usb: fix number of mapped SG DMA entries
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-ring.c
blobc0c5d6c7cb692627beb640b4201dc8771b7c7793
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
82 unsigned long segment_offset;
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return (le32_to_cpu(trb->link.control) & TRB_TYPE_BITMASK)
117 == TRB_TYPE(TRB_LINK);
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return ((le32_to_cpu(link->control) & TRB_TYPE_BITMASK) ==
124 TRB_TYPE(TRB_LINK));
127 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
128 * TRB is in a new segment. This does not skip over link TRBs, and it does not
129 * effect the ring dequeue or enqueue pointers.
131 static void next_trb(struct xhci_hcd *xhci,
132 struct xhci_ring *ring,
133 struct xhci_segment **seg,
134 union xhci_trb **trb)
136 if (last_trb(xhci, ring, *seg, *trb)) {
137 *seg = (*seg)->next;
138 *trb = ((*seg)->trbs);
139 } else {
140 (*trb)++;
145 * See Cycle bit rules. SW is the consumer for the event ring only.
146 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
148 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
150 union xhci_trb *next = ++(ring->dequeue);
151 unsigned long long addr;
153 ring->deq_updates++;
154 /* Update the dequeue pointer further if that was a link TRB or we're at
155 * the end of an event ring segment (which doesn't have link TRBS)
157 while (last_trb(xhci, ring, ring->deq_seg, next)) {
158 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
159 ring->cycle_state = (ring->cycle_state ? 0 : 1);
160 if (!in_interrupt())
161 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
162 ring,
163 (unsigned int) ring->cycle_state);
165 ring->deq_seg = ring->deq_seg->next;
166 ring->dequeue = ring->deq_seg->trbs;
167 next = ring->dequeue;
169 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
173 * See Cycle bit rules. SW is the consumer for the event ring only.
174 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
176 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
177 * chain bit is set), then set the chain bit in all the following link TRBs.
178 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
179 * have their chain bit cleared (so that each Link TRB is a separate TD).
181 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
182 * set, but other sections talk about dealing with the chain bit set. This was
183 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
184 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
186 * @more_trbs_coming: Will you enqueue more TRBs before calling
187 * prepare_transfer()?
189 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
190 bool consumer, bool more_trbs_coming, bool isoc)
192 u32 chain;
193 union xhci_trb *next;
194 unsigned long long addr;
196 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
197 next = ++(ring->enqueue);
199 ring->enq_updates++;
200 /* Update the dequeue pointer further if that was a link TRB or we're at
201 * the end of an event ring segment (which doesn't have link TRBS)
203 while (last_trb(xhci, ring, ring->enq_seg, next)) {
204 if (!consumer) {
205 if (ring != xhci->event_ring) {
207 * If the caller doesn't plan on enqueueing more
208 * TDs before ringing the doorbell, then we
209 * don't want to give the link TRB to the
210 * hardware just yet. We'll give the link TRB
211 * back in prepare_ring() just before we enqueue
212 * the TD at the top of the ring.
214 if (!chain && !more_trbs_coming)
215 break;
217 /* If we're not dealing with 0.95 hardware or
218 * isoc rings on AMD 0.96 host,
219 * carry over the chain bit of the previous TRB
220 * (which may mean the chain bit is cleared).
222 if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST))
223 && !xhci_link_trb_quirk(xhci)) {
224 next->link.control &=
225 cpu_to_le32(~TRB_CHAIN);
226 next->link.control |=
227 cpu_to_le32(chain);
229 /* Give this link TRB to the hardware */
230 wmb();
231 next->link.control ^= cpu_to_le32(TRB_CYCLE);
233 /* Toggle the cycle bit after the last ring segment. */
234 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
235 ring->cycle_state = (ring->cycle_state ? 0 : 1);
236 if (!in_interrupt())
237 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
238 ring,
239 (unsigned int) ring->cycle_state);
242 ring->enq_seg = ring->enq_seg->next;
243 ring->enqueue = ring->enq_seg->trbs;
244 next = ring->enqueue;
246 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
250 * Check to see if there's room to enqueue num_trbs on the ring. See rules
251 * above.
252 * FIXME: this would be simpler and faster if we just kept track of the number
253 * of free TRBs in a ring.
255 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
256 unsigned int num_trbs)
258 int i;
259 union xhci_trb *enq = ring->enqueue;
260 struct xhci_segment *enq_seg = ring->enq_seg;
261 struct xhci_segment *cur_seg;
262 unsigned int left_on_ring;
264 /* If we are currently pointing to a link TRB, advance the
265 * enqueue pointer before checking for space */
266 while (last_trb(xhci, ring, enq_seg, enq)) {
267 enq_seg = enq_seg->next;
268 enq = enq_seg->trbs;
271 /* Check if ring is empty */
272 if (enq == ring->dequeue) {
273 /* Can't use link trbs */
274 left_on_ring = TRBS_PER_SEGMENT - 1;
275 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
276 cur_seg = cur_seg->next)
277 left_on_ring += TRBS_PER_SEGMENT - 1;
279 /* Always need one TRB free in the ring. */
280 left_on_ring -= 1;
281 if (num_trbs > left_on_ring) {
282 xhci_warn(xhci, "Not enough room on ring; "
283 "need %u TRBs, %u TRBs left\n",
284 num_trbs, left_on_ring);
285 return 0;
287 return 1;
289 /* Make sure there's an extra empty TRB available */
290 for (i = 0; i <= num_trbs; ++i) {
291 if (enq == ring->dequeue)
292 return 0;
293 enq++;
294 while (last_trb(xhci, ring, enq_seg, enq)) {
295 enq_seg = enq_seg->next;
296 enq = enq_seg->trbs;
299 return 1;
302 /* Ring the host controller doorbell after placing a command on the ring */
303 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
305 xhci_dbg(xhci, "// Ding dong!\n");
306 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
307 /* Flush PCI posted writes */
308 xhci_readl(xhci, &xhci->dba->doorbell[0]);
311 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
312 unsigned int slot_id,
313 unsigned int ep_index,
314 unsigned int stream_id)
316 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
317 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
318 unsigned int ep_state = ep->ep_state;
320 /* Don't ring the doorbell for this endpoint if there are pending
321 * cancellations because we don't want to interrupt processing.
322 * We don't want to restart any stream rings if there's a set dequeue
323 * pointer command pending because the device can choose to start any
324 * stream once the endpoint is on the HW schedule.
325 * FIXME - check all the stream rings for pending cancellations.
327 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
328 (ep_state & EP_HALTED))
329 return;
330 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
331 /* The CPU has better things to do at this point than wait for a
332 * write-posting flush. It'll get there soon enough.
336 /* Ring the doorbell for any rings with pending URBs */
337 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
338 unsigned int slot_id,
339 unsigned int ep_index)
341 unsigned int stream_id;
342 struct xhci_virt_ep *ep;
344 ep = &xhci->devs[slot_id]->eps[ep_index];
346 /* A ring has pending URBs if its TD list is not empty */
347 if (!(ep->ep_state & EP_HAS_STREAMS)) {
348 if (!(list_empty(&ep->ring->td_list)))
349 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
350 return;
353 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
354 stream_id++) {
355 struct xhci_stream_info *stream_info = ep->stream_info;
356 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
357 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
358 stream_id);
363 * Find the segment that trb is in. Start searching in start_seg.
364 * If we must move past a segment that has a link TRB with a toggle cycle state
365 * bit set, then we will toggle the value pointed at by cycle_state.
367 static struct xhci_segment *find_trb_seg(
368 struct xhci_segment *start_seg,
369 union xhci_trb *trb, int *cycle_state)
371 struct xhci_segment *cur_seg = start_seg;
372 struct xhci_generic_trb *generic_trb;
374 while (cur_seg->trbs > trb ||
375 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
376 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
377 if (le32_to_cpu(generic_trb->field[3]) & LINK_TOGGLE)
378 *cycle_state ^= 0x1;
379 cur_seg = cur_seg->next;
380 if (cur_seg == start_seg)
381 /* Looped over the entire list. Oops! */
382 return NULL;
384 return cur_seg;
388 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
389 unsigned int slot_id, unsigned int ep_index,
390 unsigned int stream_id)
392 struct xhci_virt_ep *ep;
394 ep = &xhci->devs[slot_id]->eps[ep_index];
395 /* Common case: no streams */
396 if (!(ep->ep_state & EP_HAS_STREAMS))
397 return ep->ring;
399 if (stream_id == 0) {
400 xhci_warn(xhci,
401 "WARN: Slot ID %u, ep index %u has streams, "
402 "but URB has no stream ID.\n",
403 slot_id, ep_index);
404 return NULL;
407 if (stream_id < ep->stream_info->num_streams)
408 return ep->stream_info->stream_rings[stream_id];
410 xhci_warn(xhci,
411 "WARN: Slot ID %u, ep index %u has "
412 "stream IDs 1 to %u allocated, "
413 "but stream ID %u is requested.\n",
414 slot_id, ep_index,
415 ep->stream_info->num_streams - 1,
416 stream_id);
417 return NULL;
420 /* Get the right ring for the given URB.
421 * If the endpoint supports streams, boundary check the URB's stream ID.
422 * If the endpoint doesn't support streams, return the singular endpoint ring.
424 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
425 struct urb *urb)
427 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
428 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
432 * Move the xHC's endpoint ring dequeue pointer past cur_td.
433 * Record the new state of the xHC's endpoint ring dequeue segment,
434 * dequeue pointer, and new consumer cycle state in state.
435 * Update our internal representation of the ring's dequeue pointer.
437 * We do this in three jumps:
438 * - First we update our new ring state to be the same as when the xHC stopped.
439 * - Then we traverse the ring to find the segment that contains
440 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
441 * any link TRBs with the toggle cycle bit set.
442 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
443 * if we've moved it past a link TRB with the toggle cycle bit set.
445 * Some of the uses of xhci_generic_trb are grotty, but if they're done
446 * with correct __le32 accesses they should work fine. Only users of this are
447 * in here.
449 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
450 unsigned int slot_id, unsigned int ep_index,
451 unsigned int stream_id, struct xhci_td *cur_td,
452 struct xhci_dequeue_state *state)
454 struct xhci_virt_device *dev = xhci->devs[slot_id];
455 struct xhci_ring *ep_ring;
456 struct xhci_generic_trb *trb;
457 struct xhci_ep_ctx *ep_ctx;
458 dma_addr_t addr;
460 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
461 ep_index, stream_id);
462 if (!ep_ring) {
463 xhci_warn(xhci, "WARN can't find new dequeue state "
464 "for invalid stream ID %u.\n",
465 stream_id);
466 return;
468 state->new_cycle_state = 0;
469 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
470 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
471 dev->eps[ep_index].stopped_trb,
472 &state->new_cycle_state);
473 if (!state->new_deq_seg) {
474 WARN_ON(1);
475 return;
478 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
479 xhci_dbg(xhci, "Finding endpoint context\n");
480 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
481 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
483 state->new_deq_ptr = cur_td->last_trb;
484 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
485 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
486 state->new_deq_ptr,
487 &state->new_cycle_state);
488 if (!state->new_deq_seg) {
489 WARN_ON(1);
490 return;
493 trb = &state->new_deq_ptr->generic;
494 if ((le32_to_cpu(trb->field[3]) & TRB_TYPE_BITMASK) ==
495 TRB_TYPE(TRB_LINK) && (le32_to_cpu(trb->field[3]) & LINK_TOGGLE))
496 state->new_cycle_state ^= 0x1;
497 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
500 * If there is only one segment in a ring, find_trb_seg()'s while loop
501 * will not run, and it will return before it has a chance to see if it
502 * needs to toggle the cycle bit. It can't tell if the stalled transfer
503 * ended just before the link TRB on a one-segment ring, or if the TD
504 * wrapped around the top of the ring, because it doesn't have the TD in
505 * question. Look for the one-segment case where stalled TRB's address
506 * is greater than the new dequeue pointer address.
508 if (ep_ring->first_seg == ep_ring->first_seg->next &&
509 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
510 state->new_cycle_state ^= 0x1;
511 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
513 /* Don't update the ring cycle state for the producer (us). */
514 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
515 state->new_deq_seg);
516 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
517 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
518 (unsigned long long) addr);
521 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
522 * (The last TRB actually points to the ring enqueue pointer, which is not part
523 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
525 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
526 struct xhci_td *cur_td, bool flip_cycle)
528 struct xhci_segment *cur_seg;
529 union xhci_trb *cur_trb;
531 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
532 true;
533 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
534 if ((le32_to_cpu(cur_trb->generic.field[3]) & TRB_TYPE_BITMASK)
535 == TRB_TYPE(TRB_LINK)) {
536 /* Unchain any chained Link TRBs, but
537 * leave the pointers intact.
539 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
540 /* Flip the cycle bit (link TRBs can't be the first
541 * or last TRB).
543 if (flip_cycle)
544 cur_trb->generic.field[3] ^=
545 cpu_to_le32(TRB_CYCLE);
546 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
547 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
548 "in seg %p (0x%llx dma)\n",
549 cur_trb,
550 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
551 cur_seg,
552 (unsigned long long)cur_seg->dma);
553 } else {
554 cur_trb->generic.field[0] = 0;
555 cur_trb->generic.field[1] = 0;
556 cur_trb->generic.field[2] = 0;
557 /* Preserve only the cycle bit of this TRB */
558 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
559 /* Flip the cycle bit except on the first or last TRB */
560 if (flip_cycle && cur_trb != cur_td->first_trb &&
561 cur_trb != cur_td->last_trb)
562 cur_trb->generic.field[3] ^=
563 cpu_to_le32(TRB_CYCLE);
564 cur_trb->generic.field[3] |= cpu_to_le32(
565 TRB_TYPE(TRB_TR_NOOP));
566 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
567 "in seg %p (0x%llx dma)\n",
568 cur_trb,
569 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
570 cur_seg,
571 (unsigned long long)cur_seg->dma);
573 if (cur_trb == cur_td->last_trb)
574 break;
578 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
579 unsigned int ep_index, unsigned int stream_id,
580 struct xhci_segment *deq_seg,
581 union xhci_trb *deq_ptr, u32 cycle_state);
583 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
584 unsigned int slot_id, unsigned int ep_index,
585 unsigned int stream_id,
586 struct xhci_dequeue_state *deq_state)
588 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
590 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
591 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
592 deq_state->new_deq_seg,
593 (unsigned long long)deq_state->new_deq_seg->dma,
594 deq_state->new_deq_ptr,
595 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
596 deq_state->new_cycle_state);
597 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
598 deq_state->new_deq_seg,
599 deq_state->new_deq_ptr,
600 (u32) deq_state->new_cycle_state);
601 /* Stop the TD queueing code from ringing the doorbell until
602 * this command completes. The HC won't set the dequeue pointer
603 * if the ring is running, and ringing the doorbell starts the
604 * ring running.
606 ep->ep_state |= SET_DEQ_PENDING;
609 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
610 struct xhci_virt_ep *ep)
612 ep->ep_state &= ~EP_HALT_PENDING;
613 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
614 * timer is running on another CPU, we don't decrement stop_cmds_pending
615 * (since we didn't successfully stop the watchdog timer).
617 if (del_timer(&ep->stop_cmd_timer))
618 ep->stop_cmds_pending--;
621 /* Must be called with xhci->lock held in interrupt context */
622 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
623 struct xhci_td *cur_td, int status, char *adjective)
625 struct usb_hcd *hcd;
626 struct urb *urb;
627 struct urb_priv *urb_priv;
629 urb = cur_td->urb;
630 urb_priv = urb->hcpriv;
631 urb_priv->td_cnt++;
632 hcd = bus_to_hcd(urb->dev->bus);
634 /* Only giveback urb when this is the last td in urb */
635 if (urb_priv->td_cnt == urb_priv->length) {
636 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
637 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
638 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
639 if (xhci->quirks & XHCI_AMD_PLL_FIX)
640 usb_amd_quirk_pll_enable();
643 usb_hcd_unlink_urb_from_ep(hcd, urb);
645 spin_unlock(&xhci->lock);
646 usb_hcd_giveback_urb(hcd, urb, status);
647 xhci_urb_free_priv(xhci, urb_priv);
648 spin_lock(&xhci->lock);
653 * When we get a command completion for a Stop Endpoint Command, we need to
654 * unlink any cancelled TDs from the ring. There are two ways to do that:
656 * 1. If the HW was in the middle of processing the TD that needs to be
657 * cancelled, then we must move the ring's dequeue pointer past the last TRB
658 * in the TD with a Set Dequeue Pointer Command.
659 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
660 * bit cleared) so that the HW will skip over them.
662 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
663 union xhci_trb *trb, struct xhci_event_cmd *event)
665 unsigned int slot_id;
666 unsigned int ep_index;
667 struct xhci_virt_device *virt_dev;
668 struct xhci_ring *ep_ring;
669 struct xhci_virt_ep *ep;
670 struct list_head *entry;
671 struct xhci_td *cur_td = NULL;
672 struct xhci_td *last_unlinked_td;
674 struct xhci_dequeue_state deq_state;
676 if (unlikely(TRB_TO_SUSPEND_PORT(
677 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
678 slot_id = TRB_TO_SLOT_ID(
679 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
680 virt_dev = xhci->devs[slot_id];
681 if (virt_dev)
682 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
683 event);
684 else
685 xhci_warn(xhci, "Stop endpoint command "
686 "completion for disabled slot %u\n",
687 slot_id);
688 return;
691 memset(&deq_state, 0, sizeof(deq_state));
692 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
693 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
694 ep = &xhci->devs[slot_id]->eps[ep_index];
696 if (list_empty(&ep->cancelled_td_list)) {
697 xhci_stop_watchdog_timer_in_irq(xhci, ep);
698 ep->stopped_td = NULL;
699 ep->stopped_trb = NULL;
700 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
701 return;
704 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
705 * We have the xHCI lock, so nothing can modify this list until we drop
706 * it. We're also in the event handler, so we can't get re-interrupted
707 * if another Stop Endpoint command completes
709 list_for_each(entry, &ep->cancelled_td_list) {
710 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
711 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
712 cur_td->first_trb,
713 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
714 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
715 if (!ep_ring) {
716 /* This shouldn't happen unless a driver is mucking
717 * with the stream ID after submission. This will
718 * leave the TD on the hardware ring, and the hardware
719 * will try to execute it, and may access a buffer
720 * that has already been freed. In the best case, the
721 * hardware will execute it, and the event handler will
722 * ignore the completion event for that TD, since it was
723 * removed from the td_list for that endpoint. In
724 * short, don't muck with the stream ID after
725 * submission.
727 xhci_warn(xhci, "WARN Cancelled URB %p "
728 "has invalid stream ID %u.\n",
729 cur_td->urb,
730 cur_td->urb->stream_id);
731 goto remove_finished_td;
734 * If we stopped on the TD we need to cancel, then we have to
735 * move the xHC endpoint ring dequeue pointer past this TD.
737 if (cur_td == ep->stopped_td)
738 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
739 cur_td->urb->stream_id,
740 cur_td, &deq_state);
741 else
742 td_to_noop(xhci, ep_ring, cur_td, false);
743 remove_finished_td:
745 * The event handler won't see a completion for this TD anymore,
746 * so remove it from the endpoint ring's TD list. Keep it in
747 * the cancelled TD list for URB completion later.
749 list_del_init(&cur_td->td_list);
751 last_unlinked_td = cur_td;
752 xhci_stop_watchdog_timer_in_irq(xhci, ep);
754 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
755 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
756 xhci_queue_new_dequeue_state(xhci,
757 slot_id, ep_index,
758 ep->stopped_td->urb->stream_id,
759 &deq_state);
760 xhci_ring_cmd_db(xhci);
761 } else {
762 /* Otherwise ring the doorbell(s) to restart queued transfers */
763 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
765 ep->stopped_td = NULL;
766 ep->stopped_trb = NULL;
769 * Drop the lock and complete the URBs in the cancelled TD list.
770 * New TDs to be cancelled might be added to the end of the list before
771 * we can complete all the URBs for the TDs we already unlinked.
772 * So stop when we've completed the URB for the last TD we unlinked.
774 do {
775 cur_td = list_entry(ep->cancelled_td_list.next,
776 struct xhci_td, cancelled_td_list);
777 list_del_init(&cur_td->cancelled_td_list);
779 /* Clean up the cancelled URB */
780 /* Doesn't matter what we pass for status, since the core will
781 * just overwrite it (because the URB has been unlinked).
783 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
785 /* Stop processing the cancelled list if the watchdog timer is
786 * running.
788 if (xhci->xhc_state & XHCI_STATE_DYING)
789 return;
790 } while (cur_td != last_unlinked_td);
792 /* Return to the event handler with xhci->lock re-acquired */
795 /* Watchdog timer function for when a stop endpoint command fails to complete.
796 * In this case, we assume the host controller is broken or dying or dead. The
797 * host may still be completing some other events, so we have to be careful to
798 * let the event ring handler and the URB dequeueing/enqueueing functions know
799 * through xhci->state.
801 * The timer may also fire if the host takes a very long time to respond to the
802 * command, and the stop endpoint command completion handler cannot delete the
803 * timer before the timer function is called. Another endpoint cancellation may
804 * sneak in before the timer function can grab the lock, and that may queue
805 * another stop endpoint command and add the timer back. So we cannot use a
806 * simple flag to say whether there is a pending stop endpoint command for a
807 * particular endpoint.
809 * Instead we use a combination of that flag and a counter for the number of
810 * pending stop endpoint commands. If the timer is the tail end of the last
811 * stop endpoint command, and the endpoint's command is still pending, we assume
812 * the host is dying.
814 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
816 struct xhci_hcd *xhci;
817 struct xhci_virt_ep *ep;
818 struct xhci_virt_ep *temp_ep;
819 struct xhci_ring *ring;
820 struct xhci_td *cur_td;
821 int ret, i, j;
822 unsigned long flags;
824 ep = (struct xhci_virt_ep *) arg;
825 xhci = ep->xhci;
827 spin_lock_irqsave(&xhci->lock, flags);
829 ep->stop_cmds_pending--;
830 if (xhci->xhc_state & XHCI_STATE_DYING) {
831 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
832 "xHCI as DYING, exiting.\n");
833 spin_unlock_irqrestore(&xhci->lock, flags);
834 return;
836 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
837 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
838 "exiting.\n");
839 spin_unlock_irqrestore(&xhci->lock, flags);
840 return;
843 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
844 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
845 /* Oops, HC is dead or dying or at least not responding to the stop
846 * endpoint command.
848 xhci->xhc_state |= XHCI_STATE_DYING;
849 /* Disable interrupts from the host controller and start halting it */
850 xhci_quiesce(xhci);
851 spin_unlock_irqrestore(&xhci->lock, flags);
853 ret = xhci_halt(xhci);
855 spin_lock_irqsave(&xhci->lock, flags);
856 if (ret < 0) {
857 /* This is bad; the host is not responding to commands and it's
858 * not allowing itself to be halted. At least interrupts are
859 * disabled. If we call usb_hc_died(), it will attempt to
860 * disconnect all device drivers under this host. Those
861 * disconnect() methods will wait for all URBs to be unlinked,
862 * so we must complete them.
864 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
865 xhci_warn(xhci, "Completing active URBs anyway.\n");
866 /* We could turn all TDs on the rings to no-ops. This won't
867 * help if the host has cached part of the ring, and is slow if
868 * we want to preserve the cycle bit. Skip it and hope the host
869 * doesn't touch the memory.
872 for (i = 0; i < MAX_HC_SLOTS; i++) {
873 if (!xhci->devs[i])
874 continue;
875 for (j = 0; j < 31; j++) {
876 temp_ep = &xhci->devs[i]->eps[j];
877 ring = temp_ep->ring;
878 if (!ring)
879 continue;
880 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
881 "ep index %u\n", i, j);
882 while (!list_empty(&ring->td_list)) {
883 cur_td = list_first_entry(&ring->td_list,
884 struct xhci_td,
885 td_list);
886 list_del_init(&cur_td->td_list);
887 if (!list_empty(&cur_td->cancelled_td_list))
888 list_del_init(&cur_td->cancelled_td_list);
889 xhci_giveback_urb_in_irq(xhci, cur_td,
890 -ESHUTDOWN, "killed");
892 while (!list_empty(&temp_ep->cancelled_td_list)) {
893 cur_td = list_first_entry(
894 &temp_ep->cancelled_td_list,
895 struct xhci_td,
896 cancelled_td_list);
897 list_del_init(&cur_td->cancelled_td_list);
898 xhci_giveback_urb_in_irq(xhci, cur_td,
899 -ESHUTDOWN, "killed");
903 spin_unlock_irqrestore(&xhci->lock, flags);
904 xhci_dbg(xhci, "Calling usb_hc_died()\n");
905 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
906 xhci_dbg(xhci, "xHCI host controller is dead.\n");
910 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
911 * we need to clear the set deq pending flag in the endpoint ring state, so that
912 * the TD queueing code can ring the doorbell again. We also need to ring the
913 * endpoint doorbell to restart the ring, but only if there aren't more
914 * cancellations pending.
916 static void handle_set_deq_completion(struct xhci_hcd *xhci,
917 struct xhci_event_cmd *event,
918 union xhci_trb *trb)
920 unsigned int slot_id;
921 unsigned int ep_index;
922 unsigned int stream_id;
923 struct xhci_ring *ep_ring;
924 struct xhci_virt_device *dev;
925 struct xhci_ep_ctx *ep_ctx;
926 struct xhci_slot_ctx *slot_ctx;
928 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
929 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
930 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
931 dev = xhci->devs[slot_id];
933 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
934 if (!ep_ring) {
935 xhci_warn(xhci, "WARN Set TR deq ptr command for "
936 "freed stream ID %u\n",
937 stream_id);
938 /* XXX: Harmless??? */
939 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
940 return;
943 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
944 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
946 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
947 unsigned int ep_state;
948 unsigned int slot_state;
950 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
951 case COMP_TRB_ERR:
952 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
953 "of stream ID configuration\n");
954 break;
955 case COMP_CTX_STATE:
956 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
957 "to incorrect slot or ep state.\n");
958 ep_state = le32_to_cpu(ep_ctx->ep_info);
959 ep_state &= EP_STATE_MASK;
960 slot_state = le32_to_cpu(slot_ctx->dev_state);
961 slot_state = GET_SLOT_STATE(slot_state);
962 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
963 slot_state, ep_state);
964 break;
965 case COMP_EBADSLT:
966 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
967 "slot %u was not enabled.\n", slot_id);
968 break;
969 default:
970 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
971 "completion code of %u.\n",
972 GET_COMP_CODE(le32_to_cpu(event->status)));
973 break;
975 /* OK what do we do now? The endpoint state is hosed, and we
976 * should never get to this point if the synchronization between
977 * queueing, and endpoint state are correct. This might happen
978 * if the device gets disconnected after we've finished
979 * cancelling URBs, which might not be an error...
981 } else {
982 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
983 le64_to_cpu(ep_ctx->deq));
984 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
985 dev->eps[ep_index].queued_deq_ptr) ==
986 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
987 /* Update the ring's dequeue segment and dequeue pointer
988 * to reflect the new position.
990 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
991 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
992 } else {
993 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
994 "Ptr command & xHCI internal state.\n");
995 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
996 dev->eps[ep_index].queued_deq_seg,
997 dev->eps[ep_index].queued_deq_ptr);
1001 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1002 dev->eps[ep_index].queued_deq_seg = NULL;
1003 dev->eps[ep_index].queued_deq_ptr = NULL;
1004 /* Restart any rings with pending URBs */
1005 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1008 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1009 struct xhci_event_cmd *event,
1010 union xhci_trb *trb)
1012 int slot_id;
1013 unsigned int ep_index;
1015 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1016 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1017 /* This command will only fail if the endpoint wasn't halted,
1018 * but we don't care.
1020 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1021 (unsigned int) GET_COMP_CODE(le32_to_cpu(event->status)));
1023 /* HW with the reset endpoint quirk needs to have a configure endpoint
1024 * command complete before the endpoint can be used. Queue that here
1025 * because the HW can't handle two commands being queued in a row.
1027 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1028 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1029 xhci_queue_configure_endpoint(xhci,
1030 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1031 false);
1032 xhci_ring_cmd_db(xhci);
1033 } else {
1034 /* Clear our internal halted state and restart the ring(s) */
1035 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1036 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1040 /* Check to see if a command in the device's command queue matches this one.
1041 * Signal the completion or free the command, and return 1. Return 0 if the
1042 * completed command isn't at the head of the command list.
1044 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1045 struct xhci_virt_device *virt_dev,
1046 struct xhci_event_cmd *event)
1048 struct xhci_command *command;
1050 if (list_empty(&virt_dev->cmd_list))
1051 return 0;
1053 command = list_entry(virt_dev->cmd_list.next,
1054 struct xhci_command, cmd_list);
1055 if (xhci->cmd_ring->dequeue != command->command_trb)
1056 return 0;
1058 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1059 list_del(&command->cmd_list);
1060 if (command->completion)
1061 complete(command->completion);
1062 else
1063 xhci_free_command(xhci, command);
1064 return 1;
1067 static void handle_cmd_completion(struct xhci_hcd *xhci,
1068 struct xhci_event_cmd *event)
1070 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1071 u64 cmd_dma;
1072 dma_addr_t cmd_dequeue_dma;
1073 struct xhci_input_control_ctx *ctrl_ctx;
1074 struct xhci_virt_device *virt_dev;
1075 unsigned int ep_index;
1076 struct xhci_ring *ep_ring;
1077 unsigned int ep_state;
1079 cmd_dma = le64_to_cpu(event->cmd_trb);
1080 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1081 xhci->cmd_ring->dequeue);
1082 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1083 if (cmd_dequeue_dma == 0) {
1084 xhci->error_bitmask |= 1 << 4;
1085 return;
1087 /* Does the DMA address match our internal dequeue pointer address? */
1088 if (cmd_dma != (u64) cmd_dequeue_dma) {
1089 xhci->error_bitmask |= 1 << 5;
1090 return;
1092 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1093 & TRB_TYPE_BITMASK) {
1094 case TRB_TYPE(TRB_ENABLE_SLOT):
1095 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1096 xhci->slot_id = slot_id;
1097 else
1098 xhci->slot_id = 0;
1099 complete(&xhci->addr_dev);
1100 break;
1101 case TRB_TYPE(TRB_DISABLE_SLOT):
1102 if (xhci->devs[slot_id]) {
1103 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1104 /* Delete default control endpoint resources */
1105 xhci_free_device_endpoint_resources(xhci,
1106 xhci->devs[slot_id], true);
1107 xhci_free_virt_device(xhci, slot_id);
1109 break;
1110 case TRB_TYPE(TRB_CONFIG_EP):
1111 virt_dev = xhci->devs[slot_id];
1112 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1113 break;
1115 * Configure endpoint commands can come from the USB core
1116 * configuration or alt setting changes, or because the HW
1117 * needed an extra configure endpoint command after a reset
1118 * endpoint command or streams were being configured.
1119 * If the command was for a halted endpoint, the xHCI driver
1120 * is not waiting on the configure endpoint command.
1122 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1123 virt_dev->in_ctx);
1124 /* Input ctx add_flags are the endpoint index plus one */
1125 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1126 /* A usb_set_interface() call directly after clearing a halted
1127 * condition may race on this quirky hardware. Not worth
1128 * worrying about, since this is prototype hardware. Not sure
1129 * if this will work for streams, but streams support was
1130 * untested on this prototype.
1132 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1133 ep_index != (unsigned int) -1 &&
1134 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1135 le32_to_cpu(ctrl_ctx->drop_flags)) {
1136 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1137 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1138 if (!(ep_state & EP_HALTED))
1139 goto bandwidth_change;
1140 xhci_dbg(xhci, "Completed config ep cmd - "
1141 "last ep index = %d, state = %d\n",
1142 ep_index, ep_state);
1143 /* Clear internal halted state and restart ring(s) */
1144 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1145 ~EP_HALTED;
1146 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1147 break;
1149 bandwidth_change:
1150 xhci_dbg(xhci, "Completed config ep cmd\n");
1151 xhci->devs[slot_id]->cmd_status =
1152 GET_COMP_CODE(le32_to_cpu(event->status));
1153 complete(&xhci->devs[slot_id]->cmd_completion);
1154 break;
1155 case TRB_TYPE(TRB_EVAL_CONTEXT):
1156 virt_dev = xhci->devs[slot_id];
1157 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1158 break;
1159 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1160 complete(&xhci->devs[slot_id]->cmd_completion);
1161 break;
1162 case TRB_TYPE(TRB_ADDR_DEV):
1163 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1164 complete(&xhci->addr_dev);
1165 break;
1166 case TRB_TYPE(TRB_STOP_RING):
1167 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1168 break;
1169 case TRB_TYPE(TRB_SET_DEQ):
1170 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1171 break;
1172 case TRB_TYPE(TRB_CMD_NOOP):
1173 break;
1174 case TRB_TYPE(TRB_RESET_EP):
1175 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1176 break;
1177 case TRB_TYPE(TRB_RESET_DEV):
1178 xhci_dbg(xhci, "Completed reset device command.\n");
1179 slot_id = TRB_TO_SLOT_ID(
1180 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1181 virt_dev = xhci->devs[slot_id];
1182 if (virt_dev)
1183 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1184 else
1185 xhci_warn(xhci, "Reset device command completion "
1186 "for disabled slot %u\n", slot_id);
1187 break;
1188 case TRB_TYPE(TRB_NEC_GET_FW):
1189 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1190 xhci->error_bitmask |= 1 << 6;
1191 break;
1193 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1194 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1195 NEC_FW_MINOR(le32_to_cpu(event->status)));
1196 break;
1197 default:
1198 /* Skip over unknown commands on the event ring */
1199 xhci->error_bitmask |= 1 << 6;
1200 break;
1202 inc_deq(xhci, xhci->cmd_ring, false);
1205 static void handle_vendor_event(struct xhci_hcd *xhci,
1206 union xhci_trb *event)
1208 u32 trb_type;
1210 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1211 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1212 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1213 handle_cmd_completion(xhci, &event->event_cmd);
1216 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1217 * port registers -- USB 3.0 and USB 2.0).
1219 * Returns a zero-based port number, which is suitable for indexing into each of
1220 * the split roothubs' port arrays and bus state arrays.
1222 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1223 struct xhci_hcd *xhci, u32 port_id)
1225 unsigned int i;
1226 unsigned int num_similar_speed_ports = 0;
1228 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1229 * and usb2_ports are 0-based indexes. Count the number of similar
1230 * speed ports, up to 1 port before this port.
1232 for (i = 0; i < (port_id - 1); i++) {
1233 u8 port_speed = xhci->port_array[i];
1236 * Skip ports that don't have known speeds, or have duplicate
1237 * Extended Capabilities port speed entries.
1239 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1240 continue;
1243 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1244 * 1.1 ports are under the USB 2.0 hub. If the port speed
1245 * matches the device speed, it's a similar speed port.
1247 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1248 num_similar_speed_ports++;
1250 return num_similar_speed_ports;
1253 static void handle_port_status(struct xhci_hcd *xhci,
1254 union xhci_trb *event)
1256 struct usb_hcd *hcd;
1257 u32 port_id;
1258 u32 temp, temp1;
1259 int max_ports;
1260 int slot_id;
1261 unsigned int faked_port_index;
1262 u8 major_revision;
1263 struct xhci_bus_state *bus_state;
1264 __le32 __iomem **port_array;
1265 bool bogus_port_status = false;
1267 /* Port status change events always have a successful completion code */
1268 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1269 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1270 xhci->error_bitmask |= 1 << 8;
1272 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1273 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1275 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1276 if ((port_id <= 0) || (port_id > max_ports)) {
1277 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1278 bogus_port_status = true;
1279 goto cleanup;
1282 /* Figure out which usb_hcd this port is attached to:
1283 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1285 major_revision = xhci->port_array[port_id - 1];
1286 if (major_revision == 0) {
1287 xhci_warn(xhci, "Event for port %u not in "
1288 "Extended Capabilities, ignoring.\n",
1289 port_id);
1290 bogus_port_status = true;
1291 goto cleanup;
1293 if (major_revision == DUPLICATE_ENTRY) {
1294 xhci_warn(xhci, "Event for port %u duplicated in"
1295 "Extended Capabilities, ignoring.\n",
1296 port_id);
1297 bogus_port_status = true;
1298 goto cleanup;
1302 * Hardware port IDs reported by a Port Status Change Event include USB
1303 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1304 * resume event, but we first need to translate the hardware port ID
1305 * into the index into the ports on the correct split roothub, and the
1306 * correct bus_state structure.
1308 /* Find the right roothub. */
1309 hcd = xhci_to_hcd(xhci);
1310 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1311 hcd = xhci->shared_hcd;
1312 bus_state = &xhci->bus_state[hcd_index(hcd)];
1313 if (hcd->speed == HCD_USB3)
1314 port_array = xhci->usb3_ports;
1315 else
1316 port_array = xhci->usb2_ports;
1317 /* Find the faked port hub number */
1318 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1319 port_id);
1321 temp = xhci_readl(xhci, port_array[faked_port_index]);
1322 if (hcd->state == HC_STATE_SUSPENDED) {
1323 xhci_dbg(xhci, "resume root hub\n");
1324 usb_hcd_resume_root_hub(hcd);
1327 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1328 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1330 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1331 if (!(temp1 & CMD_RUN)) {
1332 xhci_warn(xhci, "xHC is not running.\n");
1333 goto cleanup;
1336 if (DEV_SUPERSPEED(temp)) {
1337 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1338 temp = xhci_port_state_to_neutral(temp);
1339 temp &= ~PORT_PLS_MASK;
1340 temp |= PORT_LINK_STROBE | XDEV_U0;
1341 xhci_writel(xhci, temp, port_array[faked_port_index]);
1342 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1343 faked_port_index);
1344 if (!slot_id) {
1345 xhci_dbg(xhci, "slot_id is zero\n");
1346 goto cleanup;
1348 xhci_ring_device(xhci, slot_id);
1349 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1350 /* Clear PORT_PLC */
1351 xhci_test_and_clear_bit(xhci, port_array,
1352 faked_port_index, PORT_PLC);
1353 } else {
1354 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1355 bus_state->resume_done[faked_port_index] = jiffies +
1356 msecs_to_jiffies(20);
1357 mod_timer(&hcd->rh_timer,
1358 bus_state->resume_done[faked_port_index]);
1359 /* Do the rest in GetPortStatus */
1363 if (hcd->speed != HCD_USB3)
1364 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1365 PORT_PLC);
1367 cleanup:
1368 /* Update event ring dequeue pointer before dropping the lock */
1369 inc_deq(xhci, xhci->event_ring, true);
1371 /* Don't make the USB core poll the roothub if we got a bad port status
1372 * change event. Besides, at that point we can't tell which roothub
1373 * (USB 2.0 or USB 3.0) to kick.
1375 if (bogus_port_status)
1376 return;
1378 spin_unlock(&xhci->lock);
1379 /* Pass this up to the core */
1380 usb_hcd_poll_rh_status(hcd);
1381 spin_lock(&xhci->lock);
1385 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1386 * at end_trb, which may be in another segment. If the suspect DMA address is a
1387 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1388 * returns 0.
1390 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1391 union xhci_trb *start_trb,
1392 union xhci_trb *end_trb,
1393 dma_addr_t suspect_dma)
1395 dma_addr_t start_dma;
1396 dma_addr_t end_seg_dma;
1397 dma_addr_t end_trb_dma;
1398 struct xhci_segment *cur_seg;
1400 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1401 cur_seg = start_seg;
1403 do {
1404 if (start_dma == 0)
1405 return NULL;
1406 /* We may get an event for a Link TRB in the middle of a TD */
1407 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1408 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1409 /* If the end TRB isn't in this segment, this is set to 0 */
1410 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1412 if (end_trb_dma > 0) {
1413 /* The end TRB is in this segment, so suspect should be here */
1414 if (start_dma <= end_trb_dma) {
1415 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1416 return cur_seg;
1417 } else {
1418 /* Case for one segment with
1419 * a TD wrapped around to the top
1421 if ((suspect_dma >= start_dma &&
1422 suspect_dma <= end_seg_dma) ||
1423 (suspect_dma >= cur_seg->dma &&
1424 suspect_dma <= end_trb_dma))
1425 return cur_seg;
1427 return NULL;
1428 } else {
1429 /* Might still be somewhere in this segment */
1430 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1431 return cur_seg;
1433 cur_seg = cur_seg->next;
1434 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1435 } while (cur_seg != start_seg);
1437 return NULL;
1440 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1441 unsigned int slot_id, unsigned int ep_index,
1442 unsigned int stream_id,
1443 struct xhci_td *td, union xhci_trb *event_trb)
1445 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1446 ep->ep_state |= EP_HALTED;
1447 ep->stopped_td = td;
1448 ep->stopped_trb = event_trb;
1449 ep->stopped_stream = stream_id;
1451 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1452 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1454 ep->stopped_td = NULL;
1455 ep->stopped_trb = NULL;
1456 ep->stopped_stream = 0;
1458 xhci_ring_cmd_db(xhci);
1461 /* Check if an error has halted the endpoint ring. The class driver will
1462 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1463 * However, a babble and other errors also halt the endpoint ring, and the class
1464 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1465 * Ring Dequeue Pointer command manually.
1467 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1468 struct xhci_ep_ctx *ep_ctx,
1469 unsigned int trb_comp_code)
1471 /* TRB completion codes that may require a manual halt cleanup */
1472 if (trb_comp_code == COMP_TX_ERR ||
1473 trb_comp_code == COMP_BABBLE ||
1474 trb_comp_code == COMP_SPLIT_ERR)
1475 /* The 0.96 spec says a babbling control endpoint
1476 * is not halted. The 0.96 spec says it is. Some HW
1477 * claims to be 0.95 compliant, but it halts the control
1478 * endpoint anyway. Check if a babble halted the
1479 * endpoint.
1481 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_HALTED)
1482 return 1;
1484 return 0;
1487 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1489 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1490 /* Vendor defined "informational" completion code,
1491 * treat as not-an-error.
1493 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1494 trb_comp_code);
1495 xhci_dbg(xhci, "Treating code as success.\n");
1496 return 1;
1498 return 0;
1502 * Finish the td processing, remove the td from td list;
1503 * Return 1 if the urb can be given back.
1505 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1506 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1507 struct xhci_virt_ep *ep, int *status, bool skip)
1509 struct xhci_virt_device *xdev;
1510 struct xhci_ring *ep_ring;
1511 unsigned int slot_id;
1512 int ep_index;
1513 struct urb *urb = NULL;
1514 struct xhci_ep_ctx *ep_ctx;
1515 int ret = 0;
1516 struct urb_priv *urb_priv;
1517 u32 trb_comp_code;
1519 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1520 xdev = xhci->devs[slot_id];
1521 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1522 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1523 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1524 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1526 if (skip)
1527 goto td_cleanup;
1529 if (trb_comp_code == COMP_STOP_INVAL ||
1530 trb_comp_code == COMP_STOP) {
1531 /* The Endpoint Stop Command completion will take care of any
1532 * stopped TDs. A stopped TD may be restarted, so don't update
1533 * the ring dequeue pointer or take this TD off any lists yet.
1535 ep->stopped_td = td;
1536 ep->stopped_trb = event_trb;
1537 return 0;
1538 } else {
1539 if (trb_comp_code == COMP_STALL) {
1540 /* The transfer is completed from the driver's
1541 * perspective, but we need to issue a set dequeue
1542 * command for this stalled endpoint to move the dequeue
1543 * pointer past the TD. We can't do that here because
1544 * the halt condition must be cleared first. Let the
1545 * USB class driver clear the stall later.
1547 ep->stopped_td = td;
1548 ep->stopped_trb = event_trb;
1549 ep->stopped_stream = ep_ring->stream_id;
1550 } else if (xhci_requires_manual_halt_cleanup(xhci,
1551 ep_ctx, trb_comp_code)) {
1552 /* Other types of errors halt the endpoint, but the
1553 * class driver doesn't call usb_reset_endpoint() unless
1554 * the error is -EPIPE. Clear the halted status in the
1555 * xHCI hardware manually.
1557 xhci_cleanup_halted_endpoint(xhci,
1558 slot_id, ep_index, ep_ring->stream_id,
1559 td, event_trb);
1560 } else {
1561 /* Update ring dequeue pointer */
1562 while (ep_ring->dequeue != td->last_trb)
1563 inc_deq(xhci, ep_ring, false);
1564 inc_deq(xhci, ep_ring, false);
1567 td_cleanup:
1568 /* Clean up the endpoint's TD list */
1569 urb = td->urb;
1570 urb_priv = urb->hcpriv;
1572 /* Do one last check of the actual transfer length.
1573 * If the host controller said we transferred more data than
1574 * the buffer length, urb->actual_length will be a very big
1575 * number (since it's unsigned). Play it safe and say we didn't
1576 * transfer anything.
1578 if (urb->actual_length > urb->transfer_buffer_length) {
1579 xhci_warn(xhci, "URB transfer length is wrong, "
1580 "xHC issue? req. len = %u, "
1581 "act. len = %u\n",
1582 urb->transfer_buffer_length,
1583 urb->actual_length);
1584 urb->actual_length = 0;
1585 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1586 *status = -EREMOTEIO;
1587 else
1588 *status = 0;
1590 list_del_init(&td->td_list);
1591 /* Was this TD slated to be cancelled but completed anyway? */
1592 if (!list_empty(&td->cancelled_td_list))
1593 list_del_init(&td->cancelled_td_list);
1595 urb_priv->td_cnt++;
1596 /* Giveback the urb when all the tds are completed */
1597 if (urb_priv->td_cnt == urb_priv->length) {
1598 ret = 1;
1599 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1600 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1601 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1602 == 0) {
1603 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1604 usb_amd_quirk_pll_enable();
1610 return ret;
1614 * Process control tds, update urb status and actual_length.
1616 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1617 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1618 struct xhci_virt_ep *ep, int *status)
1620 struct xhci_virt_device *xdev;
1621 struct xhci_ring *ep_ring;
1622 unsigned int slot_id;
1623 int ep_index;
1624 struct xhci_ep_ctx *ep_ctx;
1625 u32 trb_comp_code;
1627 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1628 xdev = xhci->devs[slot_id];
1629 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1630 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1631 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1632 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1634 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1635 switch (trb_comp_code) {
1636 case COMP_SUCCESS:
1637 if (event_trb == ep_ring->dequeue) {
1638 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1639 "without IOC set??\n");
1640 *status = -ESHUTDOWN;
1641 } else if (event_trb != td->last_trb) {
1642 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1643 "without IOC set??\n");
1644 *status = -ESHUTDOWN;
1645 } else {
1646 *status = 0;
1648 break;
1649 case COMP_SHORT_TX:
1650 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1651 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1652 *status = -EREMOTEIO;
1653 else
1654 *status = 0;
1655 break;
1656 case COMP_STOP_INVAL:
1657 case COMP_STOP:
1658 return finish_td(xhci, td, event_trb, event, ep, status, false);
1659 default:
1660 if (!xhci_requires_manual_halt_cleanup(xhci,
1661 ep_ctx, trb_comp_code))
1662 break;
1663 xhci_dbg(xhci, "TRB error code %u, "
1664 "halted endpoint index = %u\n",
1665 trb_comp_code, ep_index);
1666 /* else fall through */
1667 case COMP_STALL:
1668 /* Did we transfer part of the data (middle) phase? */
1669 if (event_trb != ep_ring->dequeue &&
1670 event_trb != td->last_trb)
1671 td->urb->actual_length =
1672 td->urb->transfer_buffer_length
1673 - TRB_LEN(le32_to_cpu(event->transfer_len));
1674 else
1675 td->urb->actual_length = 0;
1677 xhci_cleanup_halted_endpoint(xhci,
1678 slot_id, ep_index, 0, td, event_trb);
1679 return finish_td(xhci, td, event_trb, event, ep, status, true);
1682 * Did we transfer any data, despite the errors that might have
1683 * happened? I.e. did we get past the setup stage?
1685 if (event_trb != ep_ring->dequeue) {
1686 /* The event was for the status stage */
1687 if (event_trb == td->last_trb) {
1688 if (td->urb->actual_length != 0) {
1689 /* Don't overwrite a previously set error code
1691 if ((*status == -EINPROGRESS || *status == 0) &&
1692 (td->urb->transfer_flags
1693 & URB_SHORT_NOT_OK))
1694 /* Did we already see a short data
1695 * stage? */
1696 *status = -EREMOTEIO;
1697 } else {
1698 td->urb->actual_length =
1699 td->urb->transfer_buffer_length;
1701 } else {
1702 /* Maybe the event was for the data stage? */
1703 td->urb->actual_length =
1704 td->urb->transfer_buffer_length -
1705 TRB_LEN(le32_to_cpu(event->transfer_len));
1706 xhci_dbg(xhci, "Waiting for status "
1707 "stage event\n");
1708 return 0;
1712 return finish_td(xhci, td, event_trb, event, ep, status, false);
1716 * Process isochronous tds, update urb packet status and actual_length.
1718 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1719 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1720 struct xhci_virt_ep *ep, int *status)
1722 struct xhci_ring *ep_ring;
1723 struct urb_priv *urb_priv;
1724 int idx;
1725 int len = 0;
1726 union xhci_trb *cur_trb;
1727 struct xhci_segment *cur_seg;
1728 struct usb_iso_packet_descriptor *frame;
1729 u32 trb_comp_code;
1730 bool skip_td = false;
1732 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1733 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1734 urb_priv = td->urb->hcpriv;
1735 idx = urb_priv->td_cnt;
1736 frame = &td->urb->iso_frame_desc[idx];
1738 /* handle completion code */
1739 switch (trb_comp_code) {
1740 case COMP_SUCCESS:
1741 frame->status = 0;
1742 break;
1743 case COMP_SHORT_TX:
1744 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1745 -EREMOTEIO : 0;
1746 break;
1747 case COMP_BW_OVER:
1748 frame->status = -ECOMM;
1749 skip_td = true;
1750 break;
1751 case COMP_BUFF_OVER:
1752 case COMP_BABBLE:
1753 frame->status = -EOVERFLOW;
1754 skip_td = true;
1755 break;
1756 case COMP_DEV_ERR:
1757 case COMP_STALL:
1758 frame->status = -EPROTO;
1759 skip_td = true;
1760 break;
1761 case COMP_STOP:
1762 case COMP_STOP_INVAL:
1763 break;
1764 default:
1765 frame->status = -1;
1766 break;
1769 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1770 frame->actual_length = frame->length;
1771 td->urb->actual_length += frame->length;
1772 } else {
1773 for (cur_trb = ep_ring->dequeue,
1774 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1775 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1776 if ((le32_to_cpu(cur_trb->generic.field[3]) &
1777 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1778 (le32_to_cpu(cur_trb->generic.field[3]) &
1779 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1780 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1782 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1783 TRB_LEN(le32_to_cpu(event->transfer_len));
1785 if (trb_comp_code != COMP_STOP_INVAL) {
1786 frame->actual_length = len;
1787 td->urb->actual_length += len;
1791 return finish_td(xhci, td, event_trb, event, ep, status, false);
1794 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1795 struct xhci_transfer_event *event,
1796 struct xhci_virt_ep *ep, int *status)
1798 struct xhci_ring *ep_ring;
1799 struct urb_priv *urb_priv;
1800 struct usb_iso_packet_descriptor *frame;
1801 int idx;
1803 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1804 urb_priv = td->urb->hcpriv;
1805 idx = urb_priv->td_cnt;
1806 frame = &td->urb->iso_frame_desc[idx];
1808 /* The transfer is partly done. */
1809 frame->status = -EXDEV;
1811 /* calc actual length */
1812 frame->actual_length = 0;
1814 /* Update ring dequeue pointer */
1815 while (ep_ring->dequeue != td->last_trb)
1816 inc_deq(xhci, ep_ring, false);
1817 inc_deq(xhci, ep_ring, false);
1819 return finish_td(xhci, td, NULL, event, ep, status, true);
1823 * Process bulk and interrupt tds, update urb status and actual_length.
1825 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1826 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1827 struct xhci_virt_ep *ep, int *status)
1829 struct xhci_ring *ep_ring;
1830 union xhci_trb *cur_trb;
1831 struct xhci_segment *cur_seg;
1832 u32 trb_comp_code;
1834 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1835 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1837 switch (trb_comp_code) {
1838 case COMP_SUCCESS:
1839 /* Double check that the HW transferred everything. */
1840 if (event_trb != td->last_trb) {
1841 xhci_warn(xhci, "WARN Successful completion "
1842 "on short TX\n");
1843 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1844 *status = -EREMOTEIO;
1845 else
1846 *status = 0;
1847 } else {
1848 *status = 0;
1850 break;
1851 case COMP_SHORT_TX:
1852 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1853 *status = -EREMOTEIO;
1854 else
1855 *status = 0;
1856 break;
1857 default:
1858 /* Others already handled above */
1859 break;
1861 if (trb_comp_code == COMP_SHORT_TX)
1862 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1863 "%d bytes untransferred\n",
1864 td->urb->ep->desc.bEndpointAddress,
1865 td->urb->transfer_buffer_length,
1866 TRB_LEN(le32_to_cpu(event->transfer_len)));
1867 /* Fast path - was this the last TRB in the TD for this URB? */
1868 if (event_trb == td->last_trb) {
1869 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1870 td->urb->actual_length =
1871 td->urb->transfer_buffer_length -
1872 TRB_LEN(le32_to_cpu(event->transfer_len));
1873 if (td->urb->transfer_buffer_length <
1874 td->urb->actual_length) {
1875 xhci_warn(xhci, "HC gave bad length "
1876 "of %d bytes left\n",
1877 TRB_LEN(le32_to_cpu(event->transfer_len)));
1878 td->urb->actual_length = 0;
1879 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1880 *status = -EREMOTEIO;
1881 else
1882 *status = 0;
1884 /* Don't overwrite a previously set error code */
1885 if (*status == -EINPROGRESS) {
1886 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1887 *status = -EREMOTEIO;
1888 else
1889 *status = 0;
1891 } else {
1892 td->urb->actual_length =
1893 td->urb->transfer_buffer_length;
1894 /* Ignore a short packet completion if the
1895 * untransferred length was zero.
1897 if (*status == -EREMOTEIO)
1898 *status = 0;
1900 } else {
1901 /* Slow path - walk the list, starting from the dequeue
1902 * pointer, to get the actual length transferred.
1904 td->urb->actual_length = 0;
1905 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1906 cur_trb != event_trb;
1907 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1908 if ((le32_to_cpu(cur_trb->generic.field[3]) &
1909 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1910 (le32_to_cpu(cur_trb->generic.field[3]) &
1911 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1912 td->urb->actual_length +=
1913 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1915 /* If the ring didn't stop on a Link or No-op TRB, add
1916 * in the actual bytes transferred from the Normal TRB
1918 if (trb_comp_code != COMP_STOP_INVAL)
1919 td->urb->actual_length +=
1920 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1921 TRB_LEN(le32_to_cpu(event->transfer_len));
1924 return finish_td(xhci, td, event_trb, event, ep, status, false);
1928 * If this function returns an error condition, it means it got a Transfer
1929 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1930 * At this point, the host controller is probably hosed and should be reset.
1932 static int handle_tx_event(struct xhci_hcd *xhci,
1933 struct xhci_transfer_event *event)
1935 struct xhci_virt_device *xdev;
1936 struct xhci_virt_ep *ep;
1937 struct xhci_ring *ep_ring;
1938 unsigned int slot_id;
1939 int ep_index;
1940 struct xhci_td *td = NULL;
1941 dma_addr_t event_dma;
1942 struct xhci_segment *event_seg;
1943 union xhci_trb *event_trb;
1944 struct urb *urb = NULL;
1945 int status = -EINPROGRESS;
1946 struct urb_priv *urb_priv;
1947 struct xhci_ep_ctx *ep_ctx;
1948 struct list_head *tmp;
1949 u32 trb_comp_code;
1950 int ret = 0;
1951 int td_num = 0;
1953 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1954 xdev = xhci->devs[slot_id];
1955 if (!xdev) {
1956 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1957 return -ENODEV;
1960 /* Endpoint ID is 1 based, our index is zero based */
1961 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1962 ep = &xdev->eps[ep_index];
1963 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1964 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1965 if (!ep_ring ||
1966 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1967 EP_STATE_DISABLED) {
1968 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1969 "or incorrect stream ring\n");
1970 return -ENODEV;
1973 /* Count current td numbers if ep->skip is set */
1974 if (ep->skip) {
1975 list_for_each(tmp, &ep_ring->td_list)
1976 td_num++;
1979 event_dma = le64_to_cpu(event->buffer);
1980 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1981 /* Look for common error cases */
1982 switch (trb_comp_code) {
1983 /* Skip codes that require special handling depending on
1984 * transfer type
1986 case COMP_SUCCESS:
1987 case COMP_SHORT_TX:
1988 break;
1989 case COMP_STOP:
1990 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1991 break;
1992 case COMP_STOP_INVAL:
1993 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1994 break;
1995 case COMP_STALL:
1996 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1997 ep->ep_state |= EP_HALTED;
1998 status = -EPIPE;
1999 break;
2000 case COMP_TRB_ERR:
2001 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2002 status = -EILSEQ;
2003 break;
2004 case COMP_SPLIT_ERR:
2005 case COMP_TX_ERR:
2006 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
2007 status = -EPROTO;
2008 break;
2009 case COMP_BABBLE:
2010 xhci_warn(xhci, "WARN: babble error on endpoint\n");
2011 status = -EOVERFLOW;
2012 break;
2013 case COMP_DB_ERR:
2014 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2015 status = -ENOSR;
2016 break;
2017 case COMP_BW_OVER:
2018 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2019 break;
2020 case COMP_BUFF_OVER:
2021 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2022 break;
2023 case COMP_UNDERRUN:
2025 * When the Isoch ring is empty, the xHC will generate
2026 * a Ring Overrun Event for IN Isoch endpoint or Ring
2027 * Underrun Event for OUT Isoch endpoint.
2029 xhci_dbg(xhci, "underrun event on endpoint\n");
2030 if (!list_empty(&ep_ring->td_list))
2031 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2032 "still with TDs queued?\n",
2033 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2034 ep_index);
2035 goto cleanup;
2036 case COMP_OVERRUN:
2037 xhci_dbg(xhci, "overrun event on endpoint\n");
2038 if (!list_empty(&ep_ring->td_list))
2039 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2040 "still with TDs queued?\n",
2041 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2042 ep_index);
2043 goto cleanup;
2044 case COMP_DEV_ERR:
2045 xhci_warn(xhci, "WARN: detect an incompatible device");
2046 status = -EPROTO;
2047 break;
2048 case COMP_MISSED_INT:
2050 * When encounter missed service error, one or more isoc tds
2051 * may be missed by xHC.
2052 * Set skip flag of the ep_ring; Complete the missed tds as
2053 * short transfer when process the ep_ring next time.
2055 ep->skip = true;
2056 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2057 goto cleanup;
2058 default:
2059 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2060 status = 0;
2061 break;
2063 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2064 "busted\n");
2065 goto cleanup;
2068 do {
2069 /* This TRB should be in the TD at the head of this ring's
2070 * TD list.
2072 if (list_empty(&ep_ring->td_list)) {
2073 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2074 "with no TDs queued?\n",
2075 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2076 ep_index);
2077 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2078 (unsigned int) (le32_to_cpu(event->flags)
2079 & TRB_TYPE_BITMASK)>>10);
2080 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2081 if (ep->skip) {
2082 ep->skip = false;
2083 xhci_dbg(xhci, "td_list is empty while skip "
2084 "flag set. Clear skip flag.\n");
2086 ret = 0;
2087 goto cleanup;
2090 /* We've skipped all the TDs on the ep ring when ep->skip set */
2091 if (ep->skip && td_num == 0) {
2092 ep->skip = false;
2093 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2094 "Clear skip flag.\n");
2095 ret = 0;
2096 goto cleanup;
2099 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2100 if (ep->skip)
2101 td_num--;
2103 /* Is this a TRB in the currently executing TD? */
2104 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2105 td->last_trb, event_dma);
2108 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2109 * is not in the current TD pointed by ep_ring->dequeue because
2110 * that the hardware dequeue pointer still at the previous TRB
2111 * of the current TD. The previous TRB maybe a Link TD or the
2112 * last TRB of the previous TD. The command completion handle
2113 * will take care the rest.
2115 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2116 ret = 0;
2117 goto cleanup;
2120 if (!event_seg) {
2121 if (!ep->skip ||
2122 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2123 /* Some host controllers give a spurious
2124 * successful event after a short transfer.
2125 * Ignore it.
2127 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2128 ep_ring->last_td_was_short) {
2129 ep_ring->last_td_was_short = false;
2130 ret = 0;
2131 goto cleanup;
2133 /* HC is busted, give up! */
2134 xhci_err(xhci,
2135 "ERROR Transfer event TRB DMA ptr not "
2136 "part of current TD\n");
2137 return -ESHUTDOWN;
2140 ret = skip_isoc_td(xhci, td, event, ep, &status);
2141 goto cleanup;
2143 if (trb_comp_code == COMP_SHORT_TX)
2144 ep_ring->last_td_was_short = true;
2145 else
2146 ep_ring->last_td_was_short = false;
2148 if (ep->skip) {
2149 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2150 ep->skip = false;
2153 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2154 sizeof(*event_trb)];
2156 * No-op TRB should not trigger interrupts.
2157 * If event_trb is a no-op TRB, it means the
2158 * corresponding TD has been cancelled. Just ignore
2159 * the TD.
2161 if ((le32_to_cpu(event_trb->generic.field[3])
2162 & TRB_TYPE_BITMASK)
2163 == TRB_TYPE(TRB_TR_NOOP)) {
2164 xhci_dbg(xhci,
2165 "event_trb is a no-op TRB. Skip it\n");
2166 goto cleanup;
2169 /* Now update the urb's actual_length and give back to
2170 * the core
2172 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2173 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2174 &status);
2175 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2176 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2177 &status);
2178 else
2179 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2180 ep, &status);
2182 cleanup:
2184 * Do not update event ring dequeue pointer if ep->skip is set.
2185 * Will roll back to continue process missed tds.
2187 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2188 inc_deq(xhci, xhci->event_ring, true);
2191 if (ret) {
2192 urb = td->urb;
2193 urb_priv = urb->hcpriv;
2194 /* Leave the TD around for the reset endpoint function
2195 * to use(but only if it's not a control endpoint,
2196 * since we already queued the Set TR dequeue pointer
2197 * command for stalled control endpoints).
2199 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2200 (trb_comp_code != COMP_STALL &&
2201 trb_comp_code != COMP_BABBLE))
2202 xhci_urb_free_priv(xhci, urb_priv);
2204 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2205 if ((urb->actual_length != urb->transfer_buffer_length &&
2206 (urb->transfer_flags &
2207 URB_SHORT_NOT_OK)) ||
2208 status != 0)
2209 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2210 "expected = %x, status = %d\n",
2211 urb, urb->actual_length,
2212 urb->transfer_buffer_length,
2213 status);
2214 spin_unlock(&xhci->lock);
2215 /* EHCI, UHCI, and OHCI always unconditionally set the
2216 * urb->status of an isochronous endpoint to 0.
2218 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2219 status = 0;
2220 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2221 spin_lock(&xhci->lock);
2225 * If ep->skip is set, it means there are missed tds on the
2226 * endpoint ring need to take care of.
2227 * Process them as short transfer until reach the td pointed by
2228 * the event.
2230 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2232 return 0;
2236 * This function handles all OS-owned events on the event ring. It may drop
2237 * xhci->lock between event processing (e.g. to pass up port status changes).
2238 * Returns >0 for "possibly more events to process" (caller should call again),
2239 * otherwise 0 if done. In future, <0 returns should indicate error code.
2241 static int xhci_handle_event(struct xhci_hcd *xhci)
2243 union xhci_trb *event;
2244 int update_ptrs = 1;
2245 int ret;
2247 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2248 xhci->error_bitmask |= 1 << 1;
2249 return 0;
2252 event = xhci->event_ring->dequeue;
2253 /* Does the HC or OS own the TRB? */
2254 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2255 xhci->event_ring->cycle_state) {
2256 xhci->error_bitmask |= 1 << 2;
2257 return 0;
2261 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2262 * speculative reads of the event's flags/data below.
2264 rmb();
2265 /* FIXME: Handle more event types. */
2266 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2267 case TRB_TYPE(TRB_COMPLETION):
2268 handle_cmd_completion(xhci, &event->event_cmd);
2269 break;
2270 case TRB_TYPE(TRB_PORT_STATUS):
2271 handle_port_status(xhci, event);
2272 update_ptrs = 0;
2273 break;
2274 case TRB_TYPE(TRB_TRANSFER):
2275 ret = handle_tx_event(xhci, &event->trans_event);
2276 if (ret < 0)
2277 xhci->error_bitmask |= 1 << 9;
2278 else
2279 update_ptrs = 0;
2280 break;
2281 default:
2282 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2283 TRB_TYPE(48))
2284 handle_vendor_event(xhci, event);
2285 else
2286 xhci->error_bitmask |= 1 << 3;
2288 /* Any of the above functions may drop and re-acquire the lock, so check
2289 * to make sure a watchdog timer didn't mark the host as non-responsive.
2291 if (xhci->xhc_state & XHCI_STATE_DYING) {
2292 xhci_dbg(xhci, "xHCI host dying, returning from "
2293 "event handler.\n");
2294 return 0;
2297 if (update_ptrs)
2298 /* Update SW event ring dequeue pointer */
2299 inc_deq(xhci, xhci->event_ring, true);
2301 /* Are there more items on the event ring? Caller will call us again to
2302 * check.
2304 return 1;
2308 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2309 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2310 * indicators of an event TRB error, but we check the status *first* to be safe.
2312 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2314 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2315 u32 status;
2316 union xhci_trb *trb;
2317 u64 temp_64;
2318 union xhci_trb *event_ring_deq;
2319 dma_addr_t deq;
2321 spin_lock(&xhci->lock);
2322 trb = xhci->event_ring->dequeue;
2323 /* Check if the xHC generated the interrupt, or the irq is shared */
2324 status = xhci_readl(xhci, &xhci->op_regs->status);
2325 if (status == 0xffffffff)
2326 goto hw_died;
2328 if (!(status & STS_EINT)) {
2329 spin_unlock(&xhci->lock);
2330 return IRQ_NONE;
2332 if (status & STS_FATAL) {
2333 xhci_warn(xhci, "WARNING: Host System Error\n");
2334 xhci_halt(xhci);
2335 hw_died:
2336 spin_unlock(&xhci->lock);
2337 return -ESHUTDOWN;
2341 * Clear the op reg interrupt status first,
2342 * so we can receive interrupts from other MSI-X interrupters.
2343 * Write 1 to clear the interrupt status.
2345 status |= STS_EINT;
2346 xhci_writel(xhci, status, &xhci->op_regs->status);
2347 /* FIXME when MSI-X is supported and there are multiple vectors */
2348 /* Clear the MSI-X event interrupt status */
2350 if (hcd->irq != -1) {
2351 u32 irq_pending;
2352 /* Acknowledge the PCI interrupt */
2353 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2354 irq_pending |= 0x3;
2355 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2358 if (xhci->xhc_state & XHCI_STATE_DYING) {
2359 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2360 "Shouldn't IRQs be disabled?\n");
2361 /* Clear the event handler busy flag (RW1C);
2362 * the event ring should be empty.
2364 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2365 xhci_write_64(xhci, temp_64 | ERST_EHB,
2366 &xhci->ir_set->erst_dequeue);
2367 spin_unlock(&xhci->lock);
2369 return IRQ_HANDLED;
2372 event_ring_deq = xhci->event_ring->dequeue;
2373 /* FIXME this should be a delayed service routine
2374 * that clears the EHB.
2376 while (xhci_handle_event(xhci) > 0) {}
2378 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2379 /* If necessary, update the HW's version of the event ring deq ptr. */
2380 if (event_ring_deq != xhci->event_ring->dequeue) {
2381 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2382 xhci->event_ring->dequeue);
2383 if (deq == 0)
2384 xhci_warn(xhci, "WARN something wrong with SW event "
2385 "ring dequeue ptr.\n");
2386 /* Update HC event ring dequeue pointer */
2387 temp_64 &= ERST_PTR_MASK;
2388 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2391 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2392 temp_64 |= ERST_EHB;
2393 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2395 spin_unlock(&xhci->lock);
2397 return IRQ_HANDLED;
2400 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2402 irqreturn_t ret;
2403 struct xhci_hcd *xhci;
2405 xhci = hcd_to_xhci(hcd);
2406 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2407 if (xhci->shared_hcd)
2408 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2410 ret = xhci_irq(hcd);
2412 return ret;
2415 /**** Endpoint Ring Operations ****/
2418 * Generic function for queueing a TRB on a ring.
2419 * The caller must have checked to make sure there's room on the ring.
2421 * @more_trbs_coming: Will you enqueue more TRBs before calling
2422 * prepare_transfer()?
2424 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2425 bool consumer, bool more_trbs_coming, bool isoc,
2426 u32 field1, u32 field2, u32 field3, u32 field4)
2428 struct xhci_generic_trb *trb;
2430 trb = &ring->enqueue->generic;
2431 trb->field[0] = cpu_to_le32(field1);
2432 trb->field[1] = cpu_to_le32(field2);
2433 trb->field[2] = cpu_to_le32(field3);
2434 trb->field[3] = cpu_to_le32(field4);
2435 inc_enq(xhci, ring, consumer, more_trbs_coming, isoc);
2439 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2440 * FIXME allocate segments if the ring is full.
2442 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2443 u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags)
2445 /* Make sure the endpoint has been added to xHC schedule */
2446 switch (ep_state) {
2447 case EP_STATE_DISABLED:
2449 * USB core changed config/interfaces without notifying us,
2450 * or hardware is reporting the wrong state.
2452 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2453 return -ENOENT;
2454 case EP_STATE_ERROR:
2455 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2456 /* FIXME event handling code for error needs to clear it */
2457 /* XXX not sure if this should be -ENOENT or not */
2458 return -EINVAL;
2459 case EP_STATE_HALTED:
2460 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2461 case EP_STATE_STOPPED:
2462 case EP_STATE_RUNNING:
2463 break;
2464 default:
2465 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2467 * FIXME issue Configure Endpoint command to try to get the HC
2468 * back into a known state.
2470 return -EINVAL;
2472 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2473 /* FIXME allocate more room */
2474 xhci_err(xhci, "ERROR no room on ep ring\n");
2475 return -ENOMEM;
2478 if (enqueue_is_link_trb(ep_ring)) {
2479 struct xhci_ring *ring = ep_ring;
2480 union xhci_trb *next;
2482 next = ring->enqueue;
2484 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2485 /* If we're not dealing with 0.95 hardware or isoc rings
2486 * on AMD 0.96 host, clear the chain bit.
2488 if (!xhci_link_trb_quirk(xhci) && !(isoc &&
2489 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2490 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2491 else
2492 next->link.control |= cpu_to_le32(TRB_CHAIN);
2494 wmb();
2495 next->link.control ^= cpu_to_le32((u32) TRB_CYCLE);
2497 /* Toggle the cycle bit after the last ring segment. */
2498 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2499 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2500 if (!in_interrupt()) {
2501 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2502 "state for ring %p = %i\n",
2503 ring, (unsigned int)ring->cycle_state);
2506 ring->enq_seg = ring->enq_seg->next;
2507 ring->enqueue = ring->enq_seg->trbs;
2508 next = ring->enqueue;
2512 return 0;
2515 static int prepare_transfer(struct xhci_hcd *xhci,
2516 struct xhci_virt_device *xdev,
2517 unsigned int ep_index,
2518 unsigned int stream_id,
2519 unsigned int num_trbs,
2520 struct urb *urb,
2521 unsigned int td_index,
2522 bool isoc,
2523 gfp_t mem_flags)
2525 int ret;
2526 struct urb_priv *urb_priv;
2527 struct xhci_td *td;
2528 struct xhci_ring *ep_ring;
2529 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2531 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2532 if (!ep_ring) {
2533 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2534 stream_id);
2535 return -EINVAL;
2538 ret = prepare_ring(xhci, ep_ring,
2539 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2540 num_trbs, isoc, mem_flags);
2541 if (ret)
2542 return ret;
2544 urb_priv = urb->hcpriv;
2545 td = urb_priv->td[td_index];
2547 INIT_LIST_HEAD(&td->td_list);
2548 INIT_LIST_HEAD(&td->cancelled_td_list);
2550 if (td_index == 0) {
2551 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2552 if (unlikely(ret))
2553 return ret;
2556 td->urb = urb;
2557 /* Add this TD to the tail of the endpoint ring's TD list */
2558 list_add_tail(&td->td_list, &ep_ring->td_list);
2559 td->start_seg = ep_ring->enq_seg;
2560 td->first_trb = ep_ring->enqueue;
2562 urb_priv->td[td_index] = td;
2564 return 0;
2567 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2569 int num_sgs, num_trbs, running_total, temp, i;
2570 struct scatterlist *sg;
2572 sg = NULL;
2573 num_sgs = urb->num_mapped_sgs;
2574 temp = urb->transfer_buffer_length;
2576 xhci_dbg(xhci, "count sg list trbs: \n");
2577 num_trbs = 0;
2578 for_each_sg(urb->sg, sg, num_sgs, i) {
2579 unsigned int previous_total_trbs = num_trbs;
2580 unsigned int len = sg_dma_len(sg);
2582 /* Scatter gather list entries may cross 64KB boundaries */
2583 running_total = TRB_MAX_BUFF_SIZE -
2584 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2585 running_total &= TRB_MAX_BUFF_SIZE - 1;
2586 if (running_total != 0)
2587 num_trbs++;
2589 /* How many more 64KB chunks to transfer, how many more TRBs? */
2590 while (running_total < sg_dma_len(sg) && running_total < temp) {
2591 num_trbs++;
2592 running_total += TRB_MAX_BUFF_SIZE;
2594 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2595 i, (unsigned long long)sg_dma_address(sg),
2596 len, len, num_trbs - previous_total_trbs);
2598 len = min_t(int, len, temp);
2599 temp -= len;
2600 if (temp == 0)
2601 break;
2603 xhci_dbg(xhci, "\n");
2604 if (!in_interrupt())
2605 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2606 "num_trbs = %d\n",
2607 urb->ep->desc.bEndpointAddress,
2608 urb->transfer_buffer_length,
2609 num_trbs);
2610 return num_trbs;
2613 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2615 if (num_trbs != 0)
2616 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2617 "TRBs, %d left\n", __func__,
2618 urb->ep->desc.bEndpointAddress, num_trbs);
2619 if (running_total != urb->transfer_buffer_length)
2620 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2621 "queued %#x (%d), asked for %#x (%d)\n",
2622 __func__,
2623 urb->ep->desc.bEndpointAddress,
2624 running_total, running_total,
2625 urb->transfer_buffer_length,
2626 urb->transfer_buffer_length);
2629 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2630 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2631 struct xhci_generic_trb *start_trb)
2634 * Pass all the TRBs to the hardware at once and make sure this write
2635 * isn't reordered.
2637 wmb();
2638 if (start_cycle)
2639 start_trb->field[3] |= cpu_to_le32(start_cycle);
2640 else
2641 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2642 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2646 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2647 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2648 * (comprised of sg list entries) can take several service intervals to
2649 * transmit.
2651 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2652 struct urb *urb, int slot_id, unsigned int ep_index)
2654 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2655 xhci->devs[slot_id]->out_ctx, ep_index);
2656 int xhci_interval;
2657 int ep_interval;
2659 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2660 ep_interval = urb->interval;
2661 /* Convert to microframes */
2662 if (urb->dev->speed == USB_SPEED_LOW ||
2663 urb->dev->speed == USB_SPEED_FULL)
2664 ep_interval *= 8;
2665 /* FIXME change this to a warning and a suggestion to use the new API
2666 * to set the polling interval (once the API is added).
2668 if (xhci_interval != ep_interval) {
2669 if (printk_ratelimit())
2670 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2671 " (%d microframe%s) than xHCI "
2672 "(%d microframe%s)\n",
2673 ep_interval,
2674 ep_interval == 1 ? "" : "s",
2675 xhci_interval,
2676 xhci_interval == 1 ? "" : "s");
2677 urb->interval = xhci_interval;
2678 /* Convert back to frames for LS/FS devices */
2679 if (urb->dev->speed == USB_SPEED_LOW ||
2680 urb->dev->speed == USB_SPEED_FULL)
2681 urb->interval /= 8;
2683 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2687 * The TD size is the number of bytes remaining in the TD (including this TRB),
2688 * right shifted by 10.
2689 * It must fit in bits 21:17, so it can't be bigger than 31.
2691 static u32 xhci_td_remainder(unsigned int remainder)
2693 u32 max = (1 << (21 - 17 + 1)) - 1;
2695 if ((remainder >> 10) >= max)
2696 return max << 17;
2697 else
2698 return (remainder >> 10) << 17;
2702 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2703 * the TD (*not* including this TRB).
2705 * Total TD packet count = total_packet_count =
2706 * roundup(TD size in bytes / wMaxPacketSize)
2708 * Packets transferred up to and including this TRB = packets_transferred =
2709 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2711 * TD size = total_packet_count - packets_transferred
2713 * It must fit in bits 21:17, so it can't be bigger than 31.
2716 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2717 unsigned int total_packet_count, struct urb *urb)
2719 int packets_transferred;
2721 /* One TRB with a zero-length data packet. */
2722 if (running_total == 0 && trb_buff_len == 0)
2723 return 0;
2725 /* All the TRB queueing functions don't count the current TRB in
2726 * running_total.
2728 packets_transferred = (running_total + trb_buff_len) /
2729 le16_to_cpu(urb->ep->desc.wMaxPacketSize);
2731 return xhci_td_remainder(total_packet_count - packets_transferred);
2734 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2735 struct urb *urb, int slot_id, unsigned int ep_index)
2737 struct xhci_ring *ep_ring;
2738 unsigned int num_trbs;
2739 struct urb_priv *urb_priv;
2740 struct xhci_td *td;
2741 struct scatterlist *sg;
2742 int num_sgs;
2743 int trb_buff_len, this_sg_len, running_total;
2744 unsigned int total_packet_count;
2745 bool first_trb;
2746 u64 addr;
2747 bool more_trbs_coming;
2749 struct xhci_generic_trb *start_trb;
2750 int start_cycle;
2752 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2753 if (!ep_ring)
2754 return -EINVAL;
2756 num_trbs = count_sg_trbs_needed(xhci, urb);
2757 num_sgs = urb->num_mapped_sgs;
2758 total_packet_count = roundup(urb->transfer_buffer_length,
2759 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2761 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2762 ep_index, urb->stream_id,
2763 num_trbs, urb, 0, false, mem_flags);
2764 if (trb_buff_len < 0)
2765 return trb_buff_len;
2767 urb_priv = urb->hcpriv;
2768 td = urb_priv->td[0];
2771 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2772 * until we've finished creating all the other TRBs. The ring's cycle
2773 * state may change as we enqueue the other TRBs, so save it too.
2775 start_trb = &ep_ring->enqueue->generic;
2776 start_cycle = ep_ring->cycle_state;
2778 running_total = 0;
2780 * How much data is in the first TRB?
2782 * There are three forces at work for TRB buffer pointers and lengths:
2783 * 1. We don't want to walk off the end of this sg-list entry buffer.
2784 * 2. The transfer length that the driver requested may be smaller than
2785 * the amount of memory allocated for this scatter-gather list.
2786 * 3. TRBs buffers can't cross 64KB boundaries.
2788 sg = urb->sg;
2789 addr = (u64) sg_dma_address(sg);
2790 this_sg_len = sg_dma_len(sg);
2791 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2792 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2793 if (trb_buff_len > urb->transfer_buffer_length)
2794 trb_buff_len = urb->transfer_buffer_length;
2795 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2796 trb_buff_len);
2798 first_trb = true;
2799 /* Queue the first TRB, even if it's zero-length */
2800 do {
2801 u32 field = 0;
2802 u32 length_field = 0;
2803 u32 remainder = 0;
2805 /* Don't change the cycle bit of the first TRB until later */
2806 if (first_trb) {
2807 first_trb = false;
2808 if (start_cycle == 0)
2809 field |= 0x1;
2810 } else
2811 field |= ep_ring->cycle_state;
2813 /* Chain all the TRBs together; clear the chain bit in the last
2814 * TRB to indicate it's the last TRB in the chain.
2816 if (num_trbs > 1) {
2817 field |= TRB_CHAIN;
2818 } else {
2819 /* FIXME - add check for ZERO_PACKET flag before this */
2820 td->last_trb = ep_ring->enqueue;
2821 field |= TRB_IOC;
2824 /* Only set interrupt on short packet for IN endpoints */
2825 if (usb_urb_dir_in(urb))
2826 field |= TRB_ISP;
2828 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2829 "64KB boundary at %#x, end dma = %#x\n",
2830 (unsigned int) addr, trb_buff_len, trb_buff_len,
2831 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2832 (unsigned int) addr + trb_buff_len);
2833 if (TRB_MAX_BUFF_SIZE -
2834 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2835 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2836 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2837 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2838 (unsigned int) addr + trb_buff_len);
2841 /* Set the TRB length, TD size, and interrupter fields. */
2842 if (xhci->hci_version < 0x100) {
2843 remainder = xhci_td_remainder(
2844 urb->transfer_buffer_length -
2845 running_total);
2846 } else {
2847 remainder = xhci_v1_0_td_remainder(running_total,
2848 trb_buff_len, total_packet_count, urb);
2850 length_field = TRB_LEN(trb_buff_len) |
2851 remainder |
2852 TRB_INTR_TARGET(0);
2854 if (num_trbs > 1)
2855 more_trbs_coming = true;
2856 else
2857 more_trbs_coming = false;
2858 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
2859 lower_32_bits(addr),
2860 upper_32_bits(addr),
2861 length_field,
2862 field | TRB_TYPE(TRB_NORMAL));
2863 --num_trbs;
2864 running_total += trb_buff_len;
2866 /* Calculate length for next transfer --
2867 * Are we done queueing all the TRBs for this sg entry?
2869 this_sg_len -= trb_buff_len;
2870 if (this_sg_len == 0) {
2871 --num_sgs;
2872 if (num_sgs == 0)
2873 break;
2874 sg = sg_next(sg);
2875 addr = (u64) sg_dma_address(sg);
2876 this_sg_len = sg_dma_len(sg);
2877 } else {
2878 addr += trb_buff_len;
2881 trb_buff_len = TRB_MAX_BUFF_SIZE -
2882 (addr & (TRB_MAX_BUFF_SIZE - 1));
2883 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2884 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2885 trb_buff_len =
2886 urb->transfer_buffer_length - running_total;
2887 } while (running_total < urb->transfer_buffer_length);
2889 check_trb_math(urb, num_trbs, running_total);
2890 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2891 start_cycle, start_trb);
2892 return 0;
2895 /* This is very similar to what ehci-q.c qtd_fill() does */
2896 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2897 struct urb *urb, int slot_id, unsigned int ep_index)
2899 struct xhci_ring *ep_ring;
2900 struct urb_priv *urb_priv;
2901 struct xhci_td *td;
2902 int num_trbs;
2903 struct xhci_generic_trb *start_trb;
2904 bool first_trb;
2905 bool more_trbs_coming;
2906 int start_cycle;
2907 u32 field, length_field;
2909 int running_total, trb_buff_len, ret;
2910 unsigned int total_packet_count;
2911 u64 addr;
2913 if (urb->num_sgs)
2914 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2916 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2917 if (!ep_ring)
2918 return -EINVAL;
2920 num_trbs = 0;
2921 /* How much data is (potentially) left before the 64KB boundary? */
2922 running_total = TRB_MAX_BUFF_SIZE -
2923 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2924 running_total &= TRB_MAX_BUFF_SIZE - 1;
2926 /* If there's some data on this 64KB chunk, or we have to send a
2927 * zero-length transfer, we need at least one TRB
2929 if (running_total != 0 || urb->transfer_buffer_length == 0)
2930 num_trbs++;
2931 /* How many more 64KB chunks to transfer, how many more TRBs? */
2932 while (running_total < urb->transfer_buffer_length) {
2933 num_trbs++;
2934 running_total += TRB_MAX_BUFF_SIZE;
2936 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2938 if (!in_interrupt())
2939 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2940 "addr = %#llx, num_trbs = %d\n",
2941 urb->ep->desc.bEndpointAddress,
2942 urb->transfer_buffer_length,
2943 urb->transfer_buffer_length,
2944 (unsigned long long)urb->transfer_dma,
2945 num_trbs);
2947 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2948 ep_index, urb->stream_id,
2949 num_trbs, urb, 0, false, mem_flags);
2950 if (ret < 0)
2951 return ret;
2953 urb_priv = urb->hcpriv;
2954 td = urb_priv->td[0];
2957 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2958 * until we've finished creating all the other TRBs. The ring's cycle
2959 * state may change as we enqueue the other TRBs, so save it too.
2961 start_trb = &ep_ring->enqueue->generic;
2962 start_cycle = ep_ring->cycle_state;
2964 running_total = 0;
2965 total_packet_count = roundup(urb->transfer_buffer_length,
2966 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
2967 /* How much data is in the first TRB? */
2968 addr = (u64) urb->transfer_dma;
2969 trb_buff_len = TRB_MAX_BUFF_SIZE -
2970 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2971 if (trb_buff_len > urb->transfer_buffer_length)
2972 trb_buff_len = urb->transfer_buffer_length;
2974 first_trb = true;
2976 /* Queue the first TRB, even if it's zero-length */
2977 do {
2978 u32 remainder = 0;
2979 field = 0;
2981 /* Don't change the cycle bit of the first TRB until later */
2982 if (first_trb) {
2983 first_trb = false;
2984 if (start_cycle == 0)
2985 field |= 0x1;
2986 } else
2987 field |= ep_ring->cycle_state;
2989 /* Chain all the TRBs together; clear the chain bit in the last
2990 * TRB to indicate it's the last TRB in the chain.
2992 if (num_trbs > 1) {
2993 field |= TRB_CHAIN;
2994 } else {
2995 /* FIXME - add check for ZERO_PACKET flag before this */
2996 td->last_trb = ep_ring->enqueue;
2997 field |= TRB_IOC;
3000 /* Only set interrupt on short packet for IN endpoints */
3001 if (usb_urb_dir_in(urb))
3002 field |= TRB_ISP;
3004 /* Set the TRB length, TD size, and interrupter fields. */
3005 if (xhci->hci_version < 0x100) {
3006 remainder = xhci_td_remainder(
3007 urb->transfer_buffer_length -
3008 running_total);
3009 } else {
3010 remainder = xhci_v1_0_td_remainder(running_total,
3011 trb_buff_len, total_packet_count, urb);
3013 length_field = TRB_LEN(trb_buff_len) |
3014 remainder |
3015 TRB_INTR_TARGET(0);
3017 if (num_trbs > 1)
3018 more_trbs_coming = true;
3019 else
3020 more_trbs_coming = false;
3021 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
3022 lower_32_bits(addr),
3023 upper_32_bits(addr),
3024 length_field,
3025 field | TRB_TYPE(TRB_NORMAL));
3026 --num_trbs;
3027 running_total += trb_buff_len;
3029 /* Calculate length for next transfer */
3030 addr += trb_buff_len;
3031 trb_buff_len = urb->transfer_buffer_length - running_total;
3032 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3033 trb_buff_len = TRB_MAX_BUFF_SIZE;
3034 } while (running_total < urb->transfer_buffer_length);
3036 check_trb_math(urb, num_trbs, running_total);
3037 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3038 start_cycle, start_trb);
3039 return 0;
3042 /* Caller must have locked xhci->lock */
3043 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3044 struct urb *urb, int slot_id, unsigned int ep_index)
3046 struct xhci_ring *ep_ring;
3047 int num_trbs;
3048 int ret;
3049 struct usb_ctrlrequest *setup;
3050 struct xhci_generic_trb *start_trb;
3051 int start_cycle;
3052 u32 field, length_field;
3053 struct urb_priv *urb_priv;
3054 struct xhci_td *td;
3056 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3057 if (!ep_ring)
3058 return -EINVAL;
3061 * Need to copy setup packet into setup TRB, so we can't use the setup
3062 * DMA address.
3064 if (!urb->setup_packet)
3065 return -EINVAL;
3067 if (!in_interrupt())
3068 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3069 slot_id, ep_index);
3070 /* 1 TRB for setup, 1 for status */
3071 num_trbs = 2;
3073 * Don't need to check if we need additional event data and normal TRBs,
3074 * since data in control transfers will never get bigger than 16MB
3075 * XXX: can we get a buffer that crosses 64KB boundaries?
3077 if (urb->transfer_buffer_length > 0)
3078 num_trbs++;
3079 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3080 ep_index, urb->stream_id,
3081 num_trbs, urb, 0, false, mem_flags);
3082 if (ret < 0)
3083 return ret;
3085 urb_priv = urb->hcpriv;
3086 td = urb_priv->td[0];
3089 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3090 * until we've finished creating all the other TRBs. The ring's cycle
3091 * state may change as we enqueue the other TRBs, so save it too.
3093 start_trb = &ep_ring->enqueue->generic;
3094 start_cycle = ep_ring->cycle_state;
3096 /* Queue setup TRB - see section 6.4.1.2.1 */
3097 /* FIXME better way to translate setup_packet into two u32 fields? */
3098 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3099 field = 0;
3100 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3101 if (start_cycle == 0)
3102 field |= 0x1;
3104 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3105 if (xhci->hci_version == 0x100) {
3106 if (urb->transfer_buffer_length > 0) {
3107 if (setup->bRequestType & USB_DIR_IN)
3108 field |= TRB_TX_TYPE(TRB_DATA_IN);
3109 else
3110 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3114 queue_trb(xhci, ep_ring, false, true, false,
3115 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3116 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3117 TRB_LEN(8) | TRB_INTR_TARGET(0),
3118 /* Immediate data in pointer */
3119 field);
3121 /* If there's data, queue data TRBs */
3122 /* Only set interrupt on short packet for IN endpoints */
3123 if (usb_urb_dir_in(urb))
3124 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3125 else
3126 field = TRB_TYPE(TRB_DATA);
3128 length_field = TRB_LEN(urb->transfer_buffer_length) |
3129 xhci_td_remainder(urb->transfer_buffer_length) |
3130 TRB_INTR_TARGET(0);
3131 if (urb->transfer_buffer_length > 0) {
3132 if (setup->bRequestType & USB_DIR_IN)
3133 field |= TRB_DIR_IN;
3134 queue_trb(xhci, ep_ring, false, true, false,
3135 lower_32_bits(urb->transfer_dma),
3136 upper_32_bits(urb->transfer_dma),
3137 length_field,
3138 field | ep_ring->cycle_state);
3141 /* Save the DMA address of the last TRB in the TD */
3142 td->last_trb = ep_ring->enqueue;
3144 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3145 /* If the device sent data, the status stage is an OUT transfer */
3146 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3147 field = 0;
3148 else
3149 field = TRB_DIR_IN;
3150 queue_trb(xhci, ep_ring, false, false, false,
3153 TRB_INTR_TARGET(0),
3154 /* Event on completion */
3155 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3157 giveback_first_trb(xhci, slot_id, ep_index, 0,
3158 start_cycle, start_trb);
3159 return 0;
3162 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3163 struct urb *urb, int i)
3165 int num_trbs = 0;
3166 u64 addr, td_len;
3168 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3169 td_len = urb->iso_frame_desc[i].length;
3171 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3172 TRB_MAX_BUFF_SIZE);
3173 if (num_trbs == 0)
3174 num_trbs++;
3176 return num_trbs;
3180 * The transfer burst count field of the isochronous TRB defines the number of
3181 * bursts that are required to move all packets in this TD. Only SuperSpeed
3182 * devices can burst up to bMaxBurst number of packets per service interval.
3183 * This field is zero based, meaning a value of zero in the field means one
3184 * burst. Basically, for everything but SuperSpeed devices, this field will be
3185 * zero. Only xHCI 1.0 host controllers support this field.
3187 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3188 struct usb_device *udev,
3189 struct urb *urb, unsigned int total_packet_count)
3191 unsigned int max_burst;
3193 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3194 return 0;
3196 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3197 return roundup(total_packet_count, max_burst + 1) - 1;
3201 * Returns the number of packets in the last "burst" of packets. This field is
3202 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3203 * the last burst packet count is equal to the total number of packets in the
3204 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3205 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3206 * contain 1 to (bMaxBurst + 1) packets.
3208 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3209 struct usb_device *udev,
3210 struct urb *urb, unsigned int total_packet_count)
3212 unsigned int max_burst;
3213 unsigned int residue;
3215 if (xhci->hci_version < 0x100)
3216 return 0;
3218 switch (udev->speed) {
3219 case USB_SPEED_SUPER:
3220 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3221 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3222 residue = total_packet_count % (max_burst + 1);
3223 /* If residue is zero, the last burst contains (max_burst + 1)
3224 * number of packets, but the TLBPC field is zero-based.
3226 if (residue == 0)
3227 return max_burst;
3228 return residue - 1;
3229 default:
3230 if (total_packet_count == 0)
3231 return 0;
3232 return total_packet_count - 1;
3236 /* This is for isoc transfer */
3237 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3238 struct urb *urb, int slot_id, unsigned int ep_index)
3240 struct xhci_ring *ep_ring;
3241 struct urb_priv *urb_priv;
3242 struct xhci_td *td;
3243 int num_tds, trbs_per_td;
3244 struct xhci_generic_trb *start_trb;
3245 bool first_trb;
3246 int start_cycle;
3247 u32 field, length_field;
3248 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3249 u64 start_addr, addr;
3250 int i, j;
3251 bool more_trbs_coming;
3253 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3255 num_tds = urb->number_of_packets;
3256 if (num_tds < 1) {
3257 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3258 return -EINVAL;
3261 if (!in_interrupt())
3262 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3263 " addr = %#llx, num_tds = %d\n",
3264 urb->ep->desc.bEndpointAddress,
3265 urb->transfer_buffer_length,
3266 urb->transfer_buffer_length,
3267 (unsigned long long)urb->transfer_dma,
3268 num_tds);
3270 start_addr = (u64) urb->transfer_dma;
3271 start_trb = &ep_ring->enqueue->generic;
3272 start_cycle = ep_ring->cycle_state;
3274 urb_priv = urb->hcpriv;
3275 /* Queue the first TRB, even if it's zero-length */
3276 for (i = 0; i < num_tds; i++) {
3277 unsigned int total_packet_count;
3278 unsigned int burst_count;
3279 unsigned int residue;
3281 first_trb = true;
3282 running_total = 0;
3283 addr = start_addr + urb->iso_frame_desc[i].offset;
3284 td_len = urb->iso_frame_desc[i].length;
3285 td_remain_len = td_len;
3286 total_packet_count = roundup(td_len,
3287 le16_to_cpu(urb->ep->desc.wMaxPacketSize));
3288 /* A zero-length transfer still involves at least one packet. */
3289 if (total_packet_count == 0)
3290 total_packet_count++;
3291 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3292 total_packet_count);
3293 residue = xhci_get_last_burst_packet_count(xhci,
3294 urb->dev, urb, total_packet_count);
3296 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3298 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3299 urb->stream_id, trbs_per_td, urb, i, true,
3300 mem_flags);
3301 if (ret < 0) {
3302 if (i == 0)
3303 return ret;
3304 goto cleanup;
3307 td = urb_priv->td[i];
3308 for (j = 0; j < trbs_per_td; j++) {
3309 u32 remainder = 0;
3310 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3312 if (first_trb) {
3313 /* Queue the isoc TRB */
3314 field |= TRB_TYPE(TRB_ISOC);
3315 /* Assume URB_ISO_ASAP is set */
3316 field |= TRB_SIA;
3317 if (i == 0) {
3318 if (start_cycle == 0)
3319 field |= 0x1;
3320 } else
3321 field |= ep_ring->cycle_state;
3322 first_trb = false;
3323 } else {
3324 /* Queue other normal TRBs */
3325 field |= TRB_TYPE(TRB_NORMAL);
3326 field |= ep_ring->cycle_state;
3329 /* Only set interrupt on short packet for IN EPs */
3330 if (usb_urb_dir_in(urb))
3331 field |= TRB_ISP;
3333 /* Chain all the TRBs together; clear the chain bit in
3334 * the last TRB to indicate it's the last TRB in the
3335 * chain.
3337 if (j < trbs_per_td - 1) {
3338 field |= TRB_CHAIN;
3339 more_trbs_coming = true;
3340 } else {
3341 td->last_trb = ep_ring->enqueue;
3342 field |= TRB_IOC;
3343 if (xhci->hci_version == 0x100) {
3344 /* Set BEI bit except for the last td */
3345 if (i < num_tds - 1)
3346 field |= TRB_BEI;
3348 more_trbs_coming = false;
3351 /* Calculate TRB length */
3352 trb_buff_len = TRB_MAX_BUFF_SIZE -
3353 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3354 if (trb_buff_len > td_remain_len)
3355 trb_buff_len = td_remain_len;
3357 /* Set the TRB length, TD size, & interrupter fields. */
3358 if (xhci->hci_version < 0x100) {
3359 remainder = xhci_td_remainder(
3360 td_len - running_total);
3361 } else {
3362 remainder = xhci_v1_0_td_remainder(
3363 running_total, trb_buff_len,
3364 total_packet_count, urb);
3366 length_field = TRB_LEN(trb_buff_len) |
3367 remainder |
3368 TRB_INTR_TARGET(0);
3370 queue_trb(xhci, ep_ring, false, more_trbs_coming, true,
3371 lower_32_bits(addr),
3372 upper_32_bits(addr),
3373 length_field,
3374 field);
3375 running_total += trb_buff_len;
3377 addr += trb_buff_len;
3378 td_remain_len -= trb_buff_len;
3381 /* Check TD length */
3382 if (running_total != td_len) {
3383 xhci_err(xhci, "ISOC TD length unmatch\n");
3384 return -EINVAL;
3388 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3389 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3390 usb_amd_quirk_pll_disable();
3392 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3394 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3395 start_cycle, start_trb);
3396 return 0;
3397 cleanup:
3398 /* Clean up a partially enqueued isoc transfer. */
3400 for (i--; i >= 0; i--)
3401 list_del_init(&urb_priv->td[i]->td_list);
3403 /* Use the first TD as a temporary variable to turn the TDs we've queued
3404 * into No-ops with a software-owned cycle bit. That way the hardware
3405 * won't accidentally start executing bogus TDs when we partially
3406 * overwrite them. td->first_trb and td->start_seg are already set.
3408 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3409 /* Every TRB except the first & last will have its cycle bit flipped. */
3410 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3412 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3413 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3414 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3415 ep_ring->cycle_state = start_cycle;
3416 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3417 return ret;
3421 * Check transfer ring to guarantee there is enough room for the urb.
3422 * Update ISO URB start_frame and interval.
3423 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3424 * update the urb->start_frame by now.
3425 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3427 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3428 struct urb *urb, int slot_id, unsigned int ep_index)
3430 struct xhci_virt_device *xdev;
3431 struct xhci_ring *ep_ring;
3432 struct xhci_ep_ctx *ep_ctx;
3433 int start_frame;
3434 int xhci_interval;
3435 int ep_interval;
3436 int num_tds, num_trbs, i;
3437 int ret;
3439 xdev = xhci->devs[slot_id];
3440 ep_ring = xdev->eps[ep_index].ring;
3441 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3443 num_trbs = 0;
3444 num_tds = urb->number_of_packets;
3445 for (i = 0; i < num_tds; i++)
3446 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3448 /* Check the ring to guarantee there is enough room for the whole urb.
3449 * Do not insert any td of the urb to the ring if the check failed.
3451 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3452 num_trbs, true, mem_flags);
3453 if (ret)
3454 return ret;
3456 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3457 start_frame &= 0x3fff;
3459 urb->start_frame = start_frame;
3460 if (urb->dev->speed == USB_SPEED_LOW ||
3461 urb->dev->speed == USB_SPEED_FULL)
3462 urb->start_frame >>= 3;
3464 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3465 ep_interval = urb->interval;
3466 /* Convert to microframes */
3467 if (urb->dev->speed == USB_SPEED_LOW ||
3468 urb->dev->speed == USB_SPEED_FULL)
3469 ep_interval *= 8;
3470 /* FIXME change this to a warning and a suggestion to use the new API
3471 * to set the polling interval (once the API is added).
3473 if (xhci_interval != ep_interval) {
3474 if (printk_ratelimit())
3475 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3476 " (%d microframe%s) than xHCI "
3477 "(%d microframe%s)\n",
3478 ep_interval,
3479 ep_interval == 1 ? "" : "s",
3480 xhci_interval,
3481 xhci_interval == 1 ? "" : "s");
3482 urb->interval = xhci_interval;
3483 /* Convert back to frames for LS/FS devices */
3484 if (urb->dev->speed == USB_SPEED_LOW ||
3485 urb->dev->speed == USB_SPEED_FULL)
3486 urb->interval /= 8;
3488 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3491 /**** Command Ring Operations ****/
3493 /* Generic function for queueing a command TRB on the command ring.
3494 * Check to make sure there's room on the command ring for one command TRB.
3495 * Also check that there's room reserved for commands that must not fail.
3496 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3497 * then only check for the number of reserved spots.
3498 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3499 * because the command event handler may want to resubmit a failed command.
3501 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3502 u32 field3, u32 field4, bool command_must_succeed)
3504 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3505 int ret;
3507 if (!command_must_succeed)
3508 reserved_trbs++;
3510 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3511 reserved_trbs, false, GFP_ATOMIC);
3512 if (ret < 0) {
3513 xhci_err(xhci, "ERR: No room for command on command ring\n");
3514 if (command_must_succeed)
3515 xhci_err(xhci, "ERR: Reserved TRB counting for "
3516 "unfailable commands failed.\n");
3517 return ret;
3519 queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2,
3520 field3, field4 | xhci->cmd_ring->cycle_state);
3521 return 0;
3524 /* Queue a slot enable or disable request on the command ring */
3525 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3527 return queue_command(xhci, 0, 0, 0,
3528 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3531 /* Queue an address device command TRB */
3532 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3533 u32 slot_id)
3535 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3536 upper_32_bits(in_ctx_ptr), 0,
3537 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3538 false);
3541 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3542 u32 field1, u32 field2, u32 field3, u32 field4)
3544 return queue_command(xhci, field1, field2, field3, field4, false);
3547 /* Queue a reset device command TRB */
3548 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3550 return queue_command(xhci, 0, 0, 0,
3551 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3552 false);
3555 /* Queue a configure endpoint command TRB */
3556 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3557 u32 slot_id, bool command_must_succeed)
3559 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3560 upper_32_bits(in_ctx_ptr), 0,
3561 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3562 command_must_succeed);
3565 /* Queue an evaluate context command TRB */
3566 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3567 u32 slot_id)
3569 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3570 upper_32_bits(in_ctx_ptr), 0,
3571 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3572 false);
3576 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3577 * activity on an endpoint that is about to be suspended.
3579 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3580 unsigned int ep_index, int suspend)
3582 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3583 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3584 u32 type = TRB_TYPE(TRB_STOP_RING);
3585 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3587 return queue_command(xhci, 0, 0, 0,
3588 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3591 /* Set Transfer Ring Dequeue Pointer command.
3592 * This should not be used for endpoints that have streams enabled.
3594 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3595 unsigned int ep_index, unsigned int stream_id,
3596 struct xhci_segment *deq_seg,
3597 union xhci_trb *deq_ptr, u32 cycle_state)
3599 dma_addr_t addr;
3600 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3601 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3602 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3603 u32 type = TRB_TYPE(TRB_SET_DEQ);
3604 struct xhci_virt_ep *ep;
3606 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3607 if (addr == 0) {
3608 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3609 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3610 deq_seg, deq_ptr);
3611 return 0;
3613 ep = &xhci->devs[slot_id]->eps[ep_index];
3614 if ((ep->ep_state & SET_DEQ_PENDING)) {
3615 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3616 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3617 return 0;
3619 ep->queued_deq_seg = deq_seg;
3620 ep->queued_deq_ptr = deq_ptr;
3621 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3622 upper_32_bits(addr), trb_stream_id,
3623 trb_slot_id | trb_ep_index | type, false);
3626 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3627 unsigned int ep_index)
3629 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3630 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3631 u32 type = TRB_TYPE(TRB_RESET_EP);
3633 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3634 false);