thinkpad-acpi: make driver events work in NVRAM poll mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / tick-broadcast.c
blobd1b32166be6f7a58c552def5e36c28e4a6630432
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 static int tick_broadcast_force;
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_clear_oneshot(int cpu);
37 #else
38 static inline void tick_broadcast_clear_oneshot(int cpu) { }
39 #endif
42 * Debugging: see timer_list.c
44 struct tick_device *tick_get_broadcast_device(void)
46 return &tick_broadcast_device;
49 cpumask_t *tick_get_broadcast_mask(void)
51 return &tick_broadcast_mask;
55 * Start the device in periodic mode
57 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 if (bc)
60 tick_setup_periodic(bc, 1);
64 * Check, if the device can be utilized as broadcast device:
66 int tick_check_broadcast_device(struct clock_event_device *dev)
68 if ((tick_broadcast_device.evtdev &&
69 tick_broadcast_device.evtdev->rating >= dev->rating) ||
70 (dev->features & CLOCK_EVT_FEAT_C3STOP))
71 return 0;
73 clockevents_exchange_device(NULL, dev);
74 tick_broadcast_device.evtdev = dev;
75 if (!cpus_empty(tick_broadcast_mask))
76 tick_broadcast_start_periodic(dev);
77 return 1;
81 * Check, if the device is the broadcast device
83 int tick_is_broadcast_device(struct clock_event_device *dev)
85 return (dev && tick_broadcast_device.evtdev == dev);
89 * Check, if the device is disfunctional and a place holder, which
90 * needs to be handled by the broadcast device.
92 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
94 unsigned long flags;
95 int ret = 0;
97 spin_lock_irqsave(&tick_broadcast_lock, flags);
100 * Devices might be registered with both periodic and oneshot
101 * mode disabled. This signals, that the device needs to be
102 * operated from the broadcast device and is a placeholder for
103 * the cpu local device.
105 if (!tick_device_is_functional(dev)) {
106 dev->event_handler = tick_handle_periodic;
107 cpu_set(cpu, tick_broadcast_mask);
108 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
109 ret = 1;
110 } else {
112 * When the new device is not affected by the stop
113 * feature and the cpu is marked in the broadcast mask
114 * then clear the broadcast bit.
116 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
117 int cpu = smp_processor_id();
119 cpu_clear(cpu, tick_broadcast_mask);
120 tick_broadcast_clear_oneshot(cpu);
123 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
124 return ret;
128 * Broadcast the event to the cpus, which are set in the mask
130 static void tick_do_broadcast(cpumask_t mask)
132 int cpu = smp_processor_id();
133 struct tick_device *td;
136 * Check, if the current cpu is in the mask
138 if (cpu_isset(cpu, mask)) {
139 cpu_clear(cpu, mask);
140 td = &per_cpu(tick_cpu_device, cpu);
141 td->evtdev->event_handler(td->evtdev);
144 if (!cpus_empty(mask)) {
146 * It might be necessary to actually check whether the devices
147 * have different broadcast functions. For now, just use the
148 * one of the first device. This works as long as we have this
149 * misfeature only on x86 (lapic)
151 cpu = first_cpu(mask);
152 td = &per_cpu(tick_cpu_device, cpu);
153 td->evtdev->broadcast(mask);
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
161 static void tick_do_periodic_broadcast(void)
163 cpumask_t mask;
165 spin_lock(&tick_broadcast_lock);
167 cpus_and(mask, cpu_online_map, tick_broadcast_mask);
168 tick_do_broadcast(mask);
170 spin_unlock(&tick_broadcast_lock);
174 * Event handler for periodic broadcast ticks
176 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
178 ktime_t next;
180 tick_do_periodic_broadcast();
183 * The device is in periodic mode. No reprogramming necessary:
185 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 return;
189 * Setup the next period for devices, which do not have
190 * periodic mode. We read dev->next_event first and add to it
191 * when the event alrady expired. clockevents_program_event()
192 * sets dev->next_event only when the event is really
193 * programmed to the device.
195 for (next = dev->next_event; ;) {
196 next = ktime_add(next, tick_period);
198 if (!clockevents_program_event(dev, next, ktime_get()))
199 return;
200 tick_do_periodic_broadcast();
205 * Powerstate information: The system enters/leaves a state, where
206 * affected devices might stop
208 static void tick_do_broadcast_on_off(unsigned long *reason)
210 struct clock_event_device *bc, *dev;
211 struct tick_device *td;
212 unsigned long flags;
213 int cpu, bc_stopped;
215 spin_lock_irqsave(&tick_broadcast_lock, flags);
217 cpu = smp_processor_id();
218 td = &per_cpu(tick_cpu_device, cpu);
219 dev = td->evtdev;
220 bc = tick_broadcast_device.evtdev;
223 * Is the device not affected by the powerstate ?
225 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
226 goto out;
228 if (!tick_device_is_functional(dev))
229 goto out;
231 bc_stopped = cpus_empty(tick_broadcast_mask);
233 switch (*reason) {
234 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
235 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236 if (!cpu_isset(cpu, tick_broadcast_mask)) {
237 cpu_set(cpu, tick_broadcast_mask);
238 if (tick_broadcast_device.mode ==
239 TICKDEV_MODE_PERIODIC)
240 clockevents_shutdown(dev);
242 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
243 tick_broadcast_force = 1;
244 break;
245 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
246 if (!tick_broadcast_force &&
247 cpu_isset(cpu, tick_broadcast_mask)) {
248 cpu_clear(cpu, tick_broadcast_mask);
249 if (tick_broadcast_device.mode ==
250 TICKDEV_MODE_PERIODIC)
251 tick_setup_periodic(dev, 0);
253 break;
256 if (cpus_empty(tick_broadcast_mask)) {
257 if (!bc_stopped)
258 clockevents_shutdown(bc);
259 } else if (bc_stopped) {
260 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
261 tick_broadcast_start_periodic(bc);
262 else
263 tick_broadcast_setup_oneshot(bc);
265 out:
266 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
270 * Powerstate information: The system enters/leaves a state, where
271 * affected devices might stop.
273 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
275 if (!cpu_isset(*oncpu, cpu_online_map))
276 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
277 "offline CPU #%d\n", *oncpu);
278 else
279 tick_do_broadcast_on_off(&reason);
283 * Set the periodic handler depending on broadcast on/off
285 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
287 if (!broadcast)
288 dev->event_handler = tick_handle_periodic;
289 else
290 dev->event_handler = tick_handle_periodic_broadcast;
294 * Remove a CPU from broadcasting
296 void tick_shutdown_broadcast(unsigned int *cpup)
298 struct clock_event_device *bc;
299 unsigned long flags;
300 unsigned int cpu = *cpup;
302 spin_lock_irqsave(&tick_broadcast_lock, flags);
304 bc = tick_broadcast_device.evtdev;
305 cpu_clear(cpu, tick_broadcast_mask);
307 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
308 if (bc && cpus_empty(tick_broadcast_mask))
309 clockevents_shutdown(bc);
312 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
315 void tick_suspend_broadcast(void)
317 struct clock_event_device *bc;
318 unsigned long flags;
320 spin_lock_irqsave(&tick_broadcast_lock, flags);
322 bc = tick_broadcast_device.evtdev;
323 if (bc)
324 clockevents_shutdown(bc);
326 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
329 int tick_resume_broadcast(void)
331 struct clock_event_device *bc;
332 unsigned long flags;
333 int broadcast = 0;
335 spin_lock_irqsave(&tick_broadcast_lock, flags);
337 bc = tick_broadcast_device.evtdev;
339 if (bc) {
340 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
342 switch (tick_broadcast_device.mode) {
343 case TICKDEV_MODE_PERIODIC:
344 if(!cpus_empty(tick_broadcast_mask))
345 tick_broadcast_start_periodic(bc);
346 broadcast = cpu_isset(smp_processor_id(),
347 tick_broadcast_mask);
348 break;
349 case TICKDEV_MODE_ONESHOT:
350 broadcast = tick_resume_broadcast_oneshot(bc);
351 break;
354 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
356 return broadcast;
360 #ifdef CONFIG_TICK_ONESHOT
362 static cpumask_t tick_broadcast_oneshot_mask;
365 * Debugging: see timer_list.c
367 cpumask_t *tick_get_broadcast_oneshot_mask(void)
369 return &tick_broadcast_oneshot_mask;
372 static int tick_broadcast_set_event(ktime_t expires, int force)
374 struct clock_event_device *bc = tick_broadcast_device.evtdev;
376 return tick_dev_program_event(bc, expires, force);
379 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
381 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
382 return 0;
386 * Handle oneshot mode broadcasting
388 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
390 struct tick_device *td;
391 cpumask_t mask;
392 ktime_t now, next_event;
393 int cpu;
395 spin_lock(&tick_broadcast_lock);
396 again:
397 dev->next_event.tv64 = KTIME_MAX;
398 next_event.tv64 = KTIME_MAX;
399 mask = CPU_MASK_NONE;
400 now = ktime_get();
401 /* Find all expired events */
402 for_each_cpu_mask_nr(cpu, tick_broadcast_oneshot_mask) {
403 td = &per_cpu(tick_cpu_device, cpu);
404 if (td->evtdev->next_event.tv64 <= now.tv64)
405 cpu_set(cpu, mask);
406 else if (td->evtdev->next_event.tv64 < next_event.tv64)
407 next_event.tv64 = td->evtdev->next_event.tv64;
411 * Wakeup the cpus which have an expired event.
413 tick_do_broadcast(mask);
416 * Two reasons for reprogram:
418 * - The global event did not expire any CPU local
419 * events. This happens in dyntick mode, as the maximum PIT
420 * delta is quite small.
422 * - There are pending events on sleeping CPUs which were not
423 * in the event mask
425 if (next_event.tv64 != KTIME_MAX) {
427 * Rearm the broadcast device. If event expired,
428 * repeat the above
430 if (tick_broadcast_set_event(next_event, 0))
431 goto again;
433 spin_unlock(&tick_broadcast_lock);
437 * Powerstate information: The system enters/leaves a state, where
438 * affected devices might stop
440 void tick_broadcast_oneshot_control(unsigned long reason)
442 struct clock_event_device *bc, *dev;
443 struct tick_device *td;
444 unsigned long flags;
445 int cpu;
447 spin_lock_irqsave(&tick_broadcast_lock, flags);
450 * Periodic mode does not care about the enter/exit of power
451 * states
453 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
454 goto out;
456 bc = tick_broadcast_device.evtdev;
457 cpu = smp_processor_id();
458 td = &per_cpu(tick_cpu_device, cpu);
459 dev = td->evtdev;
461 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
462 goto out;
464 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
465 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
466 cpu_set(cpu, tick_broadcast_oneshot_mask);
467 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
468 if (dev->next_event.tv64 < bc->next_event.tv64)
469 tick_broadcast_set_event(dev->next_event, 1);
471 } else {
472 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
473 cpu_clear(cpu, tick_broadcast_oneshot_mask);
474 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
475 if (dev->next_event.tv64 != KTIME_MAX)
476 tick_program_event(dev->next_event, 1);
480 out:
481 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
485 * Reset the one shot broadcast for a cpu
487 * Called with tick_broadcast_lock held
489 static void tick_broadcast_clear_oneshot(int cpu)
491 cpu_clear(cpu, tick_broadcast_oneshot_mask);
494 static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires)
496 struct tick_device *td;
497 int cpu;
499 for_each_cpu_mask_nr(cpu, *mask) {
500 td = &per_cpu(tick_cpu_device, cpu);
501 if (td->evtdev)
502 td->evtdev->next_event = expires;
507 * tick_broadcast_setup_oneshot - setup the broadcast device
509 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
511 /* Set it up only once ! */
512 if (bc->event_handler != tick_handle_oneshot_broadcast) {
513 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
514 int cpu = smp_processor_id();
515 cpumask_t mask;
517 bc->event_handler = tick_handle_oneshot_broadcast;
518 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
520 /* Take the do_timer update */
521 tick_do_timer_cpu = cpu;
524 * We must be careful here. There might be other CPUs
525 * waiting for periodic broadcast. We need to set the
526 * oneshot_mask bits for those and program the
527 * broadcast device to fire.
529 mask = tick_broadcast_mask;
530 cpu_clear(cpu, mask);
531 cpus_or(tick_broadcast_oneshot_mask,
532 tick_broadcast_oneshot_mask, mask);
534 if (was_periodic && !cpus_empty(mask)) {
535 tick_broadcast_init_next_event(&mask, tick_next_period);
536 tick_broadcast_set_event(tick_next_period, 1);
537 } else
538 bc->next_event.tv64 = KTIME_MAX;
543 * Select oneshot operating mode for the broadcast device
545 void tick_broadcast_switch_to_oneshot(void)
547 struct clock_event_device *bc;
548 unsigned long flags;
550 spin_lock_irqsave(&tick_broadcast_lock, flags);
552 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
553 bc = tick_broadcast_device.evtdev;
554 if (bc)
555 tick_broadcast_setup_oneshot(bc);
556 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
561 * Remove a dead CPU from broadcasting
563 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
565 unsigned long flags;
566 unsigned int cpu = *cpup;
568 spin_lock_irqsave(&tick_broadcast_lock, flags);
571 * Clear the broadcast mask flag for the dead cpu, but do not
572 * stop the broadcast device!
574 cpu_clear(cpu, tick_broadcast_oneshot_mask);
576 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
580 * Check, whether the broadcast device is in one shot mode
582 int tick_broadcast_oneshot_active(void)
584 return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
587 #endif