Fix gcc 4.5.1 miscompiling drivers/char/i8k.c (again)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / bio.c
blob22f8df7ddfeec9629b7c4b5b6ec46074e9b6e63b
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <scsi/sg.h> /* for struct sg_iovec */
30 #include <trace/events/block.h>
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
36 #define BIO_INLINE_VECS 4
38 static mempool_t *bio_split_pool __read_mostly;
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 #undef BV
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
55 struct bio_set *fs_bio_set;
58 * Our slab pool management
60 struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
66 static DEFINE_MUTEX(bio_slab_lock);
67 static struct bio_slab *bio_slabs;
68 static unsigned int bio_slab_nr, bio_slab_max;
70 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
77 mutex_lock(&bio_slab_lock);
79 i = 0;
80 while (i < bio_slab_nr) {
81 bslab = &bio_slabs[i];
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
90 i++;
93 if (slab)
94 goto out_unlock;
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
104 if (entry == -1)
105 entry = bio_slab_nr++;
107 bslab = &bio_slabs[entry];
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
114 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118 out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
123 static void bio_put_slab(struct bio_set *bs)
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
128 mutex_lock(&bio_slab_lock);
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
140 WARN_ON(!bslab->slab_ref);
142 if (--bslab->slab_ref)
143 goto out;
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
148 out:
149 mutex_unlock(&bio_slab_lock);
152 unsigned int bvec_nr_vecs(unsigned short idx)
154 return bvec_slabs[idx].nr_vecs;
157 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
166 kmem_cache_free(bvs->slab, bv);
170 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
173 struct bio_vec *bvl;
176 * see comment near bvec_array define!
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
205 if (*idx == BIOVEC_MAX_IDX) {
206 fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
230 return bvl;
233 void bio_free(struct bio *bio, struct bio_set *bs)
235 void *p;
237 if (bio_has_allocated_vec(bio))
238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
240 if (bio_integrity(bio))
241 bio_integrity_free(bio, bs);
244 * If we have front padding, adjust the bio pointer before freeing
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
250 mempool_free(p, bs->bio_pool);
252 EXPORT_SYMBOL(bio_free);
254 void bio_init(struct bio *bio)
256 memset(bio, 0, sizeof(*bio));
257 bio->bi_flags = 1 << BIO_UPTODATE;
258 bio->bi_comp_cpu = -1;
259 atomic_set(&bio->bi_cnt, 1);
261 EXPORT_SYMBOL(bio_init);
264 * bio_alloc_bioset - allocate a bio for I/O
265 * @gfp_mask: the GFP_ mask given to the slab allocator
266 * @nr_iovecs: number of iovecs to pre-allocate
267 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
269 * Description:
270 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
271 * If %__GFP_WAIT is set then we will block on the internal pool waiting
272 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
273 * fall back to just using @kmalloc to allocate the required memory.
275 * Note that the caller must set ->bi_destructor on successful return
276 * of a bio, to do the appropriate freeing of the bio once the reference
277 * count drops to zero.
279 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
281 unsigned long idx = BIO_POOL_NONE;
282 struct bio_vec *bvl = NULL;
283 struct bio *bio;
284 void *p;
286 p = mempool_alloc(bs->bio_pool, gfp_mask);
287 if (unlikely(!p))
288 return NULL;
289 bio = p + bs->front_pad;
291 bio_init(bio);
293 if (unlikely(!nr_iovecs))
294 goto out_set;
296 if (nr_iovecs <= BIO_INLINE_VECS) {
297 bvl = bio->bi_inline_vecs;
298 nr_iovecs = BIO_INLINE_VECS;
299 } else {
300 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
301 if (unlikely(!bvl))
302 goto err_free;
304 nr_iovecs = bvec_nr_vecs(idx);
306 out_set:
307 bio->bi_flags |= idx << BIO_POOL_OFFSET;
308 bio->bi_max_vecs = nr_iovecs;
309 bio->bi_io_vec = bvl;
310 return bio;
312 err_free:
313 mempool_free(p, bs->bio_pool);
314 return NULL;
316 EXPORT_SYMBOL(bio_alloc_bioset);
318 static void bio_fs_destructor(struct bio *bio)
320 bio_free(bio, fs_bio_set);
324 * bio_alloc - allocate a new bio, memory pool backed
325 * @gfp_mask: allocation mask to use
326 * @nr_iovecs: number of iovecs
328 * bio_alloc will allocate a bio and associated bio_vec array that can hold
329 * at least @nr_iovecs entries. Allocations will be done from the
330 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
332 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
333 * a bio. This is due to the mempool guarantees. To make this work, callers
334 * must never allocate more than 1 bio at a time from this pool. Callers
335 * that need to allocate more than 1 bio must always submit the previously
336 * allocated bio for IO before attempting to allocate a new one. Failure to
337 * do so can cause livelocks under memory pressure.
339 * RETURNS:
340 * Pointer to new bio on success, NULL on failure.
342 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
344 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
346 if (bio)
347 bio->bi_destructor = bio_fs_destructor;
349 return bio;
351 EXPORT_SYMBOL(bio_alloc);
353 static void bio_kmalloc_destructor(struct bio *bio)
355 if (bio_integrity(bio))
356 bio_integrity_free(bio, fs_bio_set);
357 kfree(bio);
361 * bio_kmalloc - allocate a bio for I/O using kmalloc()
362 * @gfp_mask: the GFP_ mask given to the slab allocator
363 * @nr_iovecs: number of iovecs to pre-allocate
365 * Description:
366 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
367 * %__GFP_WAIT, the allocation is guaranteed to succeed.
370 struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
372 struct bio *bio;
374 if (nr_iovecs > UIO_MAXIOV)
375 return NULL;
377 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
378 gfp_mask);
379 if (unlikely(!bio))
380 return NULL;
382 bio_init(bio);
383 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
384 bio->bi_max_vecs = nr_iovecs;
385 bio->bi_io_vec = bio->bi_inline_vecs;
386 bio->bi_destructor = bio_kmalloc_destructor;
388 return bio;
390 EXPORT_SYMBOL(bio_kmalloc);
392 void zero_fill_bio(struct bio *bio)
394 unsigned long flags;
395 struct bio_vec *bv;
396 int i;
398 bio_for_each_segment(bv, bio, i) {
399 char *data = bvec_kmap_irq(bv, &flags);
400 memset(data, 0, bv->bv_len);
401 flush_dcache_page(bv->bv_page);
402 bvec_kunmap_irq(data, &flags);
405 EXPORT_SYMBOL(zero_fill_bio);
408 * bio_put - release a reference to a bio
409 * @bio: bio to release reference to
411 * Description:
412 * Put a reference to a &struct bio, either one you have gotten with
413 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
415 void bio_put(struct bio *bio)
417 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
420 * last put frees it
422 if (atomic_dec_and_test(&bio->bi_cnt)) {
423 bio->bi_next = NULL;
424 bio->bi_destructor(bio);
427 EXPORT_SYMBOL(bio_put);
429 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
431 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
432 blk_recount_segments(q, bio);
434 return bio->bi_phys_segments;
436 EXPORT_SYMBOL(bio_phys_segments);
439 * __bio_clone - clone a bio
440 * @bio: destination bio
441 * @bio_src: bio to clone
443 * Clone a &bio. Caller will own the returned bio, but not
444 * the actual data it points to. Reference count of returned
445 * bio will be one.
447 void __bio_clone(struct bio *bio, struct bio *bio_src)
449 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
450 bio_src->bi_max_vecs * sizeof(struct bio_vec));
453 * most users will be overriding ->bi_bdev with a new target,
454 * so we don't set nor calculate new physical/hw segment counts here
456 bio->bi_sector = bio_src->bi_sector;
457 bio->bi_bdev = bio_src->bi_bdev;
458 bio->bi_flags |= 1 << BIO_CLONED;
459 bio->bi_rw = bio_src->bi_rw;
460 bio->bi_vcnt = bio_src->bi_vcnt;
461 bio->bi_size = bio_src->bi_size;
462 bio->bi_idx = bio_src->bi_idx;
464 EXPORT_SYMBOL(__bio_clone);
467 * bio_clone - clone a bio
468 * @bio: bio to clone
469 * @gfp_mask: allocation priority
471 * Like __bio_clone, only also allocates the returned bio
473 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
475 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
477 if (!b)
478 return NULL;
480 b->bi_destructor = bio_fs_destructor;
481 __bio_clone(b, bio);
483 if (bio_integrity(bio)) {
484 int ret;
486 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
488 if (ret < 0) {
489 bio_put(b);
490 return NULL;
494 return b;
496 EXPORT_SYMBOL(bio_clone);
499 * bio_get_nr_vecs - return approx number of vecs
500 * @bdev: I/O target
502 * Return the approximate number of pages we can send to this target.
503 * There's no guarantee that you will be able to fit this number of pages
504 * into a bio, it does not account for dynamic restrictions that vary
505 * on offset.
507 int bio_get_nr_vecs(struct block_device *bdev)
509 struct request_queue *q = bdev_get_queue(bdev);
510 int nr_pages;
512 nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
513 if (nr_pages > queue_max_phys_segments(q))
514 nr_pages = queue_max_phys_segments(q);
515 if (nr_pages > queue_max_hw_segments(q))
516 nr_pages = queue_max_hw_segments(q);
518 return nr_pages;
520 EXPORT_SYMBOL(bio_get_nr_vecs);
522 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
523 *page, unsigned int len, unsigned int offset,
524 unsigned short max_sectors)
526 int retried_segments = 0;
527 struct bio_vec *bvec;
530 * cloned bio must not modify vec list
532 if (unlikely(bio_flagged(bio, BIO_CLONED)))
533 return 0;
535 if (((bio->bi_size + len) >> 9) > max_sectors)
536 return 0;
539 * For filesystems with a blocksize smaller than the pagesize
540 * we will often be called with the same page as last time and
541 * a consecutive offset. Optimize this special case.
543 if (bio->bi_vcnt > 0) {
544 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
546 if (page == prev->bv_page &&
547 offset == prev->bv_offset + prev->bv_len) {
548 unsigned int prev_bv_len = prev->bv_len;
549 prev->bv_len += len;
551 if (q->merge_bvec_fn) {
552 struct bvec_merge_data bvm = {
553 /* prev_bvec is already charged in
554 bi_size, discharge it in order to
555 simulate merging updated prev_bvec
556 as new bvec. */
557 .bi_bdev = bio->bi_bdev,
558 .bi_sector = bio->bi_sector,
559 .bi_size = bio->bi_size - prev_bv_len,
560 .bi_rw = bio->bi_rw,
563 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
564 prev->bv_len -= len;
565 return 0;
569 goto done;
573 if (bio->bi_vcnt >= bio->bi_max_vecs)
574 return 0;
577 * we might lose a segment or two here, but rather that than
578 * make this too complex.
581 while (bio->bi_phys_segments >= queue_max_phys_segments(q)
582 || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
584 if (retried_segments)
585 return 0;
587 retried_segments = 1;
588 blk_recount_segments(q, bio);
592 * setup the new entry, we might clear it again later if we
593 * cannot add the page
595 bvec = &bio->bi_io_vec[bio->bi_vcnt];
596 bvec->bv_page = page;
597 bvec->bv_len = len;
598 bvec->bv_offset = offset;
601 * if queue has other restrictions (eg varying max sector size
602 * depending on offset), it can specify a merge_bvec_fn in the
603 * queue to get further control
605 if (q->merge_bvec_fn) {
606 struct bvec_merge_data bvm = {
607 .bi_bdev = bio->bi_bdev,
608 .bi_sector = bio->bi_sector,
609 .bi_size = bio->bi_size,
610 .bi_rw = bio->bi_rw,
614 * merge_bvec_fn() returns number of bytes it can accept
615 * at this offset
617 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
618 bvec->bv_page = NULL;
619 bvec->bv_len = 0;
620 bvec->bv_offset = 0;
621 return 0;
625 /* If we may be able to merge these biovecs, force a recount */
626 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
627 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
629 bio->bi_vcnt++;
630 bio->bi_phys_segments++;
631 done:
632 bio->bi_size += len;
633 return len;
637 * bio_add_pc_page - attempt to add page to bio
638 * @q: the target queue
639 * @bio: destination bio
640 * @page: page to add
641 * @len: vec entry length
642 * @offset: vec entry offset
644 * Attempt to add a page to the bio_vec maplist. This can fail for a
645 * number of reasons, such as the bio being full or target block
646 * device limitations. The target block device must allow bio's
647 * smaller than PAGE_SIZE, so it is always possible to add a single
648 * page to an empty bio. This should only be used by REQ_PC bios.
650 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
651 unsigned int len, unsigned int offset)
653 return __bio_add_page(q, bio, page, len, offset,
654 queue_max_hw_sectors(q));
656 EXPORT_SYMBOL(bio_add_pc_page);
659 * bio_add_page - attempt to add page to bio
660 * @bio: destination bio
661 * @page: page to add
662 * @len: vec entry length
663 * @offset: vec entry offset
665 * Attempt to add a page to the bio_vec maplist. This can fail for a
666 * number of reasons, such as the bio being full or target block
667 * device limitations. The target block device must allow bio's
668 * smaller than PAGE_SIZE, so it is always possible to add a single
669 * page to an empty bio.
671 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
672 unsigned int offset)
674 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
675 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
677 EXPORT_SYMBOL(bio_add_page);
679 struct bio_map_data {
680 struct bio_vec *iovecs;
681 struct sg_iovec *sgvecs;
682 int nr_sgvecs;
683 int is_our_pages;
686 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
687 struct sg_iovec *iov, int iov_count,
688 int is_our_pages)
690 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
691 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
692 bmd->nr_sgvecs = iov_count;
693 bmd->is_our_pages = is_our_pages;
694 bio->bi_private = bmd;
697 static void bio_free_map_data(struct bio_map_data *bmd)
699 kfree(bmd->iovecs);
700 kfree(bmd->sgvecs);
701 kfree(bmd);
704 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
705 gfp_t gfp_mask)
707 struct bio_map_data *bmd;
709 if (iov_count > UIO_MAXIOV)
710 return NULL;
712 bmd = kmalloc(sizeof(*bmd), gfp_mask);
713 if (!bmd)
714 return NULL;
716 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
717 if (!bmd->iovecs) {
718 kfree(bmd);
719 return NULL;
722 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
723 if (bmd->sgvecs)
724 return bmd;
726 kfree(bmd->iovecs);
727 kfree(bmd);
728 return NULL;
731 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
732 struct sg_iovec *iov, int iov_count,
733 int to_user, int from_user, int do_free_page)
735 int ret = 0, i;
736 struct bio_vec *bvec;
737 int iov_idx = 0;
738 unsigned int iov_off = 0;
740 __bio_for_each_segment(bvec, bio, i, 0) {
741 char *bv_addr = page_address(bvec->bv_page);
742 unsigned int bv_len = iovecs[i].bv_len;
744 while (bv_len && iov_idx < iov_count) {
745 unsigned int bytes;
746 char __user *iov_addr;
748 bytes = min_t(unsigned int,
749 iov[iov_idx].iov_len - iov_off, bv_len);
750 iov_addr = iov[iov_idx].iov_base + iov_off;
752 if (!ret) {
753 if (to_user)
754 ret = copy_to_user(iov_addr, bv_addr,
755 bytes);
757 if (from_user)
758 ret = copy_from_user(bv_addr, iov_addr,
759 bytes);
761 if (ret)
762 ret = -EFAULT;
765 bv_len -= bytes;
766 bv_addr += bytes;
767 iov_addr += bytes;
768 iov_off += bytes;
770 if (iov[iov_idx].iov_len == iov_off) {
771 iov_idx++;
772 iov_off = 0;
776 if (do_free_page)
777 __free_page(bvec->bv_page);
780 return ret;
784 * bio_uncopy_user - finish previously mapped bio
785 * @bio: bio being terminated
787 * Free pages allocated from bio_copy_user() and write back data
788 * to user space in case of a read.
790 int bio_uncopy_user(struct bio *bio)
792 struct bio_map_data *bmd = bio->bi_private;
793 int ret = 0;
795 if (!bio_flagged(bio, BIO_NULL_MAPPED))
796 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
797 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
798 0, bmd->is_our_pages);
799 bio_free_map_data(bmd);
800 bio_put(bio);
801 return ret;
803 EXPORT_SYMBOL(bio_uncopy_user);
806 * bio_copy_user_iov - copy user data to bio
807 * @q: destination block queue
808 * @map_data: pointer to the rq_map_data holding pages (if necessary)
809 * @iov: the iovec.
810 * @iov_count: number of elements in the iovec
811 * @write_to_vm: bool indicating writing to pages or not
812 * @gfp_mask: memory allocation flags
814 * Prepares and returns a bio for indirect user io, bouncing data
815 * to/from kernel pages as necessary. Must be paired with
816 * call bio_uncopy_user() on io completion.
818 struct bio *bio_copy_user_iov(struct request_queue *q,
819 struct rq_map_data *map_data,
820 struct sg_iovec *iov, int iov_count,
821 int write_to_vm, gfp_t gfp_mask)
823 struct bio_map_data *bmd;
824 struct bio_vec *bvec;
825 struct page *page;
826 struct bio *bio;
827 int i, ret;
828 int nr_pages = 0;
829 unsigned int len = 0;
830 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
832 for (i = 0; i < iov_count; i++) {
833 unsigned long uaddr;
834 unsigned long end;
835 unsigned long start;
837 uaddr = (unsigned long)iov[i].iov_base;
838 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
839 start = uaddr >> PAGE_SHIFT;
842 * Overflow, abort
844 if (end < start)
845 return ERR_PTR(-EINVAL);
847 nr_pages += end - start;
848 len += iov[i].iov_len;
851 if (offset)
852 nr_pages++;
854 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
855 if (!bmd)
856 return ERR_PTR(-ENOMEM);
858 ret = -ENOMEM;
859 bio = bio_kmalloc(gfp_mask, nr_pages);
860 if (!bio)
861 goto out_bmd;
863 bio->bi_rw |= (!write_to_vm << BIO_RW);
865 ret = 0;
867 if (map_data) {
868 nr_pages = 1 << map_data->page_order;
869 i = map_data->offset / PAGE_SIZE;
871 while (len) {
872 unsigned int bytes = PAGE_SIZE;
874 bytes -= offset;
876 if (bytes > len)
877 bytes = len;
879 if (map_data) {
880 if (i == map_data->nr_entries * nr_pages) {
881 ret = -ENOMEM;
882 break;
885 page = map_data->pages[i / nr_pages];
886 page += (i % nr_pages);
888 i++;
889 } else {
890 page = alloc_page(q->bounce_gfp | gfp_mask);
891 if (!page) {
892 ret = -ENOMEM;
893 break;
897 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
898 break;
900 len -= bytes;
901 offset = 0;
904 if (ret)
905 goto cleanup;
908 * success
910 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
911 (map_data && map_data->from_user)) {
912 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
913 if (ret)
914 goto cleanup;
917 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
918 return bio;
919 cleanup:
920 if (!map_data)
921 bio_for_each_segment(bvec, bio, i)
922 __free_page(bvec->bv_page);
924 bio_put(bio);
925 out_bmd:
926 bio_free_map_data(bmd);
927 return ERR_PTR(ret);
931 * bio_copy_user - copy user data to bio
932 * @q: destination block queue
933 * @map_data: pointer to the rq_map_data holding pages (if necessary)
934 * @uaddr: start of user address
935 * @len: length in bytes
936 * @write_to_vm: bool indicating writing to pages or not
937 * @gfp_mask: memory allocation flags
939 * Prepares and returns a bio for indirect user io, bouncing data
940 * to/from kernel pages as necessary. Must be paired with
941 * call bio_uncopy_user() on io completion.
943 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
944 unsigned long uaddr, unsigned int len,
945 int write_to_vm, gfp_t gfp_mask)
947 struct sg_iovec iov;
949 iov.iov_base = (void __user *)uaddr;
950 iov.iov_len = len;
952 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
954 EXPORT_SYMBOL(bio_copy_user);
956 static struct bio *__bio_map_user_iov(struct request_queue *q,
957 struct block_device *bdev,
958 struct sg_iovec *iov, int iov_count,
959 int write_to_vm, gfp_t gfp_mask)
961 int i, j;
962 int nr_pages = 0;
963 struct page **pages;
964 struct bio *bio;
965 int cur_page = 0;
966 int ret, offset;
968 for (i = 0; i < iov_count; i++) {
969 unsigned long uaddr = (unsigned long)iov[i].iov_base;
970 unsigned long len = iov[i].iov_len;
971 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
972 unsigned long start = uaddr >> PAGE_SHIFT;
975 * Overflow, abort
977 if (end < start)
978 return ERR_PTR(-EINVAL);
980 nr_pages += end - start;
982 * buffer must be aligned to at least hardsector size for now
984 if (uaddr & queue_dma_alignment(q))
985 return ERR_PTR(-EINVAL);
988 if (!nr_pages)
989 return ERR_PTR(-EINVAL);
991 bio = bio_kmalloc(gfp_mask, nr_pages);
992 if (!bio)
993 return ERR_PTR(-ENOMEM);
995 ret = -ENOMEM;
996 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
997 if (!pages)
998 goto out;
1000 for (i = 0; i < iov_count; i++) {
1001 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1002 unsigned long len = iov[i].iov_len;
1003 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1004 unsigned long start = uaddr >> PAGE_SHIFT;
1005 const int local_nr_pages = end - start;
1006 const int page_limit = cur_page + local_nr_pages;
1008 ret = get_user_pages_fast(uaddr, local_nr_pages,
1009 write_to_vm, &pages[cur_page]);
1010 if (ret < local_nr_pages) {
1011 ret = -EFAULT;
1012 goto out_unmap;
1015 offset = uaddr & ~PAGE_MASK;
1016 for (j = cur_page; j < page_limit; j++) {
1017 unsigned int bytes = PAGE_SIZE - offset;
1019 if (len <= 0)
1020 break;
1022 if (bytes > len)
1023 bytes = len;
1026 * sorry...
1028 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1029 bytes)
1030 break;
1032 len -= bytes;
1033 offset = 0;
1036 cur_page = j;
1038 * release the pages we didn't map into the bio, if any
1040 while (j < page_limit)
1041 page_cache_release(pages[j++]);
1044 kfree(pages);
1047 * set data direction, and check if mapped pages need bouncing
1049 if (!write_to_vm)
1050 bio->bi_rw |= (1 << BIO_RW);
1052 bio->bi_bdev = bdev;
1053 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1054 return bio;
1056 out_unmap:
1057 for (i = 0; i < nr_pages; i++) {
1058 if(!pages[i])
1059 break;
1060 page_cache_release(pages[i]);
1062 out:
1063 kfree(pages);
1064 bio_put(bio);
1065 return ERR_PTR(ret);
1069 * bio_map_user - map user address into bio
1070 * @q: the struct request_queue for the bio
1071 * @bdev: destination block device
1072 * @uaddr: start of user address
1073 * @len: length in bytes
1074 * @write_to_vm: bool indicating writing to pages or not
1075 * @gfp_mask: memory allocation flags
1077 * Map the user space address into a bio suitable for io to a block
1078 * device. Returns an error pointer in case of error.
1080 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1081 unsigned long uaddr, unsigned int len, int write_to_vm,
1082 gfp_t gfp_mask)
1084 struct sg_iovec iov;
1086 iov.iov_base = (void __user *)uaddr;
1087 iov.iov_len = len;
1089 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1091 EXPORT_SYMBOL(bio_map_user);
1094 * bio_map_user_iov - map user sg_iovec table into bio
1095 * @q: the struct request_queue for the bio
1096 * @bdev: destination block device
1097 * @iov: the iovec.
1098 * @iov_count: number of elements in the iovec
1099 * @write_to_vm: bool indicating writing to pages or not
1100 * @gfp_mask: memory allocation flags
1102 * Map the user space address into a bio suitable for io to a block
1103 * device. Returns an error pointer in case of error.
1105 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1106 struct sg_iovec *iov, int iov_count,
1107 int write_to_vm, gfp_t gfp_mask)
1109 struct bio *bio;
1111 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1112 gfp_mask);
1113 if (IS_ERR(bio))
1114 return bio;
1117 * subtle -- if __bio_map_user() ended up bouncing a bio,
1118 * it would normally disappear when its bi_end_io is run.
1119 * however, we need it for the unmap, so grab an extra
1120 * reference to it
1122 bio_get(bio);
1124 return bio;
1127 static void __bio_unmap_user(struct bio *bio)
1129 struct bio_vec *bvec;
1130 int i;
1133 * make sure we dirty pages we wrote to
1135 __bio_for_each_segment(bvec, bio, i, 0) {
1136 if (bio_data_dir(bio) == READ)
1137 set_page_dirty_lock(bvec->bv_page);
1139 page_cache_release(bvec->bv_page);
1142 bio_put(bio);
1146 * bio_unmap_user - unmap a bio
1147 * @bio: the bio being unmapped
1149 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1150 * a process context.
1152 * bio_unmap_user() may sleep.
1154 void bio_unmap_user(struct bio *bio)
1156 __bio_unmap_user(bio);
1157 bio_put(bio);
1159 EXPORT_SYMBOL(bio_unmap_user);
1161 static void bio_map_kern_endio(struct bio *bio, int err)
1163 bio_put(bio);
1166 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1167 unsigned int len, gfp_t gfp_mask)
1169 unsigned long kaddr = (unsigned long)data;
1170 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1171 unsigned long start = kaddr >> PAGE_SHIFT;
1172 const int nr_pages = end - start;
1173 int offset, i;
1174 struct bio *bio;
1176 bio = bio_kmalloc(gfp_mask, nr_pages);
1177 if (!bio)
1178 return ERR_PTR(-ENOMEM);
1180 offset = offset_in_page(kaddr);
1181 for (i = 0; i < nr_pages; i++) {
1182 unsigned int bytes = PAGE_SIZE - offset;
1184 if (len <= 0)
1185 break;
1187 if (bytes > len)
1188 bytes = len;
1190 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1191 offset) < bytes)
1192 break;
1194 data += bytes;
1195 len -= bytes;
1196 offset = 0;
1199 bio->bi_end_io = bio_map_kern_endio;
1200 return bio;
1204 * bio_map_kern - map kernel address into bio
1205 * @q: the struct request_queue for the bio
1206 * @data: pointer to buffer to map
1207 * @len: length in bytes
1208 * @gfp_mask: allocation flags for bio allocation
1210 * Map the kernel address into a bio suitable for io to a block
1211 * device. Returns an error pointer in case of error.
1213 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1214 gfp_t gfp_mask)
1216 struct bio *bio;
1218 bio = __bio_map_kern(q, data, len, gfp_mask);
1219 if (IS_ERR(bio))
1220 return bio;
1222 if (bio->bi_size == len)
1223 return bio;
1226 * Don't support partial mappings.
1228 bio_put(bio);
1229 return ERR_PTR(-EINVAL);
1231 EXPORT_SYMBOL(bio_map_kern);
1233 static void bio_copy_kern_endio(struct bio *bio, int err)
1235 struct bio_vec *bvec;
1236 const int read = bio_data_dir(bio) == READ;
1237 struct bio_map_data *bmd = bio->bi_private;
1238 int i;
1239 char *p = bmd->sgvecs[0].iov_base;
1241 __bio_for_each_segment(bvec, bio, i, 0) {
1242 char *addr = page_address(bvec->bv_page);
1243 int len = bmd->iovecs[i].bv_len;
1245 if (read)
1246 memcpy(p, addr, len);
1248 __free_page(bvec->bv_page);
1249 p += len;
1252 bio_free_map_data(bmd);
1253 bio_put(bio);
1257 * bio_copy_kern - copy kernel address into bio
1258 * @q: the struct request_queue for the bio
1259 * @data: pointer to buffer to copy
1260 * @len: length in bytes
1261 * @gfp_mask: allocation flags for bio and page allocation
1262 * @reading: data direction is READ
1264 * copy the kernel address into a bio suitable for io to a block
1265 * device. Returns an error pointer in case of error.
1267 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1268 gfp_t gfp_mask, int reading)
1270 struct bio *bio;
1271 struct bio_vec *bvec;
1272 int i;
1274 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1275 if (IS_ERR(bio))
1276 return bio;
1278 if (!reading) {
1279 void *p = data;
1281 bio_for_each_segment(bvec, bio, i) {
1282 char *addr = page_address(bvec->bv_page);
1284 memcpy(addr, p, bvec->bv_len);
1285 p += bvec->bv_len;
1289 bio->bi_end_io = bio_copy_kern_endio;
1291 return bio;
1293 EXPORT_SYMBOL(bio_copy_kern);
1296 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1297 * for performing direct-IO in BIOs.
1299 * The problem is that we cannot run set_page_dirty() from interrupt context
1300 * because the required locks are not interrupt-safe. So what we can do is to
1301 * mark the pages dirty _before_ performing IO. And in interrupt context,
1302 * check that the pages are still dirty. If so, fine. If not, redirty them
1303 * in process context.
1305 * We special-case compound pages here: normally this means reads into hugetlb
1306 * pages. The logic in here doesn't really work right for compound pages
1307 * because the VM does not uniformly chase down the head page in all cases.
1308 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1309 * handle them at all. So we skip compound pages here at an early stage.
1311 * Note that this code is very hard to test under normal circumstances because
1312 * direct-io pins the pages with get_user_pages(). This makes
1313 * is_page_cache_freeable return false, and the VM will not clean the pages.
1314 * But other code (eg, pdflush) could clean the pages if they are mapped
1315 * pagecache.
1317 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1318 * deferred bio dirtying paths.
1322 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1324 void bio_set_pages_dirty(struct bio *bio)
1326 struct bio_vec *bvec = bio->bi_io_vec;
1327 int i;
1329 for (i = 0; i < bio->bi_vcnt; i++) {
1330 struct page *page = bvec[i].bv_page;
1332 if (page && !PageCompound(page))
1333 set_page_dirty_lock(page);
1337 static void bio_release_pages(struct bio *bio)
1339 struct bio_vec *bvec = bio->bi_io_vec;
1340 int i;
1342 for (i = 0; i < bio->bi_vcnt; i++) {
1343 struct page *page = bvec[i].bv_page;
1345 if (page)
1346 put_page(page);
1351 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1352 * If they are, then fine. If, however, some pages are clean then they must
1353 * have been written out during the direct-IO read. So we take another ref on
1354 * the BIO and the offending pages and re-dirty the pages in process context.
1356 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1357 * here on. It will run one page_cache_release() against each page and will
1358 * run one bio_put() against the BIO.
1361 static void bio_dirty_fn(struct work_struct *work);
1363 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1364 static DEFINE_SPINLOCK(bio_dirty_lock);
1365 static struct bio *bio_dirty_list;
1368 * This runs in process context
1370 static void bio_dirty_fn(struct work_struct *work)
1372 unsigned long flags;
1373 struct bio *bio;
1375 spin_lock_irqsave(&bio_dirty_lock, flags);
1376 bio = bio_dirty_list;
1377 bio_dirty_list = NULL;
1378 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1380 while (bio) {
1381 struct bio *next = bio->bi_private;
1383 bio_set_pages_dirty(bio);
1384 bio_release_pages(bio);
1385 bio_put(bio);
1386 bio = next;
1390 void bio_check_pages_dirty(struct bio *bio)
1392 struct bio_vec *bvec = bio->bi_io_vec;
1393 int nr_clean_pages = 0;
1394 int i;
1396 for (i = 0; i < bio->bi_vcnt; i++) {
1397 struct page *page = bvec[i].bv_page;
1399 if (PageDirty(page) || PageCompound(page)) {
1400 page_cache_release(page);
1401 bvec[i].bv_page = NULL;
1402 } else {
1403 nr_clean_pages++;
1407 if (nr_clean_pages) {
1408 unsigned long flags;
1410 spin_lock_irqsave(&bio_dirty_lock, flags);
1411 bio->bi_private = bio_dirty_list;
1412 bio_dirty_list = bio;
1413 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1414 schedule_work(&bio_dirty_work);
1415 } else {
1416 bio_put(bio);
1420 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1421 void bio_flush_dcache_pages(struct bio *bi)
1423 int i;
1424 struct bio_vec *bvec;
1426 bio_for_each_segment(bvec, bi, i)
1427 flush_dcache_page(bvec->bv_page);
1429 EXPORT_SYMBOL(bio_flush_dcache_pages);
1430 #endif
1433 * bio_endio - end I/O on a bio
1434 * @bio: bio
1435 * @error: error, if any
1437 * Description:
1438 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1439 * preferred way to end I/O on a bio, it takes care of clearing
1440 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1441 * established -Exxxx (-EIO, for instance) error values in case
1442 * something went wrong. Noone should call bi_end_io() directly on a
1443 * bio unless they own it and thus know that it has an end_io
1444 * function.
1446 void bio_endio(struct bio *bio, int error)
1448 if (error)
1449 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1450 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1451 error = -EIO;
1453 if (bio->bi_end_io)
1454 bio->bi_end_io(bio, error);
1456 EXPORT_SYMBOL(bio_endio);
1458 void bio_pair_release(struct bio_pair *bp)
1460 if (atomic_dec_and_test(&bp->cnt)) {
1461 struct bio *master = bp->bio1.bi_private;
1463 bio_endio(master, bp->error);
1464 mempool_free(bp, bp->bio2.bi_private);
1467 EXPORT_SYMBOL(bio_pair_release);
1469 static void bio_pair_end_1(struct bio *bi, int err)
1471 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1473 if (err)
1474 bp->error = err;
1476 bio_pair_release(bp);
1479 static void bio_pair_end_2(struct bio *bi, int err)
1481 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1483 if (err)
1484 bp->error = err;
1486 bio_pair_release(bp);
1490 * split a bio - only worry about a bio with a single page in its iovec
1492 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1494 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1496 if (!bp)
1497 return bp;
1499 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1500 bi->bi_sector + first_sectors);
1502 BUG_ON(bi->bi_vcnt != 1);
1503 BUG_ON(bi->bi_idx != 0);
1504 atomic_set(&bp->cnt, 3);
1505 bp->error = 0;
1506 bp->bio1 = *bi;
1507 bp->bio2 = *bi;
1508 bp->bio2.bi_sector += first_sectors;
1509 bp->bio2.bi_size -= first_sectors << 9;
1510 bp->bio1.bi_size = first_sectors << 9;
1512 bp->bv1 = bi->bi_io_vec[0];
1513 bp->bv2 = bi->bi_io_vec[0];
1514 bp->bv2.bv_offset += first_sectors << 9;
1515 bp->bv2.bv_len -= first_sectors << 9;
1516 bp->bv1.bv_len = first_sectors << 9;
1518 bp->bio1.bi_io_vec = &bp->bv1;
1519 bp->bio2.bi_io_vec = &bp->bv2;
1521 bp->bio1.bi_max_vecs = 1;
1522 bp->bio2.bi_max_vecs = 1;
1524 bp->bio1.bi_end_io = bio_pair_end_1;
1525 bp->bio2.bi_end_io = bio_pair_end_2;
1527 bp->bio1.bi_private = bi;
1528 bp->bio2.bi_private = bio_split_pool;
1530 if (bio_integrity(bi))
1531 bio_integrity_split(bi, bp, first_sectors);
1533 return bp;
1535 EXPORT_SYMBOL(bio_split);
1538 * bio_sector_offset - Find hardware sector offset in bio
1539 * @bio: bio to inspect
1540 * @index: bio_vec index
1541 * @offset: offset in bv_page
1543 * Return the number of hardware sectors between beginning of bio
1544 * and an end point indicated by a bio_vec index and an offset
1545 * within that vector's page.
1547 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1548 unsigned int offset)
1550 unsigned int sector_sz;
1551 struct bio_vec *bv;
1552 sector_t sectors;
1553 int i;
1555 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1556 sectors = 0;
1558 if (index >= bio->bi_idx)
1559 index = bio->bi_vcnt - 1;
1561 __bio_for_each_segment(bv, bio, i, 0) {
1562 if (i == index) {
1563 if (offset > bv->bv_offset)
1564 sectors += (offset - bv->bv_offset) / sector_sz;
1565 break;
1568 sectors += bv->bv_len / sector_sz;
1571 return sectors;
1573 EXPORT_SYMBOL(bio_sector_offset);
1576 * create memory pools for biovec's in a bio_set.
1577 * use the global biovec slabs created for general use.
1579 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1581 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1583 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1584 if (!bs->bvec_pool)
1585 return -ENOMEM;
1587 return 0;
1590 static void biovec_free_pools(struct bio_set *bs)
1592 mempool_destroy(bs->bvec_pool);
1595 void bioset_free(struct bio_set *bs)
1597 if (bs->bio_pool)
1598 mempool_destroy(bs->bio_pool);
1600 bioset_integrity_free(bs);
1601 biovec_free_pools(bs);
1602 bio_put_slab(bs);
1604 kfree(bs);
1606 EXPORT_SYMBOL(bioset_free);
1609 * bioset_create - Create a bio_set
1610 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1611 * @front_pad: Number of bytes to allocate in front of the returned bio
1613 * Description:
1614 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1615 * to ask for a number of bytes to be allocated in front of the bio.
1616 * Front pad allocation is useful for embedding the bio inside
1617 * another structure, to avoid allocating extra data to go with the bio.
1618 * Note that the bio must be embedded at the END of that structure always,
1619 * or things will break badly.
1621 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1623 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1624 struct bio_set *bs;
1626 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1627 if (!bs)
1628 return NULL;
1630 bs->front_pad = front_pad;
1632 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1633 if (!bs->bio_slab) {
1634 kfree(bs);
1635 return NULL;
1638 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1639 if (!bs->bio_pool)
1640 goto bad;
1642 if (bioset_integrity_create(bs, pool_size))
1643 goto bad;
1645 if (!biovec_create_pools(bs, pool_size))
1646 return bs;
1648 bad:
1649 bioset_free(bs);
1650 return NULL;
1652 EXPORT_SYMBOL(bioset_create);
1654 static void __init biovec_init_slabs(void)
1656 int i;
1658 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1659 int size;
1660 struct biovec_slab *bvs = bvec_slabs + i;
1662 #ifndef CONFIG_BLK_DEV_INTEGRITY
1663 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1664 bvs->slab = NULL;
1665 continue;
1667 #endif
1669 size = bvs->nr_vecs * sizeof(struct bio_vec);
1670 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1671 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1675 static int __init init_bio(void)
1677 bio_slab_max = 2;
1678 bio_slab_nr = 0;
1679 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1680 if (!bio_slabs)
1681 panic("bio: can't allocate bios\n");
1683 bio_integrity_init();
1684 biovec_init_slabs();
1686 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1687 if (!fs_bio_set)
1688 panic("bio: can't allocate bios\n");
1690 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1691 sizeof(struct bio_pair));
1692 if (!bio_split_pool)
1693 panic("bio: can't create split pool\n");
1695 return 0;
1697 subsys_initcall(init_bio);