mm: avoid resetting wb_start after each writeback round
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / fs-writeback.c
blob30ac305e8293a3facc9a88e751cfcf88e1c5d9af
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
34 * We don't actually have pdflush, but this one is exported though /proc...
36 int nr_pdflush_threads;
39 * Passed into wb_writeback(), essentially a subset of writeback_control
41 struct wb_writeback_work {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
49 struct list_head list; /* pending work list */
50 struct completion *done; /* set if the caller waits */
53 /**
54 * writeback_in_progress - determine whether there is writeback in progress
55 * @bdi: the device's backing_dev_info structure.
57 * Determine whether there is writeback waiting to be handled against a
58 * backing device.
60 int writeback_in_progress(struct backing_dev_info *bdi)
62 return !list_empty(&bdi->work_list);
65 static void bdi_queue_work(struct backing_dev_info *bdi,
66 struct wb_writeback_work *work)
68 spin_lock(&bdi->wb_lock);
69 list_add_tail(&work->list, &bdi->work_list);
70 spin_unlock(&bdi->wb_lock);
73 * If the default thread isn't there, make sure we add it. When
74 * it gets created and wakes up, we'll run this work.
76 if (unlikely(list_empty_careful(&bdi->wb_list)))
77 wake_up_process(default_backing_dev_info.wb.task);
78 else {
79 struct bdi_writeback *wb = &bdi->wb;
81 if (wb->task)
82 wake_up_process(wb->task);
86 static void
87 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
88 bool range_cyclic, bool for_background)
90 struct wb_writeback_work *work;
93 * This is WB_SYNC_NONE writeback, so if allocation fails just
94 * wakeup the thread for old dirty data writeback
96 work = kzalloc(sizeof(*work), GFP_ATOMIC);
97 if (!work) {
98 if (bdi->wb.task)
99 wake_up_process(bdi->wb.task);
100 return;
103 work->sync_mode = WB_SYNC_NONE;
104 work->nr_pages = nr_pages;
105 work->range_cyclic = range_cyclic;
106 work->for_background = for_background;
108 bdi_queue_work(bdi, work);
112 * bdi_start_writeback - start writeback
113 * @bdi: the backing device to write from
114 * @nr_pages: the number of pages to write
116 * Description:
117 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
118 * started when this function returns, we make no guarentees on
119 * completion. Caller need not hold sb s_umount semaphore.
122 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
124 __bdi_start_writeback(bdi, nr_pages, true, false);
128 * bdi_start_background_writeback - start background writeback
129 * @bdi: the backing device to write from
131 * Description:
132 * This does WB_SYNC_NONE background writeback. The IO is only
133 * started when this function returns, we make no guarentees on
134 * completion. Caller need not hold sb s_umount semaphore.
136 void bdi_start_background_writeback(struct backing_dev_info *bdi)
138 __bdi_start_writeback(bdi, LONG_MAX, true, true);
142 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
143 * furthest end of its superblock's dirty-inode list.
145 * Before stamping the inode's ->dirtied_when, we check to see whether it is
146 * already the most-recently-dirtied inode on the b_dirty list. If that is
147 * the case then the inode must have been redirtied while it was being written
148 * out and we don't reset its dirtied_when.
150 static void redirty_tail(struct inode *inode)
152 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
154 if (!list_empty(&wb->b_dirty)) {
155 struct inode *tail;
157 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
158 if (time_before(inode->dirtied_when, tail->dirtied_when))
159 inode->dirtied_when = jiffies;
161 list_move(&inode->i_list, &wb->b_dirty);
165 * requeue inode for re-scanning after bdi->b_io list is exhausted.
167 static void requeue_io(struct inode *inode)
169 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
171 list_move(&inode->i_list, &wb->b_more_io);
174 static void inode_sync_complete(struct inode *inode)
177 * Prevent speculative execution through spin_unlock(&inode_lock);
179 smp_mb();
180 wake_up_bit(&inode->i_state, __I_SYNC);
183 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
185 bool ret = time_after(inode->dirtied_when, t);
186 #ifndef CONFIG_64BIT
188 * For inodes being constantly redirtied, dirtied_when can get stuck.
189 * It _appears_ to be in the future, but is actually in distant past.
190 * This test is necessary to prevent such wrapped-around relative times
191 * from permanently stopping the whole bdi writeback.
193 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
194 #endif
195 return ret;
199 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
201 static void move_expired_inodes(struct list_head *delaying_queue,
202 struct list_head *dispatch_queue,
203 unsigned long *older_than_this)
205 LIST_HEAD(tmp);
206 struct list_head *pos, *node;
207 struct super_block *sb = NULL;
208 struct inode *inode;
209 int do_sb_sort = 0;
211 while (!list_empty(delaying_queue)) {
212 inode = list_entry(delaying_queue->prev, struct inode, i_list);
213 if (older_than_this &&
214 inode_dirtied_after(inode, *older_than_this))
215 break;
216 if (sb && sb != inode->i_sb)
217 do_sb_sort = 1;
218 sb = inode->i_sb;
219 list_move(&inode->i_list, &tmp);
222 /* just one sb in list, splice to dispatch_queue and we're done */
223 if (!do_sb_sort) {
224 list_splice(&tmp, dispatch_queue);
225 return;
228 /* Move inodes from one superblock together */
229 while (!list_empty(&tmp)) {
230 inode = list_entry(tmp.prev, struct inode, i_list);
231 sb = inode->i_sb;
232 list_for_each_prev_safe(pos, node, &tmp) {
233 inode = list_entry(pos, struct inode, i_list);
234 if (inode->i_sb == sb)
235 list_move(&inode->i_list, dispatch_queue);
241 * Queue all expired dirty inodes for io, eldest first.
243 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
245 list_splice_init(&wb->b_more_io, wb->b_io.prev);
246 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
249 static int write_inode(struct inode *inode, struct writeback_control *wbc)
251 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
252 return inode->i_sb->s_op->write_inode(inode, wbc);
253 return 0;
257 * Wait for writeback on an inode to complete.
259 static void inode_wait_for_writeback(struct inode *inode)
261 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
262 wait_queue_head_t *wqh;
264 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
265 while (inode->i_state & I_SYNC) {
266 spin_unlock(&inode_lock);
267 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
268 spin_lock(&inode_lock);
273 * Write out an inode's dirty pages. Called under inode_lock. Either the
274 * caller has ref on the inode (either via __iget or via syscall against an fd)
275 * or the inode has I_WILL_FREE set (via generic_forget_inode)
277 * If `wait' is set, wait on the writeout.
279 * The whole writeout design is quite complex and fragile. We want to avoid
280 * starvation of particular inodes when others are being redirtied, prevent
281 * livelocks, etc.
283 * Called under inode_lock.
285 static int
286 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
288 struct address_space *mapping = inode->i_mapping;
289 unsigned dirty;
290 int ret;
292 if (!atomic_read(&inode->i_count))
293 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
294 else
295 WARN_ON(inode->i_state & I_WILL_FREE);
297 if (inode->i_state & I_SYNC) {
299 * If this inode is locked for writeback and we are not doing
300 * writeback-for-data-integrity, move it to b_more_io so that
301 * writeback can proceed with the other inodes on s_io.
303 * We'll have another go at writing back this inode when we
304 * completed a full scan of b_io.
306 if (wbc->sync_mode != WB_SYNC_ALL) {
307 requeue_io(inode);
308 return 0;
312 * It's a data-integrity sync. We must wait.
314 inode_wait_for_writeback(inode);
317 BUG_ON(inode->i_state & I_SYNC);
319 /* Set I_SYNC, reset I_DIRTY_PAGES */
320 inode->i_state |= I_SYNC;
321 inode->i_state &= ~I_DIRTY_PAGES;
322 spin_unlock(&inode_lock);
324 ret = do_writepages(mapping, wbc);
327 * Make sure to wait on the data before writing out the metadata.
328 * This is important for filesystems that modify metadata on data
329 * I/O completion.
331 if (wbc->sync_mode == WB_SYNC_ALL) {
332 int err = filemap_fdatawait(mapping);
333 if (ret == 0)
334 ret = err;
338 * Some filesystems may redirty the inode during the writeback
339 * due to delalloc, clear dirty metadata flags right before
340 * write_inode()
342 spin_lock(&inode_lock);
343 dirty = inode->i_state & I_DIRTY;
344 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
345 spin_unlock(&inode_lock);
346 /* Don't write the inode if only I_DIRTY_PAGES was set */
347 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
348 int err = write_inode(inode, wbc);
349 if (ret == 0)
350 ret = err;
353 spin_lock(&inode_lock);
354 inode->i_state &= ~I_SYNC;
355 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
356 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
358 * More pages get dirtied by a fast dirtier.
360 goto select_queue;
361 } else if (inode->i_state & I_DIRTY) {
363 * At least XFS will redirty the inode during the
364 * writeback (delalloc) and on io completion (isize).
366 redirty_tail(inode);
367 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
369 * We didn't write back all the pages. nfs_writepages()
370 * sometimes bales out without doing anything. Redirty
371 * the inode; Move it from b_io onto b_more_io/b_dirty.
374 * akpm: if the caller was the kupdate function we put
375 * this inode at the head of b_dirty so it gets first
376 * consideration. Otherwise, move it to the tail, for
377 * the reasons described there. I'm not really sure
378 * how much sense this makes. Presumably I had a good
379 * reasons for doing it this way, and I'd rather not
380 * muck with it at present.
382 if (wbc->for_kupdate) {
384 * For the kupdate function we move the inode
385 * to b_more_io so it will get more writeout as
386 * soon as the queue becomes uncongested.
388 inode->i_state |= I_DIRTY_PAGES;
389 select_queue:
390 if (wbc->nr_to_write <= 0) {
392 * slice used up: queue for next turn
394 requeue_io(inode);
395 } else {
397 * somehow blocked: retry later
399 redirty_tail(inode);
401 } else {
403 * Otherwise fully redirty the inode so that
404 * other inodes on this superblock will get some
405 * writeout. Otherwise heavy writing to one
406 * file would indefinitely suspend writeout of
407 * all the other files.
409 inode->i_state |= I_DIRTY_PAGES;
410 redirty_tail(inode);
412 } else if (atomic_read(&inode->i_count)) {
414 * The inode is clean, inuse
416 list_move(&inode->i_list, &inode_in_use);
417 } else {
419 * The inode is clean, unused
421 list_move(&inode->i_list, &inode_unused);
424 inode_sync_complete(inode);
425 return ret;
429 * For background writeback the caller does not have the sb pinned
430 * before calling writeback. So make sure that we do pin it, so it doesn't
431 * go away while we are writing inodes from it.
433 static bool pin_sb_for_writeback(struct super_block *sb)
435 spin_lock(&sb_lock);
436 if (list_empty(&sb->s_instances)) {
437 spin_unlock(&sb_lock);
438 return false;
441 sb->s_count++;
442 spin_unlock(&sb_lock);
444 if (down_read_trylock(&sb->s_umount)) {
445 if (sb->s_root)
446 return true;
447 up_read(&sb->s_umount);
450 put_super(sb);
451 return false;
455 * Write a portion of b_io inodes which belong to @sb.
457 * If @only_this_sb is true, then find and write all such
458 * inodes. Otherwise write only ones which go sequentially
459 * in reverse order.
461 * Return 1, if the caller writeback routine should be
462 * interrupted. Otherwise return 0.
464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465 struct writeback_control *wbc, bool only_this_sb)
467 while (!list_empty(&wb->b_io)) {
468 long pages_skipped;
469 struct inode *inode = list_entry(wb->b_io.prev,
470 struct inode, i_list);
472 if (inode->i_sb != sb) {
473 if (only_this_sb) {
475 * We only want to write back data for this
476 * superblock, move all inodes not belonging
477 * to it back onto the dirty list.
479 redirty_tail(inode);
480 continue;
484 * The inode belongs to a different superblock.
485 * Bounce back to the caller to unpin this and
486 * pin the next superblock.
488 return 0;
491 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
492 requeue_io(inode);
493 continue;
496 * Was this inode dirtied after sync_sb_inodes was called?
497 * This keeps sync from extra jobs and livelock.
499 if (inode_dirtied_after(inode, wbc->wb_start))
500 return 1;
502 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
503 __iget(inode);
504 pages_skipped = wbc->pages_skipped;
505 writeback_single_inode(inode, wbc);
506 if (wbc->pages_skipped != pages_skipped) {
508 * writeback is not making progress due to locked
509 * buffers. Skip this inode for now.
511 redirty_tail(inode);
513 spin_unlock(&inode_lock);
514 iput(inode);
515 cond_resched();
516 spin_lock(&inode_lock);
517 if (wbc->nr_to_write <= 0) {
518 wbc->more_io = 1;
519 return 1;
521 if (!list_empty(&wb->b_more_io))
522 wbc->more_io = 1;
524 /* b_io is empty */
525 return 1;
528 void writeback_inodes_wb(struct bdi_writeback *wb,
529 struct writeback_control *wbc)
531 int ret = 0;
533 if (!wbc->wb_start)
534 wbc->wb_start = jiffies; /* livelock avoidance */
535 spin_lock(&inode_lock);
536 if (!wbc->for_kupdate || list_empty(&wb->b_io))
537 queue_io(wb, wbc->older_than_this);
539 while (!list_empty(&wb->b_io)) {
540 struct inode *inode = list_entry(wb->b_io.prev,
541 struct inode, i_list);
542 struct super_block *sb = inode->i_sb;
544 if (!pin_sb_for_writeback(sb)) {
545 requeue_io(inode);
546 continue;
548 ret = writeback_sb_inodes(sb, wb, wbc, false);
549 drop_super(sb);
551 if (ret)
552 break;
554 spin_unlock(&inode_lock);
555 /* Leave any unwritten inodes on b_io */
558 static void __writeback_inodes_sb(struct super_block *sb,
559 struct bdi_writeback *wb, struct writeback_control *wbc)
561 WARN_ON(!rwsem_is_locked(&sb->s_umount));
563 spin_lock(&inode_lock);
564 if (!wbc->for_kupdate || list_empty(&wb->b_io))
565 queue_io(wb, wbc->older_than_this);
566 writeback_sb_inodes(sb, wb, wbc, true);
567 spin_unlock(&inode_lock);
571 * The maximum number of pages to writeout in a single bdi flush/kupdate
572 * operation. We do this so we don't hold I_SYNC against an inode for
573 * enormous amounts of time, which would block a userspace task which has
574 * been forced to throttle against that inode. Also, the code reevaluates
575 * the dirty each time it has written this many pages.
577 #define MAX_WRITEBACK_PAGES 1024
579 static inline bool over_bground_thresh(void)
581 unsigned long background_thresh, dirty_thresh;
583 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
585 return (global_page_state(NR_FILE_DIRTY) +
586 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
590 * Explicit flushing or periodic writeback of "old" data.
592 * Define "old": the first time one of an inode's pages is dirtied, we mark the
593 * dirtying-time in the inode's address_space. So this periodic writeback code
594 * just walks the superblock inode list, writing back any inodes which are
595 * older than a specific point in time.
597 * Try to run once per dirty_writeback_interval. But if a writeback event
598 * takes longer than a dirty_writeback_interval interval, then leave a
599 * one-second gap.
601 * older_than_this takes precedence over nr_to_write. So we'll only write back
602 * all dirty pages if they are all attached to "old" mappings.
604 static long wb_writeback(struct bdi_writeback *wb,
605 struct wb_writeback_work *work)
607 struct writeback_control wbc = {
608 .sync_mode = work->sync_mode,
609 .older_than_this = NULL,
610 .for_kupdate = work->for_kupdate,
611 .for_background = work->for_background,
612 .range_cyclic = work->range_cyclic,
614 unsigned long oldest_jif;
615 long wrote = 0;
616 struct inode *inode;
618 if (wbc.for_kupdate) {
619 wbc.older_than_this = &oldest_jif;
620 oldest_jif = jiffies -
621 msecs_to_jiffies(dirty_expire_interval * 10);
623 if (!wbc.range_cyclic) {
624 wbc.range_start = 0;
625 wbc.range_end = LLONG_MAX;
628 wbc.wb_start = jiffies; /* livelock avoidance */
629 for (;;) {
631 * Stop writeback when nr_pages has been consumed
633 if (work->nr_pages <= 0)
634 break;
637 * For background writeout, stop when we are below the
638 * background dirty threshold
640 if (work->for_background && !over_bground_thresh())
641 break;
643 wbc.more_io = 0;
644 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
645 wbc.pages_skipped = 0;
646 if (work->sb)
647 __writeback_inodes_sb(work->sb, wb, &wbc);
648 else
649 writeback_inodes_wb(wb, &wbc);
650 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
651 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
654 * If we consumed everything, see if we have more
656 if (wbc.nr_to_write <= 0)
657 continue;
659 * Didn't write everything and we don't have more IO, bail
661 if (!wbc.more_io)
662 break;
664 * Did we write something? Try for more
666 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
667 continue;
669 * Nothing written. Wait for some inode to
670 * become available for writeback. Otherwise
671 * we'll just busyloop.
673 spin_lock(&inode_lock);
674 if (!list_empty(&wb->b_more_io)) {
675 inode = list_entry(wb->b_more_io.prev,
676 struct inode, i_list);
677 inode_wait_for_writeback(inode);
679 spin_unlock(&inode_lock);
682 return wrote;
686 * Return the next wb_writeback_work struct that hasn't been processed yet.
688 static struct wb_writeback_work *
689 get_next_work_item(struct backing_dev_info *bdi, struct bdi_writeback *wb)
691 struct wb_writeback_work *work = NULL;
693 spin_lock(&bdi->wb_lock);
694 if (!list_empty(&bdi->work_list)) {
695 work = list_entry(bdi->work_list.next,
696 struct wb_writeback_work, list);
697 list_del_init(&work->list);
699 spin_unlock(&bdi->wb_lock);
700 return work;
703 static long wb_check_old_data_flush(struct bdi_writeback *wb)
705 unsigned long expired;
706 long nr_pages;
709 * When set to zero, disable periodic writeback
711 if (!dirty_writeback_interval)
712 return 0;
714 expired = wb->last_old_flush +
715 msecs_to_jiffies(dirty_writeback_interval * 10);
716 if (time_before(jiffies, expired))
717 return 0;
719 wb->last_old_flush = jiffies;
720 nr_pages = global_page_state(NR_FILE_DIRTY) +
721 global_page_state(NR_UNSTABLE_NFS) +
722 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
724 if (nr_pages) {
725 struct wb_writeback_work work = {
726 .nr_pages = nr_pages,
727 .sync_mode = WB_SYNC_NONE,
728 .for_kupdate = 1,
729 .range_cyclic = 1,
732 return wb_writeback(wb, &work);
735 return 0;
739 * Retrieve work items and do the writeback they describe
741 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
743 struct backing_dev_info *bdi = wb->bdi;
744 struct wb_writeback_work *work;
745 long wrote = 0;
747 while ((work = get_next_work_item(bdi, wb)) != NULL) {
749 * Override sync mode, in case we must wait for completion
750 * because this thread is exiting now.
752 if (force_wait)
753 work->sync_mode = WB_SYNC_ALL;
755 wrote += wb_writeback(wb, work);
758 * Notify the caller of completion if this is a synchronous
759 * work item, otherwise just free it.
761 if (work->done)
762 complete(work->done);
763 else
764 kfree(work);
768 * Check for periodic writeback, kupdated() style
770 wrote += wb_check_old_data_flush(wb);
772 return wrote;
776 * Handle writeback of dirty data for the device backed by this bdi. Also
777 * wakes up periodically and does kupdated style flushing.
779 int bdi_writeback_task(struct bdi_writeback *wb)
781 unsigned long last_active = jiffies;
782 unsigned long wait_jiffies = -1UL;
783 long pages_written;
785 while (!kthread_should_stop()) {
786 pages_written = wb_do_writeback(wb, 0);
788 if (pages_written)
789 last_active = jiffies;
790 else if (wait_jiffies != -1UL) {
791 unsigned long max_idle;
794 * Longest period of inactivity that we tolerate. If we
795 * see dirty data again later, the task will get
796 * recreated automatically.
798 max_idle = max(5UL * 60 * HZ, wait_jiffies);
799 if (time_after(jiffies, max_idle + last_active))
800 break;
803 if (dirty_writeback_interval) {
804 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
805 schedule_timeout_interruptible(wait_jiffies);
806 } else {
807 set_current_state(TASK_INTERRUPTIBLE);
808 if (list_empty_careful(&wb->bdi->work_list) &&
809 !kthread_should_stop())
810 schedule();
811 __set_current_state(TASK_RUNNING);
814 try_to_freeze();
817 return 0;
821 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
822 * the whole world.
824 void wakeup_flusher_threads(long nr_pages)
826 struct backing_dev_info *bdi;
828 if (!nr_pages) {
829 nr_pages = global_page_state(NR_FILE_DIRTY) +
830 global_page_state(NR_UNSTABLE_NFS);
833 rcu_read_lock();
834 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
835 if (!bdi_has_dirty_io(bdi))
836 continue;
837 __bdi_start_writeback(bdi, nr_pages, false, false);
839 rcu_read_unlock();
842 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
844 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
845 struct dentry *dentry;
846 const char *name = "?";
848 dentry = d_find_alias(inode);
849 if (dentry) {
850 spin_lock(&dentry->d_lock);
851 name = (const char *) dentry->d_name.name;
853 printk(KERN_DEBUG
854 "%s(%d): dirtied inode %lu (%s) on %s\n",
855 current->comm, task_pid_nr(current), inode->i_ino,
856 name, inode->i_sb->s_id);
857 if (dentry) {
858 spin_unlock(&dentry->d_lock);
859 dput(dentry);
865 * __mark_inode_dirty - internal function
866 * @inode: inode to mark
867 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
868 * Mark an inode as dirty. Callers should use mark_inode_dirty or
869 * mark_inode_dirty_sync.
871 * Put the inode on the super block's dirty list.
873 * CAREFUL! We mark it dirty unconditionally, but move it onto the
874 * dirty list only if it is hashed or if it refers to a blockdev.
875 * If it was not hashed, it will never be added to the dirty list
876 * even if it is later hashed, as it will have been marked dirty already.
878 * In short, make sure you hash any inodes _before_ you start marking
879 * them dirty.
881 * This function *must* be atomic for the I_DIRTY_PAGES case -
882 * set_page_dirty() is called under spinlock in several places.
884 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
885 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
886 * the kernel-internal blockdev inode represents the dirtying time of the
887 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
888 * page->mapping->host, so the page-dirtying time is recorded in the internal
889 * blockdev inode.
891 void __mark_inode_dirty(struct inode *inode, int flags)
893 struct super_block *sb = inode->i_sb;
896 * Don't do this for I_DIRTY_PAGES - that doesn't actually
897 * dirty the inode itself
899 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
900 if (sb->s_op->dirty_inode)
901 sb->s_op->dirty_inode(inode);
905 * make sure that changes are seen by all cpus before we test i_state
906 * -- mikulas
908 smp_mb();
910 /* avoid the locking if we can */
911 if ((inode->i_state & flags) == flags)
912 return;
914 if (unlikely(block_dump))
915 block_dump___mark_inode_dirty(inode);
917 spin_lock(&inode_lock);
918 if ((inode->i_state & flags) != flags) {
919 const int was_dirty = inode->i_state & I_DIRTY;
921 inode->i_state |= flags;
924 * If the inode is being synced, just update its dirty state.
925 * The unlocker will place the inode on the appropriate
926 * superblock list, based upon its state.
928 if (inode->i_state & I_SYNC)
929 goto out;
932 * Only add valid (hashed) inodes to the superblock's
933 * dirty list. Add blockdev inodes as well.
935 if (!S_ISBLK(inode->i_mode)) {
936 if (hlist_unhashed(&inode->i_hash))
937 goto out;
939 if (inode->i_state & (I_FREEING|I_CLEAR))
940 goto out;
943 * If the inode was already on b_dirty/b_io/b_more_io, don't
944 * reposition it (that would break b_dirty time-ordering).
946 if (!was_dirty) {
947 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
948 struct backing_dev_info *bdi = wb->bdi;
950 if (bdi_cap_writeback_dirty(bdi) &&
951 !test_bit(BDI_registered, &bdi->state)) {
952 WARN_ON(1);
953 printk(KERN_ERR "bdi-%s not registered\n",
954 bdi->name);
957 inode->dirtied_when = jiffies;
958 list_move(&inode->i_list, &wb->b_dirty);
961 out:
962 spin_unlock(&inode_lock);
964 EXPORT_SYMBOL(__mark_inode_dirty);
967 * Write out a superblock's list of dirty inodes. A wait will be performed
968 * upon no inodes, all inodes or the final one, depending upon sync_mode.
970 * If older_than_this is non-NULL, then only write out inodes which
971 * had their first dirtying at a time earlier than *older_than_this.
973 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
974 * This function assumes that the blockdev superblock's inodes are backed by
975 * a variety of queues, so all inodes are searched. For other superblocks,
976 * assume that all inodes are backed by the same queue.
978 * The inodes to be written are parked on bdi->b_io. They are moved back onto
979 * bdi->b_dirty as they are selected for writing. This way, none can be missed
980 * on the writer throttling path, and we get decent balancing between many
981 * throttled threads: we don't want them all piling up on inode_sync_wait.
983 static void wait_sb_inodes(struct super_block *sb)
985 struct inode *inode, *old_inode = NULL;
988 * We need to be protected against the filesystem going from
989 * r/o to r/w or vice versa.
991 WARN_ON(!rwsem_is_locked(&sb->s_umount));
993 spin_lock(&inode_lock);
996 * Data integrity sync. Must wait for all pages under writeback,
997 * because there may have been pages dirtied before our sync
998 * call, but which had writeout started before we write it out.
999 * In which case, the inode may not be on the dirty list, but
1000 * we still have to wait for that writeout.
1002 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1003 struct address_space *mapping;
1005 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1006 continue;
1007 mapping = inode->i_mapping;
1008 if (mapping->nrpages == 0)
1009 continue;
1010 __iget(inode);
1011 spin_unlock(&inode_lock);
1013 * We hold a reference to 'inode' so it couldn't have
1014 * been removed from s_inodes list while we dropped the
1015 * inode_lock. We cannot iput the inode now as we can
1016 * be holding the last reference and we cannot iput it
1017 * under inode_lock. So we keep the reference and iput
1018 * it later.
1020 iput(old_inode);
1021 old_inode = inode;
1023 filemap_fdatawait(mapping);
1025 cond_resched();
1027 spin_lock(&inode_lock);
1029 spin_unlock(&inode_lock);
1030 iput(old_inode);
1034 * writeback_inodes_sb - writeback dirty inodes from given super_block
1035 * @sb: the superblock
1037 * Start writeback on some inodes on this super_block. No guarantees are made
1038 * on how many (if any) will be written, and this function does not wait
1039 * for IO completion of submitted IO. The number of pages submitted is
1040 * returned.
1042 void writeback_inodes_sb(struct super_block *sb)
1044 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1045 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1046 DECLARE_COMPLETION_ONSTACK(done);
1047 struct wb_writeback_work work = {
1048 .sb = sb,
1049 .sync_mode = WB_SYNC_NONE,
1050 .done = &done,
1053 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1055 work.nr_pages = nr_dirty + nr_unstable +
1056 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1058 bdi_queue_work(sb->s_bdi, &work);
1059 wait_for_completion(&done);
1061 EXPORT_SYMBOL(writeback_inodes_sb);
1064 * writeback_inodes_sb_if_idle - start writeback if none underway
1065 * @sb: the superblock
1067 * Invoke writeback_inodes_sb if no writeback is currently underway.
1068 * Returns 1 if writeback was started, 0 if not.
1070 int writeback_inodes_sb_if_idle(struct super_block *sb)
1072 if (!writeback_in_progress(sb->s_bdi)) {
1073 down_read(&sb->s_umount);
1074 writeback_inodes_sb(sb);
1075 up_read(&sb->s_umount);
1076 return 1;
1077 } else
1078 return 0;
1080 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1083 * sync_inodes_sb - sync sb inode pages
1084 * @sb: the superblock
1086 * This function writes and waits on any dirty inode belonging to this
1087 * super_block. The number of pages synced is returned.
1089 void sync_inodes_sb(struct super_block *sb)
1091 DECLARE_COMPLETION_ONSTACK(done);
1092 struct wb_writeback_work work = {
1093 .sb = sb,
1094 .sync_mode = WB_SYNC_ALL,
1095 .nr_pages = LONG_MAX,
1096 .range_cyclic = 0,
1097 .done = &done,
1100 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1102 bdi_queue_work(sb->s_bdi, &work);
1103 wait_for_completion(&done);
1105 wait_sb_inodes(sb);
1107 EXPORT_SYMBOL(sync_inodes_sb);
1110 * write_inode_now - write an inode to disk
1111 * @inode: inode to write to disk
1112 * @sync: whether the write should be synchronous or not
1114 * This function commits an inode to disk immediately if it is dirty. This is
1115 * primarily needed by knfsd.
1117 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1119 int write_inode_now(struct inode *inode, int sync)
1121 int ret;
1122 struct writeback_control wbc = {
1123 .nr_to_write = LONG_MAX,
1124 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1125 .range_start = 0,
1126 .range_end = LLONG_MAX,
1129 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1130 wbc.nr_to_write = 0;
1132 might_sleep();
1133 spin_lock(&inode_lock);
1134 ret = writeback_single_inode(inode, &wbc);
1135 spin_unlock(&inode_lock);
1136 if (sync)
1137 inode_sync_wait(inode);
1138 return ret;
1140 EXPORT_SYMBOL(write_inode_now);
1143 * sync_inode - write an inode and its pages to disk.
1144 * @inode: the inode to sync
1145 * @wbc: controls the writeback mode
1147 * sync_inode() will write an inode and its pages to disk. It will also
1148 * correctly update the inode on its superblock's dirty inode lists and will
1149 * update inode->i_state.
1151 * The caller must have a ref on the inode.
1153 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1155 int ret;
1157 spin_lock(&inode_lock);
1158 ret = writeback_single_inode(inode, wbc);
1159 spin_unlock(&inode_lock);
1160 return ret;
1162 EXPORT_SYMBOL(sync_inode);