Fix gcc 4.5.1 miscompiling drivers/char/i8k.c (again)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blobe64e032ee024a8dd0a2e861c6ef04ad5fa243ea6
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
55 static struct swap_list_t swap_list = {-1, -1};
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 static DEFINE_MUTEX(swapon_mutex);
61 static inline unsigned char swap_count(unsigned char ent)
63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
70 swp_entry_t entry = swp_entry(si->type, offset);
71 struct page *page;
72 int ret = 0;
74 page = find_get_page(&swapper_space, entry.val);
75 if (!page)
76 return 0;
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
84 if (trylock_page(page)) {
85 ret = try_to_free_swap(page);
86 unlock_page(page);
88 page_cache_release(page);
89 return ret;
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
97 static DECLARE_RWSEM(swap_unplug_sem);
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
101 swp_entry_t entry;
103 down_read(&swap_unplug_sem);
104 entry.val = page_private(page);
105 if (PageSwapCache(page)) {
106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 struct backing_dev_info *bdi;
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
117 WARN_ON(page_count(page) <= 1);
119 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 blk_run_backing_dev(bdi, page);
122 up_read(&swap_unplug_sem);
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
129 static int discard_swap(struct swap_info_struct *si)
131 struct swap_extent *se;
132 sector_t start_block;
133 sector_t nr_blocks;
134 int err = 0;
136 /* Do not discard the swap header page! */
137 se = &si->first_swap_extent;
138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 if (nr_blocks) {
141 err = blkdev_issue_discard(si->bdev, start_block,
142 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143 if (err)
144 return err;
145 cond_resched();
148 list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 start_block = se->start_block << (PAGE_SHIFT - 9);
150 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 err = blkdev_issue_discard(si->bdev, start_block,
153 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154 if (err)
155 break;
157 cond_resched();
159 return err; /* That will often be -EOPNOTSUPP */
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
166 static void discard_swap_cluster(struct swap_info_struct *si,
167 pgoff_t start_page, pgoff_t nr_pages)
169 struct swap_extent *se = si->curr_swap_extent;
170 int found_extent = 0;
172 while (nr_pages) {
173 struct list_head *lh;
175 if (se->start_page <= start_page &&
176 start_page < se->start_page + se->nr_pages) {
177 pgoff_t offset = start_page - se->start_page;
178 sector_t start_block = se->start_block + offset;
179 sector_t nr_blocks = se->nr_pages - offset;
181 if (nr_blocks > nr_pages)
182 nr_blocks = nr_pages;
183 start_page += nr_blocks;
184 nr_pages -= nr_blocks;
186 if (!found_extent++)
187 si->curr_swap_extent = se;
189 start_block <<= PAGE_SHIFT - 9;
190 nr_blocks <<= PAGE_SHIFT - 9;
191 if (blkdev_issue_discard(si->bdev, start_block,
192 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
193 break;
196 lh = se->list.next;
197 se = list_entry(lh, struct swap_extent, list);
201 static int wait_for_discard(void *word)
203 schedule();
204 return 0;
207 #define SWAPFILE_CLUSTER 256
208 #define LATENCY_LIMIT 256
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211 unsigned char usage)
213 unsigned long offset;
214 unsigned long scan_base;
215 unsigned long last_in_cluster = 0;
216 int latency_ration = LATENCY_LIMIT;
217 int found_free_cluster = 0;
220 * We try to cluster swap pages by allocating them sequentially
221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
222 * way, however, we resort to first-free allocation, starting
223 * a new cluster. This prevents us from scattering swap pages
224 * all over the entire swap partition, so that we reduce
225 * overall disk seek times between swap pages. -- sct
226 * But we do now try to find an empty cluster. -Andrea
227 * And we let swap pages go all over an SSD partition. Hugh
230 si->flags += SWP_SCANNING;
231 scan_base = offset = si->cluster_next;
233 if (unlikely(!si->cluster_nr--)) {
234 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 si->cluster_nr = SWAPFILE_CLUSTER - 1;
236 goto checks;
238 if (si->flags & SWP_DISCARDABLE) {
240 * Start range check on racing allocations, in case
241 * they overlap the cluster we eventually decide on
242 * (we scan without swap_lock to allow preemption).
243 * It's hardly conceivable that cluster_nr could be
244 * wrapped during our scan, but don't depend on it.
246 if (si->lowest_alloc)
247 goto checks;
248 si->lowest_alloc = si->max;
249 si->highest_alloc = 0;
251 spin_unlock(&swap_lock);
254 * If seek is expensive, start searching for new cluster from
255 * start of partition, to minimize the span of allocated swap.
256 * But if seek is cheap, search from our current position, so
257 * that swap is allocated from all over the partition: if the
258 * Flash Translation Layer only remaps within limited zones,
259 * we don't want to wear out the first zone too quickly.
261 if (!(si->flags & SWP_SOLIDSTATE))
262 scan_base = offset = si->lowest_bit;
263 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
265 /* Locate the first empty (unaligned) cluster */
266 for (; last_in_cluster <= si->highest_bit; offset++) {
267 if (si->swap_map[offset])
268 last_in_cluster = offset + SWAPFILE_CLUSTER;
269 else if (offset == last_in_cluster) {
270 spin_lock(&swap_lock);
271 offset -= SWAPFILE_CLUSTER - 1;
272 si->cluster_next = offset;
273 si->cluster_nr = SWAPFILE_CLUSTER - 1;
274 found_free_cluster = 1;
275 goto checks;
277 if (unlikely(--latency_ration < 0)) {
278 cond_resched();
279 latency_ration = LATENCY_LIMIT;
283 offset = si->lowest_bit;
284 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
286 /* Locate the first empty (unaligned) cluster */
287 for (; last_in_cluster < scan_base; offset++) {
288 if (si->swap_map[offset])
289 last_in_cluster = offset + SWAPFILE_CLUSTER;
290 else if (offset == last_in_cluster) {
291 spin_lock(&swap_lock);
292 offset -= SWAPFILE_CLUSTER - 1;
293 si->cluster_next = offset;
294 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 found_free_cluster = 1;
296 goto checks;
298 if (unlikely(--latency_ration < 0)) {
299 cond_resched();
300 latency_ration = LATENCY_LIMIT;
304 offset = scan_base;
305 spin_lock(&swap_lock);
306 si->cluster_nr = SWAPFILE_CLUSTER - 1;
307 si->lowest_alloc = 0;
310 checks:
311 if (!(si->flags & SWP_WRITEOK))
312 goto no_page;
313 if (!si->highest_bit)
314 goto no_page;
315 if (offset > si->highest_bit)
316 scan_base = offset = si->lowest_bit;
318 /* reuse swap entry of cache-only swap if not hibernation. */
319 if (vm_swap_full()
320 && usage == SWAP_HAS_CACHE
321 && si->swap_map[offset] == SWAP_HAS_CACHE) {
322 int swap_was_freed;
323 spin_unlock(&swap_lock);
324 swap_was_freed = __try_to_reclaim_swap(si, offset);
325 spin_lock(&swap_lock);
326 /* entry was freed successfully, try to use this again */
327 if (swap_was_freed)
328 goto checks;
329 goto scan; /* check next one */
332 if (si->swap_map[offset])
333 goto scan;
335 if (offset == si->lowest_bit)
336 si->lowest_bit++;
337 if (offset == si->highest_bit)
338 si->highest_bit--;
339 si->inuse_pages++;
340 if (si->inuse_pages == si->pages) {
341 si->lowest_bit = si->max;
342 si->highest_bit = 0;
344 si->swap_map[offset] = usage;
345 si->cluster_next = offset + 1;
346 si->flags -= SWP_SCANNING;
348 if (si->lowest_alloc) {
350 * Only set when SWP_DISCARDABLE, and there's a scan
351 * for a free cluster in progress or just completed.
353 if (found_free_cluster) {
355 * To optimize wear-levelling, discard the
356 * old data of the cluster, taking care not to
357 * discard any of its pages that have already
358 * been allocated by racing tasks (offset has
359 * already stepped over any at the beginning).
361 if (offset < si->highest_alloc &&
362 si->lowest_alloc <= last_in_cluster)
363 last_in_cluster = si->lowest_alloc - 1;
364 si->flags |= SWP_DISCARDING;
365 spin_unlock(&swap_lock);
367 if (offset < last_in_cluster)
368 discard_swap_cluster(si, offset,
369 last_in_cluster - offset + 1);
371 spin_lock(&swap_lock);
372 si->lowest_alloc = 0;
373 si->flags &= ~SWP_DISCARDING;
375 smp_mb(); /* wake_up_bit advises this */
376 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
378 } else if (si->flags & SWP_DISCARDING) {
380 * Delay using pages allocated by racing tasks
381 * until the whole discard has been issued. We
382 * could defer that delay until swap_writepage,
383 * but it's easier to keep this self-contained.
385 spin_unlock(&swap_lock);
386 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
387 wait_for_discard, TASK_UNINTERRUPTIBLE);
388 spin_lock(&swap_lock);
389 } else {
391 * Note pages allocated by racing tasks while
392 * scan for a free cluster is in progress, so
393 * that its final discard can exclude them.
395 if (offset < si->lowest_alloc)
396 si->lowest_alloc = offset;
397 if (offset > si->highest_alloc)
398 si->highest_alloc = offset;
401 return offset;
403 scan:
404 spin_unlock(&swap_lock);
405 while (++offset <= si->highest_bit) {
406 if (!si->swap_map[offset]) {
407 spin_lock(&swap_lock);
408 goto checks;
410 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
411 spin_lock(&swap_lock);
412 goto checks;
414 if (unlikely(--latency_ration < 0)) {
415 cond_resched();
416 latency_ration = LATENCY_LIMIT;
419 offset = si->lowest_bit;
420 while (++offset < scan_base) {
421 if (!si->swap_map[offset]) {
422 spin_lock(&swap_lock);
423 goto checks;
425 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
426 spin_lock(&swap_lock);
427 goto checks;
429 if (unlikely(--latency_ration < 0)) {
430 cond_resched();
431 latency_ration = LATENCY_LIMIT;
434 spin_lock(&swap_lock);
436 no_page:
437 si->flags -= SWP_SCANNING;
438 return 0;
441 swp_entry_t get_swap_page(void)
443 struct swap_info_struct *si;
444 pgoff_t offset;
445 int type, next;
446 int wrapped = 0;
448 spin_lock(&swap_lock);
449 if (nr_swap_pages <= 0)
450 goto noswap;
451 nr_swap_pages--;
453 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
454 si = swap_info[type];
455 next = si->next;
456 if (next < 0 ||
457 (!wrapped && si->prio != swap_info[next]->prio)) {
458 next = swap_list.head;
459 wrapped++;
462 if (!si->highest_bit)
463 continue;
464 if (!(si->flags & SWP_WRITEOK))
465 continue;
467 swap_list.next = next;
468 /* This is called for allocating swap entry for cache */
469 offset = scan_swap_map(si, SWAP_HAS_CACHE);
470 if (offset) {
471 spin_unlock(&swap_lock);
472 return swp_entry(type, offset);
474 next = swap_list.next;
477 nr_swap_pages++;
478 noswap:
479 spin_unlock(&swap_lock);
480 return (swp_entry_t) {0};
483 /* The only caller of this function is now susupend routine */
484 swp_entry_t get_swap_page_of_type(int type)
486 struct swap_info_struct *si;
487 pgoff_t offset;
489 spin_lock(&swap_lock);
490 si = swap_info[type];
491 if (si && (si->flags & SWP_WRITEOK)) {
492 nr_swap_pages--;
493 /* This is called for allocating swap entry, not cache */
494 offset = scan_swap_map(si, 1);
495 if (offset) {
496 spin_unlock(&swap_lock);
497 return swp_entry(type, offset);
499 nr_swap_pages++;
501 spin_unlock(&swap_lock);
502 return (swp_entry_t) {0};
505 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
507 struct swap_info_struct *p;
508 unsigned long offset, type;
510 if (!entry.val)
511 goto out;
512 type = swp_type(entry);
513 if (type >= nr_swapfiles)
514 goto bad_nofile;
515 p = swap_info[type];
516 if (!(p->flags & SWP_USED))
517 goto bad_device;
518 offset = swp_offset(entry);
519 if (offset >= p->max)
520 goto bad_offset;
521 if (!p->swap_map[offset])
522 goto bad_free;
523 spin_lock(&swap_lock);
524 return p;
526 bad_free:
527 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
528 goto out;
529 bad_offset:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
531 goto out;
532 bad_device:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
534 goto out;
535 bad_nofile:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
537 out:
538 return NULL;
541 static unsigned char swap_entry_free(struct swap_info_struct *p,
542 swp_entry_t entry, unsigned char usage)
544 unsigned long offset = swp_offset(entry);
545 unsigned char count;
546 unsigned char has_cache;
548 count = p->swap_map[offset];
549 has_cache = count & SWAP_HAS_CACHE;
550 count &= ~SWAP_HAS_CACHE;
552 if (usage == SWAP_HAS_CACHE) {
553 VM_BUG_ON(!has_cache);
554 has_cache = 0;
555 } else if (count == SWAP_MAP_SHMEM) {
557 * Or we could insist on shmem.c using a special
558 * swap_shmem_free() and free_shmem_swap_and_cache()...
560 count = 0;
561 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
562 if (count == COUNT_CONTINUED) {
563 if (swap_count_continued(p, offset, count))
564 count = SWAP_MAP_MAX | COUNT_CONTINUED;
565 else
566 count = SWAP_MAP_MAX;
567 } else
568 count--;
571 if (!count)
572 mem_cgroup_uncharge_swap(entry);
574 usage = count | has_cache;
575 p->swap_map[offset] = usage;
577 /* free if no reference */
578 if (!usage) {
579 if (offset < p->lowest_bit)
580 p->lowest_bit = offset;
581 if (offset > p->highest_bit)
582 p->highest_bit = offset;
583 if (swap_list.next >= 0 &&
584 p->prio > swap_info[swap_list.next]->prio)
585 swap_list.next = p->type;
586 nr_swap_pages++;
587 p->inuse_pages--;
590 return usage;
594 * Caller has made sure that the swapdevice corresponding to entry
595 * is still around or has not been recycled.
597 void swap_free(swp_entry_t entry)
599 struct swap_info_struct *p;
601 p = swap_info_get(entry);
602 if (p) {
603 swap_entry_free(p, entry, 1);
604 spin_unlock(&swap_lock);
609 * Called after dropping swapcache to decrease refcnt to swap entries.
611 void swapcache_free(swp_entry_t entry, struct page *page)
613 struct swap_info_struct *p;
614 unsigned char count;
616 p = swap_info_get(entry);
617 if (p) {
618 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
619 if (page)
620 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
621 spin_unlock(&swap_lock);
626 * How many references to page are currently swapped out?
627 * This does not give an exact answer when swap count is continued,
628 * but does include the high COUNT_CONTINUED flag to allow for that.
630 static inline int page_swapcount(struct page *page)
632 int count = 0;
633 struct swap_info_struct *p;
634 swp_entry_t entry;
636 entry.val = page_private(page);
637 p = swap_info_get(entry);
638 if (p) {
639 count = swap_count(p->swap_map[swp_offset(entry)]);
640 spin_unlock(&swap_lock);
642 return count;
646 * We can write to an anon page without COW if there are no other references
647 * to it. And as a side-effect, free up its swap: because the old content
648 * on disk will never be read, and seeking back there to write new content
649 * later would only waste time away from clustering.
651 int reuse_swap_page(struct page *page)
653 int count;
655 VM_BUG_ON(!PageLocked(page));
656 if (unlikely(PageKsm(page)))
657 return 0;
658 count = page_mapcount(page);
659 if (count <= 1 && PageSwapCache(page)) {
660 count += page_swapcount(page);
661 if (count == 1 && !PageWriteback(page)) {
662 delete_from_swap_cache(page);
663 SetPageDirty(page);
666 return count <= 1;
670 * If swap is getting full, or if there are no more mappings of this page,
671 * then try_to_free_swap is called to free its swap space.
673 int try_to_free_swap(struct page *page)
675 VM_BUG_ON(!PageLocked(page));
677 if (!PageSwapCache(page))
678 return 0;
679 if (PageWriteback(page))
680 return 0;
681 if (page_swapcount(page))
682 return 0;
684 delete_from_swap_cache(page);
685 SetPageDirty(page);
686 return 1;
690 * Free the swap entry like above, but also try to
691 * free the page cache entry if it is the last user.
693 int free_swap_and_cache(swp_entry_t entry)
695 struct swap_info_struct *p;
696 struct page *page = NULL;
698 if (non_swap_entry(entry))
699 return 1;
701 p = swap_info_get(entry);
702 if (p) {
703 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
704 page = find_get_page(&swapper_space, entry.val);
705 if (page && !trylock_page(page)) {
706 page_cache_release(page);
707 page = NULL;
710 spin_unlock(&swap_lock);
712 if (page) {
714 * Not mapped elsewhere, or swap space full? Free it!
715 * Also recheck PageSwapCache now page is locked (above).
717 if (PageSwapCache(page) && !PageWriteback(page) &&
718 (!page_mapped(page) || vm_swap_full())) {
719 delete_from_swap_cache(page);
720 SetPageDirty(page);
722 unlock_page(page);
723 page_cache_release(page);
725 return p != NULL;
728 #ifdef CONFIG_HIBERNATION
730 * Find the swap type that corresponds to given device (if any).
732 * @offset - number of the PAGE_SIZE-sized block of the device, starting
733 * from 0, in which the swap header is expected to be located.
735 * This is needed for the suspend to disk (aka swsusp).
737 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
739 struct block_device *bdev = NULL;
740 int type;
742 if (device)
743 bdev = bdget(device);
745 spin_lock(&swap_lock);
746 for (type = 0; type < nr_swapfiles; type++) {
747 struct swap_info_struct *sis = swap_info[type];
749 if (!(sis->flags & SWP_WRITEOK))
750 continue;
752 if (!bdev) {
753 if (bdev_p)
754 *bdev_p = bdgrab(sis->bdev);
756 spin_unlock(&swap_lock);
757 return type;
759 if (bdev == sis->bdev) {
760 struct swap_extent *se = &sis->first_swap_extent;
762 if (se->start_block == offset) {
763 if (bdev_p)
764 *bdev_p = bdgrab(sis->bdev);
766 spin_unlock(&swap_lock);
767 bdput(bdev);
768 return type;
772 spin_unlock(&swap_lock);
773 if (bdev)
774 bdput(bdev);
776 return -ENODEV;
780 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
781 * corresponding to given index in swap_info (swap type).
783 sector_t swapdev_block(int type, pgoff_t offset)
785 struct block_device *bdev;
787 if ((unsigned int)type >= nr_swapfiles)
788 return 0;
789 if (!(swap_info[type]->flags & SWP_WRITEOK))
790 return 0;
791 return map_swap_entry(swp_entry(type, offset), &bdev);
795 * Return either the total number of swap pages of given type, or the number
796 * of free pages of that type (depending on @free)
798 * This is needed for software suspend
800 unsigned int count_swap_pages(int type, int free)
802 unsigned int n = 0;
804 spin_lock(&swap_lock);
805 if ((unsigned int)type < nr_swapfiles) {
806 struct swap_info_struct *sis = swap_info[type];
808 if (sis->flags & SWP_WRITEOK) {
809 n = sis->pages;
810 if (free)
811 n -= sis->inuse_pages;
814 spin_unlock(&swap_lock);
815 return n;
817 #endif /* CONFIG_HIBERNATION */
820 * No need to decide whether this PTE shares the swap entry with others,
821 * just let do_wp_page work it out if a write is requested later - to
822 * force COW, vm_page_prot omits write permission from any private vma.
824 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
825 unsigned long addr, swp_entry_t entry, struct page *page)
827 struct mem_cgroup *ptr = NULL;
828 spinlock_t *ptl;
829 pte_t *pte;
830 int ret = 1;
832 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
833 ret = -ENOMEM;
834 goto out_nolock;
837 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
838 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
839 if (ret > 0)
840 mem_cgroup_cancel_charge_swapin(ptr);
841 ret = 0;
842 goto out;
845 inc_mm_counter(vma->vm_mm, anon_rss);
846 get_page(page);
847 set_pte_at(vma->vm_mm, addr, pte,
848 pte_mkold(mk_pte(page, vma->vm_page_prot)));
849 page_add_anon_rmap(page, vma, addr);
850 mem_cgroup_commit_charge_swapin(page, ptr);
851 swap_free(entry);
853 * Move the page to the active list so it is not
854 * immediately swapped out again after swapon.
856 activate_page(page);
857 out:
858 pte_unmap_unlock(pte, ptl);
859 out_nolock:
860 return ret;
863 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
864 unsigned long addr, unsigned long end,
865 swp_entry_t entry, struct page *page)
867 pte_t swp_pte = swp_entry_to_pte(entry);
868 pte_t *pte;
869 int ret = 0;
872 * We don't actually need pte lock while scanning for swp_pte: since
873 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
874 * page table while we're scanning; though it could get zapped, and on
875 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
876 * of unmatched parts which look like swp_pte, so unuse_pte must
877 * recheck under pte lock. Scanning without pte lock lets it be
878 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
880 pte = pte_offset_map(pmd, addr);
881 do {
883 * swapoff spends a _lot_ of time in this loop!
884 * Test inline before going to call unuse_pte.
886 if (unlikely(pte_same(*pte, swp_pte))) {
887 pte_unmap(pte);
888 ret = unuse_pte(vma, pmd, addr, entry, page);
889 if (ret)
890 goto out;
891 pte = pte_offset_map(pmd, addr);
893 } while (pte++, addr += PAGE_SIZE, addr != end);
894 pte_unmap(pte - 1);
895 out:
896 return ret;
899 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
900 unsigned long addr, unsigned long end,
901 swp_entry_t entry, struct page *page)
903 pmd_t *pmd;
904 unsigned long next;
905 int ret;
907 pmd = pmd_offset(pud, addr);
908 do {
909 next = pmd_addr_end(addr, end);
910 if (pmd_none_or_clear_bad(pmd))
911 continue;
912 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
913 if (ret)
914 return ret;
915 } while (pmd++, addr = next, addr != end);
916 return 0;
919 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
920 unsigned long addr, unsigned long end,
921 swp_entry_t entry, struct page *page)
923 pud_t *pud;
924 unsigned long next;
925 int ret;
927 pud = pud_offset(pgd, addr);
928 do {
929 next = pud_addr_end(addr, end);
930 if (pud_none_or_clear_bad(pud))
931 continue;
932 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
933 if (ret)
934 return ret;
935 } while (pud++, addr = next, addr != end);
936 return 0;
939 static int unuse_vma(struct vm_area_struct *vma,
940 swp_entry_t entry, struct page *page)
942 pgd_t *pgd;
943 unsigned long addr, end, next;
944 int ret;
946 if (page_anon_vma(page)) {
947 addr = page_address_in_vma(page, vma);
948 if (addr == -EFAULT)
949 return 0;
950 else
951 end = addr + PAGE_SIZE;
952 } else {
953 addr = vma->vm_start;
954 end = vma->vm_end;
957 pgd = pgd_offset(vma->vm_mm, addr);
958 do {
959 next = pgd_addr_end(addr, end);
960 if (pgd_none_or_clear_bad(pgd))
961 continue;
962 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
963 if (ret)
964 return ret;
965 } while (pgd++, addr = next, addr != end);
966 return 0;
969 static int unuse_mm(struct mm_struct *mm,
970 swp_entry_t entry, struct page *page)
972 struct vm_area_struct *vma;
973 int ret = 0;
975 if (!down_read_trylock(&mm->mmap_sem)) {
977 * Activate page so shrink_inactive_list is unlikely to unmap
978 * its ptes while lock is dropped, so swapoff can make progress.
980 activate_page(page);
981 unlock_page(page);
982 down_read(&mm->mmap_sem);
983 lock_page(page);
985 for (vma = mm->mmap; vma; vma = vma->vm_next) {
986 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
987 break;
989 up_read(&mm->mmap_sem);
990 return (ret < 0)? ret: 0;
994 * Scan swap_map from current position to next entry still in use.
995 * Recycle to start on reaching the end, returning 0 when empty.
997 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
998 unsigned int prev)
1000 unsigned int max = si->max;
1001 unsigned int i = prev;
1002 unsigned char count;
1005 * No need for swap_lock here: we're just looking
1006 * for whether an entry is in use, not modifying it; false
1007 * hits are okay, and sys_swapoff() has already prevented new
1008 * allocations from this area (while holding swap_lock).
1010 for (;;) {
1011 if (++i >= max) {
1012 if (!prev) {
1013 i = 0;
1014 break;
1017 * No entries in use at top of swap_map,
1018 * loop back to start and recheck there.
1020 max = prev + 1;
1021 prev = 0;
1022 i = 1;
1024 count = si->swap_map[i];
1025 if (count && swap_count(count) != SWAP_MAP_BAD)
1026 break;
1028 return i;
1032 * We completely avoid races by reading each swap page in advance,
1033 * and then search for the process using it. All the necessary
1034 * page table adjustments can then be made atomically.
1036 static int try_to_unuse(unsigned int type)
1038 struct swap_info_struct *si = swap_info[type];
1039 struct mm_struct *start_mm;
1040 unsigned char *swap_map;
1041 unsigned char swcount;
1042 struct page *page;
1043 swp_entry_t entry;
1044 unsigned int i = 0;
1045 int retval = 0;
1048 * When searching mms for an entry, a good strategy is to
1049 * start at the first mm we freed the previous entry from
1050 * (though actually we don't notice whether we or coincidence
1051 * freed the entry). Initialize this start_mm with a hold.
1053 * A simpler strategy would be to start at the last mm we
1054 * freed the previous entry from; but that would take less
1055 * advantage of mmlist ordering, which clusters forked mms
1056 * together, child after parent. If we race with dup_mmap(), we
1057 * prefer to resolve parent before child, lest we miss entries
1058 * duplicated after we scanned child: using last mm would invert
1059 * that.
1061 start_mm = &init_mm;
1062 atomic_inc(&init_mm.mm_users);
1065 * Keep on scanning until all entries have gone. Usually,
1066 * one pass through swap_map is enough, but not necessarily:
1067 * there are races when an instance of an entry might be missed.
1069 while ((i = find_next_to_unuse(si, i)) != 0) {
1070 if (signal_pending(current)) {
1071 retval = -EINTR;
1072 break;
1076 * Get a page for the entry, using the existing swap
1077 * cache page if there is one. Otherwise, get a clean
1078 * page and read the swap into it.
1080 swap_map = &si->swap_map[i];
1081 entry = swp_entry(type, i);
1082 page = read_swap_cache_async(entry,
1083 GFP_HIGHUSER_MOVABLE, NULL, 0);
1084 if (!page) {
1086 * Either swap_duplicate() failed because entry
1087 * has been freed independently, and will not be
1088 * reused since sys_swapoff() already disabled
1089 * allocation from here, or alloc_page() failed.
1091 if (!*swap_map)
1092 continue;
1093 retval = -ENOMEM;
1094 break;
1098 * Don't hold on to start_mm if it looks like exiting.
1100 if (atomic_read(&start_mm->mm_users) == 1) {
1101 mmput(start_mm);
1102 start_mm = &init_mm;
1103 atomic_inc(&init_mm.mm_users);
1107 * Wait for and lock page. When do_swap_page races with
1108 * try_to_unuse, do_swap_page can handle the fault much
1109 * faster than try_to_unuse can locate the entry. This
1110 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1111 * defer to do_swap_page in such a case - in some tests,
1112 * do_swap_page and try_to_unuse repeatedly compete.
1114 wait_on_page_locked(page);
1115 wait_on_page_writeback(page);
1116 lock_page(page);
1117 wait_on_page_writeback(page);
1120 * Remove all references to entry.
1122 swcount = *swap_map;
1123 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1124 retval = shmem_unuse(entry, page);
1125 /* page has already been unlocked and released */
1126 if (retval < 0)
1127 break;
1128 continue;
1130 if (swap_count(swcount) && start_mm != &init_mm)
1131 retval = unuse_mm(start_mm, entry, page);
1133 if (swap_count(*swap_map)) {
1134 int set_start_mm = (*swap_map >= swcount);
1135 struct list_head *p = &start_mm->mmlist;
1136 struct mm_struct *new_start_mm = start_mm;
1137 struct mm_struct *prev_mm = start_mm;
1138 struct mm_struct *mm;
1140 atomic_inc(&new_start_mm->mm_users);
1141 atomic_inc(&prev_mm->mm_users);
1142 spin_lock(&mmlist_lock);
1143 while (swap_count(*swap_map) && !retval &&
1144 (p = p->next) != &start_mm->mmlist) {
1145 mm = list_entry(p, struct mm_struct, mmlist);
1146 if (!atomic_inc_not_zero(&mm->mm_users))
1147 continue;
1148 spin_unlock(&mmlist_lock);
1149 mmput(prev_mm);
1150 prev_mm = mm;
1152 cond_resched();
1154 swcount = *swap_map;
1155 if (!swap_count(swcount)) /* any usage ? */
1157 else if (mm == &init_mm)
1158 set_start_mm = 1;
1159 else
1160 retval = unuse_mm(mm, entry, page);
1162 if (set_start_mm && *swap_map < swcount) {
1163 mmput(new_start_mm);
1164 atomic_inc(&mm->mm_users);
1165 new_start_mm = mm;
1166 set_start_mm = 0;
1168 spin_lock(&mmlist_lock);
1170 spin_unlock(&mmlist_lock);
1171 mmput(prev_mm);
1172 mmput(start_mm);
1173 start_mm = new_start_mm;
1175 if (retval) {
1176 unlock_page(page);
1177 page_cache_release(page);
1178 break;
1182 * If a reference remains (rare), we would like to leave
1183 * the page in the swap cache; but try_to_unmap could
1184 * then re-duplicate the entry once we drop page lock,
1185 * so we might loop indefinitely; also, that page could
1186 * not be swapped out to other storage meanwhile. So:
1187 * delete from cache even if there's another reference,
1188 * after ensuring that the data has been saved to disk -
1189 * since if the reference remains (rarer), it will be
1190 * read from disk into another page. Splitting into two
1191 * pages would be incorrect if swap supported "shared
1192 * private" pages, but they are handled by tmpfs files.
1194 * Given how unuse_vma() targets one particular offset
1195 * in an anon_vma, once the anon_vma has been determined,
1196 * this splitting happens to be just what is needed to
1197 * handle where KSM pages have been swapped out: re-reading
1198 * is unnecessarily slow, but we can fix that later on.
1200 if (swap_count(*swap_map) &&
1201 PageDirty(page) && PageSwapCache(page)) {
1202 struct writeback_control wbc = {
1203 .sync_mode = WB_SYNC_NONE,
1206 swap_writepage(page, &wbc);
1207 lock_page(page);
1208 wait_on_page_writeback(page);
1212 * It is conceivable that a racing task removed this page from
1213 * swap cache just before we acquired the page lock at the top,
1214 * or while we dropped it in unuse_mm(). The page might even
1215 * be back in swap cache on another swap area: that we must not
1216 * delete, since it may not have been written out to swap yet.
1218 if (PageSwapCache(page) &&
1219 likely(page_private(page) == entry.val))
1220 delete_from_swap_cache(page);
1223 * So we could skip searching mms once swap count went
1224 * to 1, we did not mark any present ptes as dirty: must
1225 * mark page dirty so shrink_page_list will preserve it.
1227 SetPageDirty(page);
1228 unlock_page(page);
1229 page_cache_release(page);
1232 * Make sure that we aren't completely killing
1233 * interactive performance.
1235 cond_resched();
1238 mmput(start_mm);
1239 return retval;
1243 * After a successful try_to_unuse, if no swap is now in use, we know
1244 * we can empty the mmlist. swap_lock must be held on entry and exit.
1245 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1246 * added to the mmlist just after page_duplicate - before would be racy.
1248 static void drain_mmlist(void)
1250 struct list_head *p, *next;
1251 unsigned int type;
1253 for (type = 0; type < nr_swapfiles; type++)
1254 if (swap_info[type]->inuse_pages)
1255 return;
1256 spin_lock(&mmlist_lock);
1257 list_for_each_safe(p, next, &init_mm.mmlist)
1258 list_del_init(p);
1259 spin_unlock(&mmlist_lock);
1263 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1264 * corresponds to page offset for the specified swap entry.
1265 * Note that the type of this function is sector_t, but it returns page offset
1266 * into the bdev, not sector offset.
1268 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1270 struct swap_info_struct *sis;
1271 struct swap_extent *start_se;
1272 struct swap_extent *se;
1273 pgoff_t offset;
1275 sis = swap_info[swp_type(entry)];
1276 *bdev = sis->bdev;
1278 offset = swp_offset(entry);
1279 start_se = sis->curr_swap_extent;
1280 se = start_se;
1282 for ( ; ; ) {
1283 struct list_head *lh;
1285 if (se->start_page <= offset &&
1286 offset < (se->start_page + se->nr_pages)) {
1287 return se->start_block + (offset - se->start_page);
1289 lh = se->list.next;
1290 se = list_entry(lh, struct swap_extent, list);
1291 sis->curr_swap_extent = se;
1292 BUG_ON(se == start_se); /* It *must* be present */
1297 * Returns the page offset into bdev for the specified page's swap entry.
1299 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1301 swp_entry_t entry;
1302 entry.val = page_private(page);
1303 return map_swap_entry(entry, bdev);
1307 * Free all of a swapdev's extent information
1309 static void destroy_swap_extents(struct swap_info_struct *sis)
1311 while (!list_empty(&sis->first_swap_extent.list)) {
1312 struct swap_extent *se;
1314 se = list_entry(sis->first_swap_extent.list.next,
1315 struct swap_extent, list);
1316 list_del(&se->list);
1317 kfree(se);
1322 * Add a block range (and the corresponding page range) into this swapdev's
1323 * extent list. The extent list is kept sorted in page order.
1325 * This function rather assumes that it is called in ascending page order.
1327 static int
1328 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1329 unsigned long nr_pages, sector_t start_block)
1331 struct swap_extent *se;
1332 struct swap_extent *new_se;
1333 struct list_head *lh;
1335 if (start_page == 0) {
1336 se = &sis->first_swap_extent;
1337 sis->curr_swap_extent = se;
1338 se->start_page = 0;
1339 se->nr_pages = nr_pages;
1340 se->start_block = start_block;
1341 return 1;
1342 } else {
1343 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1344 se = list_entry(lh, struct swap_extent, list);
1345 BUG_ON(se->start_page + se->nr_pages != start_page);
1346 if (se->start_block + se->nr_pages == start_block) {
1347 /* Merge it */
1348 se->nr_pages += nr_pages;
1349 return 0;
1354 * No merge. Insert a new extent, preserving ordering.
1356 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1357 if (new_se == NULL)
1358 return -ENOMEM;
1359 new_se->start_page = start_page;
1360 new_se->nr_pages = nr_pages;
1361 new_se->start_block = start_block;
1363 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1364 return 1;
1368 * A `swap extent' is a simple thing which maps a contiguous range of pages
1369 * onto a contiguous range of disk blocks. An ordered list of swap extents
1370 * is built at swapon time and is then used at swap_writepage/swap_readpage
1371 * time for locating where on disk a page belongs.
1373 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1374 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1375 * swap files identically.
1377 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1378 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1379 * swapfiles are handled *identically* after swapon time.
1381 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1382 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1383 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1384 * requirements, they are simply tossed out - we will never use those blocks
1385 * for swapping.
1387 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1388 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1389 * which will scribble on the fs.
1391 * The amount of disk space which a single swap extent represents varies.
1392 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1393 * extents in the list. To avoid much list walking, we cache the previous
1394 * search location in `curr_swap_extent', and start new searches from there.
1395 * This is extremely effective. The average number of iterations in
1396 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1398 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1400 struct inode *inode;
1401 unsigned blocks_per_page;
1402 unsigned long page_no;
1403 unsigned blkbits;
1404 sector_t probe_block;
1405 sector_t last_block;
1406 sector_t lowest_block = -1;
1407 sector_t highest_block = 0;
1408 int nr_extents = 0;
1409 int ret;
1411 inode = sis->swap_file->f_mapping->host;
1412 if (S_ISBLK(inode->i_mode)) {
1413 ret = add_swap_extent(sis, 0, sis->max, 0);
1414 *span = sis->pages;
1415 goto out;
1418 blkbits = inode->i_blkbits;
1419 blocks_per_page = PAGE_SIZE >> blkbits;
1422 * Map all the blocks into the extent list. This code doesn't try
1423 * to be very smart.
1425 probe_block = 0;
1426 page_no = 0;
1427 last_block = i_size_read(inode) >> blkbits;
1428 while ((probe_block + blocks_per_page) <= last_block &&
1429 page_no < sis->max) {
1430 unsigned block_in_page;
1431 sector_t first_block;
1433 first_block = bmap(inode, probe_block);
1434 if (first_block == 0)
1435 goto bad_bmap;
1438 * It must be PAGE_SIZE aligned on-disk
1440 if (first_block & (blocks_per_page - 1)) {
1441 probe_block++;
1442 goto reprobe;
1445 for (block_in_page = 1; block_in_page < blocks_per_page;
1446 block_in_page++) {
1447 sector_t block;
1449 block = bmap(inode, probe_block + block_in_page);
1450 if (block == 0)
1451 goto bad_bmap;
1452 if (block != first_block + block_in_page) {
1453 /* Discontiguity */
1454 probe_block++;
1455 goto reprobe;
1459 first_block >>= (PAGE_SHIFT - blkbits);
1460 if (page_no) { /* exclude the header page */
1461 if (first_block < lowest_block)
1462 lowest_block = first_block;
1463 if (first_block > highest_block)
1464 highest_block = first_block;
1468 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1470 ret = add_swap_extent(sis, page_no, 1, first_block);
1471 if (ret < 0)
1472 goto out;
1473 nr_extents += ret;
1474 page_no++;
1475 probe_block += blocks_per_page;
1476 reprobe:
1477 continue;
1479 ret = nr_extents;
1480 *span = 1 + highest_block - lowest_block;
1481 if (page_no == 0)
1482 page_no = 1; /* force Empty message */
1483 sis->max = page_no;
1484 sis->pages = page_no - 1;
1485 sis->highest_bit = page_no - 1;
1486 out:
1487 return ret;
1488 bad_bmap:
1489 printk(KERN_ERR "swapon: swapfile has holes\n");
1490 ret = -EINVAL;
1491 goto out;
1494 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1496 struct swap_info_struct *p = NULL;
1497 unsigned char *swap_map;
1498 struct file *swap_file, *victim;
1499 struct address_space *mapping;
1500 struct inode *inode;
1501 char *pathname;
1502 int i, type, prev;
1503 int err;
1505 if (!capable(CAP_SYS_ADMIN))
1506 return -EPERM;
1508 pathname = getname(specialfile);
1509 err = PTR_ERR(pathname);
1510 if (IS_ERR(pathname))
1511 goto out;
1513 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1514 putname(pathname);
1515 err = PTR_ERR(victim);
1516 if (IS_ERR(victim))
1517 goto out;
1519 mapping = victim->f_mapping;
1520 prev = -1;
1521 spin_lock(&swap_lock);
1522 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1523 p = swap_info[type];
1524 if (p->flags & SWP_WRITEOK) {
1525 if (p->swap_file->f_mapping == mapping)
1526 break;
1528 prev = type;
1530 if (type < 0) {
1531 err = -EINVAL;
1532 spin_unlock(&swap_lock);
1533 goto out_dput;
1535 if (!security_vm_enough_memory(p->pages))
1536 vm_unacct_memory(p->pages);
1537 else {
1538 err = -ENOMEM;
1539 spin_unlock(&swap_lock);
1540 goto out_dput;
1542 if (prev < 0)
1543 swap_list.head = p->next;
1544 else
1545 swap_info[prev]->next = p->next;
1546 if (type == swap_list.next) {
1547 /* just pick something that's safe... */
1548 swap_list.next = swap_list.head;
1550 if (p->prio < 0) {
1551 for (i = p->next; i >= 0; i = swap_info[i]->next)
1552 swap_info[i]->prio = p->prio--;
1553 least_priority++;
1555 nr_swap_pages -= p->pages;
1556 total_swap_pages -= p->pages;
1557 p->flags &= ~SWP_WRITEOK;
1558 spin_unlock(&swap_lock);
1560 current->flags |= PF_OOM_ORIGIN;
1561 err = try_to_unuse(type);
1562 current->flags &= ~PF_OOM_ORIGIN;
1564 if (err) {
1565 /* re-insert swap space back into swap_list */
1566 spin_lock(&swap_lock);
1567 if (p->prio < 0)
1568 p->prio = --least_priority;
1569 prev = -1;
1570 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1571 if (p->prio >= swap_info[i]->prio)
1572 break;
1573 prev = i;
1575 p->next = i;
1576 if (prev < 0)
1577 swap_list.head = swap_list.next = type;
1578 else
1579 swap_info[prev]->next = type;
1580 nr_swap_pages += p->pages;
1581 total_swap_pages += p->pages;
1582 p->flags |= SWP_WRITEOK;
1583 spin_unlock(&swap_lock);
1584 goto out_dput;
1587 /* wait for any unplug function to finish */
1588 down_write(&swap_unplug_sem);
1589 up_write(&swap_unplug_sem);
1591 destroy_swap_extents(p);
1592 if (p->flags & SWP_CONTINUED)
1593 free_swap_count_continuations(p);
1595 mutex_lock(&swapon_mutex);
1596 spin_lock(&swap_lock);
1597 drain_mmlist();
1599 /* wait for anyone still in scan_swap_map */
1600 p->highest_bit = 0; /* cuts scans short */
1601 while (p->flags >= SWP_SCANNING) {
1602 spin_unlock(&swap_lock);
1603 schedule_timeout_uninterruptible(1);
1604 spin_lock(&swap_lock);
1607 swap_file = p->swap_file;
1608 p->swap_file = NULL;
1609 p->max = 0;
1610 swap_map = p->swap_map;
1611 p->swap_map = NULL;
1612 p->flags = 0;
1613 spin_unlock(&swap_lock);
1614 mutex_unlock(&swapon_mutex);
1615 vfree(swap_map);
1616 /* Destroy swap account informatin */
1617 swap_cgroup_swapoff(type);
1619 inode = mapping->host;
1620 if (S_ISBLK(inode->i_mode)) {
1621 struct block_device *bdev = I_BDEV(inode);
1622 set_blocksize(bdev, p->old_block_size);
1623 bd_release(bdev);
1624 } else {
1625 mutex_lock(&inode->i_mutex);
1626 inode->i_flags &= ~S_SWAPFILE;
1627 mutex_unlock(&inode->i_mutex);
1629 filp_close(swap_file, NULL);
1630 err = 0;
1632 out_dput:
1633 filp_close(victim, NULL);
1634 out:
1635 return err;
1638 #ifdef CONFIG_PROC_FS
1639 /* iterator */
1640 static void *swap_start(struct seq_file *swap, loff_t *pos)
1642 struct swap_info_struct *si;
1643 int type;
1644 loff_t l = *pos;
1646 mutex_lock(&swapon_mutex);
1648 if (!l)
1649 return SEQ_START_TOKEN;
1651 for (type = 0; type < nr_swapfiles; type++) {
1652 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1653 si = swap_info[type];
1654 if (!(si->flags & SWP_USED) || !si->swap_map)
1655 continue;
1656 if (!--l)
1657 return si;
1660 return NULL;
1663 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1665 struct swap_info_struct *si = v;
1666 int type;
1668 if (v == SEQ_START_TOKEN)
1669 type = 0;
1670 else
1671 type = si->type + 1;
1673 for (; type < nr_swapfiles; type++) {
1674 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1675 si = swap_info[type];
1676 if (!(si->flags & SWP_USED) || !si->swap_map)
1677 continue;
1678 ++*pos;
1679 return si;
1682 return NULL;
1685 static void swap_stop(struct seq_file *swap, void *v)
1687 mutex_unlock(&swapon_mutex);
1690 static int swap_show(struct seq_file *swap, void *v)
1692 struct swap_info_struct *si = v;
1693 struct file *file;
1694 int len;
1696 if (si == SEQ_START_TOKEN) {
1697 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1698 return 0;
1701 file = si->swap_file;
1702 len = seq_path(swap, &file->f_path, " \t\n\\");
1703 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1704 len < 40 ? 40 - len : 1, " ",
1705 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1706 "partition" : "file\t",
1707 si->pages << (PAGE_SHIFT - 10),
1708 si->inuse_pages << (PAGE_SHIFT - 10),
1709 si->prio);
1710 return 0;
1713 static const struct seq_operations swaps_op = {
1714 .start = swap_start,
1715 .next = swap_next,
1716 .stop = swap_stop,
1717 .show = swap_show
1720 static int swaps_open(struct inode *inode, struct file *file)
1722 return seq_open(file, &swaps_op);
1725 static const struct file_operations proc_swaps_operations = {
1726 .open = swaps_open,
1727 .read = seq_read,
1728 .llseek = seq_lseek,
1729 .release = seq_release,
1732 static int __init procswaps_init(void)
1734 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1735 return 0;
1737 __initcall(procswaps_init);
1738 #endif /* CONFIG_PROC_FS */
1740 #ifdef MAX_SWAPFILES_CHECK
1741 static int __init max_swapfiles_check(void)
1743 MAX_SWAPFILES_CHECK();
1744 return 0;
1746 late_initcall(max_swapfiles_check);
1747 #endif
1750 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1752 * The swapon system call
1754 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1756 struct swap_info_struct *p;
1757 char *name = NULL;
1758 struct block_device *bdev = NULL;
1759 struct file *swap_file = NULL;
1760 struct address_space *mapping;
1761 unsigned int type;
1762 int i, prev;
1763 int error;
1764 union swap_header *swap_header = NULL;
1765 unsigned int nr_good_pages = 0;
1766 int nr_extents = 0;
1767 sector_t span;
1768 unsigned long maxpages = 1;
1769 unsigned long swapfilepages;
1770 unsigned char *swap_map = NULL;
1771 struct page *page = NULL;
1772 struct inode *inode = NULL;
1773 int did_down = 0;
1775 if (!capable(CAP_SYS_ADMIN))
1776 return -EPERM;
1778 p = kzalloc(sizeof(*p), GFP_KERNEL);
1779 if (!p)
1780 return -ENOMEM;
1782 spin_lock(&swap_lock);
1783 for (type = 0; type < nr_swapfiles; type++) {
1784 if (!(swap_info[type]->flags & SWP_USED))
1785 break;
1787 error = -EPERM;
1788 if (type >= MAX_SWAPFILES) {
1789 spin_unlock(&swap_lock);
1790 kfree(p);
1791 goto out;
1793 if (type >= nr_swapfiles) {
1794 p->type = type;
1795 swap_info[type] = p;
1797 * Write swap_info[type] before nr_swapfiles, in case a
1798 * racing procfs swap_start() or swap_next() is reading them.
1799 * (We never shrink nr_swapfiles, we never free this entry.)
1801 smp_wmb();
1802 nr_swapfiles++;
1803 } else {
1804 kfree(p);
1805 p = swap_info[type];
1807 * Do not memset this entry: a racing procfs swap_next()
1808 * would be relying on p->type to remain valid.
1811 INIT_LIST_HEAD(&p->first_swap_extent.list);
1812 p->flags = SWP_USED;
1813 p->next = -1;
1814 spin_unlock(&swap_lock);
1816 name = getname(specialfile);
1817 error = PTR_ERR(name);
1818 if (IS_ERR(name)) {
1819 name = NULL;
1820 goto bad_swap_2;
1822 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1823 error = PTR_ERR(swap_file);
1824 if (IS_ERR(swap_file)) {
1825 swap_file = NULL;
1826 goto bad_swap_2;
1829 p->swap_file = swap_file;
1830 mapping = swap_file->f_mapping;
1831 inode = mapping->host;
1833 error = -EBUSY;
1834 for (i = 0; i < nr_swapfiles; i++) {
1835 struct swap_info_struct *q = swap_info[i];
1837 if (i == type || !q->swap_file)
1838 continue;
1839 if (mapping == q->swap_file->f_mapping)
1840 goto bad_swap;
1843 error = -EINVAL;
1844 if (S_ISBLK(inode->i_mode)) {
1845 bdev = I_BDEV(inode);
1846 error = bd_claim(bdev, sys_swapon);
1847 if (error < 0) {
1848 bdev = NULL;
1849 error = -EINVAL;
1850 goto bad_swap;
1852 p->old_block_size = block_size(bdev);
1853 error = set_blocksize(bdev, PAGE_SIZE);
1854 if (error < 0)
1855 goto bad_swap;
1856 p->bdev = bdev;
1857 } else if (S_ISREG(inode->i_mode)) {
1858 p->bdev = inode->i_sb->s_bdev;
1859 mutex_lock(&inode->i_mutex);
1860 did_down = 1;
1861 if (IS_SWAPFILE(inode)) {
1862 error = -EBUSY;
1863 goto bad_swap;
1865 } else {
1866 goto bad_swap;
1869 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1872 * Read the swap header.
1874 if (!mapping->a_ops->readpage) {
1875 error = -EINVAL;
1876 goto bad_swap;
1878 page = read_mapping_page(mapping, 0, swap_file);
1879 if (IS_ERR(page)) {
1880 error = PTR_ERR(page);
1881 goto bad_swap;
1883 swap_header = kmap(page);
1885 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1886 printk(KERN_ERR "Unable to find swap-space signature\n");
1887 error = -EINVAL;
1888 goto bad_swap;
1891 /* swap partition endianess hack... */
1892 if (swab32(swap_header->info.version) == 1) {
1893 swab32s(&swap_header->info.version);
1894 swab32s(&swap_header->info.last_page);
1895 swab32s(&swap_header->info.nr_badpages);
1896 for (i = 0; i < swap_header->info.nr_badpages; i++)
1897 swab32s(&swap_header->info.badpages[i]);
1899 /* Check the swap header's sub-version */
1900 if (swap_header->info.version != 1) {
1901 printk(KERN_WARNING
1902 "Unable to handle swap header version %d\n",
1903 swap_header->info.version);
1904 error = -EINVAL;
1905 goto bad_swap;
1908 p->lowest_bit = 1;
1909 p->cluster_next = 1;
1910 p->cluster_nr = 0;
1913 * Find out how many pages are allowed for a single swap
1914 * device. There are two limiting factors: 1) the number of
1915 * bits for the swap offset in the swp_entry_t type and
1916 * 2) the number of bits in the a swap pte as defined by
1917 * the different architectures. In order to find the
1918 * largest possible bit mask a swap entry with swap type 0
1919 * and swap offset ~0UL is created, encoded to a swap pte,
1920 * decoded to a swp_entry_t again and finally the swap
1921 * offset is extracted. This will mask all the bits from
1922 * the initial ~0UL mask that can't be encoded in either
1923 * the swp_entry_t or the architecture definition of a
1924 * swap pte.
1926 maxpages = swp_offset(pte_to_swp_entry(
1927 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1928 if (maxpages > swap_header->info.last_page)
1929 maxpages = swap_header->info.last_page;
1930 p->highest_bit = maxpages - 1;
1932 error = -EINVAL;
1933 if (!maxpages)
1934 goto bad_swap;
1935 if (swapfilepages && maxpages > swapfilepages) {
1936 printk(KERN_WARNING
1937 "Swap area shorter than signature indicates\n");
1938 goto bad_swap;
1940 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1941 goto bad_swap;
1942 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1943 goto bad_swap;
1945 /* OK, set up the swap map and apply the bad block list */
1946 swap_map = vmalloc(maxpages);
1947 if (!swap_map) {
1948 error = -ENOMEM;
1949 goto bad_swap;
1952 memset(swap_map, 0, maxpages);
1953 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1954 int page_nr = swap_header->info.badpages[i];
1955 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1956 error = -EINVAL;
1957 goto bad_swap;
1959 swap_map[page_nr] = SWAP_MAP_BAD;
1962 error = swap_cgroup_swapon(type, maxpages);
1963 if (error)
1964 goto bad_swap;
1966 nr_good_pages = swap_header->info.last_page -
1967 swap_header->info.nr_badpages -
1968 1 /* header page */;
1970 if (nr_good_pages) {
1971 swap_map[0] = SWAP_MAP_BAD;
1972 p->max = maxpages;
1973 p->pages = nr_good_pages;
1974 nr_extents = setup_swap_extents(p, &span);
1975 if (nr_extents < 0) {
1976 error = nr_extents;
1977 goto bad_swap;
1979 nr_good_pages = p->pages;
1981 if (!nr_good_pages) {
1982 printk(KERN_WARNING "Empty swap-file\n");
1983 error = -EINVAL;
1984 goto bad_swap;
1987 if (p->bdev) {
1988 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1989 p->flags |= SWP_SOLIDSTATE;
1990 p->cluster_next = 1 + (random32() % p->highest_bit);
1992 if (discard_swap(p) == 0)
1993 p->flags |= SWP_DISCARDABLE;
1996 mutex_lock(&swapon_mutex);
1997 spin_lock(&swap_lock);
1998 if (swap_flags & SWAP_FLAG_PREFER)
1999 p->prio =
2000 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2001 else
2002 p->prio = --least_priority;
2003 p->swap_map = swap_map;
2004 p->flags |= SWP_WRITEOK;
2005 nr_swap_pages += nr_good_pages;
2006 total_swap_pages += nr_good_pages;
2008 printk(KERN_INFO "Adding %uk swap on %s. "
2009 "Priority:%d extents:%d across:%lluk %s%s\n",
2010 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2011 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2012 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2013 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2015 /* insert swap space into swap_list: */
2016 prev = -1;
2017 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2018 if (p->prio >= swap_info[i]->prio)
2019 break;
2020 prev = i;
2022 p->next = i;
2023 if (prev < 0)
2024 swap_list.head = swap_list.next = type;
2025 else
2026 swap_info[prev]->next = type;
2027 spin_unlock(&swap_lock);
2028 mutex_unlock(&swapon_mutex);
2029 error = 0;
2030 goto out;
2031 bad_swap:
2032 if (bdev) {
2033 set_blocksize(bdev, p->old_block_size);
2034 bd_release(bdev);
2036 destroy_swap_extents(p);
2037 swap_cgroup_swapoff(type);
2038 bad_swap_2:
2039 spin_lock(&swap_lock);
2040 p->swap_file = NULL;
2041 p->flags = 0;
2042 spin_unlock(&swap_lock);
2043 vfree(swap_map);
2044 if (swap_file)
2045 filp_close(swap_file, NULL);
2046 out:
2047 if (page && !IS_ERR(page)) {
2048 kunmap(page);
2049 page_cache_release(page);
2051 if (name)
2052 putname(name);
2053 if (did_down) {
2054 if (!error)
2055 inode->i_flags |= S_SWAPFILE;
2056 mutex_unlock(&inode->i_mutex);
2058 return error;
2061 void si_swapinfo(struct sysinfo *val)
2063 unsigned int type;
2064 unsigned long nr_to_be_unused = 0;
2066 spin_lock(&swap_lock);
2067 for (type = 0; type < nr_swapfiles; type++) {
2068 struct swap_info_struct *si = swap_info[type];
2070 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2071 nr_to_be_unused += si->inuse_pages;
2073 val->freeswap = nr_swap_pages + nr_to_be_unused;
2074 val->totalswap = total_swap_pages + nr_to_be_unused;
2075 spin_unlock(&swap_lock);
2079 * Verify that a swap entry is valid and increment its swap map count.
2081 * Returns error code in following case.
2082 * - success -> 0
2083 * - swp_entry is invalid -> EINVAL
2084 * - swp_entry is migration entry -> EINVAL
2085 * - swap-cache reference is requested but there is already one. -> EEXIST
2086 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2087 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2089 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2091 struct swap_info_struct *p;
2092 unsigned long offset, type;
2093 unsigned char count;
2094 unsigned char has_cache;
2095 int err = -EINVAL;
2097 if (non_swap_entry(entry))
2098 goto out;
2100 type = swp_type(entry);
2101 if (type >= nr_swapfiles)
2102 goto bad_file;
2103 p = swap_info[type];
2104 offset = swp_offset(entry);
2106 spin_lock(&swap_lock);
2107 if (unlikely(offset >= p->max))
2108 goto unlock_out;
2110 count = p->swap_map[offset];
2111 has_cache = count & SWAP_HAS_CACHE;
2112 count &= ~SWAP_HAS_CACHE;
2113 err = 0;
2115 if (usage == SWAP_HAS_CACHE) {
2117 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2118 if (!has_cache && count)
2119 has_cache = SWAP_HAS_CACHE;
2120 else if (has_cache) /* someone else added cache */
2121 err = -EEXIST;
2122 else /* no users remaining */
2123 err = -ENOENT;
2125 } else if (count || has_cache) {
2127 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2128 count += usage;
2129 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2130 err = -EINVAL;
2131 else if (swap_count_continued(p, offset, count))
2132 count = COUNT_CONTINUED;
2133 else
2134 err = -ENOMEM;
2135 } else
2136 err = -ENOENT; /* unused swap entry */
2138 p->swap_map[offset] = count | has_cache;
2140 unlock_out:
2141 spin_unlock(&swap_lock);
2142 out:
2143 return err;
2145 bad_file:
2146 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2147 goto out;
2151 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2152 * (in which case its reference count is never incremented).
2154 void swap_shmem_alloc(swp_entry_t entry)
2156 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2160 * increase reference count of swap entry by 1.
2162 int swap_duplicate(swp_entry_t entry)
2164 int err = 0;
2166 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2167 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2168 return err;
2172 * @entry: swap entry for which we allocate swap cache.
2174 * Called when allocating swap cache for existing swap entry,
2175 * This can return error codes. Returns 0 at success.
2176 * -EBUSY means there is a swap cache.
2177 * Note: return code is different from swap_duplicate().
2179 int swapcache_prepare(swp_entry_t entry)
2181 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2185 * swap_lock prevents swap_map being freed. Don't grab an extra
2186 * reference on the swaphandle, it doesn't matter if it becomes unused.
2188 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2190 struct swap_info_struct *si;
2191 int our_page_cluster = page_cluster;
2192 pgoff_t target, toff;
2193 pgoff_t base, end;
2194 int nr_pages = 0;
2196 if (!our_page_cluster) /* no readahead */
2197 return 0;
2199 si = swap_info[swp_type(entry)];
2200 target = swp_offset(entry);
2201 base = (target >> our_page_cluster) << our_page_cluster;
2202 end = base + (1 << our_page_cluster);
2203 if (!base) /* first page is swap header */
2204 base++;
2206 spin_lock(&swap_lock);
2207 if (end > si->max) /* don't go beyond end of map */
2208 end = si->max;
2210 /* Count contiguous allocated slots above our target */
2211 for (toff = target; ++toff < end; nr_pages++) {
2212 /* Don't read in free or bad pages */
2213 if (!si->swap_map[toff])
2214 break;
2215 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2216 break;
2218 /* Count contiguous allocated slots below our target */
2219 for (toff = target; --toff >= base; nr_pages++) {
2220 /* Don't read in free or bad pages */
2221 if (!si->swap_map[toff])
2222 break;
2223 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2224 break;
2226 spin_unlock(&swap_lock);
2229 * Indicate starting offset, and return number of pages to get:
2230 * if only 1, say 0, since there's then no readahead to be done.
2232 *offset = ++toff;
2233 return nr_pages? ++nr_pages: 0;
2237 * add_swap_count_continuation - called when a swap count is duplicated
2238 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2239 * page of the original vmalloc'ed swap_map, to hold the continuation count
2240 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2241 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2243 * These continuation pages are seldom referenced: the common paths all work
2244 * on the original swap_map, only referring to a continuation page when the
2245 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2247 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2248 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2249 * can be called after dropping locks.
2251 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2253 struct swap_info_struct *si;
2254 struct page *head;
2255 struct page *page;
2256 struct page *list_page;
2257 pgoff_t offset;
2258 unsigned char count;
2261 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2262 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2264 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2266 si = swap_info_get(entry);
2267 if (!si) {
2269 * An acceptable race has occurred since the failing
2270 * __swap_duplicate(): the swap entry has been freed,
2271 * perhaps even the whole swap_map cleared for swapoff.
2273 goto outer;
2276 offset = swp_offset(entry);
2277 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2279 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2281 * The higher the swap count, the more likely it is that tasks
2282 * will race to add swap count continuation: we need to avoid
2283 * over-provisioning.
2285 goto out;
2288 if (!page) {
2289 spin_unlock(&swap_lock);
2290 return -ENOMEM;
2294 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2295 * no architecture is using highmem pages for kernel pagetables: so it
2296 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2298 head = vmalloc_to_page(si->swap_map + offset);
2299 offset &= ~PAGE_MASK;
2302 * Page allocation does not initialize the page's lru field,
2303 * but it does always reset its private field.
2305 if (!page_private(head)) {
2306 BUG_ON(count & COUNT_CONTINUED);
2307 INIT_LIST_HEAD(&head->lru);
2308 set_page_private(head, SWP_CONTINUED);
2309 si->flags |= SWP_CONTINUED;
2312 list_for_each_entry(list_page, &head->lru, lru) {
2313 unsigned char *map;
2316 * If the previous map said no continuation, but we've found
2317 * a continuation page, free our allocation and use this one.
2319 if (!(count & COUNT_CONTINUED))
2320 goto out;
2322 map = kmap_atomic(list_page, KM_USER0) + offset;
2323 count = *map;
2324 kunmap_atomic(map, KM_USER0);
2327 * If this continuation count now has some space in it,
2328 * free our allocation and use this one.
2330 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2331 goto out;
2334 list_add_tail(&page->lru, &head->lru);
2335 page = NULL; /* now it's attached, don't free it */
2336 out:
2337 spin_unlock(&swap_lock);
2338 outer:
2339 if (page)
2340 __free_page(page);
2341 return 0;
2345 * swap_count_continued - when the original swap_map count is incremented
2346 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2347 * into, carry if so, or else fail until a new continuation page is allocated;
2348 * when the original swap_map count is decremented from 0 with continuation,
2349 * borrow from the continuation and report whether it still holds more.
2350 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2352 static bool swap_count_continued(struct swap_info_struct *si,
2353 pgoff_t offset, unsigned char count)
2355 struct page *head;
2356 struct page *page;
2357 unsigned char *map;
2359 head = vmalloc_to_page(si->swap_map + offset);
2360 if (page_private(head) != SWP_CONTINUED) {
2361 BUG_ON(count & COUNT_CONTINUED);
2362 return false; /* need to add count continuation */
2365 offset &= ~PAGE_MASK;
2366 page = list_entry(head->lru.next, struct page, lru);
2367 map = kmap_atomic(page, KM_USER0) + offset;
2369 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2370 goto init_map; /* jump over SWAP_CONT_MAX checks */
2372 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2374 * Think of how you add 1 to 999
2376 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2377 kunmap_atomic(map, KM_USER0);
2378 page = list_entry(page->lru.next, struct page, lru);
2379 BUG_ON(page == head);
2380 map = kmap_atomic(page, KM_USER0) + offset;
2382 if (*map == SWAP_CONT_MAX) {
2383 kunmap_atomic(map, KM_USER0);
2384 page = list_entry(page->lru.next, struct page, lru);
2385 if (page == head)
2386 return false; /* add count continuation */
2387 map = kmap_atomic(page, KM_USER0) + offset;
2388 init_map: *map = 0; /* we didn't zero the page */
2390 *map += 1;
2391 kunmap_atomic(map, KM_USER0);
2392 page = list_entry(page->lru.prev, struct page, lru);
2393 while (page != head) {
2394 map = kmap_atomic(page, KM_USER0) + offset;
2395 *map = COUNT_CONTINUED;
2396 kunmap_atomic(map, KM_USER0);
2397 page = list_entry(page->lru.prev, struct page, lru);
2399 return true; /* incremented */
2401 } else { /* decrementing */
2403 * Think of how you subtract 1 from 1000
2405 BUG_ON(count != COUNT_CONTINUED);
2406 while (*map == COUNT_CONTINUED) {
2407 kunmap_atomic(map, KM_USER0);
2408 page = list_entry(page->lru.next, struct page, lru);
2409 BUG_ON(page == head);
2410 map = kmap_atomic(page, KM_USER0) + offset;
2412 BUG_ON(*map == 0);
2413 *map -= 1;
2414 if (*map == 0)
2415 count = 0;
2416 kunmap_atomic(map, KM_USER0);
2417 page = list_entry(page->lru.prev, struct page, lru);
2418 while (page != head) {
2419 map = kmap_atomic(page, KM_USER0) + offset;
2420 *map = SWAP_CONT_MAX | count;
2421 count = COUNT_CONTINUED;
2422 kunmap_atomic(map, KM_USER0);
2423 page = list_entry(page->lru.prev, struct page, lru);
2425 return count == COUNT_CONTINUED;
2430 * free_swap_count_continuations - swapoff free all the continuation pages
2431 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2433 static void free_swap_count_continuations(struct swap_info_struct *si)
2435 pgoff_t offset;
2437 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2438 struct page *head;
2439 head = vmalloc_to_page(si->swap_map + offset);
2440 if (page_private(head)) {
2441 struct list_head *this, *next;
2442 list_for_each_safe(this, next, &head->lru) {
2443 struct page *page;
2444 page = list_entry(this, struct page, lru);
2445 list_del(this);
2446 __free_page(page);