Fix gcc 4.5.1 miscompiling drivers/char/i8k.c (again)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / eventpoll.c
bloba8dfe211befb9bc43b61a5798e2bb3865cb0651f
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
43 * LOCKING:
44 * There are three level of locking required by epoll :
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is possible to drop the "ep->mtx" and to use the global
74 * mutex "epmutex" (together with "ep->lock") to have it working,
75 * but having "ep->mtx" will make the interface more scalable.
76 * Events that require holding "epmutex" are very rare, while for
77 * normal operations the epoll private "ep->mtx" will guarantee
78 * a better scalability.
81 /* Epoll private bits inside the event mask */
82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
84 /* Maximum number of nesting allowed inside epoll sets */
85 #define EP_MAX_NESTS 4
87 /* Maximum msec timeout value storeable in a long int */
88 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
90 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
92 #define EP_UNACTIVE_PTR ((void *) -1L)
94 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
96 struct epoll_filefd {
97 struct file *file;
98 int fd;
102 * Structure used to track possible nested calls, for too deep recursions
103 * and loop cycles.
105 struct nested_call_node {
106 struct list_head llink;
107 void *cookie;
108 void *ctx;
112 * This structure is used as collector for nested calls, to check for
113 * maximum recursion dept and loop cycles.
115 struct nested_calls {
116 struct list_head tasks_call_list;
117 spinlock_t lock;
121 * Each file descriptor added to the eventpoll interface will
122 * have an entry of this type linked to the "rbr" RB tree.
124 struct epitem {
125 /* RB tree node used to link this structure to the eventpoll RB tree */
126 struct rb_node rbn;
128 /* List header used to link this structure to the eventpoll ready list */
129 struct list_head rdllink;
132 * Works together "struct eventpoll"->ovflist in keeping the
133 * single linked chain of items.
135 struct epitem *next;
137 /* The file descriptor information this item refers to */
138 struct epoll_filefd ffd;
140 /* Number of active wait queue attached to poll operations */
141 int nwait;
143 /* List containing poll wait queues */
144 struct list_head pwqlist;
146 /* The "container" of this item */
147 struct eventpoll *ep;
149 /* List header used to link this item to the "struct file" items list */
150 struct list_head fllink;
152 /* The structure that describe the interested events and the source fd */
153 struct epoll_event event;
157 * This structure is stored inside the "private_data" member of the file
158 * structure and rapresent the main data sructure for the eventpoll
159 * interface.
161 struct eventpoll {
162 /* Protect the this structure access */
163 spinlock_t lock;
166 * This mutex is used to ensure that files are not removed
167 * while epoll is using them. This is held during the event
168 * collection loop, the file cleanup path, the epoll file exit
169 * code and the ctl operations.
171 struct mutex mtx;
173 /* Wait queue used by sys_epoll_wait() */
174 wait_queue_head_t wq;
176 /* Wait queue used by file->poll() */
177 wait_queue_head_t poll_wait;
179 /* List of ready file descriptors */
180 struct list_head rdllist;
182 /* RB tree root used to store monitored fd structs */
183 struct rb_root rbr;
186 * This is a single linked list that chains all the "struct epitem" that
187 * happened while transfering ready events to userspace w/out
188 * holding ->lock.
190 struct epitem *ovflist;
192 /* The user that created the eventpoll descriptor */
193 struct user_struct *user;
196 /* Wait structure used by the poll hooks */
197 struct eppoll_entry {
198 /* List header used to link this structure to the "struct epitem" */
199 struct list_head llink;
201 /* The "base" pointer is set to the container "struct epitem" */
202 struct epitem *base;
205 * Wait queue item that will be linked to the target file wait
206 * queue head.
208 wait_queue_t wait;
210 /* The wait queue head that linked the "wait" wait queue item */
211 wait_queue_head_t *whead;
214 /* Wrapper struct used by poll queueing */
215 struct ep_pqueue {
216 poll_table pt;
217 struct epitem *epi;
220 /* Used by the ep_send_events() function as callback private data */
221 struct ep_send_events_data {
222 int maxevents;
223 struct epoll_event __user *events;
227 * Configuration options available inside /proc/sys/fs/epoll/
229 /* Maximum number of epoll watched descriptors, per user */
230 static int max_user_watches __read_mostly;
233 * This mutex is used to serialize ep_free() and eventpoll_release_file().
235 static DEFINE_MUTEX(epmutex);
237 /* Used to check for epoll file descriptor inclusion loops */
238 static struct nested_calls poll_loop_ncalls;
240 /* Used for safe wake up implementation */
241 static struct nested_calls poll_safewake_ncalls;
243 /* Used to call file's f_op->poll() under the nested calls boundaries */
244 static struct nested_calls poll_readywalk_ncalls;
246 /* Slab cache used to allocate "struct epitem" */
247 static struct kmem_cache *epi_cache __read_mostly;
249 /* Slab cache used to allocate "struct eppoll_entry" */
250 static struct kmem_cache *pwq_cache __read_mostly;
252 #ifdef CONFIG_SYSCTL
254 #include <linux/sysctl.h>
256 static int zero;
258 ctl_table epoll_table[] = {
260 .procname = "max_user_watches",
261 .data = &max_user_watches,
262 .maxlen = sizeof(int),
263 .mode = 0644,
264 .proc_handler = proc_dointvec_minmax,
265 .extra1 = &zero,
269 #endif /* CONFIG_SYSCTL */
272 /* Setup the structure that is used as key for the RB tree */
273 static inline void ep_set_ffd(struct epoll_filefd *ffd,
274 struct file *file, int fd)
276 ffd->file = file;
277 ffd->fd = fd;
280 /* Compare RB tree keys */
281 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
282 struct epoll_filefd *p2)
284 return (p1->file > p2->file ? +1:
285 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
288 /* Tells us if the item is currently linked */
289 static inline int ep_is_linked(struct list_head *p)
291 return !list_empty(p);
294 /* Get the "struct epitem" from a wait queue pointer */
295 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
297 return container_of(p, struct eppoll_entry, wait)->base;
300 /* Get the "struct epitem" from an epoll queue wrapper */
301 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
303 return container_of(p, struct ep_pqueue, pt)->epi;
306 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
307 static inline int ep_op_has_event(int op)
309 return op != EPOLL_CTL_DEL;
312 /* Initialize the poll safe wake up structure */
313 static void ep_nested_calls_init(struct nested_calls *ncalls)
315 INIT_LIST_HEAD(&ncalls->tasks_call_list);
316 spin_lock_init(&ncalls->lock);
320 * ep_call_nested - Perform a bound (possibly) nested call, by checking
321 * that the recursion limit is not exceeded, and that
322 * the same nested call (by the meaning of same cookie) is
323 * no re-entered.
325 * @ncalls: Pointer to the nested_calls structure to be used for this call.
326 * @max_nests: Maximum number of allowed nesting calls.
327 * @nproc: Nested call core function pointer.
328 * @priv: Opaque data to be passed to the @nproc callback.
329 * @cookie: Cookie to be used to identify this nested call.
330 * @ctx: This instance context.
332 * Returns: Returns the code returned by the @nproc callback, or -1 if
333 * the maximum recursion limit has been exceeded.
335 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
336 int (*nproc)(void *, void *, int), void *priv,
337 void *cookie, void *ctx)
339 int error, call_nests = 0;
340 unsigned long flags;
341 struct list_head *lsthead = &ncalls->tasks_call_list;
342 struct nested_call_node *tncur;
343 struct nested_call_node tnode;
345 spin_lock_irqsave(&ncalls->lock, flags);
348 * Try to see if the current task is already inside this wakeup call.
349 * We use a list here, since the population inside this set is always
350 * very much limited.
352 list_for_each_entry(tncur, lsthead, llink) {
353 if (tncur->ctx == ctx &&
354 (tncur->cookie == cookie || ++call_nests > max_nests)) {
356 * Ops ... loop detected or maximum nest level reached.
357 * We abort this wake by breaking the cycle itself.
359 error = -1;
360 goto out_unlock;
364 /* Add the current task and cookie to the list */
365 tnode.ctx = ctx;
366 tnode.cookie = cookie;
367 list_add(&tnode.llink, lsthead);
369 spin_unlock_irqrestore(&ncalls->lock, flags);
371 /* Call the nested function */
372 error = (*nproc)(priv, cookie, call_nests);
374 /* Remove the current task from the list */
375 spin_lock_irqsave(&ncalls->lock, flags);
376 list_del(&tnode.llink);
377 out_unlock:
378 spin_unlock_irqrestore(&ncalls->lock, flags);
380 return error;
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
385 unsigned long events, int subclass)
387 unsigned long flags;
389 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
390 wake_up_locked_poll(wqueue, events);
391 spin_unlock_irqrestore(&wqueue->lock, flags);
393 #else
394 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
395 unsigned long events, int subclass)
397 wake_up_poll(wqueue, events);
399 #endif
401 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
403 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
404 1 + call_nests);
405 return 0;
409 * Perform a safe wake up of the poll wait list. The problem is that
410 * with the new callback'd wake up system, it is possible that the
411 * poll callback is reentered from inside the call to wake_up() done
412 * on the poll wait queue head. The rule is that we cannot reenter the
413 * wake up code from the same task more than EP_MAX_NESTS times,
414 * and we cannot reenter the same wait queue head at all. This will
415 * enable to have a hierarchy of epoll file descriptor of no more than
416 * EP_MAX_NESTS deep.
418 static void ep_poll_safewake(wait_queue_head_t *wq)
420 int this_cpu = get_cpu();
422 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
423 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
425 put_cpu();
429 * This function unregisters poll callbacks from the associated file
430 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
431 * ep_free).
433 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
435 struct list_head *lsthead = &epi->pwqlist;
436 struct eppoll_entry *pwq;
438 while (!list_empty(lsthead)) {
439 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
441 list_del(&pwq->llink);
442 remove_wait_queue(pwq->whead, &pwq->wait);
443 kmem_cache_free(pwq_cache, pwq);
448 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
449 * the scan code, to call f_op->poll(). Also allows for
450 * O(NumReady) performance.
452 * @ep: Pointer to the epoll private data structure.
453 * @sproc: Pointer to the scan callback.
454 * @priv: Private opaque data passed to the @sproc callback.
456 * Returns: The same integer error code returned by the @sproc callback.
458 static int ep_scan_ready_list(struct eventpoll *ep,
459 int (*sproc)(struct eventpoll *,
460 struct list_head *, void *),
461 void *priv)
463 int error, pwake = 0;
464 unsigned long flags;
465 struct epitem *epi, *nepi;
466 LIST_HEAD(txlist);
469 * We need to lock this because we could be hit by
470 * eventpoll_release_file() and epoll_ctl().
472 mutex_lock(&ep->mtx);
475 * Steal the ready list, and re-init the original one to the
476 * empty list. Also, set ep->ovflist to NULL so that events
477 * happening while looping w/out locks, are not lost. We cannot
478 * have the poll callback to queue directly on ep->rdllist,
479 * because we want the "sproc" callback to be able to do it
480 * in a lockless way.
482 spin_lock_irqsave(&ep->lock, flags);
483 list_splice_init(&ep->rdllist, &txlist);
484 ep->ovflist = NULL;
485 spin_unlock_irqrestore(&ep->lock, flags);
488 * Now call the callback function.
490 error = (*sproc)(ep, &txlist, priv);
492 spin_lock_irqsave(&ep->lock, flags);
494 * During the time we spent inside the "sproc" callback, some
495 * other events might have been queued by the poll callback.
496 * We re-insert them inside the main ready-list here.
498 for (nepi = ep->ovflist; (epi = nepi) != NULL;
499 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
501 * We need to check if the item is already in the list.
502 * During the "sproc" callback execution time, items are
503 * queued into ->ovflist but the "txlist" might already
504 * contain them, and the list_splice() below takes care of them.
506 if (!ep_is_linked(&epi->rdllink))
507 list_add_tail(&epi->rdllink, &ep->rdllist);
510 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
511 * releasing the lock, events will be queued in the normal way inside
512 * ep->rdllist.
514 ep->ovflist = EP_UNACTIVE_PTR;
517 * Quickly re-inject items left on "txlist".
519 list_splice(&txlist, &ep->rdllist);
521 if (!list_empty(&ep->rdllist)) {
523 * Wake up (if active) both the eventpoll wait list and
524 * the ->poll() wait list (delayed after we release the lock).
526 if (waitqueue_active(&ep->wq))
527 wake_up_locked(&ep->wq);
528 if (waitqueue_active(&ep->poll_wait))
529 pwake++;
531 spin_unlock_irqrestore(&ep->lock, flags);
533 mutex_unlock(&ep->mtx);
535 /* We have to call this outside the lock */
536 if (pwake)
537 ep_poll_safewake(&ep->poll_wait);
539 return error;
543 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
544 * all the associated resources. Must be called with "mtx" held.
546 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
548 unsigned long flags;
549 struct file *file = epi->ffd.file;
552 * Removes poll wait queue hooks. We _have_ to do this without holding
553 * the "ep->lock" otherwise a deadlock might occur. This because of the
554 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
555 * queue head lock when unregistering the wait queue. The wakeup callback
556 * will run by holding the wait queue head lock and will call our callback
557 * that will try to get "ep->lock".
559 ep_unregister_pollwait(ep, epi);
561 /* Remove the current item from the list of epoll hooks */
562 spin_lock(&file->f_lock);
563 if (ep_is_linked(&epi->fllink))
564 list_del_init(&epi->fllink);
565 spin_unlock(&file->f_lock);
567 rb_erase(&epi->rbn, &ep->rbr);
569 spin_lock_irqsave(&ep->lock, flags);
570 if (ep_is_linked(&epi->rdllink))
571 list_del_init(&epi->rdllink);
572 spin_unlock_irqrestore(&ep->lock, flags);
574 /* At this point it is safe to free the eventpoll item */
575 kmem_cache_free(epi_cache, epi);
577 atomic_dec(&ep->user->epoll_watches);
579 return 0;
582 static void ep_free(struct eventpoll *ep)
584 struct rb_node *rbp;
585 struct epitem *epi;
587 /* We need to release all tasks waiting for these file */
588 if (waitqueue_active(&ep->poll_wait))
589 ep_poll_safewake(&ep->poll_wait);
592 * We need to lock this because we could be hit by
593 * eventpoll_release_file() while we're freeing the "struct eventpoll".
594 * We do not need to hold "ep->mtx" here because the epoll file
595 * is on the way to be removed and no one has references to it
596 * anymore. The only hit might come from eventpoll_release_file() but
597 * holding "epmutex" is sufficent here.
599 mutex_lock(&epmutex);
602 * Walks through the whole tree by unregistering poll callbacks.
604 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
605 epi = rb_entry(rbp, struct epitem, rbn);
607 ep_unregister_pollwait(ep, epi);
611 * Walks through the whole tree by freeing each "struct epitem". At this
612 * point we are sure no poll callbacks will be lingering around, and also by
613 * holding "epmutex" we can be sure that no file cleanup code will hit
614 * us during this operation. So we can avoid the lock on "ep->lock".
616 while ((rbp = rb_first(&ep->rbr)) != NULL) {
617 epi = rb_entry(rbp, struct epitem, rbn);
618 ep_remove(ep, epi);
621 mutex_unlock(&epmutex);
622 mutex_destroy(&ep->mtx);
623 free_uid(ep->user);
624 kfree(ep);
627 static int ep_eventpoll_release(struct inode *inode, struct file *file)
629 struct eventpoll *ep = file->private_data;
631 if (ep)
632 ep_free(ep);
634 return 0;
637 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
638 void *priv)
640 struct epitem *epi, *tmp;
642 list_for_each_entry_safe(epi, tmp, head, rdllink) {
643 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
644 epi->event.events)
645 return POLLIN | POLLRDNORM;
646 else {
648 * Item has been dropped into the ready list by the poll
649 * callback, but it's not actually ready, as far as
650 * caller requested events goes. We can remove it here.
652 list_del_init(&epi->rdllink);
656 return 0;
659 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
661 return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
664 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
666 int pollflags;
667 struct eventpoll *ep = file->private_data;
669 /* Insert inside our poll wait queue */
670 poll_wait(file, &ep->poll_wait, wait);
673 * Proceed to find out if wanted events are really available inside
674 * the ready list. This need to be done under ep_call_nested()
675 * supervision, since the call to f_op->poll() done on listed files
676 * could re-enter here.
678 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
679 ep_poll_readyevents_proc, ep, ep, current);
681 return pollflags != -1 ? pollflags : 0;
684 /* File callbacks that implement the eventpoll file behaviour */
685 static const struct file_operations eventpoll_fops = {
686 .release = ep_eventpoll_release,
687 .poll = ep_eventpoll_poll
690 /* Fast test to see if the file is an evenpoll file */
691 static inline int is_file_epoll(struct file *f)
693 return f->f_op == &eventpoll_fops;
697 * This is called from eventpoll_release() to unlink files from the eventpoll
698 * interface. We need to have this facility to cleanup correctly files that are
699 * closed without being removed from the eventpoll interface.
701 void eventpoll_release_file(struct file *file)
703 struct list_head *lsthead = &file->f_ep_links;
704 struct eventpoll *ep;
705 struct epitem *epi;
708 * We don't want to get "file->f_lock" because it is not
709 * necessary. It is not necessary because we're in the "struct file"
710 * cleanup path, and this means that noone is using this file anymore.
711 * So, for example, epoll_ctl() cannot hit here since if we reach this
712 * point, the file counter already went to zero and fget() would fail.
713 * The only hit might come from ep_free() but by holding the mutex
714 * will correctly serialize the operation. We do need to acquire
715 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
716 * from anywhere but ep_free().
718 * Besides, ep_remove() acquires the lock, so we can't hold it here.
720 mutex_lock(&epmutex);
722 while (!list_empty(lsthead)) {
723 epi = list_first_entry(lsthead, struct epitem, fllink);
725 ep = epi->ep;
726 list_del_init(&epi->fllink);
727 mutex_lock(&ep->mtx);
728 ep_remove(ep, epi);
729 mutex_unlock(&ep->mtx);
732 mutex_unlock(&epmutex);
735 static int ep_alloc(struct eventpoll **pep)
737 int error;
738 struct user_struct *user;
739 struct eventpoll *ep;
741 user = get_current_user();
742 error = -ENOMEM;
743 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
744 if (unlikely(!ep))
745 goto free_uid;
747 spin_lock_init(&ep->lock);
748 mutex_init(&ep->mtx);
749 init_waitqueue_head(&ep->wq);
750 init_waitqueue_head(&ep->poll_wait);
751 INIT_LIST_HEAD(&ep->rdllist);
752 ep->rbr = RB_ROOT;
753 ep->ovflist = EP_UNACTIVE_PTR;
754 ep->user = user;
756 *pep = ep;
758 return 0;
760 free_uid:
761 free_uid(user);
762 return error;
766 * Search the file inside the eventpoll tree. The RB tree operations
767 * are protected by the "mtx" mutex, and ep_find() must be called with
768 * "mtx" held.
770 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
772 int kcmp;
773 struct rb_node *rbp;
774 struct epitem *epi, *epir = NULL;
775 struct epoll_filefd ffd;
777 ep_set_ffd(&ffd, file, fd);
778 for (rbp = ep->rbr.rb_node; rbp; ) {
779 epi = rb_entry(rbp, struct epitem, rbn);
780 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
781 if (kcmp > 0)
782 rbp = rbp->rb_right;
783 else if (kcmp < 0)
784 rbp = rbp->rb_left;
785 else {
786 epir = epi;
787 break;
791 return epir;
795 * This is the callback that is passed to the wait queue wakeup
796 * machanism. It is called by the stored file descriptors when they
797 * have events to report.
799 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
801 int pwake = 0;
802 unsigned long flags;
803 struct epitem *epi = ep_item_from_wait(wait);
804 struct eventpoll *ep = epi->ep;
806 spin_lock_irqsave(&ep->lock, flags);
809 * If the event mask does not contain any poll(2) event, we consider the
810 * descriptor to be disabled. This condition is likely the effect of the
811 * EPOLLONESHOT bit that disables the descriptor when an event is received,
812 * until the next EPOLL_CTL_MOD will be issued.
814 if (!(epi->event.events & ~EP_PRIVATE_BITS))
815 goto out_unlock;
818 * Check the events coming with the callback. At this stage, not
819 * every device reports the events in the "key" parameter of the
820 * callback. We need to be able to handle both cases here, hence the
821 * test for "key" != NULL before the event match test.
823 if (key && !((unsigned long) key & epi->event.events))
824 goto out_unlock;
827 * If we are trasfering events to userspace, we can hold no locks
828 * (because we're accessing user memory, and because of linux f_op->poll()
829 * semantics). All the events that happens during that period of time are
830 * chained in ep->ovflist and requeued later on.
832 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
833 if (epi->next == EP_UNACTIVE_PTR) {
834 epi->next = ep->ovflist;
835 ep->ovflist = epi;
837 goto out_unlock;
840 /* If this file is already in the ready list we exit soon */
841 if (!ep_is_linked(&epi->rdllink))
842 list_add_tail(&epi->rdllink, &ep->rdllist);
845 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
846 * wait list.
848 if (waitqueue_active(&ep->wq))
849 wake_up_locked(&ep->wq);
850 if (waitqueue_active(&ep->poll_wait))
851 pwake++;
853 out_unlock:
854 spin_unlock_irqrestore(&ep->lock, flags);
856 /* We have to call this outside the lock */
857 if (pwake)
858 ep_poll_safewake(&ep->poll_wait);
860 return 1;
864 * This is the callback that is used to add our wait queue to the
865 * target file wakeup lists.
867 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
868 poll_table *pt)
870 struct epitem *epi = ep_item_from_epqueue(pt);
871 struct eppoll_entry *pwq;
873 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
874 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
875 pwq->whead = whead;
876 pwq->base = epi;
877 add_wait_queue(whead, &pwq->wait);
878 list_add_tail(&pwq->llink, &epi->pwqlist);
879 epi->nwait++;
880 } else {
881 /* We have to signal that an error occurred */
882 epi->nwait = -1;
886 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
888 int kcmp;
889 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
890 struct epitem *epic;
892 while (*p) {
893 parent = *p;
894 epic = rb_entry(parent, struct epitem, rbn);
895 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
896 if (kcmp > 0)
897 p = &parent->rb_right;
898 else
899 p = &parent->rb_left;
901 rb_link_node(&epi->rbn, parent, p);
902 rb_insert_color(&epi->rbn, &ep->rbr);
906 * Must be called with "mtx" held.
908 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
909 struct file *tfile, int fd)
911 int error, revents, pwake = 0;
912 unsigned long flags;
913 struct epitem *epi;
914 struct ep_pqueue epq;
916 if (unlikely(atomic_read(&ep->user->epoll_watches) >=
917 max_user_watches))
918 return -ENOSPC;
919 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
920 return -ENOMEM;
922 /* Item initialization follow here ... */
923 INIT_LIST_HEAD(&epi->rdllink);
924 INIT_LIST_HEAD(&epi->fllink);
925 INIT_LIST_HEAD(&epi->pwqlist);
926 epi->ep = ep;
927 ep_set_ffd(&epi->ffd, tfile, fd);
928 epi->event = *event;
929 epi->nwait = 0;
930 epi->next = EP_UNACTIVE_PTR;
932 /* Initialize the poll table using the queue callback */
933 epq.epi = epi;
934 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
937 * Attach the item to the poll hooks and get current event bits.
938 * We can safely use the file* here because its usage count has
939 * been increased by the caller of this function. Note that after
940 * this operation completes, the poll callback can start hitting
941 * the new item.
943 revents = tfile->f_op->poll(tfile, &epq.pt);
946 * We have to check if something went wrong during the poll wait queue
947 * install process. Namely an allocation for a wait queue failed due
948 * high memory pressure.
950 error = -ENOMEM;
951 if (epi->nwait < 0)
952 goto error_unregister;
954 /* Add the current item to the list of active epoll hook for this file */
955 spin_lock(&tfile->f_lock);
956 list_add_tail(&epi->fllink, &tfile->f_ep_links);
957 spin_unlock(&tfile->f_lock);
960 * Add the current item to the RB tree. All RB tree operations are
961 * protected by "mtx", and ep_insert() is called with "mtx" held.
963 ep_rbtree_insert(ep, epi);
965 /* We have to drop the new item inside our item list to keep track of it */
966 spin_lock_irqsave(&ep->lock, flags);
968 /* If the file is already "ready" we drop it inside the ready list */
969 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
970 list_add_tail(&epi->rdllink, &ep->rdllist);
972 /* Notify waiting tasks that events are available */
973 if (waitqueue_active(&ep->wq))
974 wake_up_locked(&ep->wq);
975 if (waitqueue_active(&ep->poll_wait))
976 pwake++;
979 spin_unlock_irqrestore(&ep->lock, flags);
981 atomic_inc(&ep->user->epoll_watches);
983 /* We have to call this outside the lock */
984 if (pwake)
985 ep_poll_safewake(&ep->poll_wait);
987 return 0;
989 error_unregister:
990 ep_unregister_pollwait(ep, epi);
993 * We need to do this because an event could have been arrived on some
994 * allocated wait queue. Note that we don't care about the ep->ovflist
995 * list, since that is used/cleaned only inside a section bound by "mtx".
996 * And ep_insert() is called with "mtx" held.
998 spin_lock_irqsave(&ep->lock, flags);
999 if (ep_is_linked(&epi->rdllink))
1000 list_del_init(&epi->rdllink);
1001 spin_unlock_irqrestore(&ep->lock, flags);
1003 kmem_cache_free(epi_cache, epi);
1005 return error;
1009 * Modify the interest event mask by dropping an event if the new mask
1010 * has a match in the current file status. Must be called with "mtx" held.
1012 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1014 int pwake = 0;
1015 unsigned int revents;
1018 * Set the new event interest mask before calling f_op->poll();
1019 * otherwise we might miss an event that happens between the
1020 * f_op->poll() call and the new event set registering.
1022 epi->event.events = event->events;
1023 epi->event.data = event->data; /* protected by mtx */
1026 * Get current event bits. We can safely use the file* here because
1027 * its usage count has been increased by the caller of this function.
1029 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1032 * If the item is "hot" and it is not registered inside the ready
1033 * list, push it inside.
1035 if (revents & event->events) {
1036 spin_lock_irq(&ep->lock);
1037 if (!ep_is_linked(&epi->rdllink)) {
1038 list_add_tail(&epi->rdllink, &ep->rdllist);
1040 /* Notify waiting tasks that events are available */
1041 if (waitqueue_active(&ep->wq))
1042 wake_up_locked(&ep->wq);
1043 if (waitqueue_active(&ep->poll_wait))
1044 pwake++;
1046 spin_unlock_irq(&ep->lock);
1049 /* We have to call this outside the lock */
1050 if (pwake)
1051 ep_poll_safewake(&ep->poll_wait);
1053 return 0;
1056 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1057 void *priv)
1059 struct ep_send_events_data *esed = priv;
1060 int eventcnt;
1061 unsigned int revents;
1062 struct epitem *epi;
1063 struct epoll_event __user *uevent;
1066 * We can loop without lock because we are passed a task private list.
1067 * Items cannot vanish during the loop because ep_scan_ready_list() is
1068 * holding "mtx" during this call.
1070 for (eventcnt = 0, uevent = esed->events;
1071 !list_empty(head) && eventcnt < esed->maxevents;) {
1072 epi = list_first_entry(head, struct epitem, rdllink);
1074 list_del_init(&epi->rdllink);
1076 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1077 epi->event.events;
1080 * If the event mask intersect the caller-requested one,
1081 * deliver the event to userspace. Again, ep_scan_ready_list()
1082 * is holding "mtx", so no operations coming from userspace
1083 * can change the item.
1085 if (revents) {
1086 if (__put_user(revents, &uevent->events) ||
1087 __put_user(epi->event.data, &uevent->data)) {
1088 list_add(&epi->rdllink, head);
1089 return eventcnt ? eventcnt : -EFAULT;
1091 eventcnt++;
1092 uevent++;
1093 if (epi->event.events & EPOLLONESHOT)
1094 epi->event.events &= EP_PRIVATE_BITS;
1095 else if (!(epi->event.events & EPOLLET)) {
1097 * If this file has been added with Level
1098 * Trigger mode, we need to insert back inside
1099 * the ready list, so that the next call to
1100 * epoll_wait() will check again the events
1101 * availability. At this point, noone can insert
1102 * into ep->rdllist besides us. The epoll_ctl()
1103 * callers are locked out by
1104 * ep_scan_ready_list() holding "mtx" and the
1105 * poll callback will queue them in ep->ovflist.
1107 list_add_tail(&epi->rdllink, &ep->rdllist);
1112 return eventcnt;
1115 static int ep_send_events(struct eventpoll *ep,
1116 struct epoll_event __user *events, int maxevents)
1118 struct ep_send_events_data esed;
1120 esed.maxevents = maxevents;
1121 esed.events = events;
1123 return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1126 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1127 int maxevents, long timeout)
1129 int res, eavail;
1130 unsigned long flags;
1131 long jtimeout;
1132 wait_queue_t wait;
1135 * Calculate the timeout by checking for the "infinite" value (-1)
1136 * and the overflow condition. The passed timeout is in milliseconds,
1137 * that why (t * HZ) / 1000.
1139 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1140 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1142 retry:
1143 spin_lock_irqsave(&ep->lock, flags);
1145 res = 0;
1146 if (list_empty(&ep->rdllist)) {
1148 * We don't have any available event to return to the caller.
1149 * We need to sleep here, and we will be wake up by
1150 * ep_poll_callback() when events will become available.
1152 init_waitqueue_entry(&wait, current);
1153 wait.flags |= WQ_FLAG_EXCLUSIVE;
1154 __add_wait_queue(&ep->wq, &wait);
1156 for (;;) {
1158 * We don't want to sleep if the ep_poll_callback() sends us
1159 * a wakeup in between. That's why we set the task state
1160 * to TASK_INTERRUPTIBLE before doing the checks.
1162 set_current_state(TASK_INTERRUPTIBLE);
1163 if (!list_empty(&ep->rdllist) || !jtimeout)
1164 break;
1165 if (signal_pending(current)) {
1166 res = -EINTR;
1167 break;
1170 spin_unlock_irqrestore(&ep->lock, flags);
1171 jtimeout = schedule_timeout(jtimeout);
1172 spin_lock_irqsave(&ep->lock, flags);
1174 __remove_wait_queue(&ep->wq, &wait);
1176 set_current_state(TASK_RUNNING);
1178 /* Is it worth to try to dig for events ? */
1179 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1181 spin_unlock_irqrestore(&ep->lock, flags);
1184 * Try to transfer events to user space. In case we get 0 events and
1185 * there's still timeout left over, we go trying again in search of
1186 * more luck.
1188 if (!res && eavail &&
1189 !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1190 goto retry;
1192 return res;
1196 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1197 * API, to verify that adding an epoll file inside another
1198 * epoll structure, does not violate the constraints, in
1199 * terms of closed loops, or too deep chains (which can
1200 * result in excessive stack usage).
1202 * @priv: Pointer to the epoll file to be currently checked.
1203 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1204 * data structure pointer.
1205 * @call_nests: Current dept of the @ep_call_nested() call stack.
1207 * Returns: Returns zero if adding the epoll @file inside current epoll
1208 * structure @ep does not violate the constraints, or -1 otherwise.
1210 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1212 int error = 0;
1213 struct file *file = priv;
1214 struct eventpoll *ep = file->private_data;
1215 struct rb_node *rbp;
1216 struct epitem *epi;
1218 mutex_lock(&ep->mtx);
1219 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1220 epi = rb_entry(rbp, struct epitem, rbn);
1221 if (unlikely(is_file_epoll(epi->ffd.file))) {
1222 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1223 ep_loop_check_proc, epi->ffd.file,
1224 epi->ffd.file->private_data, current);
1225 if (error != 0)
1226 break;
1229 mutex_unlock(&ep->mtx);
1231 return error;
1235 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1236 * another epoll file (represented by @ep) does not create
1237 * closed loops or too deep chains.
1239 * @ep: Pointer to the epoll private data structure.
1240 * @file: Pointer to the epoll file to be checked.
1242 * Returns: Returns zero if adding the epoll @file inside current epoll
1243 * structure @ep does not violate the constraints, or -1 otherwise.
1245 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1247 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1248 ep_loop_check_proc, file, ep, current);
1252 * Open an eventpoll file descriptor.
1254 SYSCALL_DEFINE1(epoll_create1, int, flags)
1256 int error;
1257 struct eventpoll *ep = NULL;
1259 /* Check the EPOLL_* constant for consistency. */
1260 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1262 if (flags & ~EPOLL_CLOEXEC)
1263 return -EINVAL;
1265 * Create the internal data structure ("struct eventpoll").
1267 error = ep_alloc(&ep);
1268 if (error < 0)
1269 return error;
1271 * Creates all the items needed to setup an eventpoll file. That is,
1272 * a file structure and a free file descriptor.
1274 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1275 O_RDWR | (flags & O_CLOEXEC));
1276 if (error < 0)
1277 ep_free(ep);
1279 return error;
1282 SYSCALL_DEFINE1(epoll_create, int, size)
1284 if (size <= 0)
1285 return -EINVAL;
1287 return sys_epoll_create1(0);
1291 * The following function implements the controller interface for
1292 * the eventpoll file that enables the insertion/removal/change of
1293 * file descriptors inside the interest set.
1295 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1296 struct epoll_event __user *, event)
1298 int error;
1299 int did_lock_epmutex = 0;
1300 struct file *file, *tfile;
1301 struct eventpoll *ep;
1302 struct epitem *epi;
1303 struct epoll_event epds;
1305 error = -EFAULT;
1306 if (ep_op_has_event(op) &&
1307 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1308 goto error_return;
1310 /* Get the "struct file *" for the eventpoll file */
1311 error = -EBADF;
1312 file = fget(epfd);
1313 if (!file)
1314 goto error_return;
1316 /* Get the "struct file *" for the target file */
1317 tfile = fget(fd);
1318 if (!tfile)
1319 goto error_fput;
1321 /* The target file descriptor must support poll */
1322 error = -EPERM;
1323 if (!tfile->f_op || !tfile->f_op->poll)
1324 goto error_tgt_fput;
1327 * We have to check that the file structure underneath the file descriptor
1328 * the user passed to us _is_ an eventpoll file. And also we do not permit
1329 * adding an epoll file descriptor inside itself.
1331 error = -EINVAL;
1332 if (file == tfile || !is_file_epoll(file))
1333 goto error_tgt_fput;
1336 * At this point it is safe to assume that the "private_data" contains
1337 * our own data structure.
1339 ep = file->private_data;
1342 * When we insert an epoll file descriptor, inside another epoll file
1343 * descriptor, there is the change of creating closed loops, which are
1344 * better be handled here, than in more critical paths.
1346 * We hold epmutex across the loop check and the insert in this case, in
1347 * order to prevent two separate inserts from racing and each doing the
1348 * insert "at the same time" such that ep_loop_check passes on both
1349 * before either one does the insert, thereby creating a cycle.
1351 if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1352 mutex_lock(&epmutex);
1353 did_lock_epmutex = 1;
1354 error = -ELOOP;
1355 if (ep_loop_check(ep, tfile) != 0)
1356 goto error_tgt_fput;
1360 mutex_lock(&ep->mtx);
1363 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1364 * above, we can be sure to be able to use the item looked up by
1365 * ep_find() till we release the mutex.
1367 epi = ep_find(ep, tfile, fd);
1369 error = -EINVAL;
1370 switch (op) {
1371 case EPOLL_CTL_ADD:
1372 if (!epi) {
1373 epds.events |= POLLERR | POLLHUP;
1374 error = ep_insert(ep, &epds, tfile, fd);
1375 } else
1376 error = -EEXIST;
1377 break;
1378 case EPOLL_CTL_DEL:
1379 if (epi)
1380 error = ep_remove(ep, epi);
1381 else
1382 error = -ENOENT;
1383 break;
1384 case EPOLL_CTL_MOD:
1385 if (epi) {
1386 epds.events |= POLLERR | POLLHUP;
1387 error = ep_modify(ep, epi, &epds);
1388 } else
1389 error = -ENOENT;
1390 break;
1392 mutex_unlock(&ep->mtx);
1394 error_tgt_fput:
1395 if (unlikely(did_lock_epmutex))
1396 mutex_unlock(&epmutex);
1398 fput(tfile);
1399 error_fput:
1400 fput(file);
1401 error_return:
1403 return error;
1407 * Implement the event wait interface for the eventpoll file. It is the kernel
1408 * part of the user space epoll_wait(2).
1410 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1411 int, maxevents, int, timeout)
1413 int error;
1414 struct file *file;
1415 struct eventpoll *ep;
1417 /* The maximum number of event must be greater than zero */
1418 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1419 return -EINVAL;
1421 /* Verify that the area passed by the user is writeable */
1422 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1423 error = -EFAULT;
1424 goto error_return;
1427 /* Get the "struct file *" for the eventpoll file */
1428 error = -EBADF;
1429 file = fget(epfd);
1430 if (!file)
1431 goto error_return;
1434 * We have to check that the file structure underneath the fd
1435 * the user passed to us _is_ an eventpoll file.
1437 error = -EINVAL;
1438 if (!is_file_epoll(file))
1439 goto error_fput;
1442 * At this point it is safe to assume that the "private_data" contains
1443 * our own data structure.
1445 ep = file->private_data;
1447 /* Time to fish for events ... */
1448 error = ep_poll(ep, events, maxevents, timeout);
1450 error_fput:
1451 fput(file);
1452 error_return:
1454 return error;
1457 #ifdef HAVE_SET_RESTORE_SIGMASK
1460 * Implement the event wait interface for the eventpoll file. It is the kernel
1461 * part of the user space epoll_pwait(2).
1463 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1464 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1465 size_t, sigsetsize)
1467 int error;
1468 sigset_t ksigmask, sigsaved;
1471 * If the caller wants a certain signal mask to be set during the wait,
1472 * we apply it here.
1474 if (sigmask) {
1475 if (sigsetsize != sizeof(sigset_t))
1476 return -EINVAL;
1477 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1478 return -EFAULT;
1479 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1480 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1483 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1486 * If we changed the signal mask, we need to restore the original one.
1487 * In case we've got a signal while waiting, we do not restore the
1488 * signal mask yet, and we allow do_signal() to deliver the signal on
1489 * the way back to userspace, before the signal mask is restored.
1491 if (sigmask) {
1492 if (error == -EINTR) {
1493 memcpy(&current->saved_sigmask, &sigsaved,
1494 sizeof(sigsaved));
1495 set_restore_sigmask();
1496 } else
1497 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1500 return error;
1503 #endif /* HAVE_SET_RESTORE_SIGMASK */
1505 static int __init eventpoll_init(void)
1507 struct sysinfo si;
1509 si_meminfo(&si);
1511 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1513 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1514 EP_ITEM_COST;
1517 * Initialize the structure used to perform epoll file descriptor
1518 * inclusion loops checks.
1520 ep_nested_calls_init(&poll_loop_ncalls);
1522 /* Initialize the structure used to perform safe poll wait head wake ups */
1523 ep_nested_calls_init(&poll_safewake_ncalls);
1525 /* Initialize the structure used to perform file's f_op->poll() calls */
1526 ep_nested_calls_init(&poll_readywalk_ncalls);
1528 /* Allocates slab cache used to allocate "struct epitem" items */
1529 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1530 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1532 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1533 pwq_cache = kmem_cache_create("eventpoll_pwq",
1534 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1536 return 0;
1538 fs_initcall(eventpoll_init);