Fix gcc 4.5.1 miscompiling drivers/char/i8k.c (again)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / debug.c
blob6554130f76e4a35ba099e229c9a93a5bbf110835
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
38 #ifdef CONFIG_UBIFS_FS_DEBUG
40 DEFINE_SPINLOCK(dbg_lock);
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
57 static const char *get_key_fmt(int fmt)
59 switch (fmt) {
60 case UBIFS_SIMPLE_KEY_FMT:
61 return "simple";
62 default:
63 return "unknown/invalid format";
67 static const char *get_key_hash(int hash)
69 switch (hash) {
70 case UBIFS_KEY_HASH_R5:
71 return "R5";
72 case UBIFS_KEY_HASH_TEST:
73 return "test";
74 default:
75 return "unknown/invalid name hash";
79 static const char *get_key_type(int type)
81 switch (type) {
82 case UBIFS_INO_KEY:
83 return "inode";
84 case UBIFS_DENT_KEY:
85 return "direntry";
86 case UBIFS_XENT_KEY:
87 return "xentry";
88 case UBIFS_DATA_KEY:
89 return "data";
90 case UBIFS_TRUN_KEY:
91 return "truncate";
92 default:
93 return "unknown/invalid key";
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 char *buffer)
100 char *p = buffer;
101 int type = key_type(c, key);
103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 switch (type) {
105 case UBIFS_INO_KEY:
106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107 get_key_type(type));
108 break;
109 case UBIFS_DENT_KEY:
110 case UBIFS_XENT_KEY:
111 sprintf(p, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c, key),
113 get_key_type(type), key_hash(c, key));
114 break;
115 case UBIFS_DATA_KEY:
116 sprintf(p, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_block(c, key));
119 break;
120 case UBIFS_TRUN_KEY:
121 sprintf(p, "(%lu, %s)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type));
124 break;
125 default:
126 sprintf(p, "(bad key type: %#08x, %#08x)",
127 key->u32[0], key->u32[1]);
129 } else
130 sprintf(p, "bad key format %d", c->key_fmt);
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
135 /* dbg_lock must be held */
136 sprintf_key(c, key, dbg_key_buf0);
137 return dbg_key_buf0;
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
142 /* dbg_lock must be held */
143 sprintf_key(c, key, dbg_key_buf1);
144 return dbg_key_buf1;
147 const char *dbg_ntype(int type)
149 switch (type) {
150 case UBIFS_PAD_NODE:
151 return "padding node";
152 case UBIFS_SB_NODE:
153 return "superblock node";
154 case UBIFS_MST_NODE:
155 return "master node";
156 case UBIFS_REF_NODE:
157 return "reference node";
158 case UBIFS_INO_NODE:
159 return "inode node";
160 case UBIFS_DENT_NODE:
161 return "direntry node";
162 case UBIFS_XENT_NODE:
163 return "xentry node";
164 case UBIFS_DATA_NODE:
165 return "data node";
166 case UBIFS_TRUN_NODE:
167 return "truncate node";
168 case UBIFS_IDX_NODE:
169 return "indexing node";
170 case UBIFS_CS_NODE:
171 return "commit start node";
172 case UBIFS_ORPH_NODE:
173 return "orphan node";
174 default:
175 return "unknown node";
179 static const char *dbg_gtype(int type)
181 switch (type) {
182 case UBIFS_NO_NODE_GROUP:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP:
187 return "last of node group";
188 default:
189 return "unknown";
193 const char *dbg_cstate(int cmt_state)
195 switch (cmt_state) {
196 case COMMIT_RESTING:
197 return "commit resting";
198 case COMMIT_BACKGROUND:
199 return "background commit requested";
200 case COMMIT_REQUIRED:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED:
205 return "commit running and required";
206 case COMMIT_BROKEN:
207 return "broken commit";
208 default:
209 return "unknown commit state";
213 const char *dbg_jhead(int jhead)
215 switch (jhead) {
216 case GCHD:
217 return "0 (GC)";
218 case BASEHD:
219 return "1 (base)";
220 case DATAHD:
221 return "2 (data)";
222 default:
223 return "unknown journal head";
227 static void dump_ch(const struct ubifs_ch *ch)
229 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
230 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
231 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
232 dbg_ntype(ch->node_type));
233 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
234 dbg_gtype(ch->group_type));
235 printk(KERN_DEBUG "\tsqnum %llu\n",
236 (unsigned long long)le64_to_cpu(ch->sqnum));
237 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
240 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
242 const struct ubifs_inode *ui = ubifs_inode(inode);
244 printk(KERN_DEBUG "Dump in-memory inode:");
245 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
246 printk(KERN_DEBUG "\tsize %llu\n",
247 (unsigned long long)i_size_read(inode));
248 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
249 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
250 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
251 printk(KERN_DEBUG "\tatime %u.%u\n",
252 (unsigned int)inode->i_atime.tv_sec,
253 (unsigned int)inode->i_atime.tv_nsec);
254 printk(KERN_DEBUG "\tmtime %u.%u\n",
255 (unsigned int)inode->i_mtime.tv_sec,
256 (unsigned int)inode->i_mtime.tv_nsec);
257 printk(KERN_DEBUG "\tctime %u.%u\n",
258 (unsigned int)inode->i_ctime.tv_sec,
259 (unsigned int)inode->i_ctime.tv_nsec);
260 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
261 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
262 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
263 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
264 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
265 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
266 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
267 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
268 (unsigned long long)ui->synced_i_size);
269 printk(KERN_DEBUG "\tui_size %llu\n",
270 (unsigned long long)ui->ui_size);
271 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
272 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
273 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
274 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
275 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
278 void dbg_dump_node(const struct ubifs_info *c, const void *node)
280 int i, n;
281 union ubifs_key key;
282 const struct ubifs_ch *ch = node;
284 if (dbg_failure_mode)
285 return;
287 /* If the magic is incorrect, just hexdump the first bytes */
288 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
289 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
290 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
291 (void *)node, UBIFS_CH_SZ, 1);
292 return;
295 spin_lock(&dbg_lock);
296 dump_ch(node);
298 switch (ch->node_type) {
299 case UBIFS_PAD_NODE:
301 const struct ubifs_pad_node *pad = node;
303 printk(KERN_DEBUG "\tpad_len %u\n",
304 le32_to_cpu(pad->pad_len));
305 break;
307 case UBIFS_SB_NODE:
309 const struct ubifs_sb_node *sup = node;
310 unsigned int sup_flags = le32_to_cpu(sup->flags);
312 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
313 (int)sup->key_hash, get_key_hash(sup->key_hash));
314 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
315 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
316 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
317 printk(KERN_DEBUG "\t big_lpt %u\n",
318 !!(sup_flags & UBIFS_FLG_BIGLPT));
319 printk(KERN_DEBUG "\tmin_io_size %u\n",
320 le32_to_cpu(sup->min_io_size));
321 printk(KERN_DEBUG "\tleb_size %u\n",
322 le32_to_cpu(sup->leb_size));
323 printk(KERN_DEBUG "\tleb_cnt %u\n",
324 le32_to_cpu(sup->leb_cnt));
325 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
326 le32_to_cpu(sup->max_leb_cnt));
327 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
328 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
329 printk(KERN_DEBUG "\tlog_lebs %u\n",
330 le32_to_cpu(sup->log_lebs));
331 printk(KERN_DEBUG "\tlpt_lebs %u\n",
332 le32_to_cpu(sup->lpt_lebs));
333 printk(KERN_DEBUG "\torph_lebs %u\n",
334 le32_to_cpu(sup->orph_lebs));
335 printk(KERN_DEBUG "\tjhead_cnt %u\n",
336 le32_to_cpu(sup->jhead_cnt));
337 printk(KERN_DEBUG "\tfanout %u\n",
338 le32_to_cpu(sup->fanout));
339 printk(KERN_DEBUG "\tlsave_cnt %u\n",
340 le32_to_cpu(sup->lsave_cnt));
341 printk(KERN_DEBUG "\tdefault_compr %u\n",
342 (int)le16_to_cpu(sup->default_compr));
343 printk(KERN_DEBUG "\trp_size %llu\n",
344 (unsigned long long)le64_to_cpu(sup->rp_size));
345 printk(KERN_DEBUG "\trp_uid %u\n",
346 le32_to_cpu(sup->rp_uid));
347 printk(KERN_DEBUG "\trp_gid %u\n",
348 le32_to_cpu(sup->rp_gid));
349 printk(KERN_DEBUG "\tfmt_version %u\n",
350 le32_to_cpu(sup->fmt_version));
351 printk(KERN_DEBUG "\ttime_gran %u\n",
352 le32_to_cpu(sup->time_gran));
353 printk(KERN_DEBUG "\tUUID %pUB\n",
354 sup->uuid);
355 break;
357 case UBIFS_MST_NODE:
359 const struct ubifs_mst_node *mst = node;
361 printk(KERN_DEBUG "\thighest_inum %llu\n",
362 (unsigned long long)le64_to_cpu(mst->highest_inum));
363 printk(KERN_DEBUG "\tcommit number %llu\n",
364 (unsigned long long)le64_to_cpu(mst->cmt_no));
365 printk(KERN_DEBUG "\tflags %#x\n",
366 le32_to_cpu(mst->flags));
367 printk(KERN_DEBUG "\tlog_lnum %u\n",
368 le32_to_cpu(mst->log_lnum));
369 printk(KERN_DEBUG "\troot_lnum %u\n",
370 le32_to_cpu(mst->root_lnum));
371 printk(KERN_DEBUG "\troot_offs %u\n",
372 le32_to_cpu(mst->root_offs));
373 printk(KERN_DEBUG "\troot_len %u\n",
374 le32_to_cpu(mst->root_len));
375 printk(KERN_DEBUG "\tgc_lnum %u\n",
376 le32_to_cpu(mst->gc_lnum));
377 printk(KERN_DEBUG "\tihead_lnum %u\n",
378 le32_to_cpu(mst->ihead_lnum));
379 printk(KERN_DEBUG "\tihead_offs %u\n",
380 le32_to_cpu(mst->ihead_offs));
381 printk(KERN_DEBUG "\tindex_size %llu\n",
382 (unsigned long long)le64_to_cpu(mst->index_size));
383 printk(KERN_DEBUG "\tlpt_lnum %u\n",
384 le32_to_cpu(mst->lpt_lnum));
385 printk(KERN_DEBUG "\tlpt_offs %u\n",
386 le32_to_cpu(mst->lpt_offs));
387 printk(KERN_DEBUG "\tnhead_lnum %u\n",
388 le32_to_cpu(mst->nhead_lnum));
389 printk(KERN_DEBUG "\tnhead_offs %u\n",
390 le32_to_cpu(mst->nhead_offs));
391 printk(KERN_DEBUG "\tltab_lnum %u\n",
392 le32_to_cpu(mst->ltab_lnum));
393 printk(KERN_DEBUG "\tltab_offs %u\n",
394 le32_to_cpu(mst->ltab_offs));
395 printk(KERN_DEBUG "\tlsave_lnum %u\n",
396 le32_to_cpu(mst->lsave_lnum));
397 printk(KERN_DEBUG "\tlsave_offs %u\n",
398 le32_to_cpu(mst->lsave_offs));
399 printk(KERN_DEBUG "\tlscan_lnum %u\n",
400 le32_to_cpu(mst->lscan_lnum));
401 printk(KERN_DEBUG "\tleb_cnt %u\n",
402 le32_to_cpu(mst->leb_cnt));
403 printk(KERN_DEBUG "\tempty_lebs %u\n",
404 le32_to_cpu(mst->empty_lebs));
405 printk(KERN_DEBUG "\tidx_lebs %u\n",
406 le32_to_cpu(mst->idx_lebs));
407 printk(KERN_DEBUG "\ttotal_free %llu\n",
408 (unsigned long long)le64_to_cpu(mst->total_free));
409 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
410 (unsigned long long)le64_to_cpu(mst->total_dirty));
411 printk(KERN_DEBUG "\ttotal_used %llu\n",
412 (unsigned long long)le64_to_cpu(mst->total_used));
413 printk(KERN_DEBUG "\ttotal_dead %llu\n",
414 (unsigned long long)le64_to_cpu(mst->total_dead));
415 printk(KERN_DEBUG "\ttotal_dark %llu\n",
416 (unsigned long long)le64_to_cpu(mst->total_dark));
417 break;
419 case UBIFS_REF_NODE:
421 const struct ubifs_ref_node *ref = node;
423 printk(KERN_DEBUG "\tlnum %u\n",
424 le32_to_cpu(ref->lnum));
425 printk(KERN_DEBUG "\toffs %u\n",
426 le32_to_cpu(ref->offs));
427 printk(KERN_DEBUG "\tjhead %u\n",
428 le32_to_cpu(ref->jhead));
429 break;
431 case UBIFS_INO_NODE:
433 const struct ubifs_ino_node *ino = node;
435 key_read(c, &ino->key, &key);
436 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
437 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
438 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
439 printk(KERN_DEBUG "\tsize %llu\n",
440 (unsigned long long)le64_to_cpu(ino->size));
441 printk(KERN_DEBUG "\tnlink %u\n",
442 le32_to_cpu(ino->nlink));
443 printk(KERN_DEBUG "\tatime %lld.%u\n",
444 (long long)le64_to_cpu(ino->atime_sec),
445 le32_to_cpu(ino->atime_nsec));
446 printk(KERN_DEBUG "\tmtime %lld.%u\n",
447 (long long)le64_to_cpu(ino->mtime_sec),
448 le32_to_cpu(ino->mtime_nsec));
449 printk(KERN_DEBUG "\tctime %lld.%u\n",
450 (long long)le64_to_cpu(ino->ctime_sec),
451 le32_to_cpu(ino->ctime_nsec));
452 printk(KERN_DEBUG "\tuid %u\n",
453 le32_to_cpu(ino->uid));
454 printk(KERN_DEBUG "\tgid %u\n",
455 le32_to_cpu(ino->gid));
456 printk(KERN_DEBUG "\tmode %u\n",
457 le32_to_cpu(ino->mode));
458 printk(KERN_DEBUG "\tflags %#x\n",
459 le32_to_cpu(ino->flags));
460 printk(KERN_DEBUG "\txattr_cnt %u\n",
461 le32_to_cpu(ino->xattr_cnt));
462 printk(KERN_DEBUG "\txattr_size %u\n",
463 le32_to_cpu(ino->xattr_size));
464 printk(KERN_DEBUG "\txattr_names %u\n",
465 le32_to_cpu(ino->xattr_names));
466 printk(KERN_DEBUG "\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 printk(KERN_DEBUG "\tdata len %u\n",
469 le32_to_cpu(ino->data_len));
470 break;
472 case UBIFS_DENT_NODE:
473 case UBIFS_XENT_NODE:
475 const struct ubifs_dent_node *dent = node;
476 int nlen = le16_to_cpu(dent->nlen);
478 key_read(c, &dent->key, &key);
479 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
480 printk(KERN_DEBUG "\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
483 printk(KERN_DEBUG "\tnlen %d\n", nlen);
484 printk(KERN_DEBUG "\tname ");
486 if (nlen > UBIFS_MAX_NLEN)
487 printk(KERN_DEBUG "(bad name length, not printing, "
488 "bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
491 printk(KERN_CONT "%c", dent->name[i]);
493 printk(KERN_CONT "\n");
495 break;
497 case UBIFS_DATA_NODE:
499 const struct ubifs_data_node *dn = node;
500 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
502 key_read(c, &dn->key, &key);
503 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
504 printk(KERN_DEBUG "\tsize %u\n",
505 le32_to_cpu(dn->size));
506 printk(KERN_DEBUG "\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 printk(KERN_DEBUG "\tdata size %d\n",
509 dlen);
510 printk(KERN_DEBUG "\tdata:\n");
511 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
512 (void *)&dn->data, dlen, 0);
513 break;
515 case UBIFS_TRUN_NODE:
517 const struct ubifs_trun_node *trun = node;
519 printk(KERN_DEBUG "\tinum %u\n",
520 le32_to_cpu(trun->inum));
521 printk(KERN_DEBUG "\told_size %llu\n",
522 (unsigned long long)le64_to_cpu(trun->old_size));
523 printk(KERN_DEBUG "\tnew_size %llu\n",
524 (unsigned long long)le64_to_cpu(trun->new_size));
525 break;
527 case UBIFS_IDX_NODE:
529 const struct ubifs_idx_node *idx = node;
531 n = le16_to_cpu(idx->child_cnt);
532 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
533 printk(KERN_DEBUG "\tlevel %d\n",
534 (int)le16_to_cpu(idx->level));
535 printk(KERN_DEBUG "\tBranches:\n");
537 for (i = 0; i < n && i < c->fanout - 1; i++) {
538 const struct ubifs_branch *br;
540 br = ubifs_idx_branch(c, idx, i);
541 key_read(c, &br->key, &key);
542 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
543 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
544 le32_to_cpu(br->len), DBGKEY(&key));
546 break;
548 case UBIFS_CS_NODE:
549 break;
550 case UBIFS_ORPH_NODE:
552 const struct ubifs_orph_node *orph = node;
554 printk(KERN_DEBUG "\tcommit number %llu\n",
555 (unsigned long long)
556 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
557 printk(KERN_DEBUG "\tlast node flag %llu\n",
558 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
559 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
560 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
561 for (i = 0; i < n; i++)
562 printk(KERN_DEBUG "\t ino %llu\n",
563 (unsigned long long)le64_to_cpu(orph->inos[i]));
564 break;
566 default:
567 printk(KERN_DEBUG "node type %d was not recognized\n",
568 (int)ch->node_type);
570 spin_unlock(&dbg_lock);
573 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
575 spin_lock(&dbg_lock);
576 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
577 req->new_ino, req->dirtied_ino);
578 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
579 req->new_ino_d, req->dirtied_ino_d);
580 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
581 req->new_page, req->dirtied_page);
582 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
583 req->new_dent, req->mod_dent);
584 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
585 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
586 req->data_growth, req->dd_growth);
587 spin_unlock(&dbg_lock);
590 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
592 spin_lock(&dbg_lock);
593 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
594 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
595 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
596 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
597 lst->total_dirty);
598 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
599 "total_dead %lld\n", lst->total_used, lst->total_dark,
600 lst->total_dead);
601 spin_unlock(&dbg_lock);
604 void dbg_dump_budg(struct ubifs_info *c)
606 int i;
607 struct rb_node *rb;
608 struct ubifs_bud *bud;
609 struct ubifs_gced_idx_leb *idx_gc;
610 long long available, outstanding, free;
612 ubifs_assert(spin_is_locked(&c->space_lock));
613 spin_lock(&dbg_lock);
614 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
615 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
616 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
617 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
618 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
619 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
620 c->freeable_cnt);
621 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
622 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
623 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
624 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
625 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
626 atomic_long_read(&c->dirty_zn_cnt),
627 atomic_long_read(&c->clean_zn_cnt));
628 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
629 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
630 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
631 c->gc_lnum, c->ihead_lnum);
632 /* If we are in R/O mode, journal heads do not exist */
633 if (c->jheads)
634 for (i = 0; i < c->jhead_cnt; i++)
635 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
636 dbg_jhead(c->jheads[i].wbuf.jhead),
637 c->jheads[i].wbuf.lnum);
638 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
639 bud = rb_entry(rb, struct ubifs_bud, rb);
640 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
642 list_for_each_entry(bud, &c->old_buds, list)
643 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
644 list_for_each_entry(idx_gc, &c->idx_gc, list)
645 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
646 idx_gc->lnum, idx_gc->unmap);
647 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
649 /* Print budgeting predictions */
650 available = ubifs_calc_available(c, c->min_idx_lebs);
651 outstanding = c->budg_data_growth + c->budg_dd_growth;
652 free = ubifs_get_free_space_nolock(c);
653 printk(KERN_DEBUG "Budgeting predictions:\n");
654 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
655 available, outstanding, free);
656 spin_unlock(&dbg_lock);
659 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
661 int i, spc, dark = 0, dead = 0;
662 struct rb_node *rb;
663 struct ubifs_bud *bud;
665 spc = lp->free + lp->dirty;
666 if (spc < c->dead_wm)
667 dead = spc;
668 else
669 dark = ubifs_calc_dark(c, spc);
671 if (lp->flags & LPROPS_INDEX)
672 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
673 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
674 lp->dirty, c->leb_size - spc, spc, lp->flags);
675 else
676 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
677 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
678 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
679 c->leb_size - spc, spc, dark, dead,
680 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
682 if (lp->flags & LPROPS_TAKEN) {
683 if (lp->flags & LPROPS_INDEX)
684 printk(KERN_CONT "index, taken");
685 else
686 printk(KERN_CONT "taken");
687 } else {
688 const char *s;
690 if (lp->flags & LPROPS_INDEX) {
691 switch (lp->flags & LPROPS_CAT_MASK) {
692 case LPROPS_DIRTY_IDX:
693 s = "dirty index";
694 break;
695 case LPROPS_FRDI_IDX:
696 s = "freeable index";
697 break;
698 default:
699 s = "index";
701 } else {
702 switch (lp->flags & LPROPS_CAT_MASK) {
703 case LPROPS_UNCAT:
704 s = "not categorized";
705 break;
706 case LPROPS_DIRTY:
707 s = "dirty";
708 break;
709 case LPROPS_FREE:
710 s = "free";
711 break;
712 case LPROPS_EMPTY:
713 s = "empty";
714 break;
715 case LPROPS_FREEABLE:
716 s = "freeable";
717 break;
718 default:
719 s = NULL;
720 break;
723 printk(KERN_CONT "%s", s);
726 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
727 bud = rb_entry(rb, struct ubifs_bud, rb);
728 if (bud->lnum == lp->lnum) {
729 int head = 0;
730 for (i = 0; i < c->jhead_cnt; i++) {
731 if (lp->lnum == c->jheads[i].wbuf.lnum) {
732 printk(KERN_CONT ", jhead %s",
733 dbg_jhead(i));
734 head = 1;
737 if (!head)
738 printk(KERN_CONT ", bud of jhead %s",
739 dbg_jhead(bud->jhead));
742 if (lp->lnum == c->gc_lnum)
743 printk(KERN_CONT ", GC LEB");
744 printk(KERN_CONT ")\n");
747 void dbg_dump_lprops(struct ubifs_info *c)
749 int lnum, err;
750 struct ubifs_lprops lp;
751 struct ubifs_lp_stats lst;
753 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
754 current->pid);
755 ubifs_get_lp_stats(c, &lst);
756 dbg_dump_lstats(&lst);
758 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
759 err = ubifs_read_one_lp(c, lnum, &lp);
760 if (err)
761 ubifs_err("cannot read lprops for LEB %d", lnum);
763 dbg_dump_lprop(c, &lp);
765 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
766 current->pid);
769 void dbg_dump_lpt_info(struct ubifs_info *c)
771 int i;
773 spin_lock(&dbg_lock);
774 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
775 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
776 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
777 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
778 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
779 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
780 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
781 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
782 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
783 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
784 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
785 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
786 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
787 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
788 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
789 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
790 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
791 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
792 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
793 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
794 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
795 c->nhead_lnum, c->nhead_offs);
796 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
797 c->ltab_lnum, c->ltab_offs);
798 if (c->big_lpt)
799 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
800 c->lsave_lnum, c->lsave_offs);
801 for (i = 0; i < c->lpt_lebs; i++)
802 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
803 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
804 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
805 spin_unlock(&dbg_lock);
808 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
810 struct ubifs_scan_leb *sleb;
811 struct ubifs_scan_node *snod;
813 if (dbg_failure_mode)
814 return;
816 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
817 current->pid, lnum);
818 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0);
819 if (IS_ERR(sleb)) {
820 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
821 return;
824 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
825 sleb->nodes_cnt, sleb->endpt);
827 list_for_each_entry(snod, &sleb->nodes, list) {
828 cond_resched();
829 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
830 snod->offs, snod->len);
831 dbg_dump_node(c, snod->node);
834 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
835 current->pid, lnum);
836 ubifs_scan_destroy(sleb);
837 return;
840 void dbg_dump_znode(const struct ubifs_info *c,
841 const struct ubifs_znode *znode)
843 int n;
844 const struct ubifs_zbranch *zbr;
846 spin_lock(&dbg_lock);
847 if (znode->parent)
848 zbr = &znode->parent->zbranch[znode->iip];
849 else
850 zbr = &c->zroot;
852 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
853 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
854 zbr->len, znode->parent, znode->iip, znode->level,
855 znode->child_cnt, znode->flags);
857 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
858 spin_unlock(&dbg_lock);
859 return;
862 printk(KERN_DEBUG "zbranches:\n");
863 for (n = 0; n < znode->child_cnt; n++) {
864 zbr = &znode->zbranch[n];
865 if (znode->level > 0)
866 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
867 "%s\n", n, zbr->znode, zbr->lnum,
868 zbr->offs, zbr->len,
869 DBGKEY(&zbr->key));
870 else
871 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
872 "%s\n", n, zbr->znode, zbr->lnum,
873 zbr->offs, zbr->len,
874 DBGKEY(&zbr->key));
876 spin_unlock(&dbg_lock);
879 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
881 int i;
883 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
884 current->pid, cat, heap->cnt);
885 for (i = 0; i < heap->cnt; i++) {
886 struct ubifs_lprops *lprops = heap->arr[i];
888 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
889 "flags %d\n", i, lprops->lnum, lprops->hpos,
890 lprops->free, lprops->dirty, lprops->flags);
892 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
895 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
896 struct ubifs_nnode *parent, int iip)
898 int i;
900 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
901 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
902 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
903 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
904 pnode->flags, iip, pnode->level, pnode->num);
905 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
906 struct ubifs_lprops *lp = &pnode->lprops[i];
908 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
909 i, lp->free, lp->dirty, lp->flags, lp->lnum);
913 void dbg_dump_tnc(struct ubifs_info *c)
915 struct ubifs_znode *znode;
916 int level;
918 printk(KERN_DEBUG "\n");
919 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
920 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
921 level = znode->level;
922 printk(KERN_DEBUG "== Level %d ==\n", level);
923 while (znode) {
924 if (level != znode->level) {
925 level = znode->level;
926 printk(KERN_DEBUG "== Level %d ==\n", level);
928 dbg_dump_znode(c, znode);
929 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
931 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
934 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
935 void *priv)
937 dbg_dump_znode(c, znode);
938 return 0;
942 * dbg_dump_index - dump the on-flash index.
943 * @c: UBIFS file-system description object
945 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
946 * which dumps only in-memory znodes and does not read znodes which from flash.
948 void dbg_dump_index(struct ubifs_info *c)
950 dbg_walk_index(c, NULL, dump_znode, NULL);
954 * dbg_save_space_info - save information about flash space.
955 * @c: UBIFS file-system description object
957 * This function saves information about UBIFS free space, dirty space, etc, in
958 * order to check it later.
960 void dbg_save_space_info(struct ubifs_info *c)
962 struct ubifs_debug_info *d = c->dbg;
963 int freeable_cnt;
965 spin_lock(&c->space_lock);
966 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
969 * We use a dirty hack here and zero out @c->freeable_cnt, because it
970 * affects the free space calculations, and UBIFS might not know about
971 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
972 * only when we read their lprops, and we do this only lazily, upon the
973 * need. So at any given point of time @c->freeable_cnt might be not
974 * exactly accurate.
976 * Just one example about the issue we hit when we did not zero
977 * @c->freeable_cnt.
978 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
979 * amount of free space in @d->saved_free
980 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
981 * information from flash, where we cache LEBs from various
982 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
983 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
984 * -> 'ubifs_get_pnode()' -> 'update_cats()'
985 * -> 'ubifs_add_to_cat()').
986 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
987 * becomes %1.
988 * 4. We calculate the amount of free space when the re-mount is
989 * finished in 'dbg_check_space_info()' and it does not match
990 * @d->saved_free.
992 freeable_cnt = c->freeable_cnt;
993 c->freeable_cnt = 0;
994 d->saved_free = ubifs_get_free_space_nolock(c);
995 c->freeable_cnt = freeable_cnt;
996 spin_unlock(&c->space_lock);
1000 * dbg_check_space_info - check flash space information.
1001 * @c: UBIFS file-system description object
1003 * This function compares current flash space information with the information
1004 * which was saved when the 'dbg_save_space_info()' function was called.
1005 * Returns zero if the information has not changed, and %-EINVAL it it has
1006 * changed.
1008 int dbg_check_space_info(struct ubifs_info *c)
1010 struct ubifs_debug_info *d = c->dbg;
1011 struct ubifs_lp_stats lst;
1012 long long free;
1013 int freeable_cnt;
1015 spin_lock(&c->space_lock);
1016 freeable_cnt = c->freeable_cnt;
1017 c->freeable_cnt = 0;
1018 free = ubifs_get_free_space_nolock(c);
1019 c->freeable_cnt = freeable_cnt;
1020 spin_unlock(&c->space_lock);
1022 if (free != d->saved_free) {
1023 ubifs_err("free space changed from %lld to %lld",
1024 d->saved_free, free);
1025 goto out;
1028 return 0;
1030 out:
1031 ubifs_msg("saved lprops statistics dump");
1032 dbg_dump_lstats(&d->saved_lst);
1033 ubifs_get_lp_stats(c, &lst);
1035 ubifs_msg("current lprops statistics dump");
1036 dbg_dump_lstats(&lst);
1038 spin_lock(&c->space_lock);
1039 dbg_dump_budg(c);
1040 spin_unlock(&c->space_lock);
1041 dump_stack();
1042 return -EINVAL;
1046 * dbg_check_synced_i_size - check synchronized inode size.
1047 * @inode: inode to check
1049 * If inode is clean, synchronized inode size has to be equivalent to current
1050 * inode size. This function has to be called only for locked inodes (@i_mutex
1051 * has to be locked). Returns %0 if synchronized inode size if correct, and
1052 * %-EINVAL if not.
1054 int dbg_check_synced_i_size(struct inode *inode)
1056 int err = 0;
1057 struct ubifs_inode *ui = ubifs_inode(inode);
1059 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1060 return 0;
1061 if (!S_ISREG(inode->i_mode))
1062 return 0;
1064 mutex_lock(&ui->ui_mutex);
1065 spin_lock(&ui->ui_lock);
1066 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1067 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1068 "is clean", ui->ui_size, ui->synced_i_size);
1069 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1070 inode->i_mode, i_size_read(inode));
1071 dbg_dump_stack();
1072 err = -EINVAL;
1074 spin_unlock(&ui->ui_lock);
1075 mutex_unlock(&ui->ui_mutex);
1076 return err;
1080 * dbg_check_dir - check directory inode size and link count.
1081 * @c: UBIFS file-system description object
1082 * @dir: the directory to calculate size for
1083 * @size: the result is returned here
1085 * This function makes sure that directory size and link count are correct.
1086 * Returns zero in case of success and a negative error code in case of
1087 * failure.
1089 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1090 * calling this function.
1092 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
1094 unsigned int nlink = 2;
1095 union ubifs_key key;
1096 struct ubifs_dent_node *dent, *pdent = NULL;
1097 struct qstr nm = { .name = NULL };
1098 loff_t size = UBIFS_INO_NODE_SZ;
1100 if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
1101 return 0;
1103 if (!S_ISDIR(dir->i_mode))
1104 return 0;
1106 lowest_dent_key(c, &key, dir->i_ino);
1107 while (1) {
1108 int err;
1110 dent = ubifs_tnc_next_ent(c, &key, &nm);
1111 if (IS_ERR(dent)) {
1112 err = PTR_ERR(dent);
1113 if (err == -ENOENT)
1114 break;
1115 return err;
1118 nm.name = dent->name;
1119 nm.len = le16_to_cpu(dent->nlen);
1120 size += CALC_DENT_SIZE(nm.len);
1121 if (dent->type == UBIFS_ITYPE_DIR)
1122 nlink += 1;
1123 kfree(pdent);
1124 pdent = dent;
1125 key_read(c, &dent->key, &key);
1127 kfree(pdent);
1129 if (i_size_read(dir) != size) {
1130 ubifs_err("directory inode %lu has size %llu, "
1131 "but calculated size is %llu", dir->i_ino,
1132 (unsigned long long)i_size_read(dir),
1133 (unsigned long long)size);
1134 dump_stack();
1135 return -EINVAL;
1137 if (dir->i_nlink != nlink) {
1138 ubifs_err("directory inode %lu has nlink %u, but calculated "
1139 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1140 dump_stack();
1141 return -EINVAL;
1144 return 0;
1148 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1149 * @c: UBIFS file-system description object
1150 * @zbr1: first zbranch
1151 * @zbr2: following zbranch
1153 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1154 * names of the direntries/xentries which are referred by the keys. This
1155 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1156 * sure the name of direntry/xentry referred by @zbr1 is less than
1157 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1158 * and a negative error code in case of failure.
1160 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1161 struct ubifs_zbranch *zbr2)
1163 int err, nlen1, nlen2, cmp;
1164 struct ubifs_dent_node *dent1, *dent2;
1165 union ubifs_key key;
1167 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1168 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1169 if (!dent1)
1170 return -ENOMEM;
1171 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1172 if (!dent2) {
1173 err = -ENOMEM;
1174 goto out_free;
1177 err = ubifs_tnc_read_node(c, zbr1, dent1);
1178 if (err)
1179 goto out_free;
1180 err = ubifs_validate_entry(c, dent1);
1181 if (err)
1182 goto out_free;
1184 err = ubifs_tnc_read_node(c, zbr2, dent2);
1185 if (err)
1186 goto out_free;
1187 err = ubifs_validate_entry(c, dent2);
1188 if (err)
1189 goto out_free;
1191 /* Make sure node keys are the same as in zbranch */
1192 err = 1;
1193 key_read(c, &dent1->key, &key);
1194 if (keys_cmp(c, &zbr1->key, &key)) {
1195 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1196 zbr1->offs, DBGKEY(&key));
1197 dbg_err("but it should have key %s according to tnc",
1198 DBGKEY(&zbr1->key));
1199 dbg_dump_node(c, dent1);
1200 goto out_free;
1203 key_read(c, &dent2->key, &key);
1204 if (keys_cmp(c, &zbr2->key, &key)) {
1205 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1206 zbr1->offs, DBGKEY(&key));
1207 dbg_err("but it should have key %s according to tnc",
1208 DBGKEY(&zbr2->key));
1209 dbg_dump_node(c, dent2);
1210 goto out_free;
1213 nlen1 = le16_to_cpu(dent1->nlen);
1214 nlen2 = le16_to_cpu(dent2->nlen);
1216 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1217 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1218 err = 0;
1219 goto out_free;
1221 if (cmp == 0 && nlen1 == nlen2)
1222 dbg_err("2 xent/dent nodes with the same name");
1223 else
1224 dbg_err("bad order of colliding key %s",
1225 DBGKEY(&key));
1227 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1228 dbg_dump_node(c, dent1);
1229 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1230 dbg_dump_node(c, dent2);
1232 out_free:
1233 kfree(dent2);
1234 kfree(dent1);
1235 return err;
1239 * dbg_check_znode - check if znode is all right.
1240 * @c: UBIFS file-system description object
1241 * @zbr: zbranch which points to this znode
1243 * This function makes sure that znode referred to by @zbr is all right.
1244 * Returns zero if it is, and %-EINVAL if it is not.
1246 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1248 struct ubifs_znode *znode = zbr->znode;
1249 struct ubifs_znode *zp = znode->parent;
1250 int n, err, cmp;
1252 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1253 err = 1;
1254 goto out;
1256 if (znode->level < 0) {
1257 err = 2;
1258 goto out;
1260 if (znode->iip < 0 || znode->iip >= c->fanout) {
1261 err = 3;
1262 goto out;
1265 if (zbr->len == 0)
1266 /* Only dirty zbranch may have no on-flash nodes */
1267 if (!ubifs_zn_dirty(znode)) {
1268 err = 4;
1269 goto out;
1272 if (ubifs_zn_dirty(znode)) {
1274 * If znode is dirty, its parent has to be dirty as well. The
1275 * order of the operation is important, so we have to have
1276 * memory barriers.
1278 smp_mb();
1279 if (zp && !ubifs_zn_dirty(zp)) {
1281 * The dirty flag is atomic and is cleared outside the
1282 * TNC mutex, so znode's dirty flag may now have
1283 * been cleared. The child is always cleared before the
1284 * parent, so we just need to check again.
1286 smp_mb();
1287 if (ubifs_zn_dirty(znode)) {
1288 err = 5;
1289 goto out;
1294 if (zp) {
1295 const union ubifs_key *min, *max;
1297 if (znode->level != zp->level - 1) {
1298 err = 6;
1299 goto out;
1302 /* Make sure the 'parent' pointer in our znode is correct */
1303 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1304 if (!err) {
1305 /* This zbranch does not exist in the parent */
1306 err = 7;
1307 goto out;
1310 if (znode->iip >= zp->child_cnt) {
1311 err = 8;
1312 goto out;
1315 if (znode->iip != n) {
1316 /* This may happen only in case of collisions */
1317 if (keys_cmp(c, &zp->zbranch[n].key,
1318 &zp->zbranch[znode->iip].key)) {
1319 err = 9;
1320 goto out;
1322 n = znode->iip;
1326 * Make sure that the first key in our znode is greater than or
1327 * equal to the key in the pointing zbranch.
1329 min = &zbr->key;
1330 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1331 if (cmp == 1) {
1332 err = 10;
1333 goto out;
1336 if (n + 1 < zp->child_cnt) {
1337 max = &zp->zbranch[n + 1].key;
1340 * Make sure the last key in our znode is less or
1341 * equivalent than the key in the zbranch which goes
1342 * after our pointing zbranch.
1344 cmp = keys_cmp(c, max,
1345 &znode->zbranch[znode->child_cnt - 1].key);
1346 if (cmp == -1) {
1347 err = 11;
1348 goto out;
1351 } else {
1352 /* This may only be root znode */
1353 if (zbr != &c->zroot) {
1354 err = 12;
1355 goto out;
1360 * Make sure that next key is greater or equivalent then the previous
1361 * one.
1363 for (n = 1; n < znode->child_cnt; n++) {
1364 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1365 &znode->zbranch[n].key);
1366 if (cmp > 0) {
1367 err = 13;
1368 goto out;
1370 if (cmp == 0) {
1371 /* This can only be keys with colliding hash */
1372 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1373 err = 14;
1374 goto out;
1377 if (znode->level != 0 || c->replaying)
1378 continue;
1381 * Colliding keys should follow binary order of
1382 * corresponding xentry/dentry names.
1384 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1385 &znode->zbranch[n]);
1386 if (err < 0)
1387 return err;
1388 if (err) {
1389 err = 15;
1390 goto out;
1395 for (n = 0; n < znode->child_cnt; n++) {
1396 if (!znode->zbranch[n].znode &&
1397 (znode->zbranch[n].lnum == 0 ||
1398 znode->zbranch[n].len == 0)) {
1399 err = 16;
1400 goto out;
1403 if (znode->zbranch[n].lnum != 0 &&
1404 znode->zbranch[n].len == 0) {
1405 err = 17;
1406 goto out;
1409 if (znode->zbranch[n].lnum == 0 &&
1410 znode->zbranch[n].len != 0) {
1411 err = 18;
1412 goto out;
1415 if (znode->zbranch[n].lnum == 0 &&
1416 znode->zbranch[n].offs != 0) {
1417 err = 19;
1418 goto out;
1421 if (znode->level != 0 && znode->zbranch[n].znode)
1422 if (znode->zbranch[n].znode->parent != znode) {
1423 err = 20;
1424 goto out;
1428 return 0;
1430 out:
1431 ubifs_err("failed, error %d", err);
1432 ubifs_msg("dump of the znode");
1433 dbg_dump_znode(c, znode);
1434 if (zp) {
1435 ubifs_msg("dump of the parent znode");
1436 dbg_dump_znode(c, zp);
1438 dump_stack();
1439 return -EINVAL;
1443 * dbg_check_tnc - check TNC tree.
1444 * @c: UBIFS file-system description object
1445 * @extra: do extra checks that are possible at start commit
1447 * This function traverses whole TNC tree and checks every znode. Returns zero
1448 * if everything is all right and %-EINVAL if something is wrong with TNC.
1450 int dbg_check_tnc(struct ubifs_info *c, int extra)
1452 struct ubifs_znode *znode;
1453 long clean_cnt = 0, dirty_cnt = 0;
1454 int err, last;
1456 if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1457 return 0;
1459 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1460 if (!c->zroot.znode)
1461 return 0;
1463 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1464 while (1) {
1465 struct ubifs_znode *prev;
1466 struct ubifs_zbranch *zbr;
1468 if (!znode->parent)
1469 zbr = &c->zroot;
1470 else
1471 zbr = &znode->parent->zbranch[znode->iip];
1473 err = dbg_check_znode(c, zbr);
1474 if (err)
1475 return err;
1477 if (extra) {
1478 if (ubifs_zn_dirty(znode))
1479 dirty_cnt += 1;
1480 else
1481 clean_cnt += 1;
1484 prev = znode;
1485 znode = ubifs_tnc_postorder_next(znode);
1486 if (!znode)
1487 break;
1490 * If the last key of this znode is equivalent to the first key
1491 * of the next znode (collision), then check order of the keys.
1493 last = prev->child_cnt - 1;
1494 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1495 !keys_cmp(c, &prev->zbranch[last].key,
1496 &znode->zbranch[0].key)) {
1497 err = dbg_check_key_order(c, &prev->zbranch[last],
1498 &znode->zbranch[0]);
1499 if (err < 0)
1500 return err;
1501 if (err) {
1502 ubifs_msg("first znode");
1503 dbg_dump_znode(c, prev);
1504 ubifs_msg("second znode");
1505 dbg_dump_znode(c, znode);
1506 return -EINVAL;
1511 if (extra) {
1512 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1513 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1514 atomic_long_read(&c->clean_zn_cnt),
1515 clean_cnt);
1516 return -EINVAL;
1518 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1519 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1520 atomic_long_read(&c->dirty_zn_cnt),
1521 dirty_cnt);
1522 return -EINVAL;
1526 return 0;
1530 * dbg_walk_index - walk the on-flash index.
1531 * @c: UBIFS file-system description object
1532 * @leaf_cb: called for each leaf node
1533 * @znode_cb: called for each indexing node
1534 * @priv: private data which is passed to callbacks
1536 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1537 * node and @znode_cb for each indexing node. Returns zero in case of success
1538 * and a negative error code in case of failure.
1540 * It would be better if this function removed every znode it pulled to into
1541 * the TNC, so that the behavior more closely matched the non-debugging
1542 * behavior.
1544 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1545 dbg_znode_callback znode_cb, void *priv)
1547 int err;
1548 struct ubifs_zbranch *zbr;
1549 struct ubifs_znode *znode, *child;
1551 mutex_lock(&c->tnc_mutex);
1552 /* If the root indexing node is not in TNC - pull it */
1553 if (!c->zroot.znode) {
1554 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1555 if (IS_ERR(c->zroot.znode)) {
1556 err = PTR_ERR(c->zroot.znode);
1557 c->zroot.znode = NULL;
1558 goto out_unlock;
1563 * We are going to traverse the indexing tree in the postorder manner.
1564 * Go down and find the leftmost indexing node where we are going to
1565 * start from.
1567 znode = c->zroot.znode;
1568 while (znode->level > 0) {
1569 zbr = &znode->zbranch[0];
1570 child = zbr->znode;
1571 if (!child) {
1572 child = ubifs_load_znode(c, zbr, znode, 0);
1573 if (IS_ERR(child)) {
1574 err = PTR_ERR(child);
1575 goto out_unlock;
1577 zbr->znode = child;
1580 znode = child;
1583 /* Iterate over all indexing nodes */
1584 while (1) {
1585 int idx;
1587 cond_resched();
1589 if (znode_cb) {
1590 err = znode_cb(c, znode, priv);
1591 if (err) {
1592 ubifs_err("znode checking function returned "
1593 "error %d", err);
1594 dbg_dump_znode(c, znode);
1595 goto out_dump;
1598 if (leaf_cb && znode->level == 0) {
1599 for (idx = 0; idx < znode->child_cnt; idx++) {
1600 zbr = &znode->zbranch[idx];
1601 err = leaf_cb(c, zbr, priv);
1602 if (err) {
1603 ubifs_err("leaf checking function "
1604 "returned error %d, for leaf "
1605 "at LEB %d:%d",
1606 err, zbr->lnum, zbr->offs);
1607 goto out_dump;
1612 if (!znode->parent)
1613 break;
1615 idx = znode->iip + 1;
1616 znode = znode->parent;
1617 if (idx < znode->child_cnt) {
1618 /* Switch to the next index in the parent */
1619 zbr = &znode->zbranch[idx];
1620 child = zbr->znode;
1621 if (!child) {
1622 child = ubifs_load_znode(c, zbr, znode, idx);
1623 if (IS_ERR(child)) {
1624 err = PTR_ERR(child);
1625 goto out_unlock;
1627 zbr->znode = child;
1629 znode = child;
1630 } else
1632 * This is the last child, switch to the parent and
1633 * continue.
1635 continue;
1637 /* Go to the lowest leftmost znode in the new sub-tree */
1638 while (znode->level > 0) {
1639 zbr = &znode->zbranch[0];
1640 child = zbr->znode;
1641 if (!child) {
1642 child = ubifs_load_znode(c, zbr, znode, 0);
1643 if (IS_ERR(child)) {
1644 err = PTR_ERR(child);
1645 goto out_unlock;
1647 zbr->znode = child;
1649 znode = child;
1653 mutex_unlock(&c->tnc_mutex);
1654 return 0;
1656 out_dump:
1657 if (znode->parent)
1658 zbr = &znode->parent->zbranch[znode->iip];
1659 else
1660 zbr = &c->zroot;
1661 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1662 dbg_dump_znode(c, znode);
1663 out_unlock:
1664 mutex_unlock(&c->tnc_mutex);
1665 return err;
1669 * add_size - add znode size to partially calculated index size.
1670 * @c: UBIFS file-system description object
1671 * @znode: znode to add size for
1672 * @priv: partially calculated index size
1674 * This is a helper function for 'dbg_check_idx_size()' which is called for
1675 * every indexing node and adds its size to the 'long long' variable pointed to
1676 * by @priv.
1678 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1680 long long *idx_size = priv;
1681 int add;
1683 add = ubifs_idx_node_sz(c, znode->child_cnt);
1684 add = ALIGN(add, 8);
1685 *idx_size += add;
1686 return 0;
1690 * dbg_check_idx_size - check index size.
1691 * @c: UBIFS file-system description object
1692 * @idx_size: size to check
1694 * This function walks the UBIFS index, calculates its size and checks that the
1695 * size is equivalent to @idx_size. Returns zero in case of success and a
1696 * negative error code in case of failure.
1698 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1700 int err;
1701 long long calc = 0;
1703 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1704 return 0;
1706 err = dbg_walk_index(c, NULL, add_size, &calc);
1707 if (err) {
1708 ubifs_err("error %d while walking the index", err);
1709 return err;
1712 if (calc != idx_size) {
1713 ubifs_err("index size check failed: calculated size is %lld, "
1714 "should be %lld", calc, idx_size);
1715 dump_stack();
1716 return -EINVAL;
1719 return 0;
1723 * struct fsck_inode - information about an inode used when checking the file-system.
1724 * @rb: link in the RB-tree of inodes
1725 * @inum: inode number
1726 * @mode: inode type, permissions, etc
1727 * @nlink: inode link count
1728 * @xattr_cnt: count of extended attributes
1729 * @references: how many directory/xattr entries refer this inode (calculated
1730 * while walking the index)
1731 * @calc_cnt: for directory inode count of child directories
1732 * @size: inode size (read from on-flash inode)
1733 * @xattr_sz: summary size of all extended attributes (read from on-flash
1734 * inode)
1735 * @calc_sz: for directories calculated directory size
1736 * @calc_xcnt: count of extended attributes
1737 * @calc_xsz: calculated summary size of all extended attributes
1738 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1739 * inode (read from on-flash inode)
1740 * @calc_xnms: calculated sum of lengths of all extended attribute names
1742 struct fsck_inode {
1743 struct rb_node rb;
1744 ino_t inum;
1745 umode_t mode;
1746 unsigned int nlink;
1747 unsigned int xattr_cnt;
1748 int references;
1749 int calc_cnt;
1750 long long size;
1751 unsigned int xattr_sz;
1752 long long calc_sz;
1753 long long calc_xcnt;
1754 long long calc_xsz;
1755 unsigned int xattr_nms;
1756 long long calc_xnms;
1760 * struct fsck_data - private FS checking information.
1761 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1763 struct fsck_data {
1764 struct rb_root inodes;
1768 * add_inode - add inode information to RB-tree of inodes.
1769 * @c: UBIFS file-system description object
1770 * @fsckd: FS checking information
1771 * @ino: raw UBIFS inode to add
1773 * This is a helper function for 'check_leaf()' which adds information about
1774 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1775 * case of success and a negative error code in case of failure.
1777 static struct fsck_inode *add_inode(struct ubifs_info *c,
1778 struct fsck_data *fsckd,
1779 struct ubifs_ino_node *ino)
1781 struct rb_node **p, *parent = NULL;
1782 struct fsck_inode *fscki;
1783 ino_t inum = key_inum_flash(c, &ino->key);
1785 p = &fsckd->inodes.rb_node;
1786 while (*p) {
1787 parent = *p;
1788 fscki = rb_entry(parent, struct fsck_inode, rb);
1789 if (inum < fscki->inum)
1790 p = &(*p)->rb_left;
1791 else if (inum > fscki->inum)
1792 p = &(*p)->rb_right;
1793 else
1794 return fscki;
1797 if (inum > c->highest_inum) {
1798 ubifs_err("too high inode number, max. is %lu",
1799 (unsigned long)c->highest_inum);
1800 return ERR_PTR(-EINVAL);
1803 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1804 if (!fscki)
1805 return ERR_PTR(-ENOMEM);
1807 fscki->inum = inum;
1808 fscki->nlink = le32_to_cpu(ino->nlink);
1809 fscki->size = le64_to_cpu(ino->size);
1810 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1811 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1812 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1813 fscki->mode = le32_to_cpu(ino->mode);
1814 if (S_ISDIR(fscki->mode)) {
1815 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1816 fscki->calc_cnt = 2;
1818 rb_link_node(&fscki->rb, parent, p);
1819 rb_insert_color(&fscki->rb, &fsckd->inodes);
1820 return fscki;
1824 * search_inode - search inode in the RB-tree of inodes.
1825 * @fsckd: FS checking information
1826 * @inum: inode number to search
1828 * This is a helper function for 'check_leaf()' which searches inode @inum in
1829 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1830 * the inode was not found.
1832 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1834 struct rb_node *p;
1835 struct fsck_inode *fscki;
1837 p = fsckd->inodes.rb_node;
1838 while (p) {
1839 fscki = rb_entry(p, struct fsck_inode, rb);
1840 if (inum < fscki->inum)
1841 p = p->rb_left;
1842 else if (inum > fscki->inum)
1843 p = p->rb_right;
1844 else
1845 return fscki;
1847 return NULL;
1851 * read_add_inode - read inode node and add it to RB-tree of inodes.
1852 * @c: UBIFS file-system description object
1853 * @fsckd: FS checking information
1854 * @inum: inode number to read
1856 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1857 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1858 * information pointer in case of success and a negative error code in case of
1859 * failure.
1861 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1862 struct fsck_data *fsckd, ino_t inum)
1864 int n, err;
1865 union ubifs_key key;
1866 struct ubifs_znode *znode;
1867 struct ubifs_zbranch *zbr;
1868 struct ubifs_ino_node *ino;
1869 struct fsck_inode *fscki;
1871 fscki = search_inode(fsckd, inum);
1872 if (fscki)
1873 return fscki;
1875 ino_key_init(c, &key, inum);
1876 err = ubifs_lookup_level0(c, &key, &znode, &n);
1877 if (!err) {
1878 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1879 return ERR_PTR(-ENOENT);
1880 } else if (err < 0) {
1881 ubifs_err("error %d while looking up inode %lu",
1882 err, (unsigned long)inum);
1883 return ERR_PTR(err);
1886 zbr = &znode->zbranch[n];
1887 if (zbr->len < UBIFS_INO_NODE_SZ) {
1888 ubifs_err("bad node %lu node length %d",
1889 (unsigned long)inum, zbr->len);
1890 return ERR_PTR(-EINVAL);
1893 ino = kmalloc(zbr->len, GFP_NOFS);
1894 if (!ino)
1895 return ERR_PTR(-ENOMEM);
1897 err = ubifs_tnc_read_node(c, zbr, ino);
1898 if (err) {
1899 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1900 zbr->lnum, zbr->offs, err);
1901 kfree(ino);
1902 return ERR_PTR(err);
1905 fscki = add_inode(c, fsckd, ino);
1906 kfree(ino);
1907 if (IS_ERR(fscki)) {
1908 ubifs_err("error %ld while adding inode %lu node",
1909 PTR_ERR(fscki), (unsigned long)inum);
1910 return fscki;
1913 return fscki;
1917 * check_leaf - check leaf node.
1918 * @c: UBIFS file-system description object
1919 * @zbr: zbranch of the leaf node to check
1920 * @priv: FS checking information
1922 * This is a helper function for 'dbg_check_filesystem()' which is called for
1923 * every single leaf node while walking the indexing tree. It checks that the
1924 * leaf node referred from the indexing tree exists, has correct CRC, and does
1925 * some other basic validation. This function is also responsible for building
1926 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1927 * calculates reference count, size, etc for each inode in order to later
1928 * compare them to the information stored inside the inodes and detect possible
1929 * inconsistencies. Returns zero in case of success and a negative error code
1930 * in case of failure.
1932 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1933 void *priv)
1935 ino_t inum;
1936 void *node;
1937 struct ubifs_ch *ch;
1938 int err, type = key_type(c, &zbr->key);
1939 struct fsck_inode *fscki;
1941 if (zbr->len < UBIFS_CH_SZ) {
1942 ubifs_err("bad leaf length %d (LEB %d:%d)",
1943 zbr->len, zbr->lnum, zbr->offs);
1944 return -EINVAL;
1947 node = kmalloc(zbr->len, GFP_NOFS);
1948 if (!node)
1949 return -ENOMEM;
1951 err = ubifs_tnc_read_node(c, zbr, node);
1952 if (err) {
1953 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1954 zbr->lnum, zbr->offs, err);
1955 goto out_free;
1958 /* If this is an inode node, add it to RB-tree of inodes */
1959 if (type == UBIFS_INO_KEY) {
1960 fscki = add_inode(c, priv, node);
1961 if (IS_ERR(fscki)) {
1962 err = PTR_ERR(fscki);
1963 ubifs_err("error %d while adding inode node", err);
1964 goto out_dump;
1966 goto out;
1969 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1970 type != UBIFS_DATA_KEY) {
1971 ubifs_err("unexpected node type %d at LEB %d:%d",
1972 type, zbr->lnum, zbr->offs);
1973 err = -EINVAL;
1974 goto out_free;
1977 ch = node;
1978 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1979 ubifs_err("too high sequence number, max. is %llu",
1980 c->max_sqnum);
1981 err = -EINVAL;
1982 goto out_dump;
1985 if (type == UBIFS_DATA_KEY) {
1986 long long blk_offs;
1987 struct ubifs_data_node *dn = node;
1990 * Search the inode node this data node belongs to and insert
1991 * it to the RB-tree of inodes.
1993 inum = key_inum_flash(c, &dn->key);
1994 fscki = read_add_inode(c, priv, inum);
1995 if (IS_ERR(fscki)) {
1996 err = PTR_ERR(fscki);
1997 ubifs_err("error %d while processing data node and "
1998 "trying to find inode node %lu",
1999 err, (unsigned long)inum);
2000 goto out_dump;
2003 /* Make sure the data node is within inode size */
2004 blk_offs = key_block_flash(c, &dn->key);
2005 blk_offs <<= UBIFS_BLOCK_SHIFT;
2006 blk_offs += le32_to_cpu(dn->size);
2007 if (blk_offs > fscki->size) {
2008 ubifs_err("data node at LEB %d:%d is not within inode "
2009 "size %lld", zbr->lnum, zbr->offs,
2010 fscki->size);
2011 err = -EINVAL;
2012 goto out_dump;
2014 } else {
2015 int nlen;
2016 struct ubifs_dent_node *dent = node;
2017 struct fsck_inode *fscki1;
2019 err = ubifs_validate_entry(c, dent);
2020 if (err)
2021 goto out_dump;
2024 * Search the inode node this entry refers to and the parent
2025 * inode node and insert them to the RB-tree of inodes.
2027 inum = le64_to_cpu(dent->inum);
2028 fscki = read_add_inode(c, priv, inum);
2029 if (IS_ERR(fscki)) {
2030 err = PTR_ERR(fscki);
2031 ubifs_err("error %d while processing entry node and "
2032 "trying to find inode node %lu",
2033 err, (unsigned long)inum);
2034 goto out_dump;
2037 /* Count how many direntries or xentries refers this inode */
2038 fscki->references += 1;
2040 inum = key_inum_flash(c, &dent->key);
2041 fscki1 = read_add_inode(c, priv, inum);
2042 if (IS_ERR(fscki1)) {
2043 err = PTR_ERR(fscki1);
2044 ubifs_err("error %d while processing entry node and "
2045 "trying to find parent inode node %lu",
2046 err, (unsigned long)inum);
2047 goto out_dump;
2050 nlen = le16_to_cpu(dent->nlen);
2051 if (type == UBIFS_XENT_KEY) {
2052 fscki1->calc_xcnt += 1;
2053 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2054 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2055 fscki1->calc_xnms += nlen;
2056 } else {
2057 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2058 if (dent->type == UBIFS_ITYPE_DIR)
2059 fscki1->calc_cnt += 1;
2063 out:
2064 kfree(node);
2065 return 0;
2067 out_dump:
2068 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2069 dbg_dump_node(c, node);
2070 out_free:
2071 kfree(node);
2072 return err;
2076 * free_inodes - free RB-tree of inodes.
2077 * @fsckd: FS checking information
2079 static void free_inodes(struct fsck_data *fsckd)
2081 struct rb_node *this = fsckd->inodes.rb_node;
2082 struct fsck_inode *fscki;
2084 while (this) {
2085 if (this->rb_left)
2086 this = this->rb_left;
2087 else if (this->rb_right)
2088 this = this->rb_right;
2089 else {
2090 fscki = rb_entry(this, struct fsck_inode, rb);
2091 this = rb_parent(this);
2092 if (this) {
2093 if (this->rb_left == &fscki->rb)
2094 this->rb_left = NULL;
2095 else
2096 this->rb_right = NULL;
2098 kfree(fscki);
2104 * check_inodes - checks all inodes.
2105 * @c: UBIFS file-system description object
2106 * @fsckd: FS checking information
2108 * This is a helper function for 'dbg_check_filesystem()' which walks the
2109 * RB-tree of inodes after the index scan has been finished, and checks that
2110 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2111 * %-EINVAL if not, and a negative error code in case of failure.
2113 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2115 int n, err;
2116 union ubifs_key key;
2117 struct ubifs_znode *znode;
2118 struct ubifs_zbranch *zbr;
2119 struct ubifs_ino_node *ino;
2120 struct fsck_inode *fscki;
2121 struct rb_node *this = rb_first(&fsckd->inodes);
2123 while (this) {
2124 fscki = rb_entry(this, struct fsck_inode, rb);
2125 this = rb_next(this);
2127 if (S_ISDIR(fscki->mode)) {
2129 * Directories have to have exactly one reference (they
2130 * cannot have hardlinks), although root inode is an
2131 * exception.
2133 if (fscki->inum != UBIFS_ROOT_INO &&
2134 fscki->references != 1) {
2135 ubifs_err("directory inode %lu has %d "
2136 "direntries which refer it, but "
2137 "should be 1",
2138 (unsigned long)fscki->inum,
2139 fscki->references);
2140 goto out_dump;
2142 if (fscki->inum == UBIFS_ROOT_INO &&
2143 fscki->references != 0) {
2144 ubifs_err("root inode %lu has non-zero (%d) "
2145 "direntries which refer it",
2146 (unsigned long)fscki->inum,
2147 fscki->references);
2148 goto out_dump;
2150 if (fscki->calc_sz != fscki->size) {
2151 ubifs_err("directory inode %lu size is %lld, "
2152 "but calculated size is %lld",
2153 (unsigned long)fscki->inum,
2154 fscki->size, fscki->calc_sz);
2155 goto out_dump;
2157 if (fscki->calc_cnt != fscki->nlink) {
2158 ubifs_err("directory inode %lu nlink is %d, "
2159 "but calculated nlink is %d",
2160 (unsigned long)fscki->inum,
2161 fscki->nlink, fscki->calc_cnt);
2162 goto out_dump;
2164 } else {
2165 if (fscki->references != fscki->nlink) {
2166 ubifs_err("inode %lu nlink is %d, but "
2167 "calculated nlink is %d",
2168 (unsigned long)fscki->inum,
2169 fscki->nlink, fscki->references);
2170 goto out_dump;
2173 if (fscki->xattr_sz != fscki->calc_xsz) {
2174 ubifs_err("inode %lu has xattr size %u, but "
2175 "calculated size is %lld",
2176 (unsigned long)fscki->inum, fscki->xattr_sz,
2177 fscki->calc_xsz);
2178 goto out_dump;
2180 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2181 ubifs_err("inode %lu has %u xattrs, but "
2182 "calculated count is %lld",
2183 (unsigned long)fscki->inum,
2184 fscki->xattr_cnt, fscki->calc_xcnt);
2185 goto out_dump;
2187 if (fscki->xattr_nms != fscki->calc_xnms) {
2188 ubifs_err("inode %lu has xattr names' size %u, but "
2189 "calculated names' size is %lld",
2190 (unsigned long)fscki->inum, fscki->xattr_nms,
2191 fscki->calc_xnms);
2192 goto out_dump;
2196 return 0;
2198 out_dump:
2199 /* Read the bad inode and dump it */
2200 ino_key_init(c, &key, fscki->inum);
2201 err = ubifs_lookup_level0(c, &key, &znode, &n);
2202 if (!err) {
2203 ubifs_err("inode %lu not found in index",
2204 (unsigned long)fscki->inum);
2205 return -ENOENT;
2206 } else if (err < 0) {
2207 ubifs_err("error %d while looking up inode %lu",
2208 err, (unsigned long)fscki->inum);
2209 return err;
2212 zbr = &znode->zbranch[n];
2213 ino = kmalloc(zbr->len, GFP_NOFS);
2214 if (!ino)
2215 return -ENOMEM;
2217 err = ubifs_tnc_read_node(c, zbr, ino);
2218 if (err) {
2219 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2220 zbr->lnum, zbr->offs, err);
2221 kfree(ino);
2222 return err;
2225 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2226 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2227 dbg_dump_node(c, ino);
2228 kfree(ino);
2229 return -EINVAL;
2233 * dbg_check_filesystem - check the file-system.
2234 * @c: UBIFS file-system description object
2236 * This function checks the file system, namely:
2237 * o makes sure that all leaf nodes exist and their CRCs are correct;
2238 * o makes sure inode nlink, size, xattr size/count are correct (for all
2239 * inodes).
2241 * The function reads whole indexing tree and all nodes, so it is pretty
2242 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2243 * not, and a negative error code in case of failure.
2245 int dbg_check_filesystem(struct ubifs_info *c)
2247 int err;
2248 struct fsck_data fsckd;
2250 if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2251 return 0;
2253 fsckd.inodes = RB_ROOT;
2254 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2255 if (err)
2256 goto out_free;
2258 err = check_inodes(c, &fsckd);
2259 if (err)
2260 goto out_free;
2262 free_inodes(&fsckd);
2263 return 0;
2265 out_free:
2266 ubifs_err("file-system check failed with error %d", err);
2267 dump_stack();
2268 free_inodes(&fsckd);
2269 return err;
2272 static int invocation_cnt;
2274 int dbg_force_in_the_gaps(void)
2276 if (!dbg_force_in_the_gaps_enabled)
2277 return 0;
2278 /* Force in-the-gaps every 8th commit */
2279 return !((invocation_cnt++) & 0x7);
2282 /* Failure mode for recovery testing */
2284 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2286 struct failure_mode_info {
2287 struct list_head list;
2288 struct ubifs_info *c;
2291 static LIST_HEAD(fmi_list);
2292 static DEFINE_SPINLOCK(fmi_lock);
2294 static unsigned int next;
2296 static int simple_rand(void)
2298 if (next == 0)
2299 next = current->pid;
2300 next = next * 1103515245 + 12345;
2301 return (next >> 16) & 32767;
2304 static void failure_mode_init(struct ubifs_info *c)
2306 struct failure_mode_info *fmi;
2308 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2309 if (!fmi) {
2310 ubifs_err("Failed to register failure mode - no memory");
2311 return;
2313 fmi->c = c;
2314 spin_lock(&fmi_lock);
2315 list_add_tail(&fmi->list, &fmi_list);
2316 spin_unlock(&fmi_lock);
2319 static void failure_mode_exit(struct ubifs_info *c)
2321 struct failure_mode_info *fmi, *tmp;
2323 spin_lock(&fmi_lock);
2324 list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2325 if (fmi->c == c) {
2326 list_del(&fmi->list);
2327 kfree(fmi);
2329 spin_unlock(&fmi_lock);
2332 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2334 struct failure_mode_info *fmi;
2336 spin_lock(&fmi_lock);
2337 list_for_each_entry(fmi, &fmi_list, list)
2338 if (fmi->c->ubi == desc) {
2339 struct ubifs_info *c = fmi->c;
2341 spin_unlock(&fmi_lock);
2342 return c;
2344 spin_unlock(&fmi_lock);
2345 return NULL;
2348 static int in_failure_mode(struct ubi_volume_desc *desc)
2350 struct ubifs_info *c = dbg_find_info(desc);
2352 if (c && dbg_failure_mode)
2353 return c->dbg->failure_mode;
2354 return 0;
2357 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2359 struct ubifs_info *c = dbg_find_info(desc);
2360 struct ubifs_debug_info *d;
2362 if (!c || !dbg_failure_mode)
2363 return 0;
2364 d = c->dbg;
2365 if (d->failure_mode)
2366 return 1;
2367 if (!d->fail_cnt) {
2368 /* First call - decide delay to failure */
2369 if (chance(1, 2)) {
2370 unsigned int delay = 1 << (simple_rand() >> 11);
2372 if (chance(1, 2)) {
2373 d->fail_delay = 1;
2374 d->fail_timeout = jiffies +
2375 msecs_to_jiffies(delay);
2376 dbg_rcvry("failing after %ums", delay);
2377 } else {
2378 d->fail_delay = 2;
2379 d->fail_cnt_max = delay;
2380 dbg_rcvry("failing after %u calls", delay);
2383 d->fail_cnt += 1;
2385 /* Determine if failure delay has expired */
2386 if (d->fail_delay == 1) {
2387 if (time_before(jiffies, d->fail_timeout))
2388 return 0;
2389 } else if (d->fail_delay == 2)
2390 if (d->fail_cnt++ < d->fail_cnt_max)
2391 return 0;
2392 if (lnum == UBIFS_SB_LNUM) {
2393 if (write) {
2394 if (chance(1, 2))
2395 return 0;
2396 } else if (chance(19, 20))
2397 return 0;
2398 dbg_rcvry("failing in super block LEB %d", lnum);
2399 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2400 if (chance(19, 20))
2401 return 0;
2402 dbg_rcvry("failing in master LEB %d", lnum);
2403 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2404 if (write) {
2405 if (chance(99, 100))
2406 return 0;
2407 } else if (chance(399, 400))
2408 return 0;
2409 dbg_rcvry("failing in log LEB %d", lnum);
2410 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2411 if (write) {
2412 if (chance(7, 8))
2413 return 0;
2414 } else if (chance(19, 20))
2415 return 0;
2416 dbg_rcvry("failing in LPT LEB %d", lnum);
2417 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2418 if (write) {
2419 if (chance(1, 2))
2420 return 0;
2421 } else if (chance(9, 10))
2422 return 0;
2423 dbg_rcvry("failing in orphan LEB %d", lnum);
2424 } else if (lnum == c->ihead_lnum) {
2425 if (chance(99, 100))
2426 return 0;
2427 dbg_rcvry("failing in index head LEB %d", lnum);
2428 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2429 if (chance(9, 10))
2430 return 0;
2431 dbg_rcvry("failing in GC head LEB %d", lnum);
2432 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2433 !ubifs_search_bud(c, lnum)) {
2434 if (chance(19, 20))
2435 return 0;
2436 dbg_rcvry("failing in non-bud LEB %d", lnum);
2437 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2438 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2439 if (chance(999, 1000))
2440 return 0;
2441 dbg_rcvry("failing in bud LEB %d commit running", lnum);
2442 } else {
2443 if (chance(9999, 10000))
2444 return 0;
2445 dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2447 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2448 d->failure_mode = 1;
2449 dump_stack();
2450 return 1;
2453 static void cut_data(const void *buf, int len)
2455 int flen, i;
2456 unsigned char *p = (void *)buf;
2458 flen = (len * (long long)simple_rand()) >> 15;
2459 for (i = flen; i < len; i++)
2460 p[i] = 0xff;
2463 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2464 int len, int check)
2466 if (in_failure_mode(desc))
2467 return -EIO;
2468 return ubi_leb_read(desc, lnum, buf, offset, len, check);
2471 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2472 int offset, int len, int dtype)
2474 int err, failing;
2476 if (in_failure_mode(desc))
2477 return -EIO;
2478 failing = do_fail(desc, lnum, 1);
2479 if (failing)
2480 cut_data(buf, len);
2481 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2482 if (err)
2483 return err;
2484 if (failing)
2485 return -EIO;
2486 return 0;
2489 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2490 int len, int dtype)
2492 int err;
2494 if (do_fail(desc, lnum, 1))
2495 return -EIO;
2496 err = ubi_leb_change(desc, lnum, buf, len, dtype);
2497 if (err)
2498 return err;
2499 if (do_fail(desc, lnum, 1))
2500 return -EIO;
2501 return 0;
2504 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2506 int err;
2508 if (do_fail(desc, lnum, 0))
2509 return -EIO;
2510 err = ubi_leb_erase(desc, lnum);
2511 if (err)
2512 return err;
2513 if (do_fail(desc, lnum, 0))
2514 return -EIO;
2515 return 0;
2518 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2520 int err;
2522 if (do_fail(desc, lnum, 0))
2523 return -EIO;
2524 err = ubi_leb_unmap(desc, lnum);
2525 if (err)
2526 return err;
2527 if (do_fail(desc, lnum, 0))
2528 return -EIO;
2529 return 0;
2532 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2534 if (in_failure_mode(desc))
2535 return -EIO;
2536 return ubi_is_mapped(desc, lnum);
2539 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2541 int err;
2543 if (do_fail(desc, lnum, 0))
2544 return -EIO;
2545 err = ubi_leb_map(desc, lnum, dtype);
2546 if (err)
2547 return err;
2548 if (do_fail(desc, lnum, 0))
2549 return -EIO;
2550 return 0;
2554 * ubifs_debugging_init - initialize UBIFS debugging.
2555 * @c: UBIFS file-system description object
2557 * This function initializes debugging-related data for the file system.
2558 * Returns zero in case of success and a negative error code in case of
2559 * failure.
2561 int ubifs_debugging_init(struct ubifs_info *c)
2563 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2564 if (!c->dbg)
2565 return -ENOMEM;
2567 c->dbg->buf = vmalloc(c->leb_size);
2568 if (!c->dbg->buf)
2569 goto out;
2571 failure_mode_init(c);
2572 return 0;
2574 out:
2575 kfree(c->dbg);
2576 return -ENOMEM;
2580 * ubifs_debugging_exit - free debugging data.
2581 * @c: UBIFS file-system description object
2583 void ubifs_debugging_exit(struct ubifs_info *c)
2585 failure_mode_exit(c);
2586 vfree(c->dbg->buf);
2587 kfree(c->dbg);
2591 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2592 * contain the stuff specific to particular file-system mounts.
2594 static struct dentry *dfs_rootdir;
2597 * dbg_debugfs_init - initialize debugfs file-system.
2599 * UBIFS uses debugfs file-system to expose various debugging knobs to
2600 * user-space. This function creates "ubifs" directory in the debugfs
2601 * file-system. Returns zero in case of success and a negative error code in
2602 * case of failure.
2604 int dbg_debugfs_init(void)
2606 dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2607 if (IS_ERR(dfs_rootdir)) {
2608 int err = PTR_ERR(dfs_rootdir);
2609 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2610 "error %d\n", err);
2611 return err;
2614 return 0;
2618 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2620 void dbg_debugfs_exit(void)
2622 debugfs_remove(dfs_rootdir);
2625 static int open_debugfs_file(struct inode *inode, struct file *file)
2627 file->private_data = inode->i_private;
2628 return 0;
2631 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2632 size_t count, loff_t *ppos)
2634 struct ubifs_info *c = file->private_data;
2635 struct ubifs_debug_info *d = c->dbg;
2637 if (file->f_path.dentry == d->dfs_dump_lprops)
2638 dbg_dump_lprops(c);
2639 else if (file->f_path.dentry == d->dfs_dump_budg) {
2640 spin_lock(&c->space_lock);
2641 dbg_dump_budg(c);
2642 spin_unlock(&c->space_lock);
2643 } else if (file->f_path.dentry == d->dfs_dump_tnc) {
2644 mutex_lock(&c->tnc_mutex);
2645 dbg_dump_tnc(c);
2646 mutex_unlock(&c->tnc_mutex);
2647 } else
2648 return -EINVAL;
2650 *ppos += count;
2651 return count;
2654 static const struct file_operations dfs_fops = {
2655 .open = open_debugfs_file,
2656 .write = write_debugfs_file,
2657 .owner = THIS_MODULE,
2661 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2662 * @c: UBIFS file-system description object
2664 * This function creates all debugfs files for this instance of UBIFS. Returns
2665 * zero in case of success and a negative error code in case of failure.
2667 * Note, the only reason we have not merged this function with the
2668 * 'ubifs_debugging_init()' function is because it is better to initialize
2669 * debugfs interfaces at the very end of the mount process, and remove them at
2670 * the very beginning of the mount process.
2672 int dbg_debugfs_init_fs(struct ubifs_info *c)
2674 int err;
2675 const char *fname;
2676 struct dentry *dent;
2677 struct ubifs_debug_info *d = c->dbg;
2679 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2680 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2681 if (IS_ERR(d->dfs_dir)) {
2682 err = PTR_ERR(d->dfs_dir);
2683 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2684 d->dfs_dir_name, err);
2685 goto out;
2688 fname = "dump_lprops";
2689 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2690 if (IS_ERR(dent))
2691 goto out_remove;
2692 d->dfs_dump_lprops = dent;
2694 fname = "dump_budg";
2695 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2696 if (IS_ERR(dent))
2697 goto out_remove;
2698 d->dfs_dump_budg = dent;
2700 fname = "dump_tnc";
2701 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2702 if (IS_ERR(dent))
2703 goto out_remove;
2704 d->dfs_dump_tnc = dent;
2706 return 0;
2708 out_remove:
2709 err = PTR_ERR(dent);
2710 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2711 fname, err);
2712 debugfs_remove_recursive(d->dfs_dir);
2713 out:
2714 return err;
2718 * dbg_debugfs_exit_fs - remove all debugfs files.
2719 * @c: UBIFS file-system description object
2721 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2723 debugfs_remove_recursive(c->dbg->dfs_dir);
2726 #endif /* CONFIG_UBIFS_FS_DEBUG */