[PATCH] VM: fix zone list restart in page allocatate
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blobbd4de592dc238fd3939c16b276cc7e10f7d1e21d
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
40 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map);
49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50 EXPORT_SYMBOL(node_possible_map);
51 struct pglist_data *pgdat_list __read_mostly;
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
67 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
69 EXPORT_SYMBOL(totalram_pages);
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
75 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
76 EXPORT_SYMBOL(zone_table);
78 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
79 int min_free_kbytes = 1024;
81 unsigned long __initdata nr_kernel_pages;
82 unsigned long __initdata nr_all_pages;
84 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
86 int ret = 0;
87 unsigned seq;
88 unsigned long pfn = page_to_pfn(page);
90 do {
91 seq = zone_span_seqbegin(zone);
92 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
93 ret = 1;
94 else if (pfn < zone->zone_start_pfn)
95 ret = 1;
96 } while (zone_span_seqretry(zone, seq));
98 return ret;
101 static int page_is_consistent(struct zone *zone, struct page *page)
103 #ifdef CONFIG_HOLES_IN_ZONE
104 if (!pfn_valid(page_to_pfn(page)))
105 return 0;
106 #endif
107 if (zone != page_zone(page))
108 return 0;
110 return 1;
113 * Temporary debugging check for pages not lying within a given zone.
115 static int bad_range(struct zone *zone, struct page *page)
117 if (page_outside_zone_boundaries(zone, page))
118 return 1;
119 if (!page_is_consistent(zone, page))
120 return 1;
122 return 0;
125 static void bad_page(const char *function, struct page *page)
127 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
128 function, current->comm, page);
129 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
130 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
131 page->mapping, page_mapcount(page), page_count(page));
132 printk(KERN_EMERG "Backtrace:\n");
133 dump_stack();
134 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
135 page->flags &= ~(1 << PG_lru |
136 1 << PG_private |
137 1 << PG_locked |
138 1 << PG_active |
139 1 << PG_dirty |
140 1 << PG_reclaim |
141 1 << PG_slab |
142 1 << PG_swapcache |
143 1 << PG_writeback |
144 1 << PG_reserved );
145 set_page_count(page, 0);
146 reset_page_mapcount(page);
147 page->mapping = NULL;
148 add_taint(TAINT_BAD_PAGE);
151 #ifndef CONFIG_HUGETLB_PAGE
152 #define prep_compound_page(page, order) do { } while (0)
153 #define destroy_compound_page(page, order) do { } while (0)
154 #else
156 * Higher-order pages are called "compound pages". They are structured thusly:
158 * The first PAGE_SIZE page is called the "head page".
160 * The remaining PAGE_SIZE pages are called "tail pages".
162 * All pages have PG_compound set. All pages have their ->private pointing at
163 * the head page (even the head page has this).
165 * The first tail page's ->mapping, if non-zero, holds the address of the
166 * compound page's put_page() function.
168 * The order of the allocation is stored in the first tail page's ->index
169 * This is only for debug at present. This usage means that zero-order pages
170 * may not be compound.
172 static void prep_compound_page(struct page *page, unsigned long order)
174 int i;
175 int nr_pages = 1 << order;
177 page[1].mapping = NULL;
178 page[1].index = order;
179 for (i = 0; i < nr_pages; i++) {
180 struct page *p = page + i;
182 SetPageCompound(p);
183 set_page_private(p, (unsigned long)page);
187 static void destroy_compound_page(struct page *page, unsigned long order)
189 int i;
190 int nr_pages = 1 << order;
192 if (!PageCompound(page))
193 return;
195 if (page[1].index != order)
196 bad_page(__FUNCTION__, page);
198 for (i = 0; i < nr_pages; i++) {
199 struct page *p = page + i;
201 if (!PageCompound(p))
202 bad_page(__FUNCTION__, page);
203 if (page_private(p) != (unsigned long)page)
204 bad_page(__FUNCTION__, page);
205 ClearPageCompound(p);
208 #endif /* CONFIG_HUGETLB_PAGE */
211 * function for dealing with page's order in buddy system.
212 * zone->lock is already acquired when we use these.
213 * So, we don't need atomic page->flags operations here.
215 static inline unsigned long page_order(struct page *page) {
216 return page_private(page);
219 static inline void set_page_order(struct page *page, int order) {
220 set_page_private(page, order);
221 __SetPagePrivate(page);
224 static inline void rmv_page_order(struct page *page)
226 __ClearPagePrivate(page);
227 set_page_private(page, 0);
231 * Locate the struct page for both the matching buddy in our
232 * pair (buddy1) and the combined O(n+1) page they form (page).
234 * 1) Any buddy B1 will have an order O twin B2 which satisfies
235 * the following equation:
236 * B2 = B1 ^ (1 << O)
237 * For example, if the starting buddy (buddy2) is #8 its order
238 * 1 buddy is #10:
239 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
241 * 2) Any buddy B will have an order O+1 parent P which
242 * satisfies the following equation:
243 * P = B & ~(1 << O)
245 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
247 static inline struct page *
248 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
250 unsigned long buddy_idx = page_idx ^ (1 << order);
252 return page + (buddy_idx - page_idx);
255 static inline unsigned long
256 __find_combined_index(unsigned long page_idx, unsigned int order)
258 return (page_idx & ~(1 << order));
262 * This function checks whether a page is free && is the buddy
263 * we can do coalesce a page and its buddy if
264 * (a) the buddy is free &&
265 * (b) the buddy is on the buddy system &&
266 * (c) a page and its buddy have the same order.
267 * for recording page's order, we use page_private(page) and PG_private.
270 static inline int page_is_buddy(struct page *page, int order)
272 if (PagePrivate(page) &&
273 (page_order(page) == order) &&
274 page_count(page) == 0)
275 return 1;
276 return 0;
280 * Freeing function for a buddy system allocator.
282 * The concept of a buddy system is to maintain direct-mapped table
283 * (containing bit values) for memory blocks of various "orders".
284 * The bottom level table contains the map for the smallest allocatable
285 * units of memory (here, pages), and each level above it describes
286 * pairs of units from the levels below, hence, "buddies".
287 * At a high level, all that happens here is marking the table entry
288 * at the bottom level available, and propagating the changes upward
289 * as necessary, plus some accounting needed to play nicely with other
290 * parts of the VM system.
291 * At each level, we keep a list of pages, which are heads of continuous
292 * free pages of length of (1 << order) and marked with PG_Private.Page's
293 * order is recorded in page_private(page) field.
294 * So when we are allocating or freeing one, we can derive the state of the
295 * other. That is, if we allocate a small block, and both were
296 * free, the remainder of the region must be split into blocks.
297 * If a block is freed, and its buddy is also free, then this
298 * triggers coalescing into a block of larger size.
300 * -- wli
303 static inline void __free_pages_bulk (struct page *page,
304 struct zone *zone, unsigned int order)
306 unsigned long page_idx;
307 int order_size = 1 << order;
309 if (unlikely(order))
310 destroy_compound_page(page, order);
312 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
314 BUG_ON(page_idx & (order_size - 1));
315 BUG_ON(bad_range(zone, page));
317 zone->free_pages += order_size;
318 while (order < MAX_ORDER-1) {
319 unsigned long combined_idx;
320 struct free_area *area;
321 struct page *buddy;
323 combined_idx = __find_combined_index(page_idx, order);
324 buddy = __page_find_buddy(page, page_idx, order);
326 if (bad_range(zone, buddy))
327 break;
328 if (!page_is_buddy(buddy, order))
329 break; /* Move the buddy up one level. */
330 list_del(&buddy->lru);
331 area = zone->free_area + order;
332 area->nr_free--;
333 rmv_page_order(buddy);
334 page = page + (combined_idx - page_idx);
335 page_idx = combined_idx;
336 order++;
338 set_page_order(page, order);
339 list_add(&page->lru, &zone->free_area[order].free_list);
340 zone->free_area[order].nr_free++;
343 static inline void free_pages_check(const char *function, struct page *page)
345 if ( page_mapcount(page) ||
346 page->mapping != NULL ||
347 page_count(page) != 0 ||
348 (page->flags & (
349 1 << PG_lru |
350 1 << PG_private |
351 1 << PG_locked |
352 1 << PG_active |
353 1 << PG_reclaim |
354 1 << PG_slab |
355 1 << PG_swapcache |
356 1 << PG_writeback |
357 1 << PG_reserved )))
358 bad_page(function, page);
359 if (PageDirty(page))
360 __ClearPageDirty(page);
364 * Frees a list of pages.
365 * Assumes all pages on list are in same zone, and of same order.
366 * count is the number of pages to free.
368 * If the zone was previously in an "all pages pinned" state then look to
369 * see if this freeing clears that state.
371 * And clear the zone's pages_scanned counter, to hold off the "all pages are
372 * pinned" detection logic.
374 static int
375 free_pages_bulk(struct zone *zone, int count,
376 struct list_head *list, unsigned int order)
378 unsigned long flags;
379 struct page *page = NULL;
380 int ret = 0;
382 spin_lock_irqsave(&zone->lock, flags);
383 zone->all_unreclaimable = 0;
384 zone->pages_scanned = 0;
385 while (!list_empty(list) && count--) {
386 page = list_entry(list->prev, struct page, lru);
387 /* have to delete it as __free_pages_bulk list manipulates */
388 list_del(&page->lru);
389 __free_pages_bulk(page, zone, order);
390 ret++;
392 spin_unlock_irqrestore(&zone->lock, flags);
393 return ret;
396 void __free_pages_ok(struct page *page, unsigned int order)
398 LIST_HEAD(list);
399 int i;
401 arch_free_page(page, order);
403 mod_page_state(pgfree, 1 << order);
405 #ifndef CONFIG_MMU
406 if (order > 0)
407 for (i = 1 ; i < (1 << order) ; ++i)
408 __put_page(page + i);
409 #endif
411 for (i = 0 ; i < (1 << order) ; ++i)
412 free_pages_check(__FUNCTION__, page + i);
413 list_add(&page->lru, &list);
414 kernel_map_pages(page, 1<<order, 0);
415 free_pages_bulk(page_zone(page), 1, &list, order);
420 * The order of subdivision here is critical for the IO subsystem.
421 * Please do not alter this order without good reasons and regression
422 * testing. Specifically, as large blocks of memory are subdivided,
423 * the order in which smaller blocks are delivered depends on the order
424 * they're subdivided in this function. This is the primary factor
425 * influencing the order in which pages are delivered to the IO
426 * subsystem according to empirical testing, and this is also justified
427 * by considering the behavior of a buddy system containing a single
428 * large block of memory acted on by a series of small allocations.
429 * This behavior is a critical factor in sglist merging's success.
431 * -- wli
433 static inline struct page *
434 expand(struct zone *zone, struct page *page,
435 int low, int high, struct free_area *area)
437 unsigned long size = 1 << high;
439 while (high > low) {
440 area--;
441 high--;
442 size >>= 1;
443 BUG_ON(bad_range(zone, &page[size]));
444 list_add(&page[size].lru, &area->free_list);
445 area->nr_free++;
446 set_page_order(&page[size], high);
448 return page;
451 void set_page_refs(struct page *page, int order)
453 #ifdef CONFIG_MMU
454 set_page_count(page, 1);
455 #else
456 int i;
459 * We need to reference all the pages for this order, otherwise if
460 * anyone accesses one of the pages with (get/put) it will be freed.
461 * - eg: access_process_vm()
463 for (i = 0; i < (1 << order); i++)
464 set_page_count(page + i, 1);
465 #endif /* CONFIG_MMU */
469 * This page is about to be returned from the page allocator
471 static void prep_new_page(struct page *page, int order)
473 if ( page_mapcount(page) ||
474 page->mapping != NULL ||
475 page_count(page) != 0 ||
476 (page->flags & (
477 1 << PG_lru |
478 1 << PG_private |
479 1 << PG_locked |
480 1 << PG_active |
481 1 << PG_dirty |
482 1 << PG_reclaim |
483 1 << PG_slab |
484 1 << PG_swapcache |
485 1 << PG_writeback |
486 1 << PG_reserved )))
487 bad_page(__FUNCTION__, page);
489 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
490 1 << PG_referenced | 1 << PG_arch_1 |
491 1 << PG_checked | 1 << PG_mappedtodisk);
492 set_page_private(page, 0);
493 set_page_refs(page, order);
494 kernel_map_pages(page, 1 << order, 1);
498 * Do the hard work of removing an element from the buddy allocator.
499 * Call me with the zone->lock already held.
501 static struct page *__rmqueue(struct zone *zone, unsigned int order)
503 struct free_area * area;
504 unsigned int current_order;
505 struct page *page;
507 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
508 area = zone->free_area + current_order;
509 if (list_empty(&area->free_list))
510 continue;
512 page = list_entry(area->free_list.next, struct page, lru);
513 list_del(&page->lru);
514 rmv_page_order(page);
515 area->nr_free--;
516 zone->free_pages -= 1UL << order;
517 return expand(zone, page, order, current_order, area);
520 return NULL;
524 * Obtain a specified number of elements from the buddy allocator, all under
525 * a single hold of the lock, for efficiency. Add them to the supplied list.
526 * Returns the number of new pages which were placed at *list.
528 static int rmqueue_bulk(struct zone *zone, unsigned int order,
529 unsigned long count, struct list_head *list)
531 unsigned long flags;
532 int i;
533 int allocated = 0;
534 struct page *page;
536 spin_lock_irqsave(&zone->lock, flags);
537 for (i = 0; i < count; ++i) {
538 page = __rmqueue(zone, order);
539 if (page == NULL)
540 break;
541 allocated++;
542 list_add_tail(&page->lru, list);
544 spin_unlock_irqrestore(&zone->lock, flags);
545 return allocated;
548 #ifdef CONFIG_NUMA
549 /* Called from the slab reaper to drain remote pagesets */
550 void drain_remote_pages(void)
552 struct zone *zone;
553 int i;
554 unsigned long flags;
556 local_irq_save(flags);
557 for_each_zone(zone) {
558 struct per_cpu_pageset *pset;
560 /* Do not drain local pagesets */
561 if (zone->zone_pgdat->node_id == numa_node_id())
562 continue;
564 pset = zone->pageset[smp_processor_id()];
565 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
566 struct per_cpu_pages *pcp;
568 pcp = &pset->pcp[i];
569 if (pcp->count)
570 pcp->count -= free_pages_bulk(zone, pcp->count,
571 &pcp->list, 0);
574 local_irq_restore(flags);
576 #endif
578 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
579 static void __drain_pages(unsigned int cpu)
581 struct zone *zone;
582 int i;
584 for_each_zone(zone) {
585 struct per_cpu_pageset *pset;
587 pset = zone_pcp(zone, cpu);
588 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
589 struct per_cpu_pages *pcp;
591 pcp = &pset->pcp[i];
592 pcp->count -= free_pages_bulk(zone, pcp->count,
593 &pcp->list, 0);
597 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
599 #ifdef CONFIG_PM
601 void mark_free_pages(struct zone *zone)
603 unsigned long zone_pfn, flags;
604 int order;
605 struct list_head *curr;
607 if (!zone->spanned_pages)
608 return;
610 spin_lock_irqsave(&zone->lock, flags);
611 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
612 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
614 for (order = MAX_ORDER - 1; order >= 0; --order)
615 list_for_each(curr, &zone->free_area[order].free_list) {
616 unsigned long start_pfn, i;
618 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
620 for (i=0; i < (1<<order); i++)
621 SetPageNosaveFree(pfn_to_page(start_pfn+i));
623 spin_unlock_irqrestore(&zone->lock, flags);
627 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
629 void drain_local_pages(void)
631 unsigned long flags;
633 local_irq_save(flags);
634 __drain_pages(smp_processor_id());
635 local_irq_restore(flags);
637 #endif /* CONFIG_PM */
639 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
641 #ifdef CONFIG_NUMA
642 unsigned long flags;
643 int cpu;
644 pg_data_t *pg = z->zone_pgdat;
645 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
646 struct per_cpu_pageset *p;
648 local_irq_save(flags);
649 cpu = smp_processor_id();
650 p = zone_pcp(z,cpu);
651 if (pg == orig) {
652 p->numa_hit++;
653 } else {
654 p->numa_miss++;
655 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
657 if (pg == NODE_DATA(numa_node_id()))
658 p->local_node++;
659 else
660 p->other_node++;
661 local_irq_restore(flags);
662 #endif
666 * Free a 0-order page
668 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
669 static void fastcall free_hot_cold_page(struct page *page, int cold)
671 struct zone *zone = page_zone(page);
672 struct per_cpu_pages *pcp;
673 unsigned long flags;
675 arch_free_page(page, 0);
677 kernel_map_pages(page, 1, 0);
678 inc_page_state(pgfree);
679 if (PageAnon(page))
680 page->mapping = NULL;
681 free_pages_check(__FUNCTION__, page);
682 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
683 local_irq_save(flags);
684 list_add(&page->lru, &pcp->list);
685 pcp->count++;
686 if (pcp->count >= pcp->high)
687 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
688 local_irq_restore(flags);
689 put_cpu();
692 void fastcall free_hot_page(struct page *page)
694 free_hot_cold_page(page, 0);
697 void fastcall free_cold_page(struct page *page)
699 free_hot_cold_page(page, 1);
702 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
704 int i;
706 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
707 for(i = 0; i < (1 << order); i++)
708 clear_highpage(page + i);
712 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
713 * we cheat by calling it from here, in the order > 0 path. Saves a branch
714 * or two.
716 static struct page *
717 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
719 unsigned long flags;
720 struct page *page = NULL;
721 int cold = !!(gfp_flags & __GFP_COLD);
723 if (order == 0) {
724 struct per_cpu_pages *pcp;
726 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
727 local_irq_save(flags);
728 if (pcp->count <= pcp->low)
729 pcp->count += rmqueue_bulk(zone, 0,
730 pcp->batch, &pcp->list);
731 if (pcp->count) {
732 page = list_entry(pcp->list.next, struct page, lru);
733 list_del(&page->lru);
734 pcp->count--;
736 local_irq_restore(flags);
737 put_cpu();
738 } else {
739 spin_lock_irqsave(&zone->lock, flags);
740 page = __rmqueue(zone, order);
741 spin_unlock_irqrestore(&zone->lock, flags);
744 if (page != NULL) {
745 BUG_ON(bad_range(zone, page));
746 mod_page_state_zone(zone, pgalloc, 1 << order);
747 prep_new_page(page, order);
749 if (gfp_flags & __GFP_ZERO)
750 prep_zero_page(page, order, gfp_flags);
752 if (order && (gfp_flags & __GFP_COMP))
753 prep_compound_page(page, order);
755 return page;
758 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
759 #define ALLOC_HARDER 0x02 /* try to alloc harder */
760 #define ALLOC_HIGH 0x04 /* __GFP_HIGH set */
761 #define ALLOC_CPUSET 0x08 /* check for correct cpuset */
764 * Return 1 if free pages are above 'mark'. This takes into account the order
765 * of the allocation.
767 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
768 int classzone_idx, int alloc_flags)
770 /* free_pages my go negative - that's OK */
771 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
772 int o;
774 if (alloc_flags & ALLOC_HIGH)
775 min -= min / 2;
776 if (alloc_flags & ALLOC_HARDER)
777 min -= min / 4;
779 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
780 return 0;
781 for (o = 0; o < order; o++) {
782 /* At the next order, this order's pages become unavailable */
783 free_pages -= z->free_area[o].nr_free << o;
785 /* Require fewer higher order pages to be free */
786 min >>= 1;
788 if (free_pages <= min)
789 return 0;
791 return 1;
795 * get_page_from_freeliest goes through the zonelist trying to allocate
796 * a page.
798 static struct page *
799 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
800 struct zonelist *zonelist, int alloc_flags)
802 struct zone **z = zonelist->zones;
803 struct page *page = NULL;
804 int classzone_idx = zone_idx(*z);
807 * Go through the zonelist once, looking for a zone with enough free.
808 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
810 do {
811 if ((alloc_flags & ALLOC_CPUSET) &&
812 !cpuset_zone_allowed(*z, gfp_mask))
813 continue;
815 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
816 if (!zone_watermark_ok(*z, order, (*z)->pages_low,
817 classzone_idx, alloc_flags))
818 continue;
821 page = buffered_rmqueue(*z, order, gfp_mask);
822 if (page) {
823 zone_statistics(zonelist, *z);
824 break;
826 } while (*(++z) != NULL);
827 return page;
831 * This is the 'heart' of the zoned buddy allocator.
833 struct page * fastcall
834 __alloc_pages(gfp_t gfp_mask, unsigned int order,
835 struct zonelist *zonelist)
837 const gfp_t wait = gfp_mask & __GFP_WAIT;
838 struct zone **z;
839 struct page *page;
840 struct reclaim_state reclaim_state;
841 struct task_struct *p = current;
842 int do_retry;
843 int alloc_flags;
844 int did_some_progress;
846 might_sleep_if(wait);
848 restart:
849 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
851 if (unlikely(*z == NULL)) {
852 /* Should this ever happen?? */
853 return NULL;
856 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
857 zonelist, ALLOC_CPUSET);
858 if (page)
859 goto got_pg;
861 do {
862 wakeup_kswapd(*z, order);
863 } while (*(++z));
866 * OK, we're below the kswapd watermark and have kicked background
867 * reclaim. Now things get more complex, so set up alloc_flags according
868 * to how we want to proceed.
870 * The caller may dip into page reserves a bit more if the caller
871 * cannot run direct reclaim, or if the caller has realtime scheduling
872 * policy.
874 alloc_flags = 0;
875 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
876 alloc_flags |= ALLOC_HARDER;
877 if (gfp_mask & __GFP_HIGH)
878 alloc_flags |= ALLOC_HIGH;
879 if (wait)
880 alloc_flags |= ALLOC_CPUSET;
883 * Go through the zonelist again. Let __GFP_HIGH and allocations
884 * coming from realtime tasks go deeper into reserves.
886 * This is the last chance, in general, before the goto nopage.
887 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
888 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
890 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
891 if (page)
892 goto got_pg;
894 /* This allocation should allow future memory freeing. */
896 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
897 && !in_interrupt()) {
898 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
899 nofail_alloc:
900 /* go through the zonelist yet again, ignoring mins */
901 page = get_page_from_freelist(gfp_mask, order,
902 zonelist, ALLOC_NO_WATERMARKS|ALLOC_CPUSET);
903 if (page)
904 goto got_pg;
905 if (gfp_mask & __GFP_NOFAIL) {
906 blk_congestion_wait(WRITE, HZ/50);
907 goto nofail_alloc;
910 goto nopage;
913 /* Atomic allocations - we can't balance anything */
914 if (!wait)
915 goto nopage;
917 rebalance:
918 cond_resched();
920 /* We now go into synchronous reclaim */
921 p->flags |= PF_MEMALLOC;
922 reclaim_state.reclaimed_slab = 0;
923 p->reclaim_state = &reclaim_state;
925 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
927 p->reclaim_state = NULL;
928 p->flags &= ~PF_MEMALLOC;
930 cond_resched();
932 if (likely(did_some_progress)) {
933 page = get_page_from_freelist(gfp_mask, order,
934 zonelist, alloc_flags);
935 if (page)
936 goto got_pg;
937 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
939 * Go through the zonelist yet one more time, keep
940 * very high watermark here, this is only to catch
941 * a parallel oom killing, we must fail if we're still
942 * under heavy pressure.
944 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
945 zonelist, ALLOC_CPUSET);
946 if (page)
947 goto got_pg;
949 out_of_memory(gfp_mask, order);
950 goto restart;
954 * Don't let big-order allocations loop unless the caller explicitly
955 * requests that. Wait for some write requests to complete then retry.
957 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
958 * <= 3, but that may not be true in other implementations.
960 do_retry = 0;
961 if (!(gfp_mask & __GFP_NORETRY)) {
962 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
963 do_retry = 1;
964 if (gfp_mask & __GFP_NOFAIL)
965 do_retry = 1;
967 if (do_retry) {
968 blk_congestion_wait(WRITE, HZ/50);
969 goto rebalance;
972 nopage:
973 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
974 printk(KERN_WARNING "%s: page allocation failure."
975 " order:%d, mode:0x%x\n",
976 p->comm, order, gfp_mask);
977 dump_stack();
978 show_mem();
980 got_pg:
981 return page;
984 EXPORT_SYMBOL(__alloc_pages);
987 * Common helper functions.
989 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
991 struct page * page;
992 page = alloc_pages(gfp_mask, order);
993 if (!page)
994 return 0;
995 return (unsigned long) page_address(page);
998 EXPORT_SYMBOL(__get_free_pages);
1000 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1002 struct page * page;
1005 * get_zeroed_page() returns a 32-bit address, which cannot represent
1006 * a highmem page
1008 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1010 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1011 if (page)
1012 return (unsigned long) page_address(page);
1013 return 0;
1016 EXPORT_SYMBOL(get_zeroed_page);
1018 void __pagevec_free(struct pagevec *pvec)
1020 int i = pagevec_count(pvec);
1022 while (--i >= 0)
1023 free_hot_cold_page(pvec->pages[i], pvec->cold);
1026 fastcall void __free_pages(struct page *page, unsigned int order)
1028 if (put_page_testzero(page)) {
1029 if (order == 0)
1030 free_hot_page(page);
1031 else
1032 __free_pages_ok(page, order);
1036 EXPORT_SYMBOL(__free_pages);
1038 fastcall void free_pages(unsigned long addr, unsigned int order)
1040 if (addr != 0) {
1041 BUG_ON(!virt_addr_valid((void *)addr));
1042 __free_pages(virt_to_page((void *)addr), order);
1046 EXPORT_SYMBOL(free_pages);
1049 * Total amount of free (allocatable) RAM:
1051 unsigned int nr_free_pages(void)
1053 unsigned int sum = 0;
1054 struct zone *zone;
1056 for_each_zone(zone)
1057 sum += zone->free_pages;
1059 return sum;
1062 EXPORT_SYMBOL(nr_free_pages);
1064 #ifdef CONFIG_NUMA
1065 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1067 unsigned int i, sum = 0;
1069 for (i = 0; i < MAX_NR_ZONES; i++)
1070 sum += pgdat->node_zones[i].free_pages;
1072 return sum;
1074 #endif
1076 static unsigned int nr_free_zone_pages(int offset)
1078 /* Just pick one node, since fallback list is circular */
1079 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1080 unsigned int sum = 0;
1082 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1083 struct zone **zonep = zonelist->zones;
1084 struct zone *zone;
1086 for (zone = *zonep++; zone; zone = *zonep++) {
1087 unsigned long size = zone->present_pages;
1088 unsigned long high = zone->pages_high;
1089 if (size > high)
1090 sum += size - high;
1093 return sum;
1097 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1099 unsigned int nr_free_buffer_pages(void)
1101 return nr_free_zone_pages(gfp_zone(GFP_USER));
1105 * Amount of free RAM allocatable within all zones
1107 unsigned int nr_free_pagecache_pages(void)
1109 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1112 #ifdef CONFIG_HIGHMEM
1113 unsigned int nr_free_highpages (void)
1115 pg_data_t *pgdat;
1116 unsigned int pages = 0;
1118 for_each_pgdat(pgdat)
1119 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1121 return pages;
1123 #endif
1125 #ifdef CONFIG_NUMA
1126 static void show_node(struct zone *zone)
1128 printk("Node %d ", zone->zone_pgdat->node_id);
1130 #else
1131 #define show_node(zone) do { } while (0)
1132 #endif
1135 * Accumulate the page_state information across all CPUs.
1136 * The result is unavoidably approximate - it can change
1137 * during and after execution of this function.
1139 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1141 atomic_t nr_pagecache = ATOMIC_INIT(0);
1142 EXPORT_SYMBOL(nr_pagecache);
1143 #ifdef CONFIG_SMP
1144 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1145 #endif
1147 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1149 int cpu = 0;
1151 memset(ret, 0, sizeof(*ret));
1152 cpus_and(*cpumask, *cpumask, cpu_online_map);
1154 cpu = first_cpu(*cpumask);
1155 while (cpu < NR_CPUS) {
1156 unsigned long *in, *out, off;
1158 in = (unsigned long *)&per_cpu(page_states, cpu);
1160 cpu = next_cpu(cpu, *cpumask);
1162 if (cpu < NR_CPUS)
1163 prefetch(&per_cpu(page_states, cpu));
1165 out = (unsigned long *)ret;
1166 for (off = 0; off < nr; off++)
1167 *out++ += *in++;
1171 void get_page_state_node(struct page_state *ret, int node)
1173 int nr;
1174 cpumask_t mask = node_to_cpumask(node);
1176 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1177 nr /= sizeof(unsigned long);
1179 __get_page_state(ret, nr+1, &mask);
1182 void get_page_state(struct page_state *ret)
1184 int nr;
1185 cpumask_t mask = CPU_MASK_ALL;
1187 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1188 nr /= sizeof(unsigned long);
1190 __get_page_state(ret, nr + 1, &mask);
1193 void get_full_page_state(struct page_state *ret)
1195 cpumask_t mask = CPU_MASK_ALL;
1197 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1200 unsigned long __read_page_state(unsigned long offset)
1202 unsigned long ret = 0;
1203 int cpu;
1205 for_each_online_cpu(cpu) {
1206 unsigned long in;
1208 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1209 ret += *((unsigned long *)in);
1211 return ret;
1214 void __mod_page_state(unsigned long offset, unsigned long delta)
1216 unsigned long flags;
1217 void* ptr;
1219 local_irq_save(flags);
1220 ptr = &__get_cpu_var(page_states);
1221 *(unsigned long*)(ptr + offset) += delta;
1222 local_irq_restore(flags);
1225 EXPORT_SYMBOL(__mod_page_state);
1227 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1228 unsigned long *free, struct pglist_data *pgdat)
1230 struct zone *zones = pgdat->node_zones;
1231 int i;
1233 *active = 0;
1234 *inactive = 0;
1235 *free = 0;
1236 for (i = 0; i < MAX_NR_ZONES; i++) {
1237 *active += zones[i].nr_active;
1238 *inactive += zones[i].nr_inactive;
1239 *free += zones[i].free_pages;
1243 void get_zone_counts(unsigned long *active,
1244 unsigned long *inactive, unsigned long *free)
1246 struct pglist_data *pgdat;
1248 *active = 0;
1249 *inactive = 0;
1250 *free = 0;
1251 for_each_pgdat(pgdat) {
1252 unsigned long l, m, n;
1253 __get_zone_counts(&l, &m, &n, pgdat);
1254 *active += l;
1255 *inactive += m;
1256 *free += n;
1260 void si_meminfo(struct sysinfo *val)
1262 val->totalram = totalram_pages;
1263 val->sharedram = 0;
1264 val->freeram = nr_free_pages();
1265 val->bufferram = nr_blockdev_pages();
1266 #ifdef CONFIG_HIGHMEM
1267 val->totalhigh = totalhigh_pages;
1268 val->freehigh = nr_free_highpages();
1269 #else
1270 val->totalhigh = 0;
1271 val->freehigh = 0;
1272 #endif
1273 val->mem_unit = PAGE_SIZE;
1276 EXPORT_SYMBOL(si_meminfo);
1278 #ifdef CONFIG_NUMA
1279 void si_meminfo_node(struct sysinfo *val, int nid)
1281 pg_data_t *pgdat = NODE_DATA(nid);
1283 val->totalram = pgdat->node_present_pages;
1284 val->freeram = nr_free_pages_pgdat(pgdat);
1285 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1286 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1287 val->mem_unit = PAGE_SIZE;
1289 #endif
1291 #define K(x) ((x) << (PAGE_SHIFT-10))
1294 * Show free area list (used inside shift_scroll-lock stuff)
1295 * We also calculate the percentage fragmentation. We do this by counting the
1296 * memory on each free list with the exception of the first item on the list.
1298 void show_free_areas(void)
1300 struct page_state ps;
1301 int cpu, temperature;
1302 unsigned long active;
1303 unsigned long inactive;
1304 unsigned long free;
1305 struct zone *zone;
1307 for_each_zone(zone) {
1308 show_node(zone);
1309 printk("%s per-cpu:", zone->name);
1311 if (!zone->present_pages) {
1312 printk(" empty\n");
1313 continue;
1314 } else
1315 printk("\n");
1317 for_each_online_cpu(cpu) {
1318 struct per_cpu_pageset *pageset;
1320 pageset = zone_pcp(zone, cpu);
1322 for (temperature = 0; temperature < 2; temperature++)
1323 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1324 cpu,
1325 temperature ? "cold" : "hot",
1326 pageset->pcp[temperature].low,
1327 pageset->pcp[temperature].high,
1328 pageset->pcp[temperature].batch,
1329 pageset->pcp[temperature].count);
1333 get_page_state(&ps);
1334 get_zone_counts(&active, &inactive, &free);
1336 printk("Free pages: %11ukB (%ukB HighMem)\n",
1337 K(nr_free_pages()),
1338 K(nr_free_highpages()));
1340 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1341 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1342 active,
1343 inactive,
1344 ps.nr_dirty,
1345 ps.nr_writeback,
1346 ps.nr_unstable,
1347 nr_free_pages(),
1348 ps.nr_slab,
1349 ps.nr_mapped,
1350 ps.nr_page_table_pages);
1352 for_each_zone(zone) {
1353 int i;
1355 show_node(zone);
1356 printk("%s"
1357 " free:%lukB"
1358 " min:%lukB"
1359 " low:%lukB"
1360 " high:%lukB"
1361 " active:%lukB"
1362 " inactive:%lukB"
1363 " present:%lukB"
1364 " pages_scanned:%lu"
1365 " all_unreclaimable? %s"
1366 "\n",
1367 zone->name,
1368 K(zone->free_pages),
1369 K(zone->pages_min),
1370 K(zone->pages_low),
1371 K(zone->pages_high),
1372 K(zone->nr_active),
1373 K(zone->nr_inactive),
1374 K(zone->present_pages),
1375 zone->pages_scanned,
1376 (zone->all_unreclaimable ? "yes" : "no")
1378 printk("lowmem_reserve[]:");
1379 for (i = 0; i < MAX_NR_ZONES; i++)
1380 printk(" %lu", zone->lowmem_reserve[i]);
1381 printk("\n");
1384 for_each_zone(zone) {
1385 unsigned long nr, flags, order, total = 0;
1387 show_node(zone);
1388 printk("%s: ", zone->name);
1389 if (!zone->present_pages) {
1390 printk("empty\n");
1391 continue;
1394 spin_lock_irqsave(&zone->lock, flags);
1395 for (order = 0; order < MAX_ORDER; order++) {
1396 nr = zone->free_area[order].nr_free;
1397 total += nr << order;
1398 printk("%lu*%lukB ", nr, K(1UL) << order);
1400 spin_unlock_irqrestore(&zone->lock, flags);
1401 printk("= %lukB\n", K(total));
1404 show_swap_cache_info();
1408 * Builds allocation fallback zone lists.
1410 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1412 switch (k) {
1413 struct zone *zone;
1414 default:
1415 BUG();
1416 case ZONE_HIGHMEM:
1417 zone = pgdat->node_zones + ZONE_HIGHMEM;
1418 if (zone->present_pages) {
1419 #ifndef CONFIG_HIGHMEM
1420 BUG();
1421 #endif
1422 zonelist->zones[j++] = zone;
1424 case ZONE_NORMAL:
1425 zone = pgdat->node_zones + ZONE_NORMAL;
1426 if (zone->present_pages)
1427 zonelist->zones[j++] = zone;
1428 case ZONE_DMA32:
1429 zone = pgdat->node_zones + ZONE_DMA32;
1430 if (zone->present_pages)
1431 zonelist->zones[j++] = zone;
1432 case ZONE_DMA:
1433 zone = pgdat->node_zones + ZONE_DMA;
1434 if (zone->present_pages)
1435 zonelist->zones[j++] = zone;
1438 return j;
1441 static inline int highest_zone(int zone_bits)
1443 int res = ZONE_NORMAL;
1444 if (zone_bits & (__force int)__GFP_HIGHMEM)
1445 res = ZONE_HIGHMEM;
1446 if (zone_bits & (__force int)__GFP_DMA32)
1447 res = ZONE_DMA32;
1448 if (zone_bits & (__force int)__GFP_DMA)
1449 res = ZONE_DMA;
1450 return res;
1453 #ifdef CONFIG_NUMA
1454 #define MAX_NODE_LOAD (num_online_nodes())
1455 static int __initdata node_load[MAX_NUMNODES];
1457 * find_next_best_node - find the next node that should appear in a given node's fallback list
1458 * @node: node whose fallback list we're appending
1459 * @used_node_mask: nodemask_t of already used nodes
1461 * We use a number of factors to determine which is the next node that should
1462 * appear on a given node's fallback list. The node should not have appeared
1463 * already in @node's fallback list, and it should be the next closest node
1464 * according to the distance array (which contains arbitrary distance values
1465 * from each node to each node in the system), and should also prefer nodes
1466 * with no CPUs, since presumably they'll have very little allocation pressure
1467 * on them otherwise.
1468 * It returns -1 if no node is found.
1470 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1472 int i, n, val;
1473 int min_val = INT_MAX;
1474 int best_node = -1;
1476 for_each_online_node(i) {
1477 cpumask_t tmp;
1479 /* Start from local node */
1480 n = (node+i) % num_online_nodes();
1482 /* Don't want a node to appear more than once */
1483 if (node_isset(n, *used_node_mask))
1484 continue;
1486 /* Use the local node if we haven't already */
1487 if (!node_isset(node, *used_node_mask)) {
1488 best_node = node;
1489 break;
1492 /* Use the distance array to find the distance */
1493 val = node_distance(node, n);
1495 /* Give preference to headless and unused nodes */
1496 tmp = node_to_cpumask(n);
1497 if (!cpus_empty(tmp))
1498 val += PENALTY_FOR_NODE_WITH_CPUS;
1500 /* Slight preference for less loaded node */
1501 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1502 val += node_load[n];
1504 if (val < min_val) {
1505 min_val = val;
1506 best_node = n;
1510 if (best_node >= 0)
1511 node_set(best_node, *used_node_mask);
1513 return best_node;
1516 static void __init build_zonelists(pg_data_t *pgdat)
1518 int i, j, k, node, local_node;
1519 int prev_node, load;
1520 struct zonelist *zonelist;
1521 nodemask_t used_mask;
1523 /* initialize zonelists */
1524 for (i = 0; i < GFP_ZONETYPES; i++) {
1525 zonelist = pgdat->node_zonelists + i;
1526 zonelist->zones[0] = NULL;
1529 /* NUMA-aware ordering of nodes */
1530 local_node = pgdat->node_id;
1531 load = num_online_nodes();
1532 prev_node = local_node;
1533 nodes_clear(used_mask);
1534 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1536 * We don't want to pressure a particular node.
1537 * So adding penalty to the first node in same
1538 * distance group to make it round-robin.
1540 if (node_distance(local_node, node) !=
1541 node_distance(local_node, prev_node))
1542 node_load[node] += load;
1543 prev_node = node;
1544 load--;
1545 for (i = 0; i < GFP_ZONETYPES; i++) {
1546 zonelist = pgdat->node_zonelists + i;
1547 for (j = 0; zonelist->zones[j] != NULL; j++);
1549 k = highest_zone(i);
1551 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1552 zonelist->zones[j] = NULL;
1557 #else /* CONFIG_NUMA */
1559 static void __init build_zonelists(pg_data_t *pgdat)
1561 int i, j, k, node, local_node;
1563 local_node = pgdat->node_id;
1564 for (i = 0; i < GFP_ZONETYPES; i++) {
1565 struct zonelist *zonelist;
1567 zonelist = pgdat->node_zonelists + i;
1569 j = 0;
1570 k = highest_zone(i);
1571 j = build_zonelists_node(pgdat, zonelist, j, k);
1573 * Now we build the zonelist so that it contains the zones
1574 * of all the other nodes.
1575 * We don't want to pressure a particular node, so when
1576 * building the zones for node N, we make sure that the
1577 * zones coming right after the local ones are those from
1578 * node N+1 (modulo N)
1580 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1581 if (!node_online(node))
1582 continue;
1583 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1585 for (node = 0; node < local_node; node++) {
1586 if (!node_online(node))
1587 continue;
1588 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1591 zonelist->zones[j] = NULL;
1595 #endif /* CONFIG_NUMA */
1597 void __init build_all_zonelists(void)
1599 int i;
1601 for_each_online_node(i)
1602 build_zonelists(NODE_DATA(i));
1603 printk("Built %i zonelists\n", num_online_nodes());
1604 cpuset_init_current_mems_allowed();
1608 * Helper functions to size the waitqueue hash table.
1609 * Essentially these want to choose hash table sizes sufficiently
1610 * large so that collisions trying to wait on pages are rare.
1611 * But in fact, the number of active page waitqueues on typical
1612 * systems is ridiculously low, less than 200. So this is even
1613 * conservative, even though it seems large.
1615 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1616 * waitqueues, i.e. the size of the waitq table given the number of pages.
1618 #define PAGES_PER_WAITQUEUE 256
1620 static inline unsigned long wait_table_size(unsigned long pages)
1622 unsigned long size = 1;
1624 pages /= PAGES_PER_WAITQUEUE;
1626 while (size < pages)
1627 size <<= 1;
1630 * Once we have dozens or even hundreds of threads sleeping
1631 * on IO we've got bigger problems than wait queue collision.
1632 * Limit the size of the wait table to a reasonable size.
1634 size = min(size, 4096UL);
1636 return max(size, 4UL);
1640 * This is an integer logarithm so that shifts can be used later
1641 * to extract the more random high bits from the multiplicative
1642 * hash function before the remainder is taken.
1644 static inline unsigned long wait_table_bits(unsigned long size)
1646 return ffz(~size);
1649 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1651 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1652 unsigned long *zones_size, unsigned long *zholes_size)
1654 unsigned long realtotalpages, totalpages = 0;
1655 int i;
1657 for (i = 0; i < MAX_NR_ZONES; i++)
1658 totalpages += zones_size[i];
1659 pgdat->node_spanned_pages = totalpages;
1661 realtotalpages = totalpages;
1662 if (zholes_size)
1663 for (i = 0; i < MAX_NR_ZONES; i++)
1664 realtotalpages -= zholes_size[i];
1665 pgdat->node_present_pages = realtotalpages;
1666 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1671 * Initially all pages are reserved - free ones are freed
1672 * up by free_all_bootmem() once the early boot process is
1673 * done. Non-atomic initialization, single-pass.
1675 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1676 unsigned long start_pfn)
1678 struct page *page;
1679 unsigned long end_pfn = start_pfn + size;
1680 unsigned long pfn;
1682 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1683 if (!early_pfn_valid(pfn))
1684 continue;
1685 if (!early_pfn_in_nid(pfn, nid))
1686 continue;
1687 page = pfn_to_page(pfn);
1688 set_page_links(page, zone, nid, pfn);
1689 set_page_count(page, 1);
1690 reset_page_mapcount(page);
1691 SetPageReserved(page);
1692 INIT_LIST_HEAD(&page->lru);
1693 #ifdef WANT_PAGE_VIRTUAL
1694 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1695 if (!is_highmem_idx(zone))
1696 set_page_address(page, __va(pfn << PAGE_SHIFT));
1697 #endif
1701 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1702 unsigned long size)
1704 int order;
1705 for (order = 0; order < MAX_ORDER ; order++) {
1706 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1707 zone->free_area[order].nr_free = 0;
1711 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1712 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1713 unsigned long size)
1715 unsigned long snum = pfn_to_section_nr(pfn);
1716 unsigned long end = pfn_to_section_nr(pfn + size);
1718 if (FLAGS_HAS_NODE)
1719 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1720 else
1721 for (; snum <= end; snum++)
1722 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1725 #ifndef __HAVE_ARCH_MEMMAP_INIT
1726 #define memmap_init(size, nid, zone, start_pfn) \
1727 memmap_init_zone((size), (nid), (zone), (start_pfn))
1728 #endif
1730 static int __devinit zone_batchsize(struct zone *zone)
1732 int batch;
1735 * The per-cpu-pages pools are set to around 1000th of the
1736 * size of the zone. But no more than 1/2 of a meg.
1738 * OK, so we don't know how big the cache is. So guess.
1740 batch = zone->present_pages / 1024;
1741 if (batch * PAGE_SIZE > 512 * 1024)
1742 batch = (512 * 1024) / PAGE_SIZE;
1743 batch /= 4; /* We effectively *= 4 below */
1744 if (batch < 1)
1745 batch = 1;
1748 * We will be trying to allcoate bigger chunks of contiguous
1749 * memory of the order of fls(batch). This should result in
1750 * better cache coloring.
1752 * A sanity check also to ensure that batch is still in limits.
1754 batch = (1 << fls(batch + batch/2));
1756 if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
1757 batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
1759 return batch;
1762 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1764 struct per_cpu_pages *pcp;
1766 memset(p, 0, sizeof(*p));
1768 pcp = &p->pcp[0]; /* hot */
1769 pcp->count = 0;
1770 pcp->low = 0;
1771 pcp->high = 6 * batch;
1772 pcp->batch = max(1UL, 1 * batch);
1773 INIT_LIST_HEAD(&pcp->list);
1775 pcp = &p->pcp[1]; /* cold*/
1776 pcp->count = 0;
1777 pcp->low = 0;
1778 pcp->high = 2 * batch;
1779 pcp->batch = max(1UL, batch/2);
1780 INIT_LIST_HEAD(&pcp->list);
1783 #ifdef CONFIG_NUMA
1785 * Boot pageset table. One per cpu which is going to be used for all
1786 * zones and all nodes. The parameters will be set in such a way
1787 * that an item put on a list will immediately be handed over to
1788 * the buddy list. This is safe since pageset manipulation is done
1789 * with interrupts disabled.
1791 * Some NUMA counter updates may also be caught by the boot pagesets.
1793 * The boot_pagesets must be kept even after bootup is complete for
1794 * unused processors and/or zones. They do play a role for bootstrapping
1795 * hotplugged processors.
1797 * zoneinfo_show() and maybe other functions do
1798 * not check if the processor is online before following the pageset pointer.
1799 * Other parts of the kernel may not check if the zone is available.
1801 static struct per_cpu_pageset
1802 boot_pageset[NR_CPUS];
1805 * Dynamically allocate memory for the
1806 * per cpu pageset array in struct zone.
1808 static int __devinit process_zones(int cpu)
1810 struct zone *zone, *dzone;
1812 for_each_zone(zone) {
1814 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1815 GFP_KERNEL, cpu_to_node(cpu));
1816 if (!zone->pageset[cpu])
1817 goto bad;
1819 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1822 return 0;
1823 bad:
1824 for_each_zone(dzone) {
1825 if (dzone == zone)
1826 break;
1827 kfree(dzone->pageset[cpu]);
1828 dzone->pageset[cpu] = NULL;
1830 return -ENOMEM;
1833 static inline void free_zone_pagesets(int cpu)
1835 #ifdef CONFIG_NUMA
1836 struct zone *zone;
1838 for_each_zone(zone) {
1839 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1841 zone_pcp(zone, cpu) = NULL;
1842 kfree(pset);
1844 #endif
1847 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1848 unsigned long action,
1849 void *hcpu)
1851 int cpu = (long)hcpu;
1852 int ret = NOTIFY_OK;
1854 switch (action) {
1855 case CPU_UP_PREPARE:
1856 if (process_zones(cpu))
1857 ret = NOTIFY_BAD;
1858 break;
1859 case CPU_UP_CANCELED:
1860 case CPU_DEAD:
1861 free_zone_pagesets(cpu);
1862 break;
1863 default:
1864 break;
1866 return ret;
1869 static struct notifier_block pageset_notifier =
1870 { &pageset_cpuup_callback, NULL, 0 };
1872 void __init setup_per_cpu_pageset()
1874 int err;
1876 /* Initialize per_cpu_pageset for cpu 0.
1877 * A cpuup callback will do this for every cpu
1878 * as it comes online
1880 err = process_zones(smp_processor_id());
1881 BUG_ON(err);
1882 register_cpu_notifier(&pageset_notifier);
1885 #endif
1887 static __devinit
1888 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1890 int i;
1891 struct pglist_data *pgdat = zone->zone_pgdat;
1894 * The per-page waitqueue mechanism uses hashed waitqueues
1895 * per zone.
1897 zone->wait_table_size = wait_table_size(zone_size_pages);
1898 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1899 zone->wait_table = (wait_queue_head_t *)
1900 alloc_bootmem_node(pgdat, zone->wait_table_size
1901 * sizeof(wait_queue_head_t));
1903 for(i = 0; i < zone->wait_table_size; ++i)
1904 init_waitqueue_head(zone->wait_table + i);
1907 static __devinit void zone_pcp_init(struct zone *zone)
1909 int cpu;
1910 unsigned long batch = zone_batchsize(zone);
1912 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1913 #ifdef CONFIG_NUMA
1914 /* Early boot. Slab allocator not functional yet */
1915 zone->pageset[cpu] = &boot_pageset[cpu];
1916 setup_pageset(&boot_pageset[cpu],0);
1917 #else
1918 setup_pageset(zone_pcp(zone,cpu), batch);
1919 #endif
1921 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1922 zone->name, zone->present_pages, batch);
1925 static __devinit void init_currently_empty_zone(struct zone *zone,
1926 unsigned long zone_start_pfn, unsigned long size)
1928 struct pglist_data *pgdat = zone->zone_pgdat;
1930 zone_wait_table_init(zone, size);
1931 pgdat->nr_zones = zone_idx(zone) + 1;
1933 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1934 zone->zone_start_pfn = zone_start_pfn;
1936 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1938 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1942 * Set up the zone data structures:
1943 * - mark all pages reserved
1944 * - mark all memory queues empty
1945 * - clear the memory bitmaps
1947 static void __init free_area_init_core(struct pglist_data *pgdat,
1948 unsigned long *zones_size, unsigned long *zholes_size)
1950 unsigned long j;
1951 int nid = pgdat->node_id;
1952 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1954 pgdat_resize_init(pgdat);
1955 pgdat->nr_zones = 0;
1956 init_waitqueue_head(&pgdat->kswapd_wait);
1957 pgdat->kswapd_max_order = 0;
1959 for (j = 0; j < MAX_NR_ZONES; j++) {
1960 struct zone *zone = pgdat->node_zones + j;
1961 unsigned long size, realsize;
1963 realsize = size = zones_size[j];
1964 if (zholes_size)
1965 realsize -= zholes_size[j];
1967 if (j < ZONE_HIGHMEM)
1968 nr_kernel_pages += realsize;
1969 nr_all_pages += realsize;
1971 zone->spanned_pages = size;
1972 zone->present_pages = realsize;
1973 zone->name = zone_names[j];
1974 spin_lock_init(&zone->lock);
1975 spin_lock_init(&zone->lru_lock);
1976 zone_seqlock_init(zone);
1977 zone->zone_pgdat = pgdat;
1978 zone->free_pages = 0;
1980 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1982 zone_pcp_init(zone);
1983 INIT_LIST_HEAD(&zone->active_list);
1984 INIT_LIST_HEAD(&zone->inactive_list);
1985 zone->nr_scan_active = 0;
1986 zone->nr_scan_inactive = 0;
1987 zone->nr_active = 0;
1988 zone->nr_inactive = 0;
1989 atomic_set(&zone->reclaim_in_progress, 0);
1990 if (!size)
1991 continue;
1993 zonetable_add(zone, nid, j, zone_start_pfn, size);
1994 init_currently_empty_zone(zone, zone_start_pfn, size);
1995 zone_start_pfn += size;
1999 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2001 /* Skip empty nodes */
2002 if (!pgdat->node_spanned_pages)
2003 return;
2005 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2006 /* ia64 gets its own node_mem_map, before this, without bootmem */
2007 if (!pgdat->node_mem_map) {
2008 unsigned long size;
2009 struct page *map;
2011 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2012 map = alloc_remap(pgdat->node_id, size);
2013 if (!map)
2014 map = alloc_bootmem_node(pgdat, size);
2015 pgdat->node_mem_map = map;
2017 #ifdef CONFIG_FLATMEM
2019 * With no DISCONTIG, the global mem_map is just set as node 0's
2021 if (pgdat == NODE_DATA(0))
2022 mem_map = NODE_DATA(0)->node_mem_map;
2023 #endif
2024 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2027 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2028 unsigned long *zones_size, unsigned long node_start_pfn,
2029 unsigned long *zholes_size)
2031 pgdat->node_id = nid;
2032 pgdat->node_start_pfn = node_start_pfn;
2033 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2035 alloc_node_mem_map(pgdat);
2037 free_area_init_core(pgdat, zones_size, zholes_size);
2040 #ifndef CONFIG_NEED_MULTIPLE_NODES
2041 static bootmem_data_t contig_bootmem_data;
2042 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2044 EXPORT_SYMBOL(contig_page_data);
2045 #endif
2047 void __init free_area_init(unsigned long *zones_size)
2049 free_area_init_node(0, NODE_DATA(0), zones_size,
2050 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2053 #ifdef CONFIG_PROC_FS
2055 #include <linux/seq_file.h>
2057 static void *frag_start(struct seq_file *m, loff_t *pos)
2059 pg_data_t *pgdat;
2060 loff_t node = *pos;
2062 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2063 --node;
2065 return pgdat;
2068 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2070 pg_data_t *pgdat = (pg_data_t *)arg;
2072 (*pos)++;
2073 return pgdat->pgdat_next;
2076 static void frag_stop(struct seq_file *m, void *arg)
2081 * This walks the free areas for each zone.
2083 static int frag_show(struct seq_file *m, void *arg)
2085 pg_data_t *pgdat = (pg_data_t *)arg;
2086 struct zone *zone;
2087 struct zone *node_zones = pgdat->node_zones;
2088 unsigned long flags;
2089 int order;
2091 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2092 if (!zone->present_pages)
2093 continue;
2095 spin_lock_irqsave(&zone->lock, flags);
2096 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2097 for (order = 0; order < MAX_ORDER; ++order)
2098 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2099 spin_unlock_irqrestore(&zone->lock, flags);
2100 seq_putc(m, '\n');
2102 return 0;
2105 struct seq_operations fragmentation_op = {
2106 .start = frag_start,
2107 .next = frag_next,
2108 .stop = frag_stop,
2109 .show = frag_show,
2113 * Output information about zones in @pgdat.
2115 static int zoneinfo_show(struct seq_file *m, void *arg)
2117 pg_data_t *pgdat = arg;
2118 struct zone *zone;
2119 struct zone *node_zones = pgdat->node_zones;
2120 unsigned long flags;
2122 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2123 int i;
2125 if (!zone->present_pages)
2126 continue;
2128 spin_lock_irqsave(&zone->lock, flags);
2129 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2130 seq_printf(m,
2131 "\n pages free %lu"
2132 "\n min %lu"
2133 "\n low %lu"
2134 "\n high %lu"
2135 "\n active %lu"
2136 "\n inactive %lu"
2137 "\n scanned %lu (a: %lu i: %lu)"
2138 "\n spanned %lu"
2139 "\n present %lu",
2140 zone->free_pages,
2141 zone->pages_min,
2142 zone->pages_low,
2143 zone->pages_high,
2144 zone->nr_active,
2145 zone->nr_inactive,
2146 zone->pages_scanned,
2147 zone->nr_scan_active, zone->nr_scan_inactive,
2148 zone->spanned_pages,
2149 zone->present_pages);
2150 seq_printf(m,
2151 "\n protection: (%lu",
2152 zone->lowmem_reserve[0]);
2153 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2154 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2155 seq_printf(m,
2157 "\n pagesets");
2158 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2159 struct per_cpu_pageset *pageset;
2160 int j;
2162 pageset = zone_pcp(zone, i);
2163 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2164 if (pageset->pcp[j].count)
2165 break;
2167 if (j == ARRAY_SIZE(pageset->pcp))
2168 continue;
2169 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2170 seq_printf(m,
2171 "\n cpu: %i pcp: %i"
2172 "\n count: %i"
2173 "\n low: %i"
2174 "\n high: %i"
2175 "\n batch: %i",
2176 i, j,
2177 pageset->pcp[j].count,
2178 pageset->pcp[j].low,
2179 pageset->pcp[j].high,
2180 pageset->pcp[j].batch);
2182 #ifdef CONFIG_NUMA
2183 seq_printf(m,
2184 "\n numa_hit: %lu"
2185 "\n numa_miss: %lu"
2186 "\n numa_foreign: %lu"
2187 "\n interleave_hit: %lu"
2188 "\n local_node: %lu"
2189 "\n other_node: %lu",
2190 pageset->numa_hit,
2191 pageset->numa_miss,
2192 pageset->numa_foreign,
2193 pageset->interleave_hit,
2194 pageset->local_node,
2195 pageset->other_node);
2196 #endif
2198 seq_printf(m,
2199 "\n all_unreclaimable: %u"
2200 "\n prev_priority: %i"
2201 "\n temp_priority: %i"
2202 "\n start_pfn: %lu",
2203 zone->all_unreclaimable,
2204 zone->prev_priority,
2205 zone->temp_priority,
2206 zone->zone_start_pfn);
2207 spin_unlock_irqrestore(&zone->lock, flags);
2208 seq_putc(m, '\n');
2210 return 0;
2213 struct seq_operations zoneinfo_op = {
2214 .start = frag_start, /* iterate over all zones. The same as in
2215 * fragmentation. */
2216 .next = frag_next,
2217 .stop = frag_stop,
2218 .show = zoneinfo_show,
2221 static char *vmstat_text[] = {
2222 "nr_dirty",
2223 "nr_writeback",
2224 "nr_unstable",
2225 "nr_page_table_pages",
2226 "nr_mapped",
2227 "nr_slab",
2229 "pgpgin",
2230 "pgpgout",
2231 "pswpin",
2232 "pswpout",
2233 "pgalloc_high",
2235 "pgalloc_normal",
2236 "pgalloc_dma",
2237 "pgfree",
2238 "pgactivate",
2239 "pgdeactivate",
2241 "pgfault",
2242 "pgmajfault",
2243 "pgrefill_high",
2244 "pgrefill_normal",
2245 "pgrefill_dma",
2247 "pgsteal_high",
2248 "pgsteal_normal",
2249 "pgsteal_dma",
2250 "pgscan_kswapd_high",
2251 "pgscan_kswapd_normal",
2253 "pgscan_kswapd_dma",
2254 "pgscan_direct_high",
2255 "pgscan_direct_normal",
2256 "pgscan_direct_dma",
2257 "pginodesteal",
2259 "slabs_scanned",
2260 "kswapd_steal",
2261 "kswapd_inodesteal",
2262 "pageoutrun",
2263 "allocstall",
2265 "pgrotated",
2266 "nr_bounce",
2269 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2271 struct page_state *ps;
2273 if (*pos >= ARRAY_SIZE(vmstat_text))
2274 return NULL;
2276 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2277 m->private = ps;
2278 if (!ps)
2279 return ERR_PTR(-ENOMEM);
2280 get_full_page_state(ps);
2281 ps->pgpgin /= 2; /* sectors -> kbytes */
2282 ps->pgpgout /= 2;
2283 return (unsigned long *)ps + *pos;
2286 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2288 (*pos)++;
2289 if (*pos >= ARRAY_SIZE(vmstat_text))
2290 return NULL;
2291 return (unsigned long *)m->private + *pos;
2294 static int vmstat_show(struct seq_file *m, void *arg)
2296 unsigned long *l = arg;
2297 unsigned long off = l - (unsigned long *)m->private;
2299 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2300 return 0;
2303 static void vmstat_stop(struct seq_file *m, void *arg)
2305 kfree(m->private);
2306 m->private = NULL;
2309 struct seq_operations vmstat_op = {
2310 .start = vmstat_start,
2311 .next = vmstat_next,
2312 .stop = vmstat_stop,
2313 .show = vmstat_show,
2316 #endif /* CONFIG_PROC_FS */
2318 #ifdef CONFIG_HOTPLUG_CPU
2319 static int page_alloc_cpu_notify(struct notifier_block *self,
2320 unsigned long action, void *hcpu)
2322 int cpu = (unsigned long)hcpu;
2323 long *count;
2324 unsigned long *src, *dest;
2326 if (action == CPU_DEAD) {
2327 int i;
2329 /* Drain local pagecache count. */
2330 count = &per_cpu(nr_pagecache_local, cpu);
2331 atomic_add(*count, &nr_pagecache);
2332 *count = 0;
2333 local_irq_disable();
2334 __drain_pages(cpu);
2336 /* Add dead cpu's page_states to our own. */
2337 dest = (unsigned long *)&__get_cpu_var(page_states);
2338 src = (unsigned long *)&per_cpu(page_states, cpu);
2340 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2341 i++) {
2342 dest[i] += src[i];
2343 src[i] = 0;
2346 local_irq_enable();
2348 return NOTIFY_OK;
2350 #endif /* CONFIG_HOTPLUG_CPU */
2352 void __init page_alloc_init(void)
2354 hotcpu_notifier(page_alloc_cpu_notify, 0);
2358 * setup_per_zone_lowmem_reserve - called whenever
2359 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2360 * has a correct pages reserved value, so an adequate number of
2361 * pages are left in the zone after a successful __alloc_pages().
2363 static void setup_per_zone_lowmem_reserve(void)
2365 struct pglist_data *pgdat;
2366 int j, idx;
2368 for_each_pgdat(pgdat) {
2369 for (j = 0; j < MAX_NR_ZONES; j++) {
2370 struct zone *zone = pgdat->node_zones + j;
2371 unsigned long present_pages = zone->present_pages;
2373 zone->lowmem_reserve[j] = 0;
2375 for (idx = j-1; idx >= 0; idx--) {
2376 struct zone *lower_zone;
2378 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2379 sysctl_lowmem_reserve_ratio[idx] = 1;
2381 lower_zone = pgdat->node_zones + idx;
2382 lower_zone->lowmem_reserve[j] = present_pages /
2383 sysctl_lowmem_reserve_ratio[idx];
2384 present_pages += lower_zone->present_pages;
2391 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2392 * that the pages_{min,low,high} values for each zone are set correctly
2393 * with respect to min_free_kbytes.
2395 void setup_per_zone_pages_min(void)
2397 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2398 unsigned long lowmem_pages = 0;
2399 struct zone *zone;
2400 unsigned long flags;
2402 /* Calculate total number of !ZONE_HIGHMEM pages */
2403 for_each_zone(zone) {
2404 if (!is_highmem(zone))
2405 lowmem_pages += zone->present_pages;
2408 for_each_zone(zone) {
2409 unsigned long tmp;
2410 spin_lock_irqsave(&zone->lru_lock, flags);
2411 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2412 if (is_highmem(zone)) {
2414 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2415 * need highmem pages, so cap pages_min to a small
2416 * value here.
2418 * The (pages_high-pages_low) and (pages_low-pages_min)
2419 * deltas controls asynch page reclaim, and so should
2420 * not be capped for highmem.
2422 int min_pages;
2424 min_pages = zone->present_pages / 1024;
2425 if (min_pages < SWAP_CLUSTER_MAX)
2426 min_pages = SWAP_CLUSTER_MAX;
2427 if (min_pages > 128)
2428 min_pages = 128;
2429 zone->pages_min = min_pages;
2430 } else {
2432 * If it's a lowmem zone, reserve a number of pages
2433 * proportionate to the zone's size.
2435 zone->pages_min = tmp;
2438 zone->pages_low = zone->pages_min + tmp / 4;
2439 zone->pages_high = zone->pages_min + tmp / 2;
2440 spin_unlock_irqrestore(&zone->lru_lock, flags);
2445 * Initialise min_free_kbytes.
2447 * For small machines we want it small (128k min). For large machines
2448 * we want it large (64MB max). But it is not linear, because network
2449 * bandwidth does not increase linearly with machine size. We use
2451 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2452 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2454 * which yields
2456 * 16MB: 512k
2457 * 32MB: 724k
2458 * 64MB: 1024k
2459 * 128MB: 1448k
2460 * 256MB: 2048k
2461 * 512MB: 2896k
2462 * 1024MB: 4096k
2463 * 2048MB: 5792k
2464 * 4096MB: 8192k
2465 * 8192MB: 11584k
2466 * 16384MB: 16384k
2468 static int __init init_per_zone_pages_min(void)
2470 unsigned long lowmem_kbytes;
2472 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2474 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2475 if (min_free_kbytes < 128)
2476 min_free_kbytes = 128;
2477 if (min_free_kbytes > 65536)
2478 min_free_kbytes = 65536;
2479 setup_per_zone_pages_min();
2480 setup_per_zone_lowmem_reserve();
2481 return 0;
2483 module_init(init_per_zone_pages_min)
2486 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2487 * that we can call two helper functions whenever min_free_kbytes
2488 * changes.
2490 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2491 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2493 proc_dointvec(table, write, file, buffer, length, ppos);
2494 setup_per_zone_pages_min();
2495 return 0;
2499 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2500 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2501 * whenever sysctl_lowmem_reserve_ratio changes.
2503 * The reserve ratio obviously has absolutely no relation with the
2504 * pages_min watermarks. The lowmem reserve ratio can only make sense
2505 * if in function of the boot time zone sizes.
2507 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2508 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2510 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2511 setup_per_zone_lowmem_reserve();
2512 return 0;
2515 __initdata int hashdist = HASHDIST_DEFAULT;
2517 #ifdef CONFIG_NUMA
2518 static int __init set_hashdist(char *str)
2520 if (!str)
2521 return 0;
2522 hashdist = simple_strtoul(str, &str, 0);
2523 return 1;
2525 __setup("hashdist=", set_hashdist);
2526 #endif
2529 * allocate a large system hash table from bootmem
2530 * - it is assumed that the hash table must contain an exact power-of-2
2531 * quantity of entries
2532 * - limit is the number of hash buckets, not the total allocation size
2534 void *__init alloc_large_system_hash(const char *tablename,
2535 unsigned long bucketsize,
2536 unsigned long numentries,
2537 int scale,
2538 int flags,
2539 unsigned int *_hash_shift,
2540 unsigned int *_hash_mask,
2541 unsigned long limit)
2543 unsigned long long max = limit;
2544 unsigned long log2qty, size;
2545 void *table = NULL;
2547 /* allow the kernel cmdline to have a say */
2548 if (!numentries) {
2549 /* round applicable memory size up to nearest megabyte */
2550 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2551 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2552 numentries >>= 20 - PAGE_SHIFT;
2553 numentries <<= 20 - PAGE_SHIFT;
2555 /* limit to 1 bucket per 2^scale bytes of low memory */
2556 if (scale > PAGE_SHIFT)
2557 numentries >>= (scale - PAGE_SHIFT);
2558 else
2559 numentries <<= (PAGE_SHIFT - scale);
2561 /* rounded up to nearest power of 2 in size */
2562 numentries = 1UL << (long_log2(numentries) + 1);
2564 /* limit allocation size to 1/16 total memory by default */
2565 if (max == 0) {
2566 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2567 do_div(max, bucketsize);
2570 if (numentries > max)
2571 numentries = max;
2573 log2qty = long_log2(numentries);
2575 do {
2576 size = bucketsize << log2qty;
2577 if (flags & HASH_EARLY)
2578 table = alloc_bootmem(size);
2579 else if (hashdist)
2580 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2581 else {
2582 unsigned long order;
2583 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2585 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2587 } while (!table && size > PAGE_SIZE && --log2qty);
2589 if (!table)
2590 panic("Failed to allocate %s hash table\n", tablename);
2592 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2593 tablename,
2594 (1U << log2qty),
2595 long_log2(size) - PAGE_SHIFT,
2596 size);
2598 if (_hash_shift)
2599 *_hash_shift = log2qty;
2600 if (_hash_mask)
2601 *_hash_mask = (1 << log2qty) - 1;
2603 return table;