq(&bar0->spi_data);
5687 *data &= 0xffffff;
5688 ret = 0;
5689 break;
5691 msleep(50);
5692 exit_cnt++;
5695 return ret;
5699 * write_eeprom - actually writes the relevant part of the data value.
5700 * @sp : private member of the device structure, which is a pointer to the
5701 * s2io_nic structure.
5702 * @off : offset at which the data must be written
5703 * @data : The data that is to be written
5704 * @cnt : Number of bytes of the data that are actually to be written into
5705 * the Eeprom. (max of 3)
5706 * Description:
5707 * Actually writes the relevant part of the data value into the Eeprom
5708 * through the I2C bus.
5709 * Return value:
5710 * 0 on success, -1 on failure.
5713 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5715 int exit_cnt = 0, ret = -1;
5716 u64 val64;
5717 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5719 if (sp->device_type == XFRAME_I_DEVICE) {
5720 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5721 I2C_CONTROL_ADDR(off) |
5722 I2C_CONTROL_BYTE_CNT(cnt) |
5723 I2C_CONTROL_SET_DATA((u32)data) |
5724 I2C_CONTROL_CNTL_START;
5725 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5727 while (exit_cnt < 5) {
5728 val64 = readq(&bar0->i2c_control);
5729 if (I2C_CONTROL_CNTL_END(val64)) {
5730 if (!(val64 & I2C_CONTROL_NACK))
5731 ret = 0;
5732 break;
5734 msleep(50);
5735 exit_cnt++;
5739 if (sp->device_type == XFRAME_II_DEVICE) {
5740 int write_cnt = (cnt == 8) ? 0 : cnt;
5741 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5743 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5744 SPI_CONTROL_BYTECNT(write_cnt) |
5745 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5746 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5747 val64 |= SPI_CONTROL_REQ;
5748 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5749 while (exit_cnt < 5) {
5750 val64 = readq(&bar0->spi_control);
5751 if (val64 & SPI_CONTROL_NACK) {
5752 ret = 1;
5753 break;
5754 } else if (val64 & SPI_CONTROL_DONE) {
5755 ret = 0;
5756 break;
5758 msleep(50);
5759 exit_cnt++;
5762 return ret;
5764 static void s2io_vpd_read(struct s2io_nic *nic)
5766 u8 *vpd_data;
5767 u8 data;
5768 int i = 0, cnt, fail = 0;
5769 int vpd_addr = 0x80;
5770 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5772 if (nic->device_type == XFRAME_II_DEVICE) {
5773 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5774 vpd_addr = 0x80;
5775 } else {
5776 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5777 vpd_addr = 0x50;
5779 strcpy(nic->serial_num, "NOT AVAILABLE");
5781 vpd_data = kmalloc(256, GFP_KERNEL);
5782 if (!vpd_data) {
5783 swstats->mem_alloc_fail_cnt++;
5784 return;
5786 swstats->mem_allocated += 256;
5788 for (i = 0; i < 256; i += 4) {
5789 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5790 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5791 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5792 for (cnt = 0; cnt < 5; cnt++) {
5793 msleep(2);
5794 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5795 if (data == 0x80)
5796 break;
5798 if (cnt >= 5) {
5799 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5800 fail = 1;
5801 break;
5803 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5804 (u32 *)&vpd_data[i]);
5807 if (!fail) {
5808 /* read serial number of adapter */
5809 for (cnt = 0; cnt < 256; cnt++) {
5810 if ((vpd_data[cnt] == 'S') &&
5811 (vpd_data[cnt+1] == 'N') &&
5812 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5813 memset(nic->serial_num, 0, VPD_STRING_LEN);
5814 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5815 vpd_data[cnt+2]);
5816 break;
5821 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5822 memset(nic->product_name, 0, vpd_data[1]);
5823 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5825 kfree(vpd_data);
5826 swstats->mem_freed += 256;
5830 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5831 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5832 * @eeprom : pointer to the user level structure provided by ethtool,
5833 * containing all relevant information.
5834 * @data_buf : user defined value to be written into Eeprom.
5835 * Description: Reads the values stored in the Eeprom at given offset
5836 * for a given length. Stores these values int the input argument data
5837 * buffer 'data_buf' and returns these to the caller (ethtool.)
5838 * Return value:
5839 * int 0 on success
5842 static int s2io_ethtool_geeprom(struct net_device *dev,
5843 struct ethtool_eeprom *eeprom, u8 * data_buf)
5845 u32 i, valid;
5846 u64 data;
5847 struct s2io_nic *sp = netdev_priv(dev);
5849 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5851 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5852 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5854 for (i = 0; i < eeprom->len; i += 4) {
5855 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5856 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5857 return -EFAULT;
5859 valid = INV(data);
5860 memcpy((data_buf + i), &valid, 4);
5862 return 0;
5866 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5867 * @sp : private member of the device structure, which is a pointer to the
5868 * s2io_nic structure.
5869 * @eeprom : pointer to the user level structure provided by ethtool,
5870 * containing all relevant information.
5871 * @data_buf ; user defined value to be written into Eeprom.
5872 * Description:
5873 * Tries to write the user provided value in the Eeprom, at the offset
5874 * given by the user.
5875 * Return value:
5876 * 0 on success, -EFAULT on failure.
5879 static int s2io_ethtool_seeprom(struct net_device *dev,
5880 struct ethtool_eeprom *eeprom,
5881 u8 *data_buf)
5883 int len = eeprom->len, cnt = 0;
5884 u64 valid = 0, data;
5885 struct s2io_nic *sp = netdev_priv(dev);
5887 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5888 DBG_PRINT(ERR_DBG,
5889 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5890 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", eeprom->magic);
5891 return -EFAULT;
5894 while (len) {
5895 data = (u32)data_buf[cnt] & 0x000000FF;
5896 if (data)
5897 valid = (u32)(data << 24);
5898 else
5899 valid = data;
5901 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5902 DBG_PRINT(ERR_DBG,
5903 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5904 DBG_PRINT(ERR_DBG,
5905 "write into the specified offset\n");
5906 return -EFAULT;
5908 cnt++;
5909 len--;
5912 return 0;
5916 * s2io_register_test - reads and writes into all clock domains.
5917 * @sp : private member of the device structure, which is a pointer to the
5918 * s2io_nic structure.
5919 * @data : variable that returns the result of each of the test conducted b
5920 * by the driver.
5921 * Description:
5922 * Read and write into all clock domains. The NIC has 3 clock domains,
5923 * see that registers in all the three regions are accessible.
5924 * Return value:
5925 * 0 on success.
5928 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5930 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5931 u64 val64 = 0, exp_val;
5932 int fail = 0;
5934 val64 = readq(&bar0->pif_rd_swapper_fb);
5935 if (val64 != 0x123456789abcdefULL) {
5936 fail = 1;
5937 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5940 val64 = readq(&bar0->rmac_pause_cfg);
5941 if (val64 != 0xc000ffff00000000ULL) {
5942 fail = 1;
5943 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5946 val64 = readq(&bar0->rx_queue_cfg);
5947 if (sp->device_type == XFRAME_II_DEVICE)
5948 exp_val = 0x0404040404040404ULL;
5949 else
5950 exp_val = 0x0808080808080808ULL;
5951 if (val64 != exp_val) {
5952 fail = 1;
5953 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5956 val64 = readq(&bar0->xgxs_efifo_cfg);
5957 if (val64 != 0x000000001923141EULL) {
5958 fail = 1;
5959 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5962 val64 = 0x5A5A5A5A5A5A5A5AULL;
5963 writeq(val64, &bar0->xmsi_data);
5964 val64 = readq(&bar0->xmsi_data);
5965 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5966 fail = 1;
5967 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5970 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5971 writeq(val64, &bar0->xmsi_data);
5972 val64 = readq(&bar0->xmsi_data);
5973 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5974 fail = 1;
5975 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5978 *data = fail;
5979 return fail;
5983 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5984 * @sp : private member of the device structure, which is a pointer to the
5985 * s2io_nic structure.
5986 * @data:variable that returns the result of each of the test conducted by
5987 * the driver.
5988 * Description:
5989 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5990 * register.
5991 * Return value:
5992 * 0 on success.
5995 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5997 int fail = 0;
5998 u64 ret_data, org_4F0, org_7F0;
5999 u8 saved_4F0 = 0, saved_7F0 = 0;
6000 struct net_device *dev = sp->dev;
6002 /* Test Write Error at offset 0 */
6003 /* Note that SPI interface allows write access to all areas
6004 * of EEPROM. Hence doing all negative testing only for Xframe I.
6006 if (sp->device_type == XFRAME_I_DEVICE)
6007 if (!write_eeprom(sp, 0, 0, 3))
6008 fail = 1;
6010 /* Save current values at offsets 0x4F0 and 0x7F0 */
6011 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6012 saved_4F0 = 1;
6013 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6014 saved_7F0 = 1;
6016 /* Test Write at offset 4f0 */
6017 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6018 fail = 1;
6019 if (read_eeprom(sp, 0x4F0, &ret_data))
6020 fail = 1;
6022 if (ret_data != 0x012345) {
6023 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6024 "Data written %llx Data read %llx\n",
6025 dev->name, (unsigned long long)0x12345,
6026 (unsigned long long)ret_data);
6027 fail = 1;
6030 /* Reset the EEPROM data go FFFF */
6031 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6033 /* Test Write Request Error at offset 0x7c */
6034 if (sp->device_type == XFRAME_I_DEVICE)
6035 if (!write_eeprom(sp, 0x07C, 0, 3))
6036 fail = 1;
6038 /* Test Write Request at offset 0x7f0 */
6039 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6040 fail = 1;
6041 if (read_eeprom(sp, 0x7F0, &ret_data))
6042 fail = 1;
6044 if (ret_data != 0x012345) {
6045 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6046 "Data written %llx Data read %llx\n",
6047 dev->name, (unsigned long long)0x12345,
6048 (unsigned long long)ret_data);
6049 fail = 1;
6052 /* Reset the EEPROM data go FFFF */
6053 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6055 if (sp->device_type == XFRAME_I_DEVICE) {
6056 /* Test Write Error at offset 0x80 */
6057 if (!write_eeprom(sp, 0x080, 0, 3))
6058 fail = 1;
6060 /* Test Write Error at offset 0xfc */
6061 if (!write_eeprom(sp, 0x0FC, 0, 3))
6062 fail = 1;
6064 /* Test Write Error at offset 0x100 */
6065 if (!write_eeprom(sp, 0x100, 0, 3))
6066 fail = 1;
6068 /* Test Write Error at offset 4ec */
6069 if (!write_eeprom(sp, 0x4EC, 0, 3))
6070 fail = 1;
6073 /* Restore values at offsets 0x4F0 and 0x7F0 */
6074 if (saved_4F0)
6075 write_eeprom(sp, 0x4F0, org_4F0, 3);
6076 if (saved_7F0)
6077 write_eeprom(sp, 0x7F0, org_7F0, 3);
6079 *data = fail;
6080 return fail;
6084 * s2io_bist_test - invokes the MemBist test of the card .
6085 * @sp : private member of the device structure, which is a pointer to the
6086 * s2io_nic structure.
6087 * @data:variable that returns the result of each of the test conducted by
6088 * the driver.
6089 * Description:
6090 * This invokes the MemBist test of the card. We give around
6091 * 2 secs time for the Test to complete. If it's still not complete
6092 * within this peiod, we consider that the test failed.
6093 * Return value:
6094 * 0 on success and -1 on failure.
6097 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6099 u8 bist = 0;
6100 int cnt = 0, ret = -1;
6102 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6103 bist |= PCI_BIST_START;
6104 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6106 while (cnt < 20) {
6107 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6108 if (!(bist & PCI_BIST_START)) {
6109 *data = (bist & PCI_BIST_CODE_MASK);
6110 ret = 0;
6111 break;
6113 msleep(100);
6114 cnt++;
6117 return ret;
6121 * s2io-link_test - verifies the link state of the nic
6122 * @sp ; private member of the device structure, which is a pointer to the
6123 * s2io_nic structure.
6124 * @data: variable that returns the result of each of the test conducted by
6125 * the driver.
6126 * Description:
6127 * The function verifies the link state of the NIC and updates the input
6128 * argument 'data' appropriately.
6129 * Return value:
6130 * 0 on success.
6133 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6135 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6136 u64 val64;
6138 val64 = readq(&bar0->adapter_status);
6139 if (!(LINK_IS_UP(val64)))
6140 *data = 1;
6141 else
6142 *data = 0;
6144 return *data;
6148 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6149 * @sp - private member of the device structure, which is a pointer to the
6150 * s2io_nic structure.
6151 * @data - variable that returns the result of each of the test
6152 * conducted by the driver.
6153 * Description:
6154 * This is one of the offline test that tests the read and write
6155 * access to the RldRam chip on the NIC.
6156 * Return value:
6157 * 0 on success.
6160 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6163 u64 val64;
6164 int cnt, iteration = 0, test_fail = 0;
6166 val64 = readq(&bar0->adapter_control);
6167 val64 &= ~ADAPTER_ECC_EN;
6168 writeq(val64, &bar0->adapter_control);
6170 val64 = readq(&bar0->mc_rldram_test_ctrl);
6171 val64 |= MC_RLDRAM_TEST_MODE;
6172 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6174 val64 = readq(&bar0->mc_rldram_mrs);
6175 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6176 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6178 val64 |= MC_RLDRAM_MRS_ENABLE;
6179 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6181 while (iteration < 2) {
6182 val64 = 0x55555555aaaa0000ULL;
6183 if (iteration == 1)
6184 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6185 writeq(val64, &bar0->mc_rldram_test_d0);
6187 val64 = 0xaaaa5a5555550000ULL;
6188 if (iteration == 1)
6189 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6190 writeq(val64, &bar0->mc_rldram_test_d1);
6192 val64 = 0x55aaaaaaaa5a0000ULL;
6193 if (iteration == 1)
6194 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6195 writeq(val64, &bar0->mc_rldram_test_d2);
6197 val64 = (u64) (0x0000003ffffe0100ULL);
6198 writeq(val64, &bar0->mc_rldram_test_add);
6200 val64 = MC_RLDRAM_TEST_MODE |
6201 MC_RLDRAM_TEST_WRITE |
6202 MC_RLDRAM_TEST_GO;
6203 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6205 for (cnt = 0; cnt < 5; cnt++) {
6206 val64 = readq(&bar0->mc_rldram_test_ctrl);
6207 if (val64 & MC_RLDRAM_TEST_DONE)
6208 break;
6209 msleep(200);
6212 if (cnt == 5)
6213 break;
6215 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6216 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6218 for (cnt = 0; cnt < 5; cnt++) {
6219 val64 = readq(&bar0->mc_rldram_test_ctrl);
6220 if (val64 & MC_RLDRAM_TEST_DONE)
6221 break;
6222 msleep(500);
6225 if (cnt == 5)
6226 break;
6228 val64 = readq(&bar0->mc_rldram_test_ctrl);
6229 if (!(val64 & MC_RLDRAM_TEST_PASS))
6230 test_fail = 1;
6232 iteration++;
6235 *data = test_fail;
6237 /* Bring the adapter out of test mode */
6238 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6240 return test_fail;
6244 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6245 * @sp : private member of the device structure, which is a pointer to the
6246 * s2io_nic structure.
6247 * @ethtest : pointer to a ethtool command specific structure that will be
6248 * returned to the user.
6249 * @data : variable that returns the result of each of the test
6250 * conducted by the driver.
6251 * Description:
6252 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6253 * the health of the card.
6254 * Return value:
6255 * void
6258 static void s2io_ethtool_test(struct net_device *dev,
6259 struct ethtool_test *ethtest,
6260 uint64_t *data)
6262 struct s2io_nic *sp = netdev_priv(dev);
6263 int orig_state = netif_running(sp->dev);
6265 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6266 /* Offline Tests. */
6267 if (orig_state)
6268 s2io_close(sp->dev);
6270 if (s2io_register_test(sp, &data[0]))
6271 ethtest->flags |= ETH_TEST_FL_FAILED;
6273 s2io_reset(sp);
6275 if (s2io_rldram_test(sp, &data[3]))
6276 ethtest->flags |= ETH_TEST_FL_FAILED;
6278 s2io_reset(sp);
6280 if (s2io_eeprom_test(sp, &data[1]))
6281 ethtest->flags |= ETH_TEST_FL_FAILED;
6283 if (s2io_bist_test(sp, &data[4]))
6284 ethtest->flags |= ETH_TEST_FL_FAILED;
6286 if (orig_state)
6287 s2io_open(sp->dev);
6289 data[2] = 0;
6290 } else {
6291 /* Online Tests. */
6292 if (!orig_state) {
6293 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6294 dev->name);
6295 data[0] = -1;
6296 data[1] = -1;
6297 data[2] = -1;
6298 data[3] = -1;
6299 data[4] = -1;
6302 if (s2io_link_test(sp, &data[2]))
6303 ethtest->flags |= ETH_TEST_FL_FAILED;
6305 data[0] = 0;
6306 data[1] = 0;
6307 data[3] = 0;
6308 data[4] = 0;
6312 static void s2io_get_ethtool_stats(struct net_device *dev,
6313 struct ethtool_stats *estats,
6314 u64 *tmp_stats)
6316 int i = 0, k;
6317 struct s2io_nic *sp = netdev_priv(dev);
6318 struct stat_block *stats = sp->mac_control.stats_info;
6319 struct swStat *swstats = &stats->sw_stat;
6320 struct xpakStat *xstats = &stats->xpak_stat;
6322 s2io_updt_stats(sp);
6323 tmp_stats[i++] =
6324 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6325 le32_to_cpu(stats->tmac_frms);
6326 tmp_stats[i++] =
6327 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6328 le32_to_cpu(stats->tmac_data_octets);
6329 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6330 tmp_stats[i++] =
6331 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6332 le32_to_cpu(stats->tmac_mcst_frms);
6333 tmp_stats[i++] =
6334 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6335 le32_to_cpu(stats->tmac_bcst_frms);
6336 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6337 tmp_stats[i++] =
6338 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6339 le32_to_cpu(stats->tmac_ttl_octets);
6340 tmp_stats[i++] =
6341 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6342 le32_to_cpu(stats->tmac_ucst_frms);
6343 tmp_stats[i++] =
6344 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6345 le32_to_cpu(stats->tmac_nucst_frms);
6346 tmp_stats[i++] =
6347 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6348 le32_to_cpu(stats->tmac_any_err_frms);
6349 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6350 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6353 le32_to_cpu(stats->tmac_vld_ip);
6354 tmp_stats[i++] =
6355 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6356 le32_to_cpu(stats->tmac_drop_ip);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6359 le32_to_cpu(stats->tmac_icmp);
6360 tmp_stats[i++] =
6361 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6362 le32_to_cpu(stats->tmac_rst_tcp);
6363 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6364 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6365 le32_to_cpu(stats->tmac_udp);
6366 tmp_stats[i++] =
6367 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6368 le32_to_cpu(stats->rmac_vld_frms);
6369 tmp_stats[i++] =
6370 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6371 le32_to_cpu(stats->rmac_data_octets);
6372 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6373 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6374 tmp_stats[i++] =
6375 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6376 le32_to_cpu(stats->rmac_vld_mcst_frms);
6377 tmp_stats[i++] =
6378 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6379 le32_to_cpu(stats->rmac_vld_bcst_frms);
6380 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6381 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6383 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6387 le32_to_cpu(stats->rmac_ttl_octets);
6388 tmp_stats[i++] =
6389 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6390 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6391 tmp_stats[i++] =
6392 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6393 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6394 tmp_stats[i++] =
6395 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6396 le32_to_cpu(stats->rmac_discarded_frms);
6397 tmp_stats[i++] =
6398 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6399 << 32 | le32_to_cpu(stats->rmac_drop_events);
6400 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6401 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6404 le32_to_cpu(stats->rmac_usized_frms);
6405 tmp_stats[i++] =
6406 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6407 le32_to_cpu(stats->rmac_osized_frms);
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6410 le32_to_cpu(stats->rmac_frag_frms);
6411 tmp_stats[i++] =
6412 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6413 le32_to_cpu(stats->rmac_jabber_frms);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6420 tmp_stats[i++] =
6421 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6422 le32_to_cpu(stats->rmac_ip);
6423 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6424 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6425 tmp_stats[i++] =
6426 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6427 le32_to_cpu(stats->rmac_drop_ip);
6428 tmp_stats[i++] =
6429 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6430 le32_to_cpu(stats->rmac_icmp);
6431 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6432 tmp_stats[i++] =
6433 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6434 le32_to_cpu(stats->rmac_udp);
6435 tmp_stats[i++] =
6436 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6437 le32_to_cpu(stats->rmac_err_drp_udp);
6438 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6439 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6440 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6445 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6446 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6447 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6448 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6449 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6450 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6451 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6452 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6453 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6454 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6455 tmp_stats[i++] =
6456 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6457 le32_to_cpu(stats->rmac_pause_cnt);
6458 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6459 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6460 tmp_stats[i++] =
6461 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6462 le32_to_cpu(stats->rmac_accepted_ip);
6463 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6464 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6474 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6475 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6476 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6477 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6478 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6479 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6480 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6481 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6483 /* Enhanced statistics exist only for Hercules */
6484 if (sp->device_type == XFRAME_II_DEVICE) {
6485 tmp_stats[i++] =
6486 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6487 tmp_stats[i++] =
6488 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6489 tmp_stats[i++] =
6490 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6491 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6492 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6493 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6494 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6495 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6496 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6497 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6498 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6499 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6500 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6501 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6502 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6503 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6506 tmp_stats[i++] = 0;
6507 tmp_stats[i++] = swstats->single_ecc_errs;
6508 tmp_stats[i++] = swstats->double_ecc_errs;
6509 tmp_stats[i++] = swstats->parity_err_cnt;
6510 tmp_stats[i++] = swstats->serious_err_cnt;
6511 tmp_stats[i++] = swstats->soft_reset_cnt;
6512 tmp_stats[i++] = swstats->fifo_full_cnt;
6513 for (k = 0; k < MAX_RX_RINGS; k++)
6514 tmp_stats[i++] = swstats->ring_full_cnt[k];
6515 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6516 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6517 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6518 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6519 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6520 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6521 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6522 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6523 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6524 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6525 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6526 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6527 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6528 tmp_stats[i++] = swstats->sending_both;
6529 tmp_stats[i++] = swstats->outof_sequence_pkts;
6530 tmp_stats[i++] = swstats->flush_max_pkts;
6531 if (swstats->num_aggregations) {
6532 u64 tmp = swstats->sum_avg_pkts_aggregated;
6533 int count = 0;
6535 * Since 64-bit divide does not work on all platforms,
6536 * do repeated subtraction.
6538 while (tmp >= swstats->num_aggregations) {
6539 tmp -= swstats->num_aggregations;
6540 count++;
6542 tmp_stats[i++] = count;
6543 } else
6544 tmp_stats[i++] = 0;
6545 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6546 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6547 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6548 tmp_stats[i++] = swstats->mem_allocated;
6549 tmp_stats[i++] = swstats->mem_freed;
6550 tmp_stats[i++] = swstats->link_up_cnt;
6551 tmp_stats[i++] = swstats->link_down_cnt;
6552 tmp_stats[i++] = swstats->link_up_time;
6553 tmp_stats[i++] = swstats->link_down_time;
6555 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6556 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6557 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6558 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6559 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6561 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6562 tmp_stats[i++] = swstats->rx_abort_cnt;
6563 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6564 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6565 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6566 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6567 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6568 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6569 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6570 tmp_stats[i++] = swstats->tda_err_cnt;
6571 tmp_stats[i++] = swstats->pfc_err_cnt;
6572 tmp_stats[i++] = swstats->pcc_err_cnt;
6573 tmp_stats[i++] = swstats->tti_err_cnt;
6574 tmp_stats[i++] = swstats->tpa_err_cnt;
6575 tmp_stats[i++] = swstats->sm_err_cnt;
6576 tmp_stats[i++] = swstats->lso_err_cnt;
6577 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6578 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6579 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6580 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6581 tmp_stats[i++] = swstats->rc_err_cnt;
6582 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6583 tmp_stats[i++] = swstats->rpa_err_cnt;
6584 tmp_stats[i++] = swstats->rda_err_cnt;
6585 tmp_stats[i++] = swstats->rti_err_cnt;
6586 tmp_stats[i++] = swstats->mc_err_cnt;
6589 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6591 return XENA_REG_SPACE;
6595 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6597 struct s2io_nic *sp = netdev_priv(dev);
6599 return sp->rx_csum;
6602 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6604 struct s2io_nic *sp = netdev_priv(dev);
6606 if (data)
6607 sp->rx_csum = 1;
6608 else
6609 sp->rx_csum = 0;
6611 return 0;
6614 static int s2io_get_eeprom_len(struct net_device *dev)
6616 return XENA_EEPROM_SPACE;
6619 static int s2io_get_sset_count(struct net_device *dev, int sset)
6621 struct s2io_nic *sp = netdev_priv(dev);
6623 switch (sset) {
6624 case ETH_SS_TEST:
6625 return S2IO_TEST_LEN;
6626 case ETH_SS_STATS:
6627 switch (sp->device_type) {
6628 case XFRAME_I_DEVICE:
6629 return XFRAME_I_STAT_LEN;
6630 case XFRAME_II_DEVICE:
6631 return XFRAME_II_STAT_LEN;
6632 default:
6633 return 0;
6635 default:
6636 return -EOPNOTSUPP;
6640 static void s2io_ethtool_get_strings(struct net_device *dev,
6641 u32 stringset, u8 *data)
6643 int stat_size = 0;
6644 struct s2io_nic *sp = netdev_priv(dev);
6646 switch (stringset) {
6647 case ETH_SS_TEST:
6648 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6649 break;
6650 case ETH_SS_STATS:
6651 stat_size = sizeof(ethtool_xena_stats_keys);
6652 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6653 if (sp->device_type == XFRAME_II_DEVICE) {
6654 memcpy(data + stat_size,
6655 &ethtool_enhanced_stats_keys,
6656 sizeof(ethtool_enhanced_stats_keys));
6657 stat_size += sizeof(ethtool_enhanced_stats_keys);
6660 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6661 sizeof(ethtool_driver_stats_keys));
6665 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6667 if (data)
6668 dev->features |= NETIF_F_IP_CSUM;
6669 else
6670 dev->features &= ~NETIF_F_IP_CSUM;
6672 return 0;
6675 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6677 return (dev->features & NETIF_F_TSO) != 0;
6679 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6681 if (data)
6682 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6683 else
6684 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6686 return 0;
6689 static const struct ethtool_ops netdev_ethtool_ops = {
6690 .get_settings = s2io_ethtool_gset,
6691 .set_settings = s2io_ethtool_sset,
6692 .get_drvinfo = s2io_ethtool_gdrvinfo,
6693 .get_regs_len = s2io_ethtool_get_regs_len,
6694 .get_regs = s2io_ethtool_gregs,
6695 .get_link = ethtool_op_get_link,
6696 .get_eeprom_len = s2io_get_eeprom_len,
6697 .get_eeprom = s2io_ethtool_geeprom,
6698 .set_eeprom = s2io_ethtool_seeprom,
6699 .get_ringparam = s2io_ethtool_gringparam,
6700 .get_pauseparam = s2io_ethtool_getpause_data,
6701 .set_pauseparam = s2io_ethtool_setpause_data,
6702 .get_rx_csum = s2io_ethtool_get_rx_csum,
6703 .set_rx_csum = s2io_ethtool_set_rx_csum,
6704 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6705 .set_sg = ethtool_op_set_sg,
6706 .get_tso = s2io_ethtool_op_get_tso,
6707 .set_tso = s2io_ethtool_op_set_tso,
6708 .set_ufo = ethtool_op_set_ufo,
6709 .self_test = s2io_ethtool_test,
6710 .get_strings = s2io_ethtool_get_strings,
6711 .phys_id = s2io_ethtool_idnic,
6712 .get_ethtool_stats = s2io_get_ethtool_stats,
6713 .get_sset_count = s2io_get_sset_count,
6717 * s2io_ioctl - Entry point for the Ioctl
6718 * @dev : Device pointer.
6719 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6720 * a proprietary structure used to pass information to the driver.
6721 * @cmd : This is used to distinguish between the different commands that
6722 * can be passed to the IOCTL functions.
6723 * Description:
6724 * Currently there are no special functionality supported in IOCTL, hence
6725 * function always return EOPNOTSUPPORTED
6728 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6730 return -EOPNOTSUPP;
6734 * s2io_change_mtu - entry point to change MTU size for the device.
6735 * @dev : device pointer.
6736 * @new_mtu : the new MTU size for the device.
6737 * Description: A driver entry point to change MTU size for the device.
6738 * Before changing the MTU the device must be stopped.
6739 * Return value:
6740 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6741 * file on failure.
6744 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6746 struct s2io_nic *sp = netdev_priv(dev);
6747 int ret = 0;
6749 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6750 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6751 return -EPERM;
6754 dev->mtu = new_mtu;
6755 if (netif_running(dev)) {
6756 s2io_stop_all_tx_queue(sp);
6757 s2io_card_down(sp);
6758 ret = s2io_card_up(sp);
6759 if (ret) {
6760 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6761 __func__);
6762 return ret;
6764 s2io_wake_all_tx_queue(sp);
6765 } else { /* Device is down */
6766 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6767 u64 val64 = new_mtu;
6769 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6772 return ret;
6776 * s2io_set_link - Set the LInk status
6777 * @data: long pointer to device private structue
6778 * Description: Sets the link status for the adapter
6781 static void s2io_set_link(struct work_struct *work)
6783 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6784 set_link_task);
6785 struct net_device *dev = nic->dev;
6786 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6787 register u64 val64;
6788 u16 subid;
6790 rtnl_lock();
6792 if (!netif_running(dev))
6793 goto out_unlock;
6795 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6796 /* The card is being reset, no point doing anything */
6797 goto out_unlock;
6800 subid = nic->pdev->subsystem_device;
6801 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6803 * Allow a small delay for the NICs self initiated
6804 * cleanup to complete.
6806 msleep(100);
6809 val64 = readq(&bar0->adapter_status);
6810 if (LINK_IS_UP(val64)) {
6811 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6812 if (verify_xena_quiescence(nic)) {
6813 val64 = readq(&bar0->adapter_control);
6814 val64 |= ADAPTER_CNTL_EN;
6815 writeq(val64, &bar0->adapter_control);
6816 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6817 nic->device_type, subid)) {
6818 val64 = readq(&bar0->gpio_control);
6819 val64 |= GPIO_CTRL_GPIO_0;
6820 writeq(val64, &bar0->gpio_control);
6821 val64 = readq(&bar0->gpio_control);
6822 } else {
6823 val64 |= ADAPTER_LED_ON;
6824 writeq(val64, &bar0->adapter_control);
6826 nic->device_enabled_once = true;
6827 } else {
6828 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6829 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6830 s2io_stop_all_tx_queue(nic);
6833 val64 = readq(&bar0->adapter_control);
6834 val64 |= ADAPTER_LED_ON;
6835 writeq(val64, &bar0->adapter_control);
6836 s2io_link(nic, LINK_UP);
6837 } else {
6838 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6839 subid)) {
6840 val64 = readq(&bar0->gpio_control);
6841 val64 &= ~GPIO_CTRL_GPIO_0;
6842 writeq(val64, &bar0->gpio_control);
6843 val64 = readq(&bar0->gpio_control);
6845 /* turn off LED */
6846 val64 = readq(&bar0->adapter_control);
6847 val64 = val64 & (~ADAPTER_LED_ON);
6848 writeq(val64, &bar0->adapter_control);
6849 s2io_link(nic, LINK_DOWN);
6851 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6853 out_unlock:
6854 rtnl_unlock();
6857 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6858 struct buffAdd *ba,
6859 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6860 u64 *temp2, int size)
6862 struct net_device *dev = sp->dev;
6863 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6865 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6866 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6867 /* allocate skb */
6868 if (*skb) {
6869 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6871 * As Rx frame are not going to be processed,
6872 * using same mapped address for the Rxd
6873 * buffer pointer
6875 rxdp1->Buffer0_ptr = *temp0;
6876 } else {
6877 *skb = dev_alloc_skb(size);
6878 if (!(*skb)) {
6879 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6880 DBG_PRINT(INFO_DBG, "memory to allocate ");
6881 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6882 stats->mem_alloc_fail_cnt++;
6883 return -ENOMEM ;
6885 stats->mem_allocated += (*skb)->truesize;
6886 /* storing the mapped addr in a temp variable
6887 * such it will be used for next rxd whose
6888 * Host Control is NULL
6890 rxdp1->Buffer0_ptr = *temp0 =
6891 pci_map_single(sp->pdev, (*skb)->data,
6892 size - NET_IP_ALIGN,
6893 PCI_DMA_FROMDEVICE);
6894 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6895 goto memalloc_failed;
6896 rxdp->Host_Control = (unsigned long) (*skb);
6898 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6899 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6900 /* Two buffer Mode */
6901 if (*skb) {
6902 rxdp3->Buffer2_ptr = *temp2;
6903 rxdp3->Buffer0_ptr = *temp0;
6904 rxdp3->Buffer1_ptr = *temp1;
6905 } else {
6906 *skb = dev_alloc_skb(size);
6907 if (!(*skb)) {
6908 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6909 DBG_PRINT(INFO_DBG, "memory to allocate ");
6910 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6911 stats->mem_alloc_fail_cnt++;
6912 return -ENOMEM;
6914 stats->mem_allocated += (*skb)->truesize;
6915 rxdp3->Buffer2_ptr = *temp2 =
6916 pci_map_single(sp->pdev, (*skb)->data,
6917 dev->mtu + 4,
6918 PCI_DMA_FROMDEVICE);
6919 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6920 goto memalloc_failed;
6921 rxdp3->Buffer0_ptr = *temp0 =
6922 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6923 PCI_DMA_FROMDEVICE);
6924 if (pci_dma_mapping_error(sp->pdev,
6925 rxdp3->Buffer0_ptr)) {
6926 pci_unmap_single(sp->pdev,
6927 (dma_addr_t)rxdp3->Buffer2_ptr,
6928 dev->mtu + 4,
6929 PCI_DMA_FROMDEVICE);
6930 goto memalloc_failed;
6932 rxdp->Host_Control = (unsigned long) (*skb);
6934 /* Buffer-1 will be dummy buffer not used */
6935 rxdp3->Buffer1_ptr = *temp1 =
6936 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6937 PCI_DMA_FROMDEVICE);
6938 if (pci_dma_mapping_error(sp->pdev,
6939 rxdp3->Buffer1_ptr)) {
6940 pci_unmap_single(sp->pdev,
6941 (dma_addr_t)rxdp3->Buffer0_ptr,
6942 BUF0_LEN, PCI_DMA_FROMDEVICE);
6943 pci_unmap_single(sp->pdev,
6944 (dma_addr_t)rxdp3->Buffer2_ptr,
6945 dev->mtu + 4,
6946 PCI_DMA_FROMDEVICE);
6947 goto memalloc_failed;
6951 return 0;
6953 memalloc_failed:
6954 stats->pci_map_fail_cnt++;
6955 stats->mem_freed += (*skb)->truesize;
6956 dev_kfree_skb(*skb);
6957 return -ENOMEM;
6960 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6961 int size)
6963 struct net_device *dev = sp->dev;
6964 if (sp->rxd_mode == RXD_MODE_1) {
6965 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6966 } else if (sp->rxd_mode == RXD_MODE_3B) {
6967 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6968 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6969 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6973 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6975 int i, j, k, blk_cnt = 0, size;
6976 struct config_param *config = &sp->config;
6977 struct mac_info *mac_control = &sp->mac_control;
6978 struct net_device *dev = sp->dev;
6979 struct RxD_t *rxdp = NULL;
6980 struct sk_buff *skb = NULL;
6981 struct buffAdd *ba = NULL;
6982 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6984 /* Calculate the size based on ring mode */
6985 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6986 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6987 if (sp->rxd_mode == RXD_MODE_1)
6988 size += NET_IP_ALIGN;
6989 else if (sp->rxd_mode == RXD_MODE_3B)
6990 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6992 for (i = 0; i < config->rx_ring_num; i++) {
6993 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6994 struct ring_info *ring = &mac_control->rings[i];
6996 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6998 for (j = 0; j < blk_cnt; j++) {
6999 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7000 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7001 if (sp->rxd_mode == RXD_MODE_3B)
7002 ba = &ring->ba[j][k];
7003 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7004 (u64 *)&temp0_64,
7005 (u64 *)&temp1_64,
7006 (u64 *)&temp2_64,
7007 size) == -ENOMEM) {
7008 return 0;
7011 set_rxd_buffer_size(sp, rxdp, size);
7012 wmb();
7013 /* flip the Ownership bit to Hardware */
7014 rxdp->Control_1 |= RXD_OWN_XENA;
7018 return 0;
7022 static int s2io_add_isr(struct s2io_nic *sp)
7024 int ret = 0;
7025 struct net_device *dev = sp->dev;
7026 int err = 0;
7028 if (sp->config.intr_type == MSI_X)
7029 ret = s2io_enable_msi_x(sp);
7030 if (ret) {
7031 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7032 sp->config.intr_type = INTA;
7036 * Store the values of the MSIX table in
7037 * the struct s2io_nic structure
7039 store_xmsi_data(sp);
7041 /* After proper initialization of H/W, register ISR */
7042 if (sp->config.intr_type == MSI_X) {
7043 int i, msix_rx_cnt = 0;
7045 for (i = 0; i < sp->num_entries; i++) {
7046 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7047 if (sp->s2io_entries[i].type ==
7048 MSIX_RING_TYPE) {
7049 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7050 dev->name, i);
7051 err = request_irq(sp->entries[i].vector,
7052 s2io_msix_ring_handle,
7054 sp->desc[i],
7055 sp->s2io_entries[i].arg);
7056 } else if (sp->s2io_entries[i].type ==
7057 MSIX_ALARM_TYPE) {
7058 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7059 dev->name, i);
7060 err = request_irq(sp->entries[i].vector,
7061 s2io_msix_fifo_handle,
7063 sp->desc[i],
7064 sp->s2io_entries[i].arg);
7067 /* if either data or addr is zero print it. */
7068 if (!(sp->msix_info[i].addr &&
7069 sp->msix_info[i].data)) {
7070 DBG_PRINT(ERR_DBG,
7071 "%s @Addr:0x%llx Data:0x%llx\n",
7072 sp->desc[i],
7073 (unsigned long long)
7074 sp->msix_info[i].addr,
7075 (unsigned long long)
7076 ntohl(sp->msix_info[i].data));
7077 } else
7078 msix_rx_cnt++;
7079 if (err) {
7080 remove_msix_isr(sp);
7082 DBG_PRINT(ERR_DBG,
7083 "%s:MSI-X-%d registration "
7084 "failed\n", dev->name, i);
7086 DBG_PRINT(ERR_DBG,
7087 "%s: Defaulting to INTA\n",
7088 dev->name);
7089 sp->config.intr_type = INTA;
7090 break;
7092 sp->s2io_entries[i].in_use =
7093 MSIX_REGISTERED_SUCCESS;
7096 if (!err) {
7097 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7098 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7099 " through alarm vector\n");
7102 if (sp->config.intr_type == INTA) {
7103 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7104 sp->name, dev);
7105 if (err) {
7106 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7107 dev->name);
7108 return -1;
7111 return 0;
7114 static void s2io_rem_isr(struct s2io_nic *sp)
7116 if (sp->config.intr_type == MSI_X)
7117 remove_msix_isr(sp);
7118 else
7119 remove_inta_isr(sp);
7122 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7124 int cnt = 0;
7125 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7126 register u64 val64 = 0;
7127 struct config_param *config;
7128 config = &sp->config;
7130 if (!is_s2io_card_up(sp))
7131 return;
7133 del_timer_sync(&sp->alarm_timer);
7134 /* If s2io_set_link task is executing, wait till it completes. */
7135 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7136 msleep(50);
7137 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7139 /* Disable napi */
7140 if (sp->config.napi) {
7141 int off = 0;
7142 if (config->intr_type == MSI_X) {
7143 for (; off < sp->config.rx_ring_num; off++)
7144 napi_disable(&sp->mac_control.rings[off].napi);
7146 else
7147 napi_disable(&sp->napi);
7150 /* disable Tx and Rx traffic on the NIC */
7151 if (do_io)
7152 stop_nic(sp);
7154 s2io_rem_isr(sp);
7156 /* stop the tx queue, indicate link down */
7157 s2io_link(sp, LINK_DOWN);
7159 /* Check if the device is Quiescent and then Reset the NIC */
7160 while (do_io) {
7161 /* As per the HW requirement we need to replenish the
7162 * receive buffer to avoid the ring bump. Since there is
7163 * no intention of processing the Rx frame at this pointwe are
7164 * just settting the ownership bit of rxd in Each Rx
7165 * ring to HW and set the appropriate buffer size
7166 * based on the ring mode
7168 rxd_owner_bit_reset(sp);
7170 val64 = readq(&bar0->adapter_status);
7171 if (verify_xena_quiescence(sp)) {
7172 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7173 break;
7176 msleep(50);
7177 cnt++;
7178 if (cnt == 10) {
7179 DBG_PRINT(ERR_DBG, "s2io_close:Device not Quiescent ");
7180 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7181 (unsigned long long)val64);
7182 break;
7185 if (do_io)
7186 s2io_reset(sp);
7188 /* Free all Tx buffers */
7189 free_tx_buffers(sp);
7191 /* Free all Rx buffers */
7192 free_rx_buffers(sp);
7194 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7197 static void s2io_card_down(struct s2io_nic *sp)
7199 do_s2io_card_down(sp, 1);
7202 static int s2io_card_up(struct s2io_nic *sp)
7204 int i, ret = 0;
7205 struct config_param *config;
7206 struct mac_info *mac_control;
7207 struct net_device *dev = (struct net_device *)sp->dev;
7208 u16 interruptible;
7210 /* Initialize the H/W I/O registers */
7211 ret = init_nic(sp);
7212 if (ret != 0) {
7213 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7214 dev->name);
7215 if (ret != -EIO)
7216 s2io_reset(sp);
7217 return ret;
7221 * Initializing the Rx buffers. For now we are considering only 1
7222 * Rx ring and initializing buffers into 30 Rx blocks
7224 config = &sp->config;
7225 mac_control = &sp->mac_control;
7227 for (i = 0; i < config->rx_ring_num; i++) {
7228 struct ring_info *ring = &mac_control->rings[i];
7230 ring->mtu = dev->mtu;
7231 ret = fill_rx_buffers(sp, ring, 1);
7232 if (ret) {
7233 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7234 dev->name);
7235 s2io_reset(sp);
7236 free_rx_buffers(sp);
7237 return -ENOMEM;
7239 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7240 ring->rx_bufs_left);
7243 /* Initialise napi */
7244 if (config->napi) {
7245 if (config->intr_type == MSI_X) {
7246 for (i = 0; i < sp->config.rx_ring_num; i++)
7247 napi_enable(&sp->mac_control.rings[i].napi);
7248 } else {
7249 napi_enable(&sp->napi);
7253 /* Maintain the state prior to the open */
7254 if (sp->promisc_flg)
7255 sp->promisc_flg = 0;
7256 if (sp->m_cast_flg) {
7257 sp->m_cast_flg = 0;
7258 sp->all_multi_pos = 0;
7261 /* Setting its receive mode */
7262 s2io_set_multicast(dev);
7264 if (sp->lro) {
7265 /* Initialize max aggregatable pkts per session based on MTU */
7266 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7267 /* Check if we can use (if specified) user provided value */
7268 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7269 sp->lro_max_aggr_per_sess = lro_max_pkts;
7272 /* Enable Rx Traffic and interrupts on the NIC */
7273 if (start_nic(sp)) {
7274 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7275 s2io_reset(sp);
7276 free_rx_buffers(sp);
7277 return -ENODEV;
7280 /* Add interrupt service routine */
7281 if (s2io_add_isr(sp) != 0) {
7282 if (sp->config.intr_type == MSI_X)
7283 s2io_rem_isr(sp);
7284 s2io_reset(sp);
7285 free_rx_buffers(sp);
7286 return -ENODEV;
7289 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7291 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7293 /* Enable select interrupts */
7294 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7295 if (sp->config.intr_type != INTA) {
7296 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7297 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7298 } else {
7299 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7300 interruptible |= TX_PIC_INTR;
7301 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7304 return 0;
7308 * s2io_restart_nic - Resets the NIC.
7309 * @data : long pointer to the device private structure
7310 * Description:
7311 * This function is scheduled to be run by the s2io_tx_watchdog
7312 * function after 0.5 secs to reset the NIC. The idea is to reduce
7313 * the run time of the watch dog routine which is run holding a
7314 * spin lock.
7317 static void s2io_restart_nic(struct work_struct *work)
7319 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7320 struct net_device *dev = sp->dev;
7322 rtnl_lock();
7324 if (!netif_running(dev))
7325 goto out_unlock;
7327 s2io_card_down(sp);
7328 if (s2io_card_up(sp)) {
7329 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7331 s2io_wake_all_tx_queue(sp);
7332 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7333 out_unlock:
7334 rtnl_unlock();
7338 * s2io_tx_watchdog - Watchdog for transmit side.
7339 * @dev : Pointer to net device structure
7340 * Description:
7341 * This function is triggered if the Tx Queue is stopped
7342 * for a pre-defined amount of time when the Interface is still up.
7343 * If the Interface is jammed in such a situation, the hardware is
7344 * reset (by s2io_close) and restarted again (by s2io_open) to
7345 * overcome any problem that might have been caused in the hardware.
7346 * Return value:
7347 * void
7350 static void s2io_tx_watchdog(struct net_device *dev)
7352 struct s2io_nic *sp = netdev_priv(dev);
7353 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7355 if (netif_carrier_ok(dev)) {
7356 swstats->watchdog_timer_cnt++;
7357 schedule_work(&sp->rst_timer_task);
7358 swstats->soft_reset_cnt++;
7363 * rx_osm_handler - To perform some OS related operations on SKB.
7364 * @sp: private member of the device structure,pointer to s2io_nic structure.
7365 * @skb : the socket buffer pointer.
7366 * @len : length of the packet
7367 * @cksum : FCS checksum of the frame.
7368 * @ring_no : the ring from which this RxD was extracted.
7369 * Description:
7370 * This function is called by the Rx interrupt serivce routine to perform
7371 * some OS related operations on the SKB before passing it to the upper
7372 * layers. It mainly checks if the checksum is OK, if so adds it to the
7373 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7374 * to the upper layer. If the checksum is wrong, it increments the Rx
7375 * packet error count, frees the SKB and returns error.
7376 * Return value:
7377 * SUCCESS on success and -1 on failure.
7379 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7381 struct s2io_nic *sp = ring_data->nic;
7382 struct net_device *dev = (struct net_device *)ring_data->dev;
7383 struct sk_buff *skb = (struct sk_buff *)
7384 ((unsigned long)rxdp->Host_Control);
7385 int ring_no = ring_data->ring_no;
7386 u16 l3_csum, l4_csum;
7387 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7388 struct lro *uninitialized_var(lro);
7389 u8 err_mask;
7390 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7392 skb->dev = dev;
7394 if (err) {
7395 /* Check for parity error */
7396 if (err & 0x1)
7397 swstats->parity_err_cnt++;
7399 err_mask = err >> 48;
7400 switch (err_mask) {
7401 case 1:
7402 swstats->rx_parity_err_cnt++;
7403 break;
7405 case 2:
7406 swstats->rx_abort_cnt++;
7407 break;
7409 case 3:
7410 swstats->rx_parity_abort_cnt++;
7411 break;
7413 case 4:
7414 swstats->rx_rda_fail_cnt++;
7415 break;
7417 case 5:
7418 swstats->rx_unkn_prot_cnt++;
7419 break;
7421 case 6:
7422 swstats->rx_fcs_err_cnt++;
7423 break;
7425 case 7:
7426 swstats->rx_buf_size_err_cnt++;
7427 break;
7429 case 8:
7430 swstats->rx_rxd_corrupt_cnt++;
7431 break;
7433 case 15:
7434 swstats->rx_unkn_err_cnt++;
7435 break;
7438 * Drop the packet if bad transfer code. Exception being
7439 * 0x5, which could be due to unsupported IPv6 extension header.
7440 * In this case, we let stack handle the packet.
7441 * Note that in this case, since checksum will be incorrect,
7442 * stack will validate the same.
7444 if (err_mask != 0x5) {
7445 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7446 dev->name, err_mask);
7447 dev->stats.rx_crc_errors++;
7448 swstats->mem_freed
7449 += skb->truesize;
7450 dev_kfree_skb(skb);
7451 ring_data->rx_bufs_left -= 1;
7452 rxdp->Host_Control = 0;
7453 return 0;
7457 /* Updating statistics */
7458 ring_data->rx_packets++;
7459 rxdp->Host_Control = 0;
7460 if (sp->rxd_mode == RXD_MODE_1) {
7461 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7463 ring_data->rx_bytes += len;
7464 skb_put(skb, len);
7466 } else if (sp->rxd_mode == RXD_MODE_3B) {
7467 int get_block = ring_data->rx_curr_get_info.block_index;
7468 int get_off = ring_data->rx_curr_get_info.offset;
7469 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7470 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7471 unsigned char *buff = skb_push(skb, buf0_len);
7473 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7474 ring_data->rx_bytes += buf0_len + buf2_len;
7475 memcpy(buff, ba->ba_0, buf0_len);
7476 skb_put(skb, buf2_len);
7479 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7480 ((!ring_data->lro) ||
7481 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7482 (sp->rx_csum)) {
7483 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7484 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7485 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7487 * NIC verifies if the Checksum of the received
7488 * frame is Ok or not and accordingly returns
7489 * a flag in the RxD.
7491 skb->ip_summed = CHECKSUM_UNNECESSARY;
7492 if (ring_data->lro) {
7493 u32 tcp_len;
7494 u8 *tcp;
7495 int ret = 0;
7497 ret = s2io_club_tcp_session(ring_data,
7498 skb->data, &tcp,
7499 &tcp_len, &lro,
7500 rxdp, sp);
7501 switch (ret) {
7502 case 3: /* Begin anew */
7503 lro->parent = skb;
7504 goto aggregate;
7505 case 1: /* Aggregate */
7506 lro_append_pkt(sp, lro, skb, tcp_len);
7507 goto aggregate;
7508 case 4: /* Flush session */
7509 lro_append_pkt(sp, lro, skb, tcp_len);
7510 queue_rx_frame(lro->parent,
7511 lro->vlan_tag);
7512 clear_lro_session(lro);
7513 swstats->flush_max_pkts++;
7514 goto aggregate;
7515 case 2: /* Flush both */
7516 lro->parent->data_len = lro->frags_len;
7517 swstats->sending_both++;
7518 queue_rx_frame(lro->parent,
7519 lro->vlan_tag);
7520 clear_lro_session(lro);
7521 goto send_up;
7522 case 0: /* sessions exceeded */
7523 case -1: /* non-TCP or not L2 aggregatable */
7524 case 5: /*
7525 * First pkt in session not
7526 * L3/L4 aggregatable
7528 break;
7529 default:
7530 DBG_PRINT(ERR_DBG,
7531 "%s: Samadhana!!\n",
7532 __func__);
7533 BUG();
7536 } else {
7538 * Packet with erroneous checksum, let the
7539 * upper layers deal with it.
7541 skb->ip_summed = CHECKSUM_NONE;
7543 } else
7544 skb->ip_summed = CHECKSUM_NONE;
7546 swstats->mem_freed += skb->truesize;
7547 send_up:
7548 skb_record_rx_queue(skb, ring_no);
7549 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7550 aggregate:
7551 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7552 return SUCCESS;
7556 * s2io_link - stops/starts the Tx queue.
7557 * @sp : private member of the device structure, which is a pointer to the
7558 * s2io_nic structure.
7559 * @link : inidicates whether link is UP/DOWN.
7560 * Description:
7561 * This function stops/starts the Tx queue depending on whether the link
7562 * status of the NIC is is down or up. This is called by the Alarm
7563 * interrupt handler whenever a link change interrupt comes up.
7564 * Return value:
7565 * void.
7568 static void s2io_link(struct s2io_nic *sp, int link)
7570 struct net_device *dev = (struct net_device *)sp->dev;
7571 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7573 if (link != sp->last_link_state) {
7574 init_tti(sp, link);
7575 if (link == LINK_DOWN) {
7576 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7577 s2io_stop_all_tx_queue(sp);
7578 netif_carrier_off(dev);
7579 if (swstats->link_up_cnt)
7580 swstats->link_up_time =
7581 jiffies - sp->start_time;
7582 swstats->link_down_cnt++;
7583 } else {
7584 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7585 if (swstats->link_down_cnt)
7586 swstats->link_down_time =
7587 jiffies - sp->start_time;
7588 swstats->link_up_cnt++;
7589 netif_carrier_on(dev);
7590 s2io_wake_all_tx_queue(sp);
7593 sp->last_link_state = link;
7594 sp->start_time = jiffies;
7598 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7599 * @sp : private member of the device structure, which is a pointer to the
7600 * s2io_nic structure.
7601 * Description:
7602 * This function initializes a few of the PCI and PCI-X configuration registers
7603 * with recommended values.
7604 * Return value:
7605 * void
7608 static void s2io_init_pci(struct s2io_nic *sp)
7610 u16 pci_cmd = 0, pcix_cmd = 0;
7612 /* Enable Data Parity Error Recovery in PCI-X command register. */
7613 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7614 &(pcix_cmd));
7615 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7616 (pcix_cmd | 1));
7617 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7618 &(pcix_cmd));
7620 /* Set the PErr Response bit in PCI command register. */
7621 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7622 pci_write_config_word(sp->pdev, PCI_COMMAND,
7623 (pci_cmd | PCI_COMMAND_PARITY));
7624 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7627 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7628 u8 *dev_multiq)
7630 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7631 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7632 "(%d) not supported\n", tx_fifo_num);
7634 if (tx_fifo_num < 1)
7635 tx_fifo_num = 1;
7636 else
7637 tx_fifo_num = MAX_TX_FIFOS;
7639 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7640 DBG_PRINT(ERR_DBG, "tx fifos\n");
7643 if (multiq)
7644 *dev_multiq = multiq;
7646 if (tx_steering_type && (1 == tx_fifo_num)) {
7647 if (tx_steering_type != TX_DEFAULT_STEERING)
7648 DBG_PRINT(ERR_DBG,
7649 "s2io: Tx steering is not supported with "
7650 "one fifo. Disabling Tx steering.\n");
7651 tx_steering_type = NO_STEERING;
7654 if ((tx_steering_type < NO_STEERING) ||
7655 (tx_steering_type > TX_DEFAULT_STEERING)) {
7656 DBG_PRINT(ERR_DBG,
7657 "s2io: Requested transmit steering not supported\n");
7658 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7659 tx_steering_type = NO_STEERING;
7662 if (rx_ring_num > MAX_RX_RINGS) {
7663 DBG_PRINT(ERR_DBG,
7664 "s2io: Requested number of rx rings not supported\n");
7665 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7666 MAX_RX_RINGS);
7667 rx_ring_num = MAX_RX_RINGS;
7670 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7671 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7672 "Defaulting to INTA\n");
7673 *dev_intr_type = INTA;
7676 if ((*dev_intr_type == MSI_X) &&
7677 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7678 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7679 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7680 "Defaulting to INTA\n");
7681 *dev_intr_type = INTA;
7684 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7685 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7686 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7687 rx_ring_mode = 1;
7689 return SUCCESS;
7693 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7694 * or Traffic class respectively.
7695 * @nic: device private variable
7696 * Description: The function configures the receive steering to
7697 * desired receive ring.
7698 * Return Value: SUCCESS on success and
7699 * '-1' on failure (endian settings incorrect).
7701 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7703 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7704 register u64 val64 = 0;
7706 if (ds_codepoint > 63)
7707 return FAILURE;
7709 val64 = RTS_DS_MEM_DATA(ring);
7710 writeq(val64, &bar0->rts_ds_mem_data);
7712 val64 = RTS_DS_MEM_CTRL_WE |
7713 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7714 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7716 writeq(val64, &bar0->rts_ds_mem_ctrl);
7718 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7719 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7720 S2IO_BIT_RESET);
7723 static const struct net_device_ops s2io_netdev_ops = {
7724 .ndo_open = s2io_open,
7725 .ndo_stop = s2io_close,
7726 .ndo_get_stats = s2io_get_stats,
7727 .ndo_start_xmit = s2io_xmit,
7728 .ndo_validate_addr = eth_validate_addr,
7729 .ndo_set_multicast_list = s2io_set_multicast,
7730 .ndo_do_ioctl = s2io_ioctl,
7731 .ndo_set_mac_address = s2io_set_mac_addr,
7732 .ndo_change_mtu = s2io_change_mtu,
7733 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7734 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7735 .ndo_tx_timeout = s2io_tx_watchdog,
7736 #ifdef CONFIG_NET_POLL_CONTROLLER
7737 .ndo_poll_controller = s2io_netpoll,
7738 #endif
7742 * s2io_init_nic - Initialization of the adapter .
7743 * @pdev : structure containing the PCI related information of the device.
7744 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7745 * Description:
7746 * The function initializes an adapter identified by the pci_dec structure.
7747 * All OS related initialization including memory and device structure and
7748 * initlaization of the device private variable is done. Also the swapper
7749 * control register is initialized to enable read and write into the I/O
7750 * registers of the device.
7751 * Return value:
7752 * returns 0 on success and negative on failure.
7755 static int __devinit
7756 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7758 struct s2io_nic *sp;
7759 struct net_device *dev;
7760 int i, j, ret;
7761 int dma_flag = false;
7762 u32 mac_up, mac_down;
7763 u64 val64 = 0, tmp64 = 0;
7764 struct XENA_dev_config __iomem *bar0 = NULL;
7765 u16 subid;
7766 struct config_param *config;
7767 struct mac_info *mac_control;
7768 int mode;
7769 u8 dev_intr_type = intr_type;
7770 u8 dev_multiq = 0;
7772 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7773 if (ret)
7774 return ret;
7776 ret = pci_enable_device(pdev);
7777 if (ret) {
7778 DBG_PRINT(ERR_DBG,
7779 "s2io_init_nic: pci_enable_device failed\n");
7780 return ret;
7783 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7784 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7785 dma_flag = true;
7786 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7787 DBG_PRINT(ERR_DBG,
7788 "Unable to obtain 64bit DMA "
7789 "for consistent allocations\n");
7790 pci_disable_device(pdev);
7791 return -ENOMEM;
7793 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7794 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7795 } else {
7796 pci_disable_device(pdev);
7797 return -ENOMEM;
7799 ret = pci_request_regions(pdev, s2io_driver_name);
7800 if (ret) {
7801 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n",
7802 __func__, ret);
7803 pci_disable_device(pdev);
7804 return -ENODEV;
7806 if (dev_multiq)
7807 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7808 else
7809 dev = alloc_etherdev(sizeof(struct s2io_nic));
7810 if (dev == NULL) {
7811 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7812 pci_disable_device(pdev);
7813 pci_release_regions(pdev);
7814 return -ENODEV;
7817 pci_set_master(pdev);
7818 pci_set_drvdata(pdev, dev);
7819 SET_NETDEV_DEV(dev, &pdev->dev);
7821 /* Private member variable initialized to s2io NIC structure */
7822 sp = netdev_priv(dev);
7823 memset(sp, 0, sizeof(struct s2io_nic));
7824 sp->dev = dev;
7825 sp->pdev = pdev;
7826 sp->high_dma_flag = dma_flag;
7827 sp->device_enabled_once = false;
7828 if (rx_ring_mode == 1)
7829 sp->rxd_mode = RXD_MODE_1;
7830 if (rx_ring_mode == 2)
7831 sp->rxd_mode = RXD_MODE_3B;
7833 sp->config.intr_type = dev_intr_type;
7835 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7836 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7837 sp->device_type = XFRAME_II_DEVICE;
7838 else
7839 sp->device_type = XFRAME_I_DEVICE;
7841 sp->lro = lro_enable;
7843 /* Initialize some PCI/PCI-X fields of the NIC. */
7844 s2io_init_pci(sp);
7847 * Setting the device configuration parameters.
7848 * Most of these parameters can be specified by the user during
7849 * module insertion as they are module loadable parameters. If
7850 * these parameters are not not specified during load time, they
7851 * are initialized with default values.
7853 config = &sp->config;
7854 mac_control = &sp->mac_control;
7856 config->napi = napi;
7857 config->tx_steering_type = tx_steering_type;
7859 /* Tx side parameters. */
7860 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7861 config->tx_fifo_num = MAX_TX_FIFOS;
7862 else
7863 config->tx_fifo_num = tx_fifo_num;
7865 /* Initialize the fifos used for tx steering */
7866 if (config->tx_fifo_num < 5) {
7867 if (config->tx_fifo_num == 1)
7868 sp->total_tcp_fifos = 1;
7869 else
7870 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7871 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7872 sp->total_udp_fifos = 1;
7873 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7874 } else {
7875 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7876 FIFO_OTHER_MAX_NUM);
7877 sp->udp_fifo_idx = sp->total_tcp_fifos;
7878 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7879 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7882 config->multiq = dev_multiq;
7883 for (i = 0; i < config->tx_fifo_num; i++) {
7884 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7886 tx_cfg->fifo_len = tx_fifo_len[i];
7887 tx_cfg->fifo_priority = i;
7890 /* mapping the QoS priority to the configured fifos */
7891 for (i = 0; i < MAX_TX_FIFOS; i++)
7892 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7894 /* map the hashing selector table to the configured fifos */
7895 for (i = 0; i < config->tx_fifo_num; i++)
7896 sp->fifo_selector[i] = fifo_selector[i];
7899 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7900 for (i = 0; i < config->tx_fifo_num; i++) {
7901 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7903 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7904 if (tx_cfg->fifo_len < 65) {
7905 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7906 break;
7909 /* + 2 because one Txd for skb->data and one Txd for UFO */
7910 config->max_txds = MAX_SKB_FRAGS + 2;
7912 /* Rx side parameters. */
7913 config->rx_ring_num = rx_ring_num;
7914 for (i = 0; i < config->rx_ring_num; i++) {
7915 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7916 struct ring_info *ring = &mac_control->rings[i];
7918 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7919 rx_cfg->ring_priority = i;
7920 ring->rx_bufs_left = 0;
7921 ring->rxd_mode = sp->rxd_mode;
7922 ring->rxd_count = rxd_count[sp->rxd_mode];
7923 ring->pdev = sp->pdev;
7924 ring->dev = sp->dev;
7927 for (i = 0; i < rx_ring_num; i++) {
7928 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7930 rx_cfg->ring_org = RING_ORG_BUFF1;
7931 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7934 /* Setting Mac Control parameters */
7935 mac_control->rmac_pause_time = rmac_pause_time;
7936 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7937 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7940 /* initialize the shared memory used by the NIC and the host */
7941 if (init_shared_mem(sp)) {
7942 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7943 ret = -ENOMEM;
7944 goto mem_alloc_failed;
7947 sp->bar0 = pci_ioremap_bar(pdev, 0);
7948 if (!sp->bar0) {
7949 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7950 dev->name);
7951 ret = -ENOMEM;
7952 goto bar0_remap_failed;
7955 sp->bar1 = pci_ioremap_bar(pdev, 2);
7956 if (!sp->bar1) {
7957 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7958 dev->name);
7959 ret = -ENOMEM;
7960 goto bar1_remap_failed;
7963 dev->irq = pdev->irq;
7964 dev->base_addr = (unsigned long)sp->bar0;
7966 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7967 for (j = 0; j < MAX_TX_FIFOS; j++) {
7968 mac_control->tx_FIFO_start[j] =
7969 (struct TxFIFO_element __iomem *)
7970 (sp->bar1 + (j * 0x00020000));
7973 /* Driver entry points */
7974 dev->netdev_ops = &s2io_netdev_ops;
7975 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7976 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7978 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7979 if (sp->high_dma_flag == true)
7980 dev->features |= NETIF_F_HIGHDMA;
7981 dev->features |= NETIF_F_TSO;
7982 dev->features |= NETIF_F_TSO6;
7983 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7984 dev->features |= NETIF_F_UFO;
7985 dev->features |= NETIF_F_HW_CSUM;
7987 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7988 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7989 INIT_WORK(&sp->set_link_task, s2io_set_link);
7991 pci_save_state(sp->pdev);
7993 /* Setting swapper control on the NIC, for proper reset operation */
7994 if (s2io_set_swapper(sp)) {
7995 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7996 dev->name);
7997 ret = -EAGAIN;
7998 goto set_swap_failed;
8001 /* Verify if the Herc works on the slot its placed into */
8002 if (sp->device_type & XFRAME_II_DEVICE) {
8003 mode = s2io_verify_pci_mode(sp);
8004 if (mode < 0) {
8005 DBG_PRINT(ERR_DBG, "%s: ", __func__);
8006 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8007 ret = -EBADSLT;
8008 goto set_swap_failed;
8012 if (sp->config.intr_type == MSI_X) {
8013 sp->num_entries = config->rx_ring_num + 1;
8014 ret = s2io_enable_msi_x(sp);
8016 if (!ret) {
8017 ret = s2io_test_msi(sp);
8018 /* rollback MSI-X, will re-enable during add_isr() */
8019 remove_msix_isr(sp);
8021 if (ret) {
8023 DBG_PRINT(ERR_DBG,
8024 "s2io: MSI-X requested but failed to enable\n");
8025 sp->config.intr_type = INTA;
8029 if (config->intr_type == MSI_X) {
8030 for (i = 0; i < config->rx_ring_num ; i++) {
8031 struct ring_info *ring = &mac_control->rings[i];
8033 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8035 } else {
8036 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8039 /* Not needed for Herc */
8040 if (sp->device_type & XFRAME_I_DEVICE) {
8042 * Fix for all "FFs" MAC address problems observed on
8043 * Alpha platforms
8045 fix_mac_address(sp);
8046 s2io_reset(sp);
8050 * MAC address initialization.
8051 * For now only one mac address will be read and used.
8053 bar0 = sp->bar0;
8054 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8055 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8056 writeq(val64, &bar0->rmac_addr_cmd_mem);
8057 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8058 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8059 S2IO_BIT_RESET);
8060 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8061 mac_down = (u32)tmp64;
8062 mac_up = (u32) (tmp64 >> 32);
8064 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8065 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8066 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8067 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8068 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8069 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8071 /* Set the factory defined MAC address initially */
8072 dev->addr_len = ETH_ALEN;
8073 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8074 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8076 /* initialize number of multicast & unicast MAC entries variables */
8077 if (sp->device_type == XFRAME_I_DEVICE) {
8078 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8079 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8080 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8081 } else if (sp->device_type == XFRAME_II_DEVICE) {
8082 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8083 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8084 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8087 /* store mac addresses from CAM to s2io_nic structure */
8088 do_s2io_store_unicast_mc(sp);
8090 /* Configure MSIX vector for number of rings configured plus one */
8091 if ((sp->device_type == XFRAME_II_DEVICE) &&
8092 (config->intr_type == MSI_X))
8093 sp->num_entries = config->rx_ring_num + 1;
8095 /* Store the values of the MSIX table in the s2io_nic structure */
8096 store_xmsi_data(sp);
8097 /* reset Nic and bring it to known state */
8098 s2io_reset(sp);
8101 * Initialize link state flags
8102 * and the card state parameter
8104 sp->state = 0;
8106 /* Initialize spinlocks */
8107 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8108 struct fifo_info *fifo = &mac_control->fifos[i];
8110 spin_lock_init(&fifo->tx_lock);
8114 * SXE-002: Configure link and activity LED to init state
8115 * on driver load.
8117 subid = sp->pdev->subsystem_device;
8118 if ((subid & 0xFF) >= 0x07) {
8119 val64 = readq(&bar0->gpio_control);
8120 val64 |= 0x0000800000000000ULL;
8121 writeq(val64, &bar0->gpio_control);
8122 val64 = 0x0411040400000000ULL;
8123 writeq(val64, (void __iomem *)bar0 + 0x2700);
8124 val64 = readq(&bar0->gpio_control);
8127 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8129 if (register_netdev(dev)) {
8130 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8131 ret = -ENODEV;
8132 goto register_failed;
8134 s2io_vpd_read(sp);
8135 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8136 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8137 sp->product_name, pdev->revision);
8138 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8139 s2io_driver_version);
8140 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8141 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8142 if (sp->device_type & XFRAME_II_DEVICE) {
8143 mode = s2io_print_pci_mode(sp);
8144 if (mode < 0) {
8145 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8146 ret = -EBADSLT;
8147 unregister_netdev(dev);
8148 goto set_swap_failed;
8151 switch (sp->rxd_mode) {
8152 case RXD_MODE_1:
8153 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8154 dev->name);
8155 break;
8156 case RXD_MODE_3B:
8157 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8158 dev->name);
8159 break;
8162 switch (sp->config.napi) {
8163 case 0:
8164 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8165 break;
8166 case 1:
8167 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8168 break;
8171 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8172 sp->config.tx_fifo_num);
8174 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8175 sp->config.rx_ring_num);
8177 switch (sp->config.intr_type) {
8178 case INTA:
8179 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8180 break;
8181 case MSI_X:
8182 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8183 break;
8185 if (sp->config.multiq) {
8186 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8187 struct fifo_info *fifo = &mac_control->fifos[i];
8189 fifo->multiq = config->multiq;
8191 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8192 dev->name);
8193 } else
8194 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8195 dev->name);
8197 switch (sp->config.tx_steering_type) {
8198 case NO_STEERING:
8199 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8200 dev->name);
8201 break;
8202 case TX_PRIORITY_STEERING:
8203 DBG_PRINT(ERR_DBG,
8204 "%s: Priority steering enabled for transmit\n",
8205 dev->name);
8206 break;
8207 case TX_DEFAULT_STEERING:
8208 DBG_PRINT(ERR_DBG,
8209 "%s: Default steering enabled for transmit\n",
8210 dev->name);
8213 if (sp->lro)
8214 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8215 dev->name);
8216 if (ufo)
8217 DBG_PRINT(ERR_DBG,
8218 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8219 dev->name);
8220 /* Initialize device name */
8221 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8223 if (vlan_tag_strip)
8224 sp->vlan_strip_flag = 1;
8225 else
8226 sp->vlan_strip_flag = 0;
8229 * Make Link state as off at this point, when the Link change
8230 * interrupt comes the state will be automatically changed to
8231 * the right state.
8233 netif_carrier_off(dev);
8235 return 0;
8237 register_failed:
8238 set_swap_failed:
8239 iounmap(sp->bar1);
8240 bar1_remap_failed:
8241 iounmap(sp->bar0);
8242 bar0_remap_failed:
8243 mem_alloc_failed:
8244 free_shared_mem(sp);
8245 pci_disable_device(pdev);
8246 pci_release_regions(pdev);
8247 pci_set_drvdata(pdev, NULL);
8248 free_netdev(dev);
8250 return ret;
8254 * s2io_rem_nic - Free the PCI device
8255 * @pdev: structure containing the PCI related information of the device.
8256 * Description: This function is called by the Pci subsystem to release a
8257 * PCI device and free up all resource held up by the device. This could
8258 * be in response to a Hot plug event or when the driver is to be removed
8259 * from memory.
8262 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8264 struct net_device *dev =
8265 (struct net_device *)pci_get_drvdata(pdev);
8266 struct s2io_nic *sp;
8268 if (dev == NULL) {
8269 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8270 return;
8273 flush_scheduled_work();
8275 sp = netdev_priv(dev);
8276 unregister_netdev(dev);
8278 free_shared_mem(sp);
8279 iounmap(sp->bar0);
8280 iounmap(sp->bar1);
8281 pci_release_regions(pdev);
8282 pci_set_drvdata(pdev, NULL);
8283 free_netdev(dev);
8284 pci_disable_device(pdev);
8288 * s2io_starter - Entry point for the driver
8289 * Description: This function is the entry point for the driver. It verifies
8290 * the module loadable parameters and initializes PCI configuration space.
8293 static int __init s2io_starter(void)
8295 return pci_register_driver(&s2io_driver);
8299 * s2io_closer - Cleanup routine for the driver
8300 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8303 static __exit void s2io_closer(void)
8305 pci_unregister_driver(&s2io_driver);
8306 DBG_PRINT(INIT_DBG, "cleanup done\n");
8309 module_init(s2io_starter);
8310 module_exit(s2io_closer);
8312 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8313 struct tcphdr **tcp, struct RxD_t *rxdp,
8314 struct s2io_nic *sp)
8316 int ip_off;
8317 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8319 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8320 DBG_PRINT(INIT_DBG,
8321 "%s: Non-TCP frames not supported for LRO\n",
8322 __func__);
8323 return -1;
8326 /* Checking for DIX type or DIX type with VLAN */
8327 if ((l2_type == 0) || (l2_type == 4)) {
8328 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8330 * If vlan stripping is disabled and the frame is VLAN tagged,
8331 * shift the offset by the VLAN header size bytes.
8333 if ((!sp->vlan_strip_flag) &&
8334 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8335 ip_off += HEADER_VLAN_SIZE;
8336 } else {
8337 /* LLC, SNAP etc are considered non-mergeable */
8338 return -1;
8341 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8342 ip_len = (u8)((*ip)->ihl);
8343 ip_len <<= 2;
8344 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8346 return 0;
8349 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8350 struct tcphdr *tcp)
8352 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8353 if ((lro->iph->saddr != ip->saddr) ||
8354 (lro->iph->daddr != ip->daddr) ||
8355 (lro->tcph->source != tcp->source) ||
8356 (lro->tcph->dest != tcp->dest))
8357 return -1;
8358 return 0;
8361 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8363 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8366 static void initiate_new_session(struct lro *lro, u8 *l2h,
8367 struct iphdr *ip, struct tcphdr *tcp,
8368 u32 tcp_pyld_len, u16 vlan_tag)
8370 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8371 lro->l2h = l2h;
8372 lro->iph = ip;
8373 lro->tcph = tcp;
8374 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8375 lro->tcp_ack = tcp->ack_seq;
8376 lro->sg_num = 1;
8377 lro->total_len = ntohs(ip->tot_len);
8378 lro->frags_len = 0;
8379 lro->vlan_tag = vlan_tag;
8381 * Check if we saw TCP timestamp.
8382 * Other consistency checks have already been done.
8384 if (tcp->doff == 8) {
8385 __be32 *ptr;
8386 ptr = (__be32 *)(tcp+1);
8387 lro->saw_ts = 1;
8388 lro->cur_tsval = ntohl(*(ptr+1));
8389 lro->cur_tsecr = *(ptr+2);
8391 lro->in_use = 1;
8394 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8396 struct iphdr *ip = lro->iph;
8397 struct tcphdr *tcp = lro->tcph;
8398 __sum16 nchk;
8399 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8401 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8403 /* Update L3 header */
8404 ip->tot_len = htons(lro->total_len);
8405 ip->check = 0;
8406 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8407 ip->check = nchk;
8409 /* Update L4 header */
8410 tcp->ack_seq = lro->tcp_ack;
8411 tcp->window = lro->window;
8413 /* Update tsecr field if this session has timestamps enabled */
8414 if (lro->saw_ts) {
8415 __be32 *ptr = (__be32 *)(tcp + 1);
8416 *(ptr+2) = lro->cur_tsecr;
8419 /* Update counters required for calculation of
8420 * average no. of packets aggregated.
8422 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8423 swstats->num_aggregations++;
8426 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8427 struct tcphdr *tcp, u32 l4_pyld)
8429 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8430 lro->total_len += l4_pyld;
8431 lro->frags_len += l4_pyld;
8432 lro->tcp_next_seq += l4_pyld;
8433 lro->sg_num++;
8435 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8436 lro->tcp_ack = tcp->ack_seq;
8437 lro->window = tcp->window;
8439 if (lro->saw_ts) {
8440 __be32 *ptr;
8441 /* Update tsecr and tsval from this packet */
8442 ptr = (__be32 *)(tcp+1);
8443 lro->cur_tsval = ntohl(*(ptr+1));
8444 lro->cur_tsecr = *(ptr + 2);
8448 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8449 struct tcphdr *tcp, u32 tcp_pyld_len)
8451 u8 *ptr;
8453 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8455 if (!tcp_pyld_len) {
8456 /* Runt frame or a pure ack */
8457 return -1;
8460 if (ip->ihl != 5) /* IP has options */
8461 return -1;
8463 /* If we see CE codepoint in IP header, packet is not mergeable */
8464 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8465 return -1;
8467 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8468 if (tcp->urg || tcp->psh || tcp->rst ||
8469 tcp->syn || tcp->fin ||
8470 tcp->ece || tcp->cwr || !tcp->ack) {
8472 * Currently recognize only the ack control word and
8473 * any other control field being set would result in
8474 * flushing the LRO session
8476 return -1;
8480 * Allow only one TCP timestamp option. Don't aggregate if
8481 * any other options are detected.
8483 if (tcp->doff != 5 && tcp->doff != 8)
8484 return -1;
8486 if (tcp->doff == 8) {
8487 ptr = (u8 *)(tcp + 1);
8488 while (*ptr == TCPOPT_NOP)
8489 ptr++;
8490 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8491 return -1;
8493 /* Ensure timestamp value increases monotonically */
8494 if (l_lro)
8495 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8496 return -1;
8498 /* timestamp echo reply should be non-zero */
8499 if (*((__be32 *)(ptr+6)) == 0)
8500 return -1;
8503 return 0;
8506 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8507 u8 **tcp, u32 *tcp_len, struct lro **lro,
8508 struct RxD_t *rxdp, struct s2io_nic *sp)
8510 struct iphdr *ip;
8511 struct tcphdr *tcph;
8512 int ret = 0, i;
8513 u16 vlan_tag = 0;
8514 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8516 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8517 rxdp, sp);
8518 if (ret)
8519 return ret;
8521 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8523 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8524 tcph = (struct tcphdr *)*tcp;
8525 *tcp_len = get_l4_pyld_length(ip, tcph);
8526 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8527 struct lro *l_lro = &ring_data->lro0_n[i];
8528 if (l_lro->in_use) {
8529 if (check_for_socket_match(l_lro, ip, tcph))
8530 continue;
8531 /* Sock pair matched */
8532 *lro = l_lro;
8534 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8535 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8536 "0x%x, actual 0x%x\n", __func__,
8537 (*lro)->tcp_next_seq,
8538 ntohl(tcph->seq));
8540 swstats->outof_sequence_pkts++;
8541 ret = 2;
8542 break;
8545 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8546 *tcp_len))
8547 ret = 1; /* Aggregate */
8548 else
8549 ret = 2; /* Flush both */
8550 break;
8554 if (ret == 0) {
8555 /* Before searching for available LRO objects,
8556 * check if the pkt is L3/L4 aggregatable. If not
8557 * don't create new LRO session. Just send this
8558 * packet up.
8560 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8561 return 5;
8563 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8564 struct lro *l_lro = &ring_data->lro0_n[i];
8565 if (!(l_lro->in_use)) {
8566 *lro = l_lro;
8567 ret = 3; /* Begin anew */
8568 break;
8573 if (ret == 0) { /* sessions exceeded */
8574 DBG_PRINT(INFO_DBG, "%s:All LRO sessions already in use\n",
8575 __func__);
8576 *lro = NULL;
8577 return ret;
8580 switch (ret) {
8581 case 3:
8582 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8583 vlan_tag);
8584 break;
8585 case 2:
8586 update_L3L4_header(sp, *lro);
8587 break;
8588 case 1:
8589 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8590 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8591 update_L3L4_header(sp, *lro);
8592 ret = 4; /* Flush the LRO */
8594 break;
8595 default:
8596 DBG_PRINT(ERR_DBG, "%s:Dont know, can't say!!\n", __func__);
8597 break;
8600 return ret;
8603 static void clear_lro_session(struct lro *lro)
8605 static u16 lro_struct_size = sizeof(struct lro);
8607 memset(lro, 0, lro_struct_size);
8610 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8612 struct net_device *dev = skb->dev;
8613 struct s2io_nic *sp = netdev_priv(dev);
8615 skb->protocol = eth_type_trans(skb, dev);
8616 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8617 /* Queueing the vlan frame to the upper layer */
8618 if (sp->config.napi)
8619 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8620 else
8621 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8622 } else {
8623 if (sp->config.napi)
8624 netif_receive_skb(skb);
8625 else
8626 netif_rx(skb);
8630 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8631 struct sk_buff *skb, u32 tcp_len)
8633 struct sk_buff *first = lro->parent;
8634 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8636 first->len += tcp_len;
8637 first->data_len = lro->frags_len;
8638 skb_pull(skb, (skb->len - tcp_len));
8639 if (skb_shinfo(first)->frag_list)
8640 lro->last_frag->next = skb;
8641 else
8642 skb_shinfo(first)->frag_list = skb;
8643 first->truesize += skb->truesize;
8644 lro->last_frag = skb;
8645 swstats->clubbed_frms_cnt++;
8646 return;
8650 * s2io_io_error_detected - called when PCI error is detected
8651 * @pdev: Pointer to PCI device
8652 * @state: The current pci connection state
8654 * This function is called after a PCI bus error affecting
8655 * this device has been detected.
8657 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8658 pci_channel_state_t state)
8660 struct net_device *netdev = pci_get_drvdata(pdev);
8661 struct s2io_nic *sp = netdev_priv(netdev);
8663 netif_device_detach(netdev);
8665 if (state == pci_channel_io_perm_failure)
8666 return PCI_ERS_RESULT_DISCONNECT;
8668 if (netif_running(netdev)) {
8669 /* Bring down the card, while avoiding PCI I/O */
8670 do_s2io_card_down(sp, 0);
8672 pci_disable_device(pdev);
8674 return PCI_ERS_RESULT_NEED_RESET;
8678 * s2io_io_slot_reset - called after the pci bus has been reset.
8679 * @pdev: Pointer to PCI device
8681 * Restart the card from scratch, as if from a cold-boot.
8682 * At this point, the card has exprienced a hard reset,
8683 * followed by fixups by BIOS, and has its config space
8684 * set up identically to what it was at cold boot.
8686 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8688 struct net_device *netdev = pci_get_drvdata(pdev);
8689 struct s2io_nic *sp = netdev_priv(netdev);
8691 if (pci_enable_device(pdev)) {
8692 pr_err("Cannot re-enable PCI device after reset.\n");
8693 return PCI_ERS_RESULT_DISCONNECT;
8696 pci_set_master(pdev);
8697 s2io_reset(sp);
8699 return PCI_ERS_RESULT_RECOVERED;
8703 * s2io_io_resume - called when traffic can start flowing again.
8704 * @pdev: Pointer to PCI device
8706 * This callback is called when the error recovery driver tells
8707 * us that its OK to resume normal operation.
8709 static void s2io_io_resume(struct pci_dev *pdev)
8711 struct net_device *netdev = pci_get_drvdata(pdev);
8712 struct s2io_nic *sp = netdev_priv(netdev);
8714 if (netif_running(netdev)) {
8715 if (s2io_card_up(sp)) {
8716 pr_err("Can't bring device back up after reset.\n");
8717 return;
8720 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8721 s2io_card_down(sp);
8722 pr_err("Can't restore mac addr after reset.\n");
8723 return;
8727 netif_device_attach(netdev);
8728 netif_tx_wake_all_queues(netdev);