DMAENGINE: ste_dma40: fix resource leaks in error paths.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / ste_dma40.c
blobc07d989f26d742b5eec855cdf89418e258dc4acb
1 /*
2 * Copyright (C) ST-Ericsson SA 2007-2010
3 * Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson
4 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
5 * License terms: GNU General Public License (GPL) version 2
6 */
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/dmaengine.h>
11 #include <linux/platform_device.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/err.h>
16 #include <plat/ste_dma40.h>
18 #include "ste_dma40_ll.h"
20 #define D40_NAME "dma40"
22 #define D40_PHY_CHAN -1
24 /* For masking out/in 2 bit channel positions */
25 #define D40_CHAN_POS(chan) (2 * (chan / 2))
26 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28 /* Maximum iterations taken before giving up suspending a channel */
29 #define D40_SUSPEND_MAX_IT 500
31 /* Hardware requirement on LCLA alignment */
32 #define LCLA_ALIGNMENT 0x40000
34 /* Max number of links per event group */
35 #define D40_LCLA_LINK_PER_EVENT_GRP 128
36 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38 /* Attempts before giving up to trying to get pages that are aligned */
39 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41 /* Bit markings for allocation map */
42 #define D40_ALLOC_FREE (1 << 31)
43 #define D40_ALLOC_PHY (1 << 30)
44 #define D40_ALLOC_LOG_FREE 0
46 /* Hardware designer of the block */
47 #define D40_HW_DESIGNER 0x8
49 /**
50 * enum 40_command - The different commands and/or statuses.
52 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57 enum d40_command {
58 D40_DMA_STOP = 0,
59 D40_DMA_RUN = 1,
60 D40_DMA_SUSPEND_REQ = 2,
61 D40_DMA_SUSPENDED = 3
64 /**
65 * struct d40_lli_pool - Structure for keeping LLIs in memory
67 * @base: Pointer to memory area when the pre_alloc_lli's are not large
68 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69 * pre_alloc_lli is used.
70 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
71 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
72 * one buffer to one buffer.
74 struct d40_lli_pool {
75 void *base;
76 int size;
77 /* Space for dst and src, plus an extra for padding */
78 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
81 /**
82 * struct d40_desc - A descriptor is one DMA job.
84 * @lli_phy: LLI settings for physical channel. Both src and dst=
85 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
86 * lli_len equals one.
87 * @lli_log: Same as above but for logical channels.
88 * @lli_pool: The pool with two entries pre-allocated.
89 * @lli_len: Number of llis of current descriptor.
90 * @lli_current: Number of transfered llis.
91 * @lcla_alloc: Number of LCLA entries allocated.
92 * @txd: DMA engine struct. Used for among other things for communication
93 * during a transfer.
94 * @node: List entry.
95 * @is_in_client_list: true if the client owns this descriptor.
96 * @is_hw_linked: true if this job will automatically be continued for
97 * the previous one.
99 * This descriptor is used for both logical and physical transfers.
101 struct d40_desc {
102 /* LLI physical */
103 struct d40_phy_lli_bidir lli_phy;
104 /* LLI logical */
105 struct d40_log_lli_bidir lli_log;
107 struct d40_lli_pool lli_pool;
108 int lli_len;
109 int lli_current;
110 int lcla_alloc;
112 struct dma_async_tx_descriptor txd;
113 struct list_head node;
115 bool is_in_client_list;
116 bool is_hw_linked;
120 * struct d40_lcla_pool - LCLA pool settings and data.
122 * @base: The virtual address of LCLA. 18 bit aligned.
123 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
124 * This pointer is only there for clean-up on error.
125 * @pages: The number of pages needed for all physical channels.
126 * Only used later for clean-up on error
127 * @lock: Lock to protect the content in this struct.
128 * @alloc_map: big map over which LCLA entry is own by which job.
130 struct d40_lcla_pool {
131 void *base;
132 void *base_unaligned;
133 int pages;
134 spinlock_t lock;
135 struct d40_desc **alloc_map;
139 * struct d40_phy_res - struct for handling eventlines mapped to physical
140 * channels.
142 * @lock: A lock protection this entity.
143 * @num: The physical channel number of this entity.
144 * @allocated_src: Bit mapped to show which src event line's are mapped to
145 * this physical channel. Can also be free or physically allocated.
146 * @allocated_dst: Same as for src but is dst.
147 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
148 * event line number.
150 struct d40_phy_res {
151 spinlock_t lock;
152 int num;
153 u32 allocated_src;
154 u32 allocated_dst;
157 struct d40_base;
160 * struct d40_chan - Struct that describes a channel.
162 * @lock: A spinlock to protect this struct.
163 * @log_num: The logical number, if any of this channel.
164 * @completed: Starts with 1, after first interrupt it is set to dma engine's
165 * current cookie.
166 * @pending_tx: The number of pending transfers. Used between interrupt handler
167 * and tasklet.
168 * @busy: Set to true when transfer is ongoing on this channel.
169 * @phy_chan: Pointer to physical channel which this instance runs on. If this
170 * point is NULL, then the channel is not allocated.
171 * @chan: DMA engine handle.
172 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
173 * transfer and call client callback.
174 * @client: Cliented owned descriptor list.
175 * @active: Active descriptor.
176 * @queue: Queued jobs.
177 * @dma_cfg: The client configuration of this dma channel.
178 * @base: Pointer to the device instance struct.
179 * @src_def_cfg: Default cfg register setting for src.
180 * @dst_def_cfg: Default cfg register setting for dst.
181 * @log_def: Default logical channel settings.
182 * @lcla: Space for one dst src pair for logical channel transfers.
183 * @lcpa: Pointer to dst and src lcpa settings.
185 * This struct can either "be" a logical or a physical channel.
187 struct d40_chan {
188 spinlock_t lock;
189 int log_num;
190 /* ID of the most recent completed transfer */
191 int completed;
192 int pending_tx;
193 bool busy;
194 struct d40_phy_res *phy_chan;
195 struct dma_chan chan;
196 struct tasklet_struct tasklet;
197 struct list_head client;
198 struct list_head active;
199 struct list_head queue;
200 struct stedma40_chan_cfg dma_cfg;
201 struct d40_base *base;
202 /* Default register configurations */
203 u32 src_def_cfg;
204 u32 dst_def_cfg;
205 struct d40_def_lcsp log_def;
206 struct d40_log_lli_full *lcpa;
207 /* Runtime reconfiguration */
208 dma_addr_t runtime_addr;
209 enum dma_data_direction runtime_direction;
213 * struct d40_base - The big global struct, one for each probe'd instance.
215 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
216 * @execmd_lock: Lock for execute command usage since several channels share
217 * the same physical register.
218 * @dev: The device structure.
219 * @virtbase: The virtual base address of the DMA's register.
220 * @rev: silicon revision detected.
221 * @clk: Pointer to the DMA clock structure.
222 * @phy_start: Physical memory start of the DMA registers.
223 * @phy_size: Size of the DMA register map.
224 * @irq: The IRQ number.
225 * @num_phy_chans: The number of physical channels. Read from HW. This
226 * is the number of available channels for this driver, not counting "Secure
227 * mode" allocated physical channels.
228 * @num_log_chans: The number of logical channels. Calculated from
229 * num_phy_chans.
230 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
231 * @dma_slave: dma_device channels that can do only do slave transfers.
232 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
233 * @log_chans: Room for all possible logical channels in system.
234 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
235 * to log_chans entries.
236 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
237 * to phy_chans entries.
238 * @plat_data: Pointer to provided platform_data which is the driver
239 * configuration.
240 * @phy_res: Vector containing all physical channels.
241 * @lcla_pool: lcla pool settings and data.
242 * @lcpa_base: The virtual mapped address of LCPA.
243 * @phy_lcpa: The physical address of the LCPA.
244 * @lcpa_size: The size of the LCPA area.
245 * @desc_slab: cache for descriptors.
247 struct d40_base {
248 spinlock_t interrupt_lock;
249 spinlock_t execmd_lock;
250 struct device *dev;
251 void __iomem *virtbase;
252 u8 rev:4;
253 struct clk *clk;
254 phys_addr_t phy_start;
255 resource_size_t phy_size;
256 int irq;
257 int num_phy_chans;
258 int num_log_chans;
259 struct dma_device dma_both;
260 struct dma_device dma_slave;
261 struct dma_device dma_memcpy;
262 struct d40_chan *phy_chans;
263 struct d40_chan *log_chans;
264 struct d40_chan **lookup_log_chans;
265 struct d40_chan **lookup_phy_chans;
266 struct stedma40_platform_data *plat_data;
267 /* Physical half channels */
268 struct d40_phy_res *phy_res;
269 struct d40_lcla_pool lcla_pool;
270 void *lcpa_base;
271 dma_addr_t phy_lcpa;
272 resource_size_t lcpa_size;
273 struct kmem_cache *desc_slab;
277 * struct d40_interrupt_lookup - lookup table for interrupt handler
279 * @src: Interrupt mask register.
280 * @clr: Interrupt clear register.
281 * @is_error: true if this is an error interrupt.
282 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
283 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
285 struct d40_interrupt_lookup {
286 u32 src;
287 u32 clr;
288 bool is_error;
289 int offset;
293 * struct d40_reg_val - simple lookup struct
295 * @reg: The register.
296 * @val: The value that belongs to the register in reg.
298 struct d40_reg_val {
299 unsigned int reg;
300 unsigned int val;
303 static int d40_pool_lli_alloc(struct d40_desc *d40d,
304 int lli_len, bool is_log)
306 u32 align;
307 void *base;
309 if (is_log)
310 align = sizeof(struct d40_log_lli);
311 else
312 align = sizeof(struct d40_phy_lli);
314 if (lli_len == 1) {
315 base = d40d->lli_pool.pre_alloc_lli;
316 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
317 d40d->lli_pool.base = NULL;
318 } else {
319 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
321 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
322 d40d->lli_pool.base = base;
324 if (d40d->lli_pool.base == NULL)
325 return -ENOMEM;
328 if (is_log) {
329 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
330 align);
331 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
332 align);
333 } else {
334 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
335 align);
336 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
337 align);
340 return 0;
343 static void d40_pool_lli_free(struct d40_desc *d40d)
345 kfree(d40d->lli_pool.base);
346 d40d->lli_pool.base = NULL;
347 d40d->lli_pool.size = 0;
348 d40d->lli_log.src = NULL;
349 d40d->lli_log.dst = NULL;
350 d40d->lli_phy.src = NULL;
351 d40d->lli_phy.dst = NULL;
354 static int d40_lcla_alloc_one(struct d40_chan *d40c,
355 struct d40_desc *d40d)
357 unsigned long flags;
358 int i;
359 int ret = -EINVAL;
360 int p;
362 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
364 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
367 * Allocate both src and dst at the same time, therefore the half
368 * start on 1 since 0 can't be used since zero is used as end marker.
370 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
371 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
372 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
373 d40d->lcla_alloc++;
374 ret = i;
375 break;
379 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
381 return ret;
384 static int d40_lcla_free_all(struct d40_chan *d40c,
385 struct d40_desc *d40d)
387 unsigned long flags;
388 int i;
389 int ret = -EINVAL;
391 if (d40c->log_num == D40_PHY_CHAN)
392 return 0;
394 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
396 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
397 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
398 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
399 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
400 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
401 d40d->lcla_alloc--;
402 if (d40d->lcla_alloc == 0) {
403 ret = 0;
404 break;
409 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
411 return ret;
415 static void d40_desc_remove(struct d40_desc *d40d)
417 list_del(&d40d->node);
420 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
422 struct d40_desc *desc = NULL;
424 if (!list_empty(&d40c->client)) {
425 struct d40_desc *d;
426 struct d40_desc *_d;
428 list_for_each_entry_safe(d, _d, &d40c->client, node)
429 if (async_tx_test_ack(&d->txd)) {
430 d40_pool_lli_free(d);
431 d40_desc_remove(d);
432 desc = d;
433 memset(desc, 0, sizeof(*desc));
434 break;
438 if (!desc)
439 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
441 if (desc)
442 INIT_LIST_HEAD(&desc->node);
444 return desc;
447 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
450 d40_lcla_free_all(d40c, d40d);
451 kmem_cache_free(d40c->base->desc_slab, d40d);
454 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
456 list_add_tail(&desc->node, &d40c->active);
459 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
461 int curr_lcla = -EINVAL, next_lcla;
463 if (d40c->log_num == D40_PHY_CHAN) {
464 d40_phy_lli_write(d40c->base->virtbase,
465 d40c->phy_chan->num,
466 d40d->lli_phy.dst,
467 d40d->lli_phy.src);
468 d40d->lli_current = d40d->lli_len;
469 } else {
471 if ((d40d->lli_len - d40d->lli_current) > 1)
472 curr_lcla = d40_lcla_alloc_one(d40c, d40d);
474 d40_log_lli_lcpa_write(d40c->lcpa,
475 &d40d->lli_log.dst[d40d->lli_current],
476 &d40d->lli_log.src[d40d->lli_current],
477 curr_lcla);
479 d40d->lli_current++;
480 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
481 struct d40_log_lli *lcla;
483 if (d40d->lli_current + 1 < d40d->lli_len)
484 next_lcla = d40_lcla_alloc_one(d40c, d40d);
485 else
486 next_lcla = -EINVAL;
488 lcla = d40c->base->lcla_pool.base +
489 d40c->phy_chan->num * 1024 +
490 8 * curr_lcla * 2;
492 d40_log_lli_lcla_write(lcla,
493 &d40d->lli_log.dst[d40d->lli_current],
494 &d40d->lli_log.src[d40d->lli_current],
495 next_lcla);
497 (void) dma_map_single(d40c->base->dev, lcla,
498 2 * sizeof(struct d40_log_lli),
499 DMA_TO_DEVICE);
501 curr_lcla = next_lcla;
503 if (curr_lcla == -EINVAL) {
504 d40d->lli_current++;
505 break;
512 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
514 struct d40_desc *d;
516 if (list_empty(&d40c->active))
517 return NULL;
519 d = list_first_entry(&d40c->active,
520 struct d40_desc,
521 node);
522 return d;
525 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
527 list_add_tail(&desc->node, &d40c->queue);
530 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
532 struct d40_desc *d;
534 if (list_empty(&d40c->queue))
535 return NULL;
537 d = list_first_entry(&d40c->queue,
538 struct d40_desc,
539 node);
540 return d;
543 static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
545 struct d40_desc *d;
547 if (list_empty(&d40c->queue))
548 return NULL;
549 list_for_each_entry(d, &d40c->queue, node)
550 if (list_is_last(&d->node, &d40c->queue))
551 break;
552 return d;
555 /* Support functions for logical channels */
558 static int d40_channel_execute_command(struct d40_chan *d40c,
559 enum d40_command command)
561 u32 status;
562 int i;
563 void __iomem *active_reg;
564 int ret = 0;
565 unsigned long flags;
566 u32 wmask;
568 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
570 if (d40c->phy_chan->num % 2 == 0)
571 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
572 else
573 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
575 if (command == D40_DMA_SUSPEND_REQ) {
576 status = (readl(active_reg) &
577 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
578 D40_CHAN_POS(d40c->phy_chan->num);
580 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
581 goto done;
584 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
585 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
586 active_reg);
588 if (command == D40_DMA_SUSPEND_REQ) {
590 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
591 status = (readl(active_reg) &
592 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
593 D40_CHAN_POS(d40c->phy_chan->num);
595 cpu_relax();
597 * Reduce the number of bus accesses while
598 * waiting for the DMA to suspend.
600 udelay(3);
602 if (status == D40_DMA_STOP ||
603 status == D40_DMA_SUSPENDED)
604 break;
607 if (i == D40_SUSPEND_MAX_IT) {
608 dev_err(&d40c->chan.dev->device,
609 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
610 __func__, d40c->phy_chan->num, d40c->log_num,
611 status);
612 dump_stack();
613 ret = -EBUSY;
617 done:
618 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
619 return ret;
622 static void d40_term_all(struct d40_chan *d40c)
624 struct d40_desc *d40d;
626 /* Release active descriptors */
627 while ((d40d = d40_first_active_get(d40c))) {
628 d40_desc_remove(d40d);
629 d40_desc_free(d40c, d40d);
632 /* Release queued descriptors waiting for transfer */
633 while ((d40d = d40_first_queued(d40c))) {
634 d40_desc_remove(d40d);
635 d40_desc_free(d40c, d40d);
639 d40c->pending_tx = 0;
640 d40c->busy = false;
643 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
645 u32 val;
646 unsigned long flags;
648 /* Notice, that disable requires the physical channel to be stopped */
649 if (do_enable)
650 val = D40_ACTIVATE_EVENTLINE;
651 else
652 val = D40_DEACTIVATE_EVENTLINE;
654 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
656 /* Enable event line connected to device (or memcpy) */
657 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
658 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
659 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
661 writel((val << D40_EVENTLINE_POS(event)) |
662 ~D40_EVENTLINE_MASK(event),
663 d40c->base->virtbase + D40_DREG_PCBASE +
664 d40c->phy_chan->num * D40_DREG_PCDELTA +
665 D40_CHAN_REG_SSLNK);
667 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
668 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
670 writel((val << D40_EVENTLINE_POS(event)) |
671 ~D40_EVENTLINE_MASK(event),
672 d40c->base->virtbase + D40_DREG_PCBASE +
673 d40c->phy_chan->num * D40_DREG_PCDELTA +
674 D40_CHAN_REG_SDLNK);
677 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
680 static u32 d40_chan_has_events(struct d40_chan *d40c)
682 u32 val;
684 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
685 d40c->phy_chan->num * D40_DREG_PCDELTA +
686 D40_CHAN_REG_SSLNK);
688 val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
689 d40c->phy_chan->num * D40_DREG_PCDELTA +
690 D40_CHAN_REG_SDLNK);
691 return val;
694 static void d40_config_write(struct d40_chan *d40c)
696 u32 addr_base;
697 u32 var;
699 /* Odd addresses are even addresses + 4 */
700 addr_base = (d40c->phy_chan->num % 2) * 4;
701 /* Setup channel mode to logical or physical */
702 var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
703 D40_CHAN_POS(d40c->phy_chan->num);
704 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
706 /* Setup operational mode option register */
707 var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
708 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
710 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
712 if (d40c->log_num != D40_PHY_CHAN) {
713 /* Set default config for CFG reg */
714 writel(d40c->src_def_cfg,
715 d40c->base->virtbase + D40_DREG_PCBASE +
716 d40c->phy_chan->num * D40_DREG_PCDELTA +
717 D40_CHAN_REG_SSCFG);
718 writel(d40c->dst_def_cfg,
719 d40c->base->virtbase + D40_DREG_PCBASE +
720 d40c->phy_chan->num * D40_DREG_PCDELTA +
721 D40_CHAN_REG_SDCFG);
723 /* Set LIDX for lcla */
724 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
725 D40_SREG_ELEM_LOG_LIDX_MASK,
726 d40c->base->virtbase + D40_DREG_PCBASE +
727 d40c->phy_chan->num * D40_DREG_PCDELTA +
728 D40_CHAN_REG_SDELT);
730 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
731 D40_SREG_ELEM_LOG_LIDX_MASK,
732 d40c->base->virtbase + D40_DREG_PCBASE +
733 d40c->phy_chan->num * D40_DREG_PCDELTA +
734 D40_CHAN_REG_SSELT);
739 static u32 d40_residue(struct d40_chan *d40c)
741 u32 num_elt;
743 if (d40c->log_num != D40_PHY_CHAN)
744 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
745 >> D40_MEM_LCSP2_ECNT_POS;
746 else
747 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
748 d40c->phy_chan->num * D40_DREG_PCDELTA +
749 D40_CHAN_REG_SDELT) &
750 D40_SREG_ELEM_PHY_ECNT_MASK) >>
751 D40_SREG_ELEM_PHY_ECNT_POS;
752 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
755 static bool d40_tx_is_linked(struct d40_chan *d40c)
757 bool is_link;
759 if (d40c->log_num != D40_PHY_CHAN)
760 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
761 else
762 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
763 d40c->phy_chan->num * D40_DREG_PCDELTA +
764 D40_CHAN_REG_SDLNK) &
765 D40_SREG_LNK_PHYS_LNK_MASK;
766 return is_link;
769 static int d40_pause(struct dma_chan *chan)
771 struct d40_chan *d40c =
772 container_of(chan, struct d40_chan, chan);
773 int res = 0;
774 unsigned long flags;
776 if (!d40c->busy)
777 return 0;
779 spin_lock_irqsave(&d40c->lock, flags);
781 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
782 if (res == 0) {
783 if (d40c->log_num != D40_PHY_CHAN) {
784 d40_config_set_event(d40c, false);
785 /* Resume the other logical channels if any */
786 if (d40_chan_has_events(d40c))
787 res = d40_channel_execute_command(d40c,
788 D40_DMA_RUN);
792 spin_unlock_irqrestore(&d40c->lock, flags);
793 return res;
796 static int d40_resume(struct dma_chan *chan)
798 struct d40_chan *d40c =
799 container_of(chan, struct d40_chan, chan);
800 int res = 0;
801 unsigned long flags;
803 if (!d40c->busy)
804 return 0;
806 spin_lock_irqsave(&d40c->lock, flags);
808 if (d40c->base->rev == 0)
809 if (d40c->log_num != D40_PHY_CHAN) {
810 res = d40_channel_execute_command(d40c,
811 D40_DMA_SUSPEND_REQ);
812 goto no_suspend;
815 /* If bytes left to transfer or linked tx resume job */
816 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
818 if (d40c->log_num != D40_PHY_CHAN)
819 d40_config_set_event(d40c, true);
821 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
824 no_suspend:
825 spin_unlock_irqrestore(&d40c->lock, flags);
826 return res;
829 static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
831 /* TODO: Write */
834 static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
836 struct d40_desc *d40d_prev = NULL;
837 int i;
838 u32 val;
840 if (!list_empty(&d40c->queue))
841 d40d_prev = d40_last_queued(d40c);
842 else if (!list_empty(&d40c->active))
843 d40d_prev = d40_first_active_get(d40c);
845 if (!d40d_prev)
846 return;
848 /* Here we try to join this job with previous jobs */
849 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
850 d40c->phy_chan->num * D40_DREG_PCDELTA +
851 D40_CHAN_REG_SSLNK);
853 /* Figure out which link we're currently transmitting */
854 for (i = 0; i < d40d_prev->lli_len; i++)
855 if (val == d40d_prev->lli_phy.src[i].reg_lnk)
856 break;
858 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
859 d40c->phy_chan->num * D40_DREG_PCDELTA +
860 D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
862 if (i == (d40d_prev->lli_len - 1) && val > 0) {
863 /* Change the current one */
864 writel(virt_to_phys(d40d->lli_phy.src),
865 d40c->base->virtbase + D40_DREG_PCBASE +
866 d40c->phy_chan->num * D40_DREG_PCDELTA +
867 D40_CHAN_REG_SSLNK);
868 writel(virt_to_phys(d40d->lli_phy.dst),
869 d40c->base->virtbase + D40_DREG_PCBASE +
870 d40c->phy_chan->num * D40_DREG_PCDELTA +
871 D40_CHAN_REG_SDLNK);
873 d40d->is_hw_linked = true;
875 } else if (i < d40d_prev->lli_len) {
876 (void) dma_unmap_single(d40c->base->dev,
877 virt_to_phys(d40d_prev->lli_phy.src),
878 d40d_prev->lli_pool.size,
879 DMA_TO_DEVICE);
881 /* Keep the settings */
882 val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
883 ~D40_SREG_LNK_PHYS_LNK_MASK;
884 d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
885 val | virt_to_phys(d40d->lli_phy.src);
887 val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
888 ~D40_SREG_LNK_PHYS_LNK_MASK;
889 d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
890 val | virt_to_phys(d40d->lli_phy.dst);
892 (void) dma_map_single(d40c->base->dev,
893 d40d_prev->lli_phy.src,
894 d40d_prev->lli_pool.size,
895 DMA_TO_DEVICE);
896 d40d->is_hw_linked = true;
900 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
902 struct d40_chan *d40c = container_of(tx->chan,
903 struct d40_chan,
904 chan);
905 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
906 unsigned long flags;
908 (void) d40_pause(&d40c->chan);
910 spin_lock_irqsave(&d40c->lock, flags);
912 d40c->chan.cookie++;
914 if (d40c->chan.cookie < 0)
915 d40c->chan.cookie = 1;
917 d40d->txd.cookie = d40c->chan.cookie;
919 if (d40c->log_num == D40_PHY_CHAN)
920 d40_tx_submit_phy(d40c, d40d);
921 else
922 d40_tx_submit_log(d40c, d40d);
924 d40_desc_queue(d40c, d40d);
926 spin_unlock_irqrestore(&d40c->lock, flags);
928 (void) d40_resume(&d40c->chan);
930 return tx->cookie;
933 static int d40_start(struct d40_chan *d40c)
935 if (d40c->base->rev == 0) {
936 int err;
938 if (d40c->log_num != D40_PHY_CHAN) {
939 err = d40_channel_execute_command(d40c,
940 D40_DMA_SUSPEND_REQ);
941 if (err)
942 return err;
946 if (d40c->log_num != D40_PHY_CHAN)
947 d40_config_set_event(d40c, true);
949 return d40_channel_execute_command(d40c, D40_DMA_RUN);
952 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
954 struct d40_desc *d40d;
955 int err;
957 /* Start queued jobs, if any */
958 d40d = d40_first_queued(d40c);
960 if (d40d != NULL) {
961 d40c->busy = true;
963 /* Remove from queue */
964 d40_desc_remove(d40d);
966 /* Add to active queue */
967 d40_desc_submit(d40c, d40d);
970 * If this job is already linked in hw,
971 * do not submit it.
974 if (!d40d->is_hw_linked) {
975 /* Initiate DMA job */
976 d40_desc_load(d40c, d40d);
978 /* Start dma job */
979 err = d40_start(d40c);
981 if (err)
982 return NULL;
986 return d40d;
989 /* called from interrupt context */
990 static void dma_tc_handle(struct d40_chan *d40c)
992 struct d40_desc *d40d;
994 /* Get first active entry from list */
995 d40d = d40_first_active_get(d40c);
997 if (d40d == NULL)
998 return;
1000 d40_lcla_free_all(d40c, d40d);
1002 if (d40d->lli_current < d40d->lli_len) {
1003 d40_desc_load(d40c, d40d);
1004 /* Start dma job */
1005 (void) d40_start(d40c);
1006 return;
1009 if (d40_queue_start(d40c) == NULL)
1010 d40c->busy = false;
1012 d40c->pending_tx++;
1013 tasklet_schedule(&d40c->tasklet);
1017 static void dma_tasklet(unsigned long data)
1019 struct d40_chan *d40c = (struct d40_chan *) data;
1020 struct d40_desc *d40d;
1021 unsigned long flags;
1022 dma_async_tx_callback callback;
1023 void *callback_param;
1025 spin_lock_irqsave(&d40c->lock, flags);
1027 /* Get first active entry from list */
1028 d40d = d40_first_active_get(d40c);
1030 if (d40d == NULL)
1031 goto err;
1033 d40c->completed = d40d->txd.cookie;
1036 * If terminating a channel pending_tx is set to zero.
1037 * This prevents any finished active jobs to return to the client.
1039 if (d40c->pending_tx == 0) {
1040 spin_unlock_irqrestore(&d40c->lock, flags);
1041 return;
1044 /* Callback to client */
1045 callback = d40d->txd.callback;
1046 callback_param = d40d->txd.callback_param;
1048 if (async_tx_test_ack(&d40d->txd)) {
1049 d40_pool_lli_free(d40d);
1050 d40_desc_remove(d40d);
1051 d40_desc_free(d40c, d40d);
1052 } else {
1053 if (!d40d->is_in_client_list) {
1054 d40_desc_remove(d40d);
1055 d40_lcla_free_all(d40c, d40d);
1056 list_add_tail(&d40d->node, &d40c->client);
1057 d40d->is_in_client_list = true;
1061 d40c->pending_tx--;
1063 if (d40c->pending_tx)
1064 tasklet_schedule(&d40c->tasklet);
1066 spin_unlock_irqrestore(&d40c->lock, flags);
1068 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1069 callback(callback_param);
1071 return;
1073 err:
1074 /* Rescue manouver if receiving double interrupts */
1075 if (d40c->pending_tx > 0)
1076 d40c->pending_tx--;
1077 spin_unlock_irqrestore(&d40c->lock, flags);
1080 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1082 static const struct d40_interrupt_lookup il[] = {
1083 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1084 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1085 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1086 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1087 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1088 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1089 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1090 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1091 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1092 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1095 int i;
1096 u32 regs[ARRAY_SIZE(il)];
1097 u32 idx;
1098 u32 row;
1099 long chan = -1;
1100 struct d40_chan *d40c;
1101 unsigned long flags;
1102 struct d40_base *base = data;
1104 spin_lock_irqsave(&base->interrupt_lock, flags);
1106 /* Read interrupt status of both logical and physical channels */
1107 for (i = 0; i < ARRAY_SIZE(il); i++)
1108 regs[i] = readl(base->virtbase + il[i].src);
1110 for (;;) {
1112 chan = find_next_bit((unsigned long *)regs,
1113 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1115 /* No more set bits found? */
1116 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1117 break;
1119 row = chan / BITS_PER_LONG;
1120 idx = chan & (BITS_PER_LONG - 1);
1122 /* ACK interrupt */
1123 writel(1 << idx, base->virtbase + il[row].clr);
1125 if (il[row].offset == D40_PHY_CHAN)
1126 d40c = base->lookup_phy_chans[idx];
1127 else
1128 d40c = base->lookup_log_chans[il[row].offset + idx];
1129 spin_lock(&d40c->lock);
1131 if (!il[row].is_error)
1132 dma_tc_handle(d40c);
1133 else
1134 dev_err(base->dev,
1135 "[%s] IRQ chan: %ld offset %d idx %d\n",
1136 __func__, chan, il[row].offset, idx);
1138 spin_unlock(&d40c->lock);
1141 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1143 return IRQ_HANDLED;
1146 static int d40_validate_conf(struct d40_chan *d40c,
1147 struct stedma40_chan_cfg *conf)
1149 int res = 0;
1150 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1151 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1152 bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
1153 == STEDMA40_CHANNEL_IN_LOG_MODE;
1155 if (!conf->dir) {
1156 dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
1157 __func__);
1158 res = -EINVAL;
1161 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1162 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1163 d40c->runtime_addr == 0) {
1165 dev_err(&d40c->chan.dev->device,
1166 "[%s] Invalid TX channel address (%d)\n",
1167 __func__, conf->dst_dev_type);
1168 res = -EINVAL;
1171 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1172 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1173 d40c->runtime_addr == 0) {
1174 dev_err(&d40c->chan.dev->device,
1175 "[%s] Invalid RX channel address (%d)\n",
1176 __func__, conf->src_dev_type);
1177 res = -EINVAL;
1180 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1181 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1182 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
1183 __func__);
1184 res = -EINVAL;
1187 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1188 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1189 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
1190 __func__);
1191 res = -EINVAL;
1194 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1195 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1196 dev_err(&d40c->chan.dev->device,
1197 "[%s] No event line\n", __func__);
1198 res = -EINVAL;
1201 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1202 (src_event_group != dst_event_group)) {
1203 dev_err(&d40c->chan.dev->device,
1204 "[%s] Invalid event group\n", __func__);
1205 res = -EINVAL;
1208 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1210 * DMAC HW supports it. Will be added to this driver,
1211 * in case any dma client requires it.
1213 dev_err(&d40c->chan.dev->device,
1214 "[%s] periph to periph not supported\n",
1215 __func__);
1216 res = -EINVAL;
1219 return res;
1222 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1223 int log_event_line, bool is_log)
1225 unsigned long flags;
1226 spin_lock_irqsave(&phy->lock, flags);
1227 if (!is_log) {
1228 /* Physical interrupts are masked per physical full channel */
1229 if (phy->allocated_src == D40_ALLOC_FREE &&
1230 phy->allocated_dst == D40_ALLOC_FREE) {
1231 phy->allocated_dst = D40_ALLOC_PHY;
1232 phy->allocated_src = D40_ALLOC_PHY;
1233 goto found;
1234 } else
1235 goto not_found;
1238 /* Logical channel */
1239 if (is_src) {
1240 if (phy->allocated_src == D40_ALLOC_PHY)
1241 goto not_found;
1243 if (phy->allocated_src == D40_ALLOC_FREE)
1244 phy->allocated_src = D40_ALLOC_LOG_FREE;
1246 if (!(phy->allocated_src & (1 << log_event_line))) {
1247 phy->allocated_src |= 1 << log_event_line;
1248 goto found;
1249 } else
1250 goto not_found;
1251 } else {
1252 if (phy->allocated_dst == D40_ALLOC_PHY)
1253 goto not_found;
1255 if (phy->allocated_dst == D40_ALLOC_FREE)
1256 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1258 if (!(phy->allocated_dst & (1 << log_event_line))) {
1259 phy->allocated_dst |= 1 << log_event_line;
1260 goto found;
1261 } else
1262 goto not_found;
1265 not_found:
1266 spin_unlock_irqrestore(&phy->lock, flags);
1267 return false;
1268 found:
1269 spin_unlock_irqrestore(&phy->lock, flags);
1270 return true;
1273 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1274 int log_event_line)
1276 unsigned long flags;
1277 bool is_free = false;
1279 spin_lock_irqsave(&phy->lock, flags);
1280 if (!log_event_line) {
1281 phy->allocated_dst = D40_ALLOC_FREE;
1282 phy->allocated_src = D40_ALLOC_FREE;
1283 is_free = true;
1284 goto out;
1287 /* Logical channel */
1288 if (is_src) {
1289 phy->allocated_src &= ~(1 << log_event_line);
1290 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1291 phy->allocated_src = D40_ALLOC_FREE;
1292 } else {
1293 phy->allocated_dst &= ~(1 << log_event_line);
1294 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1295 phy->allocated_dst = D40_ALLOC_FREE;
1298 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1299 D40_ALLOC_FREE);
1301 out:
1302 spin_unlock_irqrestore(&phy->lock, flags);
1304 return is_free;
1307 static int d40_allocate_channel(struct d40_chan *d40c)
1309 int dev_type;
1310 int event_group;
1311 int event_line;
1312 struct d40_phy_res *phys;
1313 int i;
1314 int j;
1315 int log_num;
1316 bool is_src;
1317 bool is_log = (d40c->dma_cfg.channel_type &
1318 STEDMA40_CHANNEL_IN_OPER_MODE)
1319 == STEDMA40_CHANNEL_IN_LOG_MODE;
1322 phys = d40c->base->phy_res;
1324 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1325 dev_type = d40c->dma_cfg.src_dev_type;
1326 log_num = 2 * dev_type;
1327 is_src = true;
1328 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1329 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1330 /* dst event lines are used for logical memcpy */
1331 dev_type = d40c->dma_cfg.dst_dev_type;
1332 log_num = 2 * dev_type + 1;
1333 is_src = false;
1334 } else
1335 return -EINVAL;
1337 event_group = D40_TYPE_TO_GROUP(dev_type);
1338 event_line = D40_TYPE_TO_EVENT(dev_type);
1340 if (!is_log) {
1341 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1342 /* Find physical half channel */
1343 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1345 if (d40_alloc_mask_set(&phys[i], is_src,
1346 0, is_log))
1347 goto found_phy;
1349 } else
1350 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1351 int phy_num = j + event_group * 2;
1352 for (i = phy_num; i < phy_num + 2; i++) {
1353 if (d40_alloc_mask_set(&phys[i],
1354 is_src,
1356 is_log))
1357 goto found_phy;
1360 return -EINVAL;
1361 found_phy:
1362 d40c->phy_chan = &phys[i];
1363 d40c->log_num = D40_PHY_CHAN;
1364 goto out;
1366 if (dev_type == -1)
1367 return -EINVAL;
1369 /* Find logical channel */
1370 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1371 int phy_num = j + event_group * 2;
1373 * Spread logical channels across all available physical rather
1374 * than pack every logical channel at the first available phy
1375 * channels.
1377 if (is_src) {
1378 for (i = phy_num; i < phy_num + 2; i++) {
1379 if (d40_alloc_mask_set(&phys[i], is_src,
1380 event_line, is_log))
1381 goto found_log;
1383 } else {
1384 for (i = phy_num + 1; i >= phy_num; i--) {
1385 if (d40_alloc_mask_set(&phys[i], is_src,
1386 event_line, is_log))
1387 goto found_log;
1391 return -EINVAL;
1393 found_log:
1394 d40c->phy_chan = &phys[i];
1395 d40c->log_num = log_num;
1396 out:
1398 if (is_log)
1399 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1400 else
1401 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1403 return 0;
1407 static int d40_config_memcpy(struct d40_chan *d40c)
1409 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1411 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1412 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1413 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1414 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1415 memcpy[d40c->chan.chan_id];
1417 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1418 dma_has_cap(DMA_SLAVE, cap)) {
1419 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1420 } else {
1421 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1422 __func__);
1423 return -EINVAL;
1426 return 0;
1430 static int d40_free_dma(struct d40_chan *d40c)
1433 int res = 0;
1434 u32 event;
1435 struct d40_phy_res *phy = d40c->phy_chan;
1436 bool is_src;
1437 struct d40_desc *d;
1438 struct d40_desc *_d;
1441 /* Terminate all queued and active transfers */
1442 d40_term_all(d40c);
1444 /* Release client owned descriptors */
1445 if (!list_empty(&d40c->client))
1446 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1447 d40_pool_lli_free(d);
1448 d40_desc_remove(d);
1449 d40_desc_free(d40c, d);
1452 if (phy == NULL) {
1453 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1454 __func__);
1455 return -EINVAL;
1458 if (phy->allocated_src == D40_ALLOC_FREE &&
1459 phy->allocated_dst == D40_ALLOC_FREE) {
1460 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1461 __func__);
1462 return -EINVAL;
1465 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1466 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1467 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1468 is_src = false;
1469 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1470 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1471 is_src = true;
1472 } else {
1473 dev_err(&d40c->chan.dev->device,
1474 "[%s] Unknown direction\n", __func__);
1475 return -EINVAL;
1478 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1479 if (res) {
1480 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1481 __func__);
1482 return res;
1485 if (d40c->log_num != D40_PHY_CHAN) {
1486 /* Release logical channel, deactivate the event line */
1488 d40_config_set_event(d40c, false);
1489 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1492 * Check if there are more logical allocation
1493 * on this phy channel.
1495 if (!d40_alloc_mask_free(phy, is_src, event)) {
1496 /* Resume the other logical channels if any */
1497 if (d40_chan_has_events(d40c)) {
1498 res = d40_channel_execute_command(d40c,
1499 D40_DMA_RUN);
1500 if (res) {
1501 dev_err(&d40c->chan.dev->device,
1502 "[%s] Executing RUN command\n",
1503 __func__);
1504 return res;
1507 return 0;
1509 } else {
1510 (void) d40_alloc_mask_free(phy, is_src, 0);
1513 /* Release physical channel */
1514 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1515 if (res) {
1516 dev_err(&d40c->chan.dev->device,
1517 "[%s] Failed to stop channel\n", __func__);
1518 return res;
1520 d40c->phy_chan = NULL;
1521 /* Invalidate channel type */
1522 d40c->dma_cfg.channel_type = 0;
1523 d40c->base->lookup_phy_chans[phy->num] = NULL;
1525 return 0;
1528 static bool d40_is_paused(struct d40_chan *d40c)
1530 bool is_paused = false;
1531 unsigned long flags;
1532 void __iomem *active_reg;
1533 u32 status;
1534 u32 event;
1536 spin_lock_irqsave(&d40c->lock, flags);
1538 if (d40c->log_num == D40_PHY_CHAN) {
1539 if (d40c->phy_chan->num % 2 == 0)
1540 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1541 else
1542 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1544 status = (readl(active_reg) &
1545 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1546 D40_CHAN_POS(d40c->phy_chan->num);
1547 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1548 is_paused = true;
1550 goto _exit;
1553 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1554 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1555 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1556 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1557 d40c->phy_chan->num * D40_DREG_PCDELTA +
1558 D40_CHAN_REG_SDLNK);
1559 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1560 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1561 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1562 d40c->phy_chan->num * D40_DREG_PCDELTA +
1563 D40_CHAN_REG_SSLNK);
1564 } else {
1565 dev_err(&d40c->chan.dev->device,
1566 "[%s] Unknown direction\n", __func__);
1567 goto _exit;
1570 status = (status & D40_EVENTLINE_MASK(event)) >>
1571 D40_EVENTLINE_POS(event);
1573 if (status != D40_DMA_RUN)
1574 is_paused = true;
1575 _exit:
1576 spin_unlock_irqrestore(&d40c->lock, flags);
1577 return is_paused;
1582 static u32 stedma40_residue(struct dma_chan *chan)
1584 struct d40_chan *d40c =
1585 container_of(chan, struct d40_chan, chan);
1586 u32 bytes_left;
1587 unsigned long flags;
1589 spin_lock_irqsave(&d40c->lock, flags);
1590 bytes_left = d40_residue(d40c);
1591 spin_unlock_irqrestore(&d40c->lock, flags);
1593 return bytes_left;
1596 /* Public DMA functions in addition to the DMA engine framework */
1598 int stedma40_set_psize(struct dma_chan *chan,
1599 int src_psize,
1600 int dst_psize)
1602 struct d40_chan *d40c =
1603 container_of(chan, struct d40_chan, chan);
1604 unsigned long flags;
1606 spin_lock_irqsave(&d40c->lock, flags);
1608 if (d40c->log_num != D40_PHY_CHAN) {
1609 d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1610 d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1611 d40c->log_def.lcsp1 |= src_psize <<
1612 D40_MEM_LCSP1_SCFG_PSIZE_POS;
1613 d40c->log_def.lcsp3 |= dst_psize <<
1614 D40_MEM_LCSP1_SCFG_PSIZE_POS;
1615 goto out;
1618 if (src_psize == STEDMA40_PSIZE_PHY_1)
1619 d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1620 else {
1621 d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1622 d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1623 D40_SREG_CFG_PSIZE_POS);
1624 d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1627 if (dst_psize == STEDMA40_PSIZE_PHY_1)
1628 d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1629 else {
1630 d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1631 d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1632 D40_SREG_CFG_PSIZE_POS);
1633 d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1635 out:
1636 spin_unlock_irqrestore(&d40c->lock, flags);
1637 return 0;
1639 EXPORT_SYMBOL(stedma40_set_psize);
1641 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1642 struct scatterlist *sgl_dst,
1643 struct scatterlist *sgl_src,
1644 unsigned int sgl_len,
1645 unsigned long dma_flags)
1647 int res;
1648 struct d40_desc *d40d;
1649 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1650 chan);
1651 unsigned long flags;
1653 if (d40c->phy_chan == NULL) {
1654 dev_err(&d40c->chan.dev->device,
1655 "[%s] Unallocated channel.\n", __func__);
1656 return ERR_PTR(-EINVAL);
1659 spin_lock_irqsave(&d40c->lock, flags);
1660 d40d = d40_desc_get(d40c);
1662 if (d40d == NULL)
1663 goto err;
1665 d40d->lli_len = sgl_len;
1666 d40d->lli_current = 0;
1667 d40d->txd.flags = dma_flags;
1669 if (d40c->log_num != D40_PHY_CHAN) {
1671 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1672 dev_err(&d40c->chan.dev->device,
1673 "[%s] Out of memory\n", __func__);
1674 goto err;
1677 (void) d40_log_sg_to_lli(sgl_src,
1678 sgl_len,
1679 d40d->lli_log.src,
1680 d40c->log_def.lcsp1,
1681 d40c->dma_cfg.src_info.data_width);
1683 (void) d40_log_sg_to_lli(sgl_dst,
1684 sgl_len,
1685 d40d->lli_log.dst,
1686 d40c->log_def.lcsp3,
1687 d40c->dma_cfg.dst_info.data_width);
1688 } else {
1689 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1690 dev_err(&d40c->chan.dev->device,
1691 "[%s] Out of memory\n", __func__);
1692 goto err;
1695 res = d40_phy_sg_to_lli(sgl_src,
1696 sgl_len,
1698 d40d->lli_phy.src,
1699 virt_to_phys(d40d->lli_phy.src),
1700 d40c->src_def_cfg,
1701 d40c->dma_cfg.src_info.data_width,
1702 d40c->dma_cfg.src_info.psize);
1704 if (res < 0)
1705 goto err;
1707 res = d40_phy_sg_to_lli(sgl_dst,
1708 sgl_len,
1710 d40d->lli_phy.dst,
1711 virt_to_phys(d40d->lli_phy.dst),
1712 d40c->dst_def_cfg,
1713 d40c->dma_cfg.dst_info.data_width,
1714 d40c->dma_cfg.dst_info.psize);
1716 if (res < 0)
1717 goto err;
1719 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1720 d40d->lli_pool.size, DMA_TO_DEVICE);
1723 dma_async_tx_descriptor_init(&d40d->txd, chan);
1725 d40d->txd.tx_submit = d40_tx_submit;
1727 spin_unlock_irqrestore(&d40c->lock, flags);
1729 return &d40d->txd;
1730 err:
1731 if (d40d)
1732 d40_desc_free(d40c, d40d);
1733 spin_unlock_irqrestore(&d40c->lock, flags);
1734 return NULL;
1736 EXPORT_SYMBOL(stedma40_memcpy_sg);
1738 bool stedma40_filter(struct dma_chan *chan, void *data)
1740 struct stedma40_chan_cfg *info = data;
1741 struct d40_chan *d40c =
1742 container_of(chan, struct d40_chan, chan);
1743 int err;
1745 if (data) {
1746 err = d40_validate_conf(d40c, info);
1747 if (!err)
1748 d40c->dma_cfg = *info;
1749 } else
1750 err = d40_config_memcpy(d40c);
1752 return err == 0;
1754 EXPORT_SYMBOL(stedma40_filter);
1756 /* DMA ENGINE functions */
1757 static int d40_alloc_chan_resources(struct dma_chan *chan)
1759 int err;
1760 unsigned long flags;
1761 struct d40_chan *d40c =
1762 container_of(chan, struct d40_chan, chan);
1763 bool is_free_phy;
1764 spin_lock_irqsave(&d40c->lock, flags);
1766 d40c->completed = chan->cookie = 1;
1769 * If no dma configuration is set (channel_type == 0)
1770 * use default configuration (memcpy)
1772 if (d40c->dma_cfg.channel_type == 0) {
1774 err = d40_config_memcpy(d40c);
1775 if (err) {
1776 dev_err(&d40c->chan.dev->device,
1777 "[%s] Failed to configure memcpy channel\n",
1778 __func__);
1779 goto fail;
1782 is_free_phy = (d40c->phy_chan == NULL);
1784 err = d40_allocate_channel(d40c);
1785 if (err) {
1786 dev_err(&d40c->chan.dev->device,
1787 "[%s] Failed to allocate channel\n", __func__);
1788 goto fail;
1791 /* Fill in basic CFG register values */
1792 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1793 &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1795 if (d40c->log_num != D40_PHY_CHAN) {
1796 d40_log_cfg(&d40c->dma_cfg,
1797 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1799 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1800 d40c->lcpa = d40c->base->lcpa_base +
1801 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1802 else
1803 d40c->lcpa = d40c->base->lcpa_base +
1804 d40c->dma_cfg.dst_dev_type *
1805 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1809 * Only write channel configuration to the DMA if the physical
1810 * resource is free. In case of multiple logical channels
1811 * on the same physical resource, only the first write is necessary.
1813 if (is_free_phy)
1814 d40_config_write(d40c);
1815 fail:
1816 spin_unlock_irqrestore(&d40c->lock, flags);
1817 return err;
1820 static void d40_free_chan_resources(struct dma_chan *chan)
1822 struct d40_chan *d40c =
1823 container_of(chan, struct d40_chan, chan);
1824 int err;
1825 unsigned long flags;
1827 if (d40c->phy_chan == NULL) {
1828 dev_err(&d40c->chan.dev->device,
1829 "[%s] Cannot free unallocated channel\n", __func__);
1830 return;
1834 spin_lock_irqsave(&d40c->lock, flags);
1836 err = d40_free_dma(d40c);
1838 if (err)
1839 dev_err(&d40c->chan.dev->device,
1840 "[%s] Failed to free channel\n", __func__);
1841 spin_unlock_irqrestore(&d40c->lock, flags);
1844 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1845 dma_addr_t dst,
1846 dma_addr_t src,
1847 size_t size,
1848 unsigned long dma_flags)
1850 struct d40_desc *d40d;
1851 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1852 chan);
1853 unsigned long flags;
1854 int err = 0;
1856 if (d40c->phy_chan == NULL) {
1857 dev_err(&d40c->chan.dev->device,
1858 "[%s] Channel is not allocated.\n", __func__);
1859 return ERR_PTR(-EINVAL);
1862 spin_lock_irqsave(&d40c->lock, flags);
1863 d40d = d40_desc_get(d40c);
1865 if (d40d == NULL) {
1866 dev_err(&d40c->chan.dev->device,
1867 "[%s] Descriptor is NULL\n", __func__);
1868 goto err;
1871 d40d->txd.flags = dma_flags;
1873 dma_async_tx_descriptor_init(&d40d->txd, chan);
1875 d40d->txd.tx_submit = d40_tx_submit;
1877 if (d40c->log_num != D40_PHY_CHAN) {
1879 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1880 dev_err(&d40c->chan.dev->device,
1881 "[%s] Out of memory\n", __func__);
1882 goto err;
1884 d40d->lli_len = 1;
1885 d40d->lli_current = 0;
1887 d40_log_fill_lli(d40d->lli_log.src,
1888 src,
1889 size,
1890 d40c->log_def.lcsp1,
1891 d40c->dma_cfg.src_info.data_width,
1892 true);
1894 d40_log_fill_lli(d40d->lli_log.dst,
1895 dst,
1896 size,
1897 d40c->log_def.lcsp3,
1898 d40c->dma_cfg.dst_info.data_width,
1899 true);
1901 } else {
1903 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1904 dev_err(&d40c->chan.dev->device,
1905 "[%s] Out of memory\n", __func__);
1906 goto err;
1909 err = d40_phy_fill_lli(d40d->lli_phy.src,
1910 src,
1911 size,
1912 d40c->dma_cfg.src_info.psize,
1914 d40c->src_def_cfg,
1915 true,
1916 d40c->dma_cfg.src_info.data_width,
1917 false);
1918 if (err)
1919 goto err_fill_lli;
1921 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1922 dst,
1923 size,
1924 d40c->dma_cfg.dst_info.psize,
1926 d40c->dst_def_cfg,
1927 true,
1928 d40c->dma_cfg.dst_info.data_width,
1929 false);
1931 if (err)
1932 goto err_fill_lli;
1934 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1935 d40d->lli_pool.size, DMA_TO_DEVICE);
1938 spin_unlock_irqrestore(&d40c->lock, flags);
1939 return &d40d->txd;
1941 err_fill_lli:
1942 dev_err(&d40c->chan.dev->device,
1943 "[%s] Failed filling in PHY LLI\n", __func__);
1944 err:
1945 if (d40d)
1946 d40_desc_free(d40c, d40d);
1947 spin_unlock_irqrestore(&d40c->lock, flags);
1948 return NULL;
1951 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1952 struct d40_chan *d40c,
1953 struct scatterlist *sgl,
1954 unsigned int sg_len,
1955 enum dma_data_direction direction,
1956 unsigned long dma_flags)
1958 dma_addr_t dev_addr = 0;
1959 int total_size;
1961 if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1962 dev_err(&d40c->chan.dev->device,
1963 "[%s] Out of memory\n", __func__);
1964 return -ENOMEM;
1967 d40d->lli_len = sg_len;
1968 d40d->lli_current = 0;
1970 if (direction == DMA_FROM_DEVICE)
1971 if (d40c->runtime_addr)
1972 dev_addr = d40c->runtime_addr;
1973 else
1974 dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1975 else if (direction == DMA_TO_DEVICE)
1976 if (d40c->runtime_addr)
1977 dev_addr = d40c->runtime_addr;
1978 else
1979 dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1981 else
1982 return -EINVAL;
1984 total_size = d40_log_sg_to_dev(sgl, sg_len,
1985 &d40d->lli_log,
1986 &d40c->log_def,
1987 d40c->dma_cfg.src_info.data_width,
1988 d40c->dma_cfg.dst_info.data_width,
1989 direction,
1990 dev_addr);
1992 if (total_size < 0)
1993 return -EINVAL;
1995 return 0;
1998 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1999 struct d40_chan *d40c,
2000 struct scatterlist *sgl,
2001 unsigned int sgl_len,
2002 enum dma_data_direction direction,
2003 unsigned long dma_flags)
2005 dma_addr_t src_dev_addr;
2006 dma_addr_t dst_dev_addr;
2007 int res;
2009 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
2010 dev_err(&d40c->chan.dev->device,
2011 "[%s] Out of memory\n", __func__);
2012 return -ENOMEM;
2015 d40d->lli_len = sgl_len;
2016 d40d->lli_current = 0;
2018 if (direction == DMA_FROM_DEVICE) {
2019 dst_dev_addr = 0;
2020 if (d40c->runtime_addr)
2021 src_dev_addr = d40c->runtime_addr;
2022 else
2023 src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2024 } else if (direction == DMA_TO_DEVICE) {
2025 if (d40c->runtime_addr)
2026 dst_dev_addr = d40c->runtime_addr;
2027 else
2028 dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2029 src_dev_addr = 0;
2030 } else
2031 return -EINVAL;
2033 res = d40_phy_sg_to_lli(sgl,
2034 sgl_len,
2035 src_dev_addr,
2036 d40d->lli_phy.src,
2037 virt_to_phys(d40d->lli_phy.src),
2038 d40c->src_def_cfg,
2039 d40c->dma_cfg.src_info.data_width,
2040 d40c->dma_cfg.src_info.psize);
2041 if (res < 0)
2042 return res;
2044 res = d40_phy_sg_to_lli(sgl,
2045 sgl_len,
2046 dst_dev_addr,
2047 d40d->lli_phy.dst,
2048 virt_to_phys(d40d->lli_phy.dst),
2049 d40c->dst_def_cfg,
2050 d40c->dma_cfg.dst_info.data_width,
2051 d40c->dma_cfg.dst_info.psize);
2052 if (res < 0)
2053 return res;
2055 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2056 d40d->lli_pool.size, DMA_TO_DEVICE);
2057 return 0;
2060 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2061 struct scatterlist *sgl,
2062 unsigned int sg_len,
2063 enum dma_data_direction direction,
2064 unsigned long dma_flags)
2066 struct d40_desc *d40d;
2067 struct d40_chan *d40c = container_of(chan, struct d40_chan,
2068 chan);
2069 unsigned long flags;
2070 int err;
2072 if (d40c->phy_chan == NULL) {
2073 dev_err(&d40c->chan.dev->device,
2074 "[%s] Cannot prepare unallocated channel\n", __func__);
2075 return ERR_PTR(-EINVAL);
2078 if (d40c->dma_cfg.pre_transfer)
2079 d40c->dma_cfg.pre_transfer(chan,
2080 d40c->dma_cfg.pre_transfer_data,
2081 sg_dma_len(sgl));
2083 spin_lock_irqsave(&d40c->lock, flags);
2084 d40d = d40_desc_get(d40c);
2086 if (d40d == NULL)
2087 goto err;
2089 if (d40c->log_num != D40_PHY_CHAN)
2090 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2091 direction, dma_flags);
2092 else
2093 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2094 direction, dma_flags);
2095 if (err) {
2096 dev_err(&d40c->chan.dev->device,
2097 "[%s] Failed to prepare %s slave sg job: %d\n",
2098 __func__,
2099 d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2100 goto err;
2103 d40d->txd.flags = dma_flags;
2105 dma_async_tx_descriptor_init(&d40d->txd, chan);
2107 d40d->txd.tx_submit = d40_tx_submit;
2109 spin_unlock_irqrestore(&d40c->lock, flags);
2110 return &d40d->txd;
2112 err:
2113 if (d40d)
2114 d40_desc_free(d40c, d40d);
2115 spin_unlock_irqrestore(&d40c->lock, flags);
2116 return NULL;
2119 static enum dma_status d40_tx_status(struct dma_chan *chan,
2120 dma_cookie_t cookie,
2121 struct dma_tx_state *txstate)
2123 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2124 dma_cookie_t last_used;
2125 dma_cookie_t last_complete;
2126 int ret;
2128 if (d40c->phy_chan == NULL) {
2129 dev_err(&d40c->chan.dev->device,
2130 "[%s] Cannot read status of unallocated channel\n",
2131 __func__);
2132 return -EINVAL;
2135 last_complete = d40c->completed;
2136 last_used = chan->cookie;
2138 if (d40_is_paused(d40c))
2139 ret = DMA_PAUSED;
2140 else
2141 ret = dma_async_is_complete(cookie, last_complete, last_used);
2143 dma_set_tx_state(txstate, last_complete, last_used,
2144 stedma40_residue(chan));
2146 return ret;
2149 static void d40_issue_pending(struct dma_chan *chan)
2151 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2152 unsigned long flags;
2154 if (d40c->phy_chan == NULL) {
2155 dev_err(&d40c->chan.dev->device,
2156 "[%s] Channel is not allocated!\n", __func__);
2157 return;
2160 spin_lock_irqsave(&d40c->lock, flags);
2162 /* Busy means that pending jobs are already being processed */
2163 if (!d40c->busy)
2164 (void) d40_queue_start(d40c);
2166 spin_unlock_irqrestore(&d40c->lock, flags);
2169 /* Runtime reconfiguration extension */
2170 static void d40_set_runtime_config(struct dma_chan *chan,
2171 struct dma_slave_config *config)
2173 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2174 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2175 enum dma_slave_buswidth config_addr_width;
2176 dma_addr_t config_addr;
2177 u32 config_maxburst;
2178 enum stedma40_periph_data_width addr_width;
2179 int psize;
2181 if (config->direction == DMA_FROM_DEVICE) {
2182 dma_addr_t dev_addr_rx =
2183 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2185 config_addr = config->src_addr;
2186 if (dev_addr_rx)
2187 dev_dbg(d40c->base->dev,
2188 "channel has a pre-wired RX address %08x "
2189 "overriding with %08x\n",
2190 dev_addr_rx, config_addr);
2191 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2192 dev_dbg(d40c->base->dev,
2193 "channel was not configured for peripheral "
2194 "to memory transfer (%d) overriding\n",
2195 cfg->dir);
2196 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2198 config_addr_width = config->src_addr_width;
2199 config_maxburst = config->src_maxburst;
2201 } else if (config->direction == DMA_TO_DEVICE) {
2202 dma_addr_t dev_addr_tx =
2203 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2205 config_addr = config->dst_addr;
2206 if (dev_addr_tx)
2207 dev_dbg(d40c->base->dev,
2208 "channel has a pre-wired TX address %08x "
2209 "overriding with %08x\n",
2210 dev_addr_tx, config_addr);
2211 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2212 dev_dbg(d40c->base->dev,
2213 "channel was not configured for memory "
2214 "to peripheral transfer (%d) overriding\n",
2215 cfg->dir);
2216 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2218 config_addr_width = config->dst_addr_width;
2219 config_maxburst = config->dst_maxburst;
2221 } else {
2222 dev_err(d40c->base->dev,
2223 "unrecognized channel direction %d\n",
2224 config->direction);
2225 return;
2228 switch (config_addr_width) {
2229 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2230 addr_width = STEDMA40_BYTE_WIDTH;
2231 break;
2232 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2233 addr_width = STEDMA40_HALFWORD_WIDTH;
2234 break;
2235 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2236 addr_width = STEDMA40_WORD_WIDTH;
2237 break;
2238 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2239 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2240 break;
2241 default:
2242 dev_err(d40c->base->dev,
2243 "illegal peripheral address width "
2244 "requested (%d)\n",
2245 config->src_addr_width);
2246 return;
2249 if (config_maxburst >= 16)
2250 psize = STEDMA40_PSIZE_LOG_16;
2251 else if (config_maxburst >= 8)
2252 psize = STEDMA40_PSIZE_LOG_8;
2253 else if (config_maxburst >= 4)
2254 psize = STEDMA40_PSIZE_LOG_4;
2255 else
2256 psize = STEDMA40_PSIZE_LOG_1;
2258 /* Set up all the endpoint configs */
2259 cfg->src_info.data_width = addr_width;
2260 cfg->src_info.psize = psize;
2261 cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
2262 cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2263 cfg->dst_info.data_width = addr_width;
2264 cfg->dst_info.psize = psize;
2265 cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
2266 cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2268 /* These settings will take precedence later */
2269 d40c->runtime_addr = config_addr;
2270 d40c->runtime_direction = config->direction;
2271 dev_dbg(d40c->base->dev,
2272 "configured channel %s for %s, data width %d, "
2273 "maxburst %d bytes, LE, no flow control\n",
2274 dma_chan_name(chan),
2275 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2276 config_addr_width,
2277 config_maxburst);
2280 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2281 unsigned long arg)
2283 unsigned long flags;
2284 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2286 if (d40c->phy_chan == NULL) {
2287 dev_err(&d40c->chan.dev->device,
2288 "[%s] Channel is not allocated!\n", __func__);
2289 return -EINVAL;
2292 switch (cmd) {
2293 case DMA_TERMINATE_ALL:
2294 spin_lock_irqsave(&d40c->lock, flags);
2295 d40_term_all(d40c);
2296 spin_unlock_irqrestore(&d40c->lock, flags);
2297 return 0;
2298 case DMA_PAUSE:
2299 return d40_pause(chan);
2300 case DMA_RESUME:
2301 return d40_resume(chan);
2302 case DMA_SLAVE_CONFIG:
2303 d40_set_runtime_config(chan,
2304 (struct dma_slave_config *) arg);
2305 return 0;
2306 default:
2307 break;
2310 /* Other commands are unimplemented */
2311 return -ENXIO;
2314 /* Initialization functions */
2316 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2317 struct d40_chan *chans, int offset,
2318 int num_chans)
2320 int i = 0;
2321 struct d40_chan *d40c;
2323 INIT_LIST_HEAD(&dma->channels);
2325 for (i = offset; i < offset + num_chans; i++) {
2326 d40c = &chans[i];
2327 d40c->base = base;
2328 d40c->chan.device = dma;
2330 spin_lock_init(&d40c->lock);
2332 d40c->log_num = D40_PHY_CHAN;
2334 INIT_LIST_HEAD(&d40c->active);
2335 INIT_LIST_HEAD(&d40c->queue);
2336 INIT_LIST_HEAD(&d40c->client);
2338 tasklet_init(&d40c->tasklet, dma_tasklet,
2339 (unsigned long) d40c);
2341 list_add_tail(&d40c->chan.device_node,
2342 &dma->channels);
2346 static int __init d40_dmaengine_init(struct d40_base *base,
2347 int num_reserved_chans)
2349 int err ;
2351 d40_chan_init(base, &base->dma_slave, base->log_chans,
2352 0, base->num_log_chans);
2354 dma_cap_zero(base->dma_slave.cap_mask);
2355 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2357 base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2358 base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2359 base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2360 base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2361 base->dma_slave.device_tx_status = d40_tx_status;
2362 base->dma_slave.device_issue_pending = d40_issue_pending;
2363 base->dma_slave.device_control = d40_control;
2364 base->dma_slave.dev = base->dev;
2366 err = dma_async_device_register(&base->dma_slave);
2368 if (err) {
2369 dev_err(base->dev,
2370 "[%s] Failed to register slave channels\n",
2371 __func__);
2372 goto failure1;
2375 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2376 base->num_log_chans, base->plat_data->memcpy_len);
2378 dma_cap_zero(base->dma_memcpy.cap_mask);
2379 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2381 base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2382 base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2383 base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2384 base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2385 base->dma_memcpy.device_tx_status = d40_tx_status;
2386 base->dma_memcpy.device_issue_pending = d40_issue_pending;
2387 base->dma_memcpy.device_control = d40_control;
2388 base->dma_memcpy.dev = base->dev;
2390 * This controller can only access address at even
2391 * 32bit boundaries, i.e. 2^2
2393 base->dma_memcpy.copy_align = 2;
2395 err = dma_async_device_register(&base->dma_memcpy);
2397 if (err) {
2398 dev_err(base->dev,
2399 "[%s] Failed to regsiter memcpy only channels\n",
2400 __func__);
2401 goto failure2;
2404 d40_chan_init(base, &base->dma_both, base->phy_chans,
2405 0, num_reserved_chans);
2407 dma_cap_zero(base->dma_both.cap_mask);
2408 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2409 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2411 base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2412 base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2413 base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2414 base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2415 base->dma_both.device_tx_status = d40_tx_status;
2416 base->dma_both.device_issue_pending = d40_issue_pending;
2417 base->dma_both.device_control = d40_control;
2418 base->dma_both.dev = base->dev;
2419 base->dma_both.copy_align = 2;
2420 err = dma_async_device_register(&base->dma_both);
2422 if (err) {
2423 dev_err(base->dev,
2424 "[%s] Failed to register logical and physical capable channels\n",
2425 __func__);
2426 goto failure3;
2428 return 0;
2429 failure3:
2430 dma_async_device_unregister(&base->dma_memcpy);
2431 failure2:
2432 dma_async_device_unregister(&base->dma_slave);
2433 failure1:
2434 return err;
2437 /* Initialization functions. */
2439 static int __init d40_phy_res_init(struct d40_base *base)
2441 int i;
2442 int num_phy_chans_avail = 0;
2443 u32 val[2];
2444 int odd_even_bit = -2;
2446 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2447 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2449 for (i = 0; i < base->num_phy_chans; i++) {
2450 base->phy_res[i].num = i;
2451 odd_even_bit += 2 * ((i % 2) == 0);
2452 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2453 /* Mark security only channels as occupied */
2454 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2455 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2456 } else {
2457 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2458 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2459 num_phy_chans_avail++;
2461 spin_lock_init(&base->phy_res[i].lock);
2464 /* Mark disabled channels as occupied */
2465 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2466 int chan = base->plat_data->disabled_channels[i];
2468 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2469 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2470 num_phy_chans_avail--;
2473 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2474 num_phy_chans_avail, base->num_phy_chans);
2476 /* Verify settings extended vs standard */
2477 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2479 for (i = 0; i < base->num_phy_chans; i++) {
2481 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2482 (val[0] & 0x3) != 1)
2483 dev_info(base->dev,
2484 "[%s] INFO: channel %d is misconfigured (%d)\n",
2485 __func__, i, val[0] & 0x3);
2487 val[0] = val[0] >> 2;
2490 return num_phy_chans_avail;
2493 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2495 static const struct d40_reg_val dma_id_regs[] = {
2496 /* Peripheral Id */
2497 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2498 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2500 * D40_DREG_PERIPHID2 Depends on HW revision:
2501 * MOP500/HREF ED has 0x0008,
2502 * ? has 0x0018,
2503 * HREF V1 has 0x0028
2505 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2507 /* PCell Id */
2508 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2509 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2510 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2511 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2513 struct stedma40_platform_data *plat_data;
2514 struct clk *clk = NULL;
2515 void __iomem *virtbase = NULL;
2516 struct resource *res = NULL;
2517 struct d40_base *base = NULL;
2518 int num_log_chans = 0;
2519 int num_phy_chans;
2520 int i;
2521 u32 val;
2522 u32 rev;
2524 clk = clk_get(&pdev->dev, NULL);
2526 if (IS_ERR(clk)) {
2527 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2528 __func__);
2529 goto failure;
2532 clk_enable(clk);
2534 /* Get IO for DMAC base address */
2535 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2536 if (!res)
2537 goto failure;
2539 if (request_mem_region(res->start, resource_size(res),
2540 D40_NAME " I/O base") == NULL)
2541 goto failure;
2543 virtbase = ioremap(res->start, resource_size(res));
2544 if (!virtbase)
2545 goto failure;
2547 /* HW version check */
2548 for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2549 if (dma_id_regs[i].val !=
2550 readl(virtbase + dma_id_regs[i].reg)) {
2551 dev_err(&pdev->dev,
2552 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2553 __func__,
2554 dma_id_regs[i].val,
2555 dma_id_regs[i].reg,
2556 readl(virtbase + dma_id_regs[i].reg));
2557 goto failure;
2561 /* Get silicon revision and designer */
2562 val = readl(virtbase + D40_DREG_PERIPHID2);
2564 if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2565 D40_HW_DESIGNER) {
2566 dev_err(&pdev->dev,
2567 "[%s] Unknown designer! Got %x wanted %x\n",
2568 __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2569 D40_HW_DESIGNER);
2570 goto failure;
2573 rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2574 D40_DREG_PERIPHID2_REV_POS;
2576 /* The number of physical channels on this HW */
2577 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2579 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2580 rev, res->start);
2582 plat_data = pdev->dev.platform_data;
2584 /* Count the number of logical channels in use */
2585 for (i = 0; i < plat_data->dev_len; i++)
2586 if (plat_data->dev_rx[i] != 0)
2587 num_log_chans++;
2589 for (i = 0; i < plat_data->dev_len; i++)
2590 if (plat_data->dev_tx[i] != 0)
2591 num_log_chans++;
2593 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2594 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2595 sizeof(struct d40_chan), GFP_KERNEL);
2597 if (base == NULL) {
2598 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2599 goto failure;
2602 base->rev = rev;
2603 base->clk = clk;
2604 base->num_phy_chans = num_phy_chans;
2605 base->num_log_chans = num_log_chans;
2606 base->phy_start = res->start;
2607 base->phy_size = resource_size(res);
2608 base->virtbase = virtbase;
2609 base->plat_data = plat_data;
2610 base->dev = &pdev->dev;
2611 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2612 base->log_chans = &base->phy_chans[num_phy_chans];
2614 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2615 GFP_KERNEL);
2616 if (!base->phy_res)
2617 goto failure;
2619 base->lookup_phy_chans = kzalloc(num_phy_chans *
2620 sizeof(struct d40_chan *),
2621 GFP_KERNEL);
2622 if (!base->lookup_phy_chans)
2623 goto failure;
2625 if (num_log_chans + plat_data->memcpy_len) {
2627 * The max number of logical channels are event lines for all
2628 * src devices and dst devices
2630 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2631 sizeof(struct d40_chan *),
2632 GFP_KERNEL);
2633 if (!base->lookup_log_chans)
2634 goto failure;
2637 base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2638 sizeof(struct d40_desc *) *
2639 D40_LCLA_LINK_PER_EVENT_GRP,
2640 GFP_KERNEL);
2641 if (!base->lcla_pool.alloc_map)
2642 goto failure;
2644 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2645 0, SLAB_HWCACHE_ALIGN,
2646 NULL);
2647 if (base->desc_slab == NULL)
2648 goto failure;
2650 return base;
2652 failure:
2653 if (!IS_ERR(clk)) {
2654 clk_disable(clk);
2655 clk_put(clk);
2657 if (virtbase)
2658 iounmap(virtbase);
2659 if (res)
2660 release_mem_region(res->start,
2661 resource_size(res));
2662 if (virtbase)
2663 iounmap(virtbase);
2665 if (base) {
2666 kfree(base->lcla_pool.alloc_map);
2667 kfree(base->lookup_log_chans);
2668 kfree(base->lookup_phy_chans);
2669 kfree(base->phy_res);
2670 kfree(base);
2673 return NULL;
2676 static void __init d40_hw_init(struct d40_base *base)
2679 static const struct d40_reg_val dma_init_reg[] = {
2680 /* Clock every part of the DMA block from start */
2681 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2683 /* Interrupts on all logical channels */
2684 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2685 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2686 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2687 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2688 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2689 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2690 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2691 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2692 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2693 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2694 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2695 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2697 int i;
2698 u32 prmseo[2] = {0, 0};
2699 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2700 u32 pcmis = 0;
2701 u32 pcicr = 0;
2703 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2704 writel(dma_init_reg[i].val,
2705 base->virtbase + dma_init_reg[i].reg);
2707 /* Configure all our dma channels to default settings */
2708 for (i = 0; i < base->num_phy_chans; i++) {
2710 activeo[i % 2] = activeo[i % 2] << 2;
2712 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2713 == D40_ALLOC_PHY) {
2714 activeo[i % 2] |= 3;
2715 continue;
2718 /* Enable interrupt # */
2719 pcmis = (pcmis << 1) | 1;
2721 /* Clear interrupt # */
2722 pcicr = (pcicr << 1) | 1;
2724 /* Set channel to physical mode */
2725 prmseo[i % 2] = prmseo[i % 2] << 2;
2726 prmseo[i % 2] |= 1;
2730 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2731 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2732 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2733 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2735 /* Write which interrupt to enable */
2736 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2738 /* Write which interrupt to clear */
2739 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2743 static int __init d40_lcla_allocate(struct d40_base *base)
2745 unsigned long *page_list;
2746 int i, j;
2747 int ret = 0;
2750 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2751 * To full fill this hardware requirement without wasting 256 kb
2752 * we allocate pages until we get an aligned one.
2754 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2755 GFP_KERNEL);
2757 if (!page_list) {
2758 ret = -ENOMEM;
2759 goto failure;
2762 /* Calculating how many pages that are required */
2763 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2765 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2766 page_list[i] = __get_free_pages(GFP_KERNEL,
2767 base->lcla_pool.pages);
2768 if (!page_list[i]) {
2770 dev_err(base->dev,
2771 "[%s] Failed to allocate %d pages.\n",
2772 __func__, base->lcla_pool.pages);
2774 for (j = 0; j < i; j++)
2775 free_pages(page_list[j], base->lcla_pool.pages);
2776 goto failure;
2779 if ((virt_to_phys((void *)page_list[i]) &
2780 (LCLA_ALIGNMENT - 1)) == 0)
2781 break;
2784 for (j = 0; j < i; j++)
2785 free_pages(page_list[j], base->lcla_pool.pages);
2787 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2788 base->lcla_pool.base = (void *)page_list[i];
2789 } else {
2791 * After many attempts and no succees with finding the correct
2792 * alignment, try with allocating a big buffer.
2794 dev_warn(base->dev,
2795 "[%s] Failed to get %d pages @ 18 bit align.\n",
2796 __func__, base->lcla_pool.pages);
2797 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2798 base->num_phy_chans +
2799 LCLA_ALIGNMENT,
2800 GFP_KERNEL);
2801 if (!base->lcla_pool.base_unaligned) {
2802 ret = -ENOMEM;
2803 goto failure;
2806 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2807 LCLA_ALIGNMENT);
2810 writel(virt_to_phys(base->lcla_pool.base),
2811 base->virtbase + D40_DREG_LCLA);
2812 failure:
2813 kfree(page_list);
2814 return ret;
2817 static int __init d40_probe(struct platform_device *pdev)
2819 int err;
2820 int ret = -ENOENT;
2821 struct d40_base *base;
2822 struct resource *res = NULL;
2823 int num_reserved_chans;
2824 u32 val;
2826 base = d40_hw_detect_init(pdev);
2828 if (!base)
2829 goto failure;
2831 num_reserved_chans = d40_phy_res_init(base);
2833 platform_set_drvdata(pdev, base);
2835 spin_lock_init(&base->interrupt_lock);
2836 spin_lock_init(&base->execmd_lock);
2838 /* Get IO for logical channel parameter address */
2839 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2840 if (!res) {
2841 ret = -ENOENT;
2842 dev_err(&pdev->dev,
2843 "[%s] No \"lcpa\" memory resource\n",
2844 __func__);
2845 goto failure;
2847 base->lcpa_size = resource_size(res);
2848 base->phy_lcpa = res->start;
2850 if (request_mem_region(res->start, resource_size(res),
2851 D40_NAME " I/O lcpa") == NULL) {
2852 ret = -EBUSY;
2853 dev_err(&pdev->dev,
2854 "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2855 __func__, res->start, res->end);
2856 goto failure;
2859 /* We make use of ESRAM memory for this. */
2860 val = readl(base->virtbase + D40_DREG_LCPA);
2861 if (res->start != val && val != 0) {
2862 dev_warn(&pdev->dev,
2863 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2864 __func__, val, res->start);
2865 } else
2866 writel(res->start, base->virtbase + D40_DREG_LCPA);
2868 base->lcpa_base = ioremap(res->start, resource_size(res));
2869 if (!base->lcpa_base) {
2870 ret = -ENOMEM;
2871 dev_err(&pdev->dev,
2872 "[%s] Failed to ioremap LCPA region\n",
2873 __func__);
2874 goto failure;
2877 ret = d40_lcla_allocate(base);
2878 if (ret) {
2879 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2880 __func__);
2881 goto failure;
2884 spin_lock_init(&base->lcla_pool.lock);
2886 base->irq = platform_get_irq(pdev, 0);
2888 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2890 if (ret) {
2891 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2892 goto failure;
2895 err = d40_dmaengine_init(base, num_reserved_chans);
2896 if (err)
2897 goto failure;
2899 d40_hw_init(base);
2901 dev_info(base->dev, "initialized\n");
2902 return 0;
2904 failure:
2905 if (base) {
2906 if (base->desc_slab)
2907 kmem_cache_destroy(base->desc_slab);
2908 if (base->virtbase)
2909 iounmap(base->virtbase);
2910 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2911 free_pages((unsigned long)base->lcla_pool.base,
2912 base->lcla_pool.pages);
2914 kfree(base->lcla_pool.base_unaligned);
2916 if (base->phy_lcpa)
2917 release_mem_region(base->phy_lcpa,
2918 base->lcpa_size);
2919 if (base->phy_start)
2920 release_mem_region(base->phy_start,
2921 base->phy_size);
2922 if (base->clk) {
2923 clk_disable(base->clk);
2924 clk_put(base->clk);
2927 kfree(base->lcla_pool.alloc_map);
2928 kfree(base->lookup_log_chans);
2929 kfree(base->lookup_phy_chans);
2930 kfree(base->phy_res);
2931 kfree(base);
2934 dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2935 return ret;
2938 static struct platform_driver d40_driver = {
2939 .driver = {
2940 .owner = THIS_MODULE,
2941 .name = D40_NAME,
2945 int __init stedma40_init(void)
2947 return platform_driver_probe(&d40_driver, d40_probe);
2949 arch_initcall(stedma40_init);