[PATCH] update email address
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mempolicy.c
blob954981b14303f2298a19646c770984aebac0a812
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
90 #include <asm/tlbflush.h>
91 #include <asm/uaccess.h>
93 /* Internal flags */
94 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
95 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
96 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
98 /* The number of pages to migrate per call to migrate_pages() */
99 #define MIGRATE_CHUNK_SIZE 256
101 static kmem_cache_t *policy_cache;
102 static kmem_cache_t *sn_cache;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 int policy_zone = ZONE_DMA;
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
118 int empty = nodes_empty(*nodes);
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
139 struct zonelist *zl;
140 int num, max, nd, k;
142 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
143 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
144 if (!zl)
145 return NULL;
146 num = 0;
147 /* First put in the highest zones from all nodes, then all the next
148 lower zones etc. Avoid empty zones because the memory allocator
149 doesn't like them. If you implement node hot removal you
150 have to fix that. */
151 for (k = policy_zone; k >= 0; k--) {
152 for_each_node_mask(nd, *nodes) {
153 struct zone *z = &NODE_DATA(nd)->node_zones[k];
154 if (z->present_pages > 0)
155 zl->zones[num++] = z;
158 zl->zones[num] = NULL;
159 return zl;
162 /* Create a new policy */
163 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
165 struct mempolicy *policy;
167 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
168 if (mode == MPOL_DEFAULT)
169 return NULL;
170 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
171 if (!policy)
172 return ERR_PTR(-ENOMEM);
173 atomic_set(&policy->refcnt, 1);
174 switch (mode) {
175 case MPOL_INTERLEAVE:
176 policy->v.nodes = *nodes;
177 if (nodes_weight(*nodes) == 0) {
178 kmem_cache_free(policy_cache, policy);
179 return ERR_PTR(-EINVAL);
181 break;
182 case MPOL_PREFERRED:
183 policy->v.preferred_node = first_node(*nodes);
184 if (policy->v.preferred_node >= MAX_NUMNODES)
185 policy->v.preferred_node = -1;
186 break;
187 case MPOL_BIND:
188 policy->v.zonelist = bind_zonelist(nodes);
189 if (policy->v.zonelist == NULL) {
190 kmem_cache_free(policy_cache, policy);
191 return ERR_PTR(-ENOMEM);
193 break;
195 policy->policy = mode;
196 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
197 return policy;
200 static void gather_stats(struct page *, void *, int pte_dirty);
201 static void migrate_page_add(struct page *page, struct list_head *pagelist,
202 unsigned long flags);
204 /* Scan through pages checking if pages follow certain conditions. */
205 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
206 unsigned long addr, unsigned long end,
207 const nodemask_t *nodes, unsigned long flags,
208 void *private)
210 pte_t *orig_pte;
211 pte_t *pte;
212 spinlock_t *ptl;
214 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
215 do {
216 struct page *page;
217 unsigned int nid;
219 if (!pte_present(*pte))
220 continue;
221 page = vm_normal_page(vma, addr, *pte);
222 if (!page)
223 continue;
225 * The check for PageReserved here is important to avoid
226 * handling zero pages and other pages that may have been
227 * marked special by the system.
229 * If the PageReserved would not be checked here then f.e.
230 * the location of the zero page could have an influence
231 * on MPOL_MF_STRICT, zero pages would be counted for
232 * the per node stats, and there would be useless attempts
233 * to put zero pages on the migration list.
235 if (PageReserved(page))
236 continue;
237 nid = page_to_nid(page);
238 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
239 continue;
241 if (flags & MPOL_MF_STATS)
242 gather_stats(page, private, pte_dirty(*pte));
243 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
244 migrate_page_add(page, private, flags);
245 else
246 break;
247 } while (pte++, addr += PAGE_SIZE, addr != end);
248 pte_unmap_unlock(orig_pte, ptl);
249 return addr != end;
252 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
253 unsigned long addr, unsigned long end,
254 const nodemask_t *nodes, unsigned long flags,
255 void *private)
257 pmd_t *pmd;
258 unsigned long next;
260 pmd = pmd_offset(pud, addr);
261 do {
262 next = pmd_addr_end(addr, end);
263 if (pmd_none_or_clear_bad(pmd))
264 continue;
265 if (check_pte_range(vma, pmd, addr, next, nodes,
266 flags, private))
267 return -EIO;
268 } while (pmd++, addr = next, addr != end);
269 return 0;
272 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 const nodemask_t *nodes, unsigned long flags,
275 void *private)
277 pud_t *pud;
278 unsigned long next;
280 pud = pud_offset(pgd, addr);
281 do {
282 next = pud_addr_end(addr, end);
283 if (pud_none_or_clear_bad(pud))
284 continue;
285 if (check_pmd_range(vma, pud, addr, next, nodes,
286 flags, private))
287 return -EIO;
288 } while (pud++, addr = next, addr != end);
289 return 0;
292 static inline int check_pgd_range(struct vm_area_struct *vma,
293 unsigned long addr, unsigned long end,
294 const nodemask_t *nodes, unsigned long flags,
295 void *private)
297 pgd_t *pgd;
298 unsigned long next;
300 pgd = pgd_offset(vma->vm_mm, addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 if (pgd_none_or_clear_bad(pgd))
304 continue;
305 if (check_pud_range(vma, pgd, addr, next, nodes,
306 flags, private))
307 return -EIO;
308 } while (pgd++, addr = next, addr != end);
309 return 0;
312 /* Check if a vma is migratable */
313 static inline int vma_migratable(struct vm_area_struct *vma)
315 if (vma->vm_flags & (
316 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
317 return 0;
318 return 1;
322 * Check if all pages in a range are on a set of nodes.
323 * If pagelist != NULL then isolate pages from the LRU and
324 * put them on the pagelist.
326 static struct vm_area_struct *
327 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
328 const nodemask_t *nodes, unsigned long flags, void *private)
330 int err;
331 struct vm_area_struct *first, *vma, *prev;
333 /* Clear the LRU lists so pages can be isolated */
334 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
335 lru_add_drain_all();
337 first = find_vma(mm, start);
338 if (!first)
339 return ERR_PTR(-EFAULT);
340 prev = NULL;
341 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
342 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
343 if (!vma->vm_next && vma->vm_end < end)
344 return ERR_PTR(-EFAULT);
345 if (prev && prev->vm_end < vma->vm_start)
346 return ERR_PTR(-EFAULT);
348 if (!is_vm_hugetlb_page(vma) &&
349 ((flags & MPOL_MF_STRICT) ||
350 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
351 vma_migratable(vma)))) {
352 unsigned long endvma = vma->vm_end;
354 if (endvma > end)
355 endvma = end;
356 if (vma->vm_start > start)
357 start = vma->vm_start;
358 err = check_pgd_range(vma, start, endvma, nodes,
359 flags, private);
360 if (err) {
361 first = ERR_PTR(err);
362 break;
365 prev = vma;
367 return first;
370 /* Apply policy to a single VMA */
371 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
373 int err = 0;
374 struct mempolicy *old = vma->vm_policy;
376 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
377 vma->vm_start, vma->vm_end, vma->vm_pgoff,
378 vma->vm_ops, vma->vm_file,
379 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
381 if (vma->vm_ops && vma->vm_ops->set_policy)
382 err = vma->vm_ops->set_policy(vma, new);
383 if (!err) {
384 mpol_get(new);
385 vma->vm_policy = new;
386 mpol_free(old);
388 return err;
391 /* Step 2: apply policy to a range and do splits. */
392 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
393 unsigned long end, struct mempolicy *new)
395 struct vm_area_struct *next;
396 int err;
398 err = 0;
399 for (; vma && vma->vm_start < end; vma = next) {
400 next = vma->vm_next;
401 if (vma->vm_start < start)
402 err = split_vma(vma->vm_mm, vma, start, 1);
403 if (!err && vma->vm_end > end)
404 err = split_vma(vma->vm_mm, vma, end, 0);
405 if (!err)
406 err = policy_vma(vma, new);
407 if (err)
408 break;
410 return err;
413 static int contextualize_policy(int mode, nodemask_t *nodes)
415 if (!nodes)
416 return 0;
418 cpuset_update_task_memory_state();
419 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
420 return -EINVAL;
421 return mpol_check_policy(mode, nodes);
424 /* Set the process memory policy */
425 long do_set_mempolicy(int mode, nodemask_t *nodes)
427 struct mempolicy *new;
429 if (contextualize_policy(mode, nodes))
430 return -EINVAL;
431 new = mpol_new(mode, nodes);
432 if (IS_ERR(new))
433 return PTR_ERR(new);
434 mpol_free(current->mempolicy);
435 current->mempolicy = new;
436 if (new && new->policy == MPOL_INTERLEAVE)
437 current->il_next = first_node(new->v.nodes);
438 return 0;
441 /* Fill a zone bitmap for a policy */
442 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
444 int i;
446 nodes_clear(*nodes);
447 switch (p->policy) {
448 case MPOL_BIND:
449 for (i = 0; p->v.zonelist->zones[i]; i++)
450 node_set(p->v.zonelist->zones[i]->zone_pgdat->node_id,
451 *nodes);
452 break;
453 case MPOL_DEFAULT:
454 break;
455 case MPOL_INTERLEAVE:
456 *nodes = p->v.nodes;
457 break;
458 case MPOL_PREFERRED:
459 /* or use current node instead of online map? */
460 if (p->v.preferred_node < 0)
461 *nodes = node_online_map;
462 else
463 node_set(p->v.preferred_node, *nodes);
464 break;
465 default:
466 BUG();
470 static int lookup_node(struct mm_struct *mm, unsigned long addr)
472 struct page *p;
473 int err;
475 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
476 if (err >= 0) {
477 err = page_to_nid(p);
478 put_page(p);
480 return err;
483 /* Retrieve NUMA policy */
484 long do_get_mempolicy(int *policy, nodemask_t *nmask,
485 unsigned long addr, unsigned long flags)
487 int err;
488 struct mm_struct *mm = current->mm;
489 struct vm_area_struct *vma = NULL;
490 struct mempolicy *pol = current->mempolicy;
492 cpuset_update_task_memory_state();
493 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
494 return -EINVAL;
495 if (flags & MPOL_F_ADDR) {
496 down_read(&mm->mmap_sem);
497 vma = find_vma_intersection(mm, addr, addr+1);
498 if (!vma) {
499 up_read(&mm->mmap_sem);
500 return -EFAULT;
502 if (vma->vm_ops && vma->vm_ops->get_policy)
503 pol = vma->vm_ops->get_policy(vma, addr);
504 else
505 pol = vma->vm_policy;
506 } else if (addr)
507 return -EINVAL;
509 if (!pol)
510 pol = &default_policy;
512 if (flags & MPOL_F_NODE) {
513 if (flags & MPOL_F_ADDR) {
514 err = lookup_node(mm, addr);
515 if (err < 0)
516 goto out;
517 *policy = err;
518 } else if (pol == current->mempolicy &&
519 pol->policy == MPOL_INTERLEAVE) {
520 *policy = current->il_next;
521 } else {
522 err = -EINVAL;
523 goto out;
525 } else
526 *policy = pol->policy;
528 if (vma) {
529 up_read(&current->mm->mmap_sem);
530 vma = NULL;
533 err = 0;
534 if (nmask)
535 get_zonemask(pol, nmask);
537 out:
538 if (vma)
539 up_read(&current->mm->mmap_sem);
540 return err;
544 * page migration
547 static void migrate_page_add(struct page *page, struct list_head *pagelist,
548 unsigned long flags)
551 * Avoid migrating a page that is shared with others.
553 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
554 if (isolate_lru_page(page))
555 list_add_tail(&page->lru, pagelist);
560 * Migrate the list 'pagelist' of pages to a certain destination.
562 * Specify destination with either non-NULL vma or dest_node >= 0
563 * Return the number of pages not migrated or error code
565 static int migrate_pages_to(struct list_head *pagelist,
566 struct vm_area_struct *vma, int dest)
568 LIST_HEAD(newlist);
569 LIST_HEAD(moved);
570 LIST_HEAD(failed);
571 int err = 0;
572 unsigned long offset = 0;
573 int nr_pages;
574 struct page *page;
575 struct list_head *p;
577 redo:
578 nr_pages = 0;
579 list_for_each(p, pagelist) {
580 if (vma) {
582 * The address passed to alloc_page_vma is used to
583 * generate the proper interleave behavior. We fake
584 * the address here by an increasing offset in order
585 * to get the proper distribution of pages.
587 * No decision has been made as to which page
588 * a certain old page is moved to so we cannot
589 * specify the correct address.
591 page = alloc_page_vma(GFP_HIGHUSER, vma,
592 offset + vma->vm_start);
593 offset += PAGE_SIZE;
595 else
596 page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
598 if (!page) {
599 err = -ENOMEM;
600 goto out;
602 list_add_tail(&page->lru, &newlist);
603 nr_pages++;
604 if (nr_pages > MIGRATE_CHUNK_SIZE)
605 break;
607 err = migrate_pages(pagelist, &newlist, &moved, &failed);
609 putback_lru_pages(&moved); /* Call release pages instead ?? */
611 if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
612 goto redo;
613 out:
614 /* Return leftover allocated pages */
615 while (!list_empty(&newlist)) {
616 page = list_entry(newlist.next, struct page, lru);
617 list_del(&page->lru);
618 __free_page(page);
620 list_splice(&failed, pagelist);
621 if (err < 0)
622 return err;
624 /* Calculate number of leftover pages */
625 nr_pages = 0;
626 list_for_each(p, pagelist)
627 nr_pages++;
628 return nr_pages;
632 * Migrate pages from one node to a target node.
633 * Returns error or the number of pages not migrated.
635 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
637 nodemask_t nmask;
638 LIST_HEAD(pagelist);
639 int err = 0;
641 nodes_clear(nmask);
642 node_set(source, nmask);
644 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
645 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
647 if (!list_empty(&pagelist)) {
648 err = migrate_pages_to(&pagelist, NULL, dest);
649 if (!list_empty(&pagelist))
650 putback_lru_pages(&pagelist);
652 return err;
656 * Move pages between the two nodesets so as to preserve the physical
657 * layout as much as possible.
659 * Returns the number of page that could not be moved.
661 int do_migrate_pages(struct mm_struct *mm,
662 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
664 LIST_HEAD(pagelist);
665 int busy = 0;
666 int err = 0;
667 nodemask_t tmp;
669 down_read(&mm->mmap_sem);
672 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
673 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
674 * bit in 'tmp', and return that <source, dest> pair for migration.
675 * The pair of nodemasks 'to' and 'from' define the map.
677 * If no pair of bits is found that way, fallback to picking some
678 * pair of 'source' and 'dest' bits that are not the same. If the
679 * 'source' and 'dest' bits are the same, this represents a node
680 * that will be migrating to itself, so no pages need move.
682 * If no bits are left in 'tmp', or if all remaining bits left
683 * in 'tmp' correspond to the same bit in 'to', return false
684 * (nothing left to migrate).
686 * This lets us pick a pair of nodes to migrate between, such that
687 * if possible the dest node is not already occupied by some other
688 * source node, minimizing the risk of overloading the memory on a
689 * node that would happen if we migrated incoming memory to a node
690 * before migrating outgoing memory source that same node.
692 * A single scan of tmp is sufficient. As we go, we remember the
693 * most recent <s, d> pair that moved (s != d). If we find a pair
694 * that not only moved, but what's better, moved to an empty slot
695 * (d is not set in tmp), then we break out then, with that pair.
696 * Otherwise when we finish scannng from_tmp, we at least have the
697 * most recent <s, d> pair that moved. If we get all the way through
698 * the scan of tmp without finding any node that moved, much less
699 * moved to an empty node, then there is nothing left worth migrating.
702 tmp = *from_nodes;
703 while (!nodes_empty(tmp)) {
704 int s,d;
705 int source = -1;
706 int dest = 0;
708 for_each_node_mask(s, tmp) {
709 d = node_remap(s, *from_nodes, *to_nodes);
710 if (s == d)
711 continue;
713 source = s; /* Node moved. Memorize */
714 dest = d;
716 /* dest not in remaining from nodes? */
717 if (!node_isset(dest, tmp))
718 break;
720 if (source == -1)
721 break;
723 node_clear(source, tmp);
724 err = migrate_to_node(mm, source, dest, flags);
725 if (err > 0)
726 busy += err;
727 if (err < 0)
728 break;
731 up_read(&mm->mmap_sem);
732 if (err < 0)
733 return err;
734 return busy;
737 long do_mbind(unsigned long start, unsigned long len,
738 unsigned long mode, nodemask_t *nmask, unsigned long flags)
740 struct vm_area_struct *vma;
741 struct mm_struct *mm = current->mm;
742 struct mempolicy *new;
743 unsigned long end;
744 int err;
745 LIST_HEAD(pagelist);
747 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
748 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
749 || mode > MPOL_MAX)
750 return -EINVAL;
751 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_RESOURCE))
752 return -EPERM;
754 if (start & ~PAGE_MASK)
755 return -EINVAL;
757 if (mode == MPOL_DEFAULT)
758 flags &= ~MPOL_MF_STRICT;
760 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
761 end = start + len;
763 if (end < start)
764 return -EINVAL;
765 if (end == start)
766 return 0;
768 if (mpol_check_policy(mode, nmask))
769 return -EINVAL;
771 new = mpol_new(mode, nmask);
772 if (IS_ERR(new))
773 return PTR_ERR(new);
776 * If we are using the default policy then operation
777 * on discontinuous address spaces is okay after all
779 if (!new)
780 flags |= MPOL_MF_DISCONTIG_OK;
782 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
783 mode,nodes_addr(nodes)[0]);
785 down_write(&mm->mmap_sem);
786 vma = check_range(mm, start, end, nmask,
787 flags | MPOL_MF_INVERT, &pagelist);
789 err = PTR_ERR(vma);
790 if (!IS_ERR(vma)) {
791 int nr_failed = 0;
793 err = mbind_range(vma, start, end, new);
795 if (!list_empty(&pagelist))
796 nr_failed = migrate_pages_to(&pagelist, vma, -1);
798 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
799 err = -EIO;
801 if (!list_empty(&pagelist))
802 putback_lru_pages(&pagelist);
804 up_write(&mm->mmap_sem);
805 mpol_free(new);
806 return err;
810 * User space interface with variable sized bitmaps for nodelists.
813 /* Copy a node mask from user space. */
814 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
815 unsigned long maxnode)
817 unsigned long k;
818 unsigned long nlongs;
819 unsigned long endmask;
821 --maxnode;
822 nodes_clear(*nodes);
823 if (maxnode == 0 || !nmask)
824 return 0;
825 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
826 return -EINVAL;
828 nlongs = BITS_TO_LONGS(maxnode);
829 if ((maxnode % BITS_PER_LONG) == 0)
830 endmask = ~0UL;
831 else
832 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
834 /* When the user specified more nodes than supported just check
835 if the non supported part is all zero. */
836 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
837 if (nlongs > PAGE_SIZE/sizeof(long))
838 return -EINVAL;
839 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
840 unsigned long t;
841 if (get_user(t, nmask + k))
842 return -EFAULT;
843 if (k == nlongs - 1) {
844 if (t & endmask)
845 return -EINVAL;
846 } else if (t)
847 return -EINVAL;
849 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
850 endmask = ~0UL;
853 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
854 return -EFAULT;
855 nodes_addr(*nodes)[nlongs-1] &= endmask;
856 return 0;
859 /* Copy a kernel node mask to user space */
860 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
861 nodemask_t *nodes)
863 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
864 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
866 if (copy > nbytes) {
867 if (copy > PAGE_SIZE)
868 return -EINVAL;
869 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
870 return -EFAULT;
871 copy = nbytes;
873 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
876 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
877 unsigned long mode,
878 unsigned long __user *nmask, unsigned long maxnode,
879 unsigned flags)
881 nodemask_t nodes;
882 int err;
884 err = get_nodes(&nodes, nmask, maxnode);
885 if (err)
886 return err;
887 return do_mbind(start, len, mode, &nodes, flags);
890 /* Set the process memory policy */
891 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
892 unsigned long maxnode)
894 int err;
895 nodemask_t nodes;
897 if (mode < 0 || mode > MPOL_MAX)
898 return -EINVAL;
899 err = get_nodes(&nodes, nmask, maxnode);
900 if (err)
901 return err;
902 return do_set_mempolicy(mode, &nodes);
905 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
906 const unsigned long __user *old_nodes,
907 const unsigned long __user *new_nodes)
909 struct mm_struct *mm;
910 struct task_struct *task;
911 nodemask_t old;
912 nodemask_t new;
913 nodemask_t task_nodes;
914 int err;
916 err = get_nodes(&old, old_nodes, maxnode);
917 if (err)
918 return err;
920 err = get_nodes(&new, new_nodes, maxnode);
921 if (err)
922 return err;
924 /* Find the mm_struct */
925 read_lock(&tasklist_lock);
926 task = pid ? find_task_by_pid(pid) : current;
927 if (!task) {
928 read_unlock(&tasklist_lock);
929 return -ESRCH;
931 mm = get_task_mm(task);
932 read_unlock(&tasklist_lock);
934 if (!mm)
935 return -EINVAL;
938 * Check if this process has the right to modify the specified
939 * process. The right exists if the process has administrative
940 * capabilities, superuser priviledges or the same
941 * userid as the target process.
943 if ((current->euid != task->suid) && (current->euid != task->uid) &&
944 (current->uid != task->suid) && (current->uid != task->uid) &&
945 !capable(CAP_SYS_ADMIN)) {
946 err = -EPERM;
947 goto out;
950 task_nodes = cpuset_mems_allowed(task);
951 /* Is the user allowed to access the target nodes? */
952 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_ADMIN)) {
953 err = -EPERM;
954 goto out;
957 err = do_migrate_pages(mm, &old, &new,
958 capable(CAP_SYS_ADMIN) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
959 out:
960 mmput(mm);
961 return err;
965 /* Retrieve NUMA policy */
966 asmlinkage long sys_get_mempolicy(int __user *policy,
967 unsigned long __user *nmask,
968 unsigned long maxnode,
969 unsigned long addr, unsigned long flags)
971 int err, pval;
972 nodemask_t nodes;
974 if (nmask != NULL && maxnode < MAX_NUMNODES)
975 return -EINVAL;
977 err = do_get_mempolicy(&pval, &nodes, addr, flags);
979 if (err)
980 return err;
982 if (policy && put_user(pval, policy))
983 return -EFAULT;
985 if (nmask)
986 err = copy_nodes_to_user(nmask, maxnode, &nodes);
988 return err;
991 #ifdef CONFIG_COMPAT
993 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
994 compat_ulong_t __user *nmask,
995 compat_ulong_t maxnode,
996 compat_ulong_t addr, compat_ulong_t flags)
998 long err;
999 unsigned long __user *nm = NULL;
1000 unsigned long nr_bits, alloc_size;
1001 DECLARE_BITMAP(bm, MAX_NUMNODES);
1003 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1004 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1006 if (nmask)
1007 nm = compat_alloc_user_space(alloc_size);
1009 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1011 if (!err && nmask) {
1012 err = copy_from_user(bm, nm, alloc_size);
1013 /* ensure entire bitmap is zeroed */
1014 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1015 err |= compat_put_bitmap(nmask, bm, nr_bits);
1018 return err;
1021 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1022 compat_ulong_t maxnode)
1024 long err = 0;
1025 unsigned long __user *nm = NULL;
1026 unsigned long nr_bits, alloc_size;
1027 DECLARE_BITMAP(bm, MAX_NUMNODES);
1029 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1030 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1032 if (nmask) {
1033 err = compat_get_bitmap(bm, nmask, nr_bits);
1034 nm = compat_alloc_user_space(alloc_size);
1035 err |= copy_to_user(nm, bm, alloc_size);
1038 if (err)
1039 return -EFAULT;
1041 return sys_set_mempolicy(mode, nm, nr_bits+1);
1044 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1045 compat_ulong_t mode, compat_ulong_t __user *nmask,
1046 compat_ulong_t maxnode, compat_ulong_t flags)
1048 long err = 0;
1049 unsigned long __user *nm = NULL;
1050 unsigned long nr_bits, alloc_size;
1051 nodemask_t bm;
1053 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1054 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1056 if (nmask) {
1057 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1058 nm = compat_alloc_user_space(alloc_size);
1059 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1062 if (err)
1063 return -EFAULT;
1065 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1068 #endif
1070 /* Return effective policy for a VMA */
1071 static struct mempolicy * get_vma_policy(struct task_struct *task,
1072 struct vm_area_struct *vma, unsigned long addr)
1074 struct mempolicy *pol = task->mempolicy;
1076 if (vma) {
1077 if (vma->vm_ops && vma->vm_ops->get_policy)
1078 pol = vma->vm_ops->get_policy(vma, addr);
1079 else if (vma->vm_policy &&
1080 vma->vm_policy->policy != MPOL_DEFAULT)
1081 pol = vma->vm_policy;
1083 if (!pol)
1084 pol = &default_policy;
1085 return pol;
1088 /* Return a zonelist representing a mempolicy */
1089 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1091 int nd;
1093 switch (policy->policy) {
1094 case MPOL_PREFERRED:
1095 nd = policy->v.preferred_node;
1096 if (nd < 0)
1097 nd = numa_node_id();
1098 break;
1099 case MPOL_BIND:
1100 /* Lower zones don't get a policy applied */
1101 /* Careful: current->mems_allowed might have moved */
1102 if (gfp_zone(gfp) >= policy_zone)
1103 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1104 return policy->v.zonelist;
1105 /*FALL THROUGH*/
1106 case MPOL_INTERLEAVE: /* should not happen */
1107 case MPOL_DEFAULT:
1108 nd = numa_node_id();
1109 break;
1110 default:
1111 nd = 0;
1112 BUG();
1114 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1117 /* Do dynamic interleaving for a process */
1118 static unsigned interleave_nodes(struct mempolicy *policy)
1120 unsigned nid, next;
1121 struct task_struct *me = current;
1123 nid = me->il_next;
1124 next = next_node(nid, policy->v.nodes);
1125 if (next >= MAX_NUMNODES)
1126 next = first_node(policy->v.nodes);
1127 me->il_next = next;
1128 return nid;
1132 * Depending on the memory policy provide a node from which to allocate the
1133 * next slab entry.
1135 unsigned slab_node(struct mempolicy *policy)
1137 switch (policy->policy) {
1138 case MPOL_INTERLEAVE:
1139 return interleave_nodes(policy);
1141 case MPOL_BIND:
1143 * Follow bind policy behavior and start allocation at the
1144 * first node.
1146 return policy->v.zonelist->zones[0]->zone_pgdat->node_id;
1148 case MPOL_PREFERRED:
1149 if (policy->v.preferred_node >= 0)
1150 return policy->v.preferred_node;
1151 /* Fall through */
1153 default:
1154 return numa_node_id();
1158 /* Do static interleaving for a VMA with known offset. */
1159 static unsigned offset_il_node(struct mempolicy *pol,
1160 struct vm_area_struct *vma, unsigned long off)
1162 unsigned nnodes = nodes_weight(pol->v.nodes);
1163 unsigned target = (unsigned)off % nnodes;
1164 int c;
1165 int nid = -1;
1167 c = 0;
1168 do {
1169 nid = next_node(nid, pol->v.nodes);
1170 c++;
1171 } while (c <= target);
1172 return nid;
1175 /* Determine a node number for interleave */
1176 static inline unsigned interleave_nid(struct mempolicy *pol,
1177 struct vm_area_struct *vma, unsigned long addr, int shift)
1179 if (vma) {
1180 unsigned long off;
1182 off = vma->vm_pgoff;
1183 off += (addr - vma->vm_start) >> shift;
1184 return offset_il_node(pol, vma, off);
1185 } else
1186 return interleave_nodes(pol);
1189 #ifdef CONFIG_HUGETLBFS
1190 /* Return a zonelist suitable for a huge page allocation. */
1191 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1193 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1195 if (pol->policy == MPOL_INTERLEAVE) {
1196 unsigned nid;
1198 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1199 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1201 return zonelist_policy(GFP_HIGHUSER, pol);
1203 #endif
1205 /* Allocate a page in interleaved policy.
1206 Own path because it needs to do special accounting. */
1207 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1208 unsigned nid)
1210 struct zonelist *zl;
1211 struct page *page;
1213 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1214 page = __alloc_pages(gfp, order, zl);
1215 if (page && page_zone(page) == zl->zones[0]) {
1216 zone_pcp(zl->zones[0],get_cpu())->interleave_hit++;
1217 put_cpu();
1219 return page;
1223 * alloc_page_vma - Allocate a page for a VMA.
1225 * @gfp:
1226 * %GFP_USER user allocation.
1227 * %GFP_KERNEL kernel allocations,
1228 * %GFP_HIGHMEM highmem/user allocations,
1229 * %GFP_FS allocation should not call back into a file system.
1230 * %GFP_ATOMIC don't sleep.
1232 * @vma: Pointer to VMA or NULL if not available.
1233 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1235 * This function allocates a page from the kernel page pool and applies
1236 * a NUMA policy associated with the VMA or the current process.
1237 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1238 * mm_struct of the VMA to prevent it from going away. Should be used for
1239 * all allocations for pages that will be mapped into
1240 * user space. Returns NULL when no page can be allocated.
1242 * Should be called with the mm_sem of the vma hold.
1244 struct page *
1245 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1247 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1249 cpuset_update_task_memory_state();
1251 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1252 unsigned nid;
1254 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1255 return alloc_page_interleave(gfp, 0, nid);
1257 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1261 * alloc_pages_current - Allocate pages.
1263 * @gfp:
1264 * %GFP_USER user allocation,
1265 * %GFP_KERNEL kernel allocation,
1266 * %GFP_HIGHMEM highmem allocation,
1267 * %GFP_FS don't call back into a file system.
1268 * %GFP_ATOMIC don't sleep.
1269 * @order: Power of two of allocation size in pages. 0 is a single page.
1271 * Allocate a page from the kernel page pool. When not in
1272 * interrupt context and apply the current process NUMA policy.
1273 * Returns NULL when no page can be allocated.
1275 * Don't call cpuset_update_task_memory_state() unless
1276 * 1) it's ok to take cpuset_sem (can WAIT), and
1277 * 2) allocating for current task (not interrupt).
1279 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1281 struct mempolicy *pol = current->mempolicy;
1283 if ((gfp & __GFP_WAIT) && !in_interrupt())
1284 cpuset_update_task_memory_state();
1285 if (!pol || in_interrupt())
1286 pol = &default_policy;
1287 if (pol->policy == MPOL_INTERLEAVE)
1288 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1289 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1291 EXPORT_SYMBOL(alloc_pages_current);
1294 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1295 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1296 * with the mems_allowed returned by cpuset_mems_allowed(). This
1297 * keeps mempolicies cpuset relative after its cpuset moves. See
1298 * further kernel/cpuset.c update_nodemask().
1300 void *cpuset_being_rebound;
1302 /* Slow path of a mempolicy copy */
1303 struct mempolicy *__mpol_copy(struct mempolicy *old)
1305 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1307 if (!new)
1308 return ERR_PTR(-ENOMEM);
1309 if (current_cpuset_is_being_rebound()) {
1310 nodemask_t mems = cpuset_mems_allowed(current);
1311 mpol_rebind_policy(old, &mems);
1313 *new = *old;
1314 atomic_set(&new->refcnt, 1);
1315 if (new->policy == MPOL_BIND) {
1316 int sz = ksize(old->v.zonelist);
1317 new->v.zonelist = kmalloc(sz, SLAB_KERNEL);
1318 if (!new->v.zonelist) {
1319 kmem_cache_free(policy_cache, new);
1320 return ERR_PTR(-ENOMEM);
1322 memcpy(new->v.zonelist, old->v.zonelist, sz);
1324 return new;
1327 /* Slow path of a mempolicy comparison */
1328 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1330 if (!a || !b)
1331 return 0;
1332 if (a->policy != b->policy)
1333 return 0;
1334 switch (a->policy) {
1335 case MPOL_DEFAULT:
1336 return 1;
1337 case MPOL_INTERLEAVE:
1338 return nodes_equal(a->v.nodes, b->v.nodes);
1339 case MPOL_PREFERRED:
1340 return a->v.preferred_node == b->v.preferred_node;
1341 case MPOL_BIND: {
1342 int i;
1343 for (i = 0; a->v.zonelist->zones[i]; i++)
1344 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1345 return 0;
1346 return b->v.zonelist->zones[i] == NULL;
1348 default:
1349 BUG();
1350 return 0;
1354 /* Slow path of a mpol destructor. */
1355 void __mpol_free(struct mempolicy *p)
1357 if (!atomic_dec_and_test(&p->refcnt))
1358 return;
1359 if (p->policy == MPOL_BIND)
1360 kfree(p->v.zonelist);
1361 p->policy = MPOL_DEFAULT;
1362 kmem_cache_free(policy_cache, p);
1366 * Shared memory backing store policy support.
1368 * Remember policies even when nobody has shared memory mapped.
1369 * The policies are kept in Red-Black tree linked from the inode.
1370 * They are protected by the sp->lock spinlock, which should be held
1371 * for any accesses to the tree.
1374 /* lookup first element intersecting start-end */
1375 /* Caller holds sp->lock */
1376 static struct sp_node *
1377 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1379 struct rb_node *n = sp->root.rb_node;
1381 while (n) {
1382 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1384 if (start >= p->end)
1385 n = n->rb_right;
1386 else if (end <= p->start)
1387 n = n->rb_left;
1388 else
1389 break;
1391 if (!n)
1392 return NULL;
1393 for (;;) {
1394 struct sp_node *w = NULL;
1395 struct rb_node *prev = rb_prev(n);
1396 if (!prev)
1397 break;
1398 w = rb_entry(prev, struct sp_node, nd);
1399 if (w->end <= start)
1400 break;
1401 n = prev;
1403 return rb_entry(n, struct sp_node, nd);
1406 /* Insert a new shared policy into the list. */
1407 /* Caller holds sp->lock */
1408 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1410 struct rb_node **p = &sp->root.rb_node;
1411 struct rb_node *parent = NULL;
1412 struct sp_node *nd;
1414 while (*p) {
1415 parent = *p;
1416 nd = rb_entry(parent, struct sp_node, nd);
1417 if (new->start < nd->start)
1418 p = &(*p)->rb_left;
1419 else if (new->end > nd->end)
1420 p = &(*p)->rb_right;
1421 else
1422 BUG();
1424 rb_link_node(&new->nd, parent, p);
1425 rb_insert_color(&new->nd, &sp->root);
1426 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1427 new->policy ? new->policy->policy : 0);
1430 /* Find shared policy intersecting idx */
1431 struct mempolicy *
1432 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1434 struct mempolicy *pol = NULL;
1435 struct sp_node *sn;
1437 if (!sp->root.rb_node)
1438 return NULL;
1439 spin_lock(&sp->lock);
1440 sn = sp_lookup(sp, idx, idx+1);
1441 if (sn) {
1442 mpol_get(sn->policy);
1443 pol = sn->policy;
1445 spin_unlock(&sp->lock);
1446 return pol;
1449 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1451 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1452 rb_erase(&n->nd, &sp->root);
1453 mpol_free(n->policy);
1454 kmem_cache_free(sn_cache, n);
1457 struct sp_node *
1458 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1460 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1462 if (!n)
1463 return NULL;
1464 n->start = start;
1465 n->end = end;
1466 mpol_get(pol);
1467 n->policy = pol;
1468 return n;
1471 /* Replace a policy range. */
1472 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1473 unsigned long end, struct sp_node *new)
1475 struct sp_node *n, *new2 = NULL;
1477 restart:
1478 spin_lock(&sp->lock);
1479 n = sp_lookup(sp, start, end);
1480 /* Take care of old policies in the same range. */
1481 while (n && n->start < end) {
1482 struct rb_node *next = rb_next(&n->nd);
1483 if (n->start >= start) {
1484 if (n->end <= end)
1485 sp_delete(sp, n);
1486 else
1487 n->start = end;
1488 } else {
1489 /* Old policy spanning whole new range. */
1490 if (n->end > end) {
1491 if (!new2) {
1492 spin_unlock(&sp->lock);
1493 new2 = sp_alloc(end, n->end, n->policy);
1494 if (!new2)
1495 return -ENOMEM;
1496 goto restart;
1498 n->end = start;
1499 sp_insert(sp, new2);
1500 new2 = NULL;
1501 break;
1502 } else
1503 n->end = start;
1505 if (!next)
1506 break;
1507 n = rb_entry(next, struct sp_node, nd);
1509 if (new)
1510 sp_insert(sp, new);
1511 spin_unlock(&sp->lock);
1512 if (new2) {
1513 mpol_free(new2->policy);
1514 kmem_cache_free(sn_cache, new2);
1516 return 0;
1519 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1520 nodemask_t *policy_nodes)
1522 info->root = RB_ROOT;
1523 spin_lock_init(&info->lock);
1525 if (policy != MPOL_DEFAULT) {
1526 struct mempolicy *newpol;
1528 /* Falls back to MPOL_DEFAULT on any error */
1529 newpol = mpol_new(policy, policy_nodes);
1530 if (!IS_ERR(newpol)) {
1531 /* Create pseudo-vma that contains just the policy */
1532 struct vm_area_struct pvma;
1534 memset(&pvma, 0, sizeof(struct vm_area_struct));
1535 /* Policy covers entire file */
1536 pvma.vm_end = TASK_SIZE;
1537 mpol_set_shared_policy(info, &pvma, newpol);
1538 mpol_free(newpol);
1543 int mpol_set_shared_policy(struct shared_policy *info,
1544 struct vm_area_struct *vma, struct mempolicy *npol)
1546 int err;
1547 struct sp_node *new = NULL;
1548 unsigned long sz = vma_pages(vma);
1550 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1551 vma->vm_pgoff,
1552 sz, npol? npol->policy : -1,
1553 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1555 if (npol) {
1556 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1557 if (!new)
1558 return -ENOMEM;
1560 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1561 if (err && new)
1562 kmem_cache_free(sn_cache, new);
1563 return err;
1566 /* Free a backing policy store on inode delete. */
1567 void mpol_free_shared_policy(struct shared_policy *p)
1569 struct sp_node *n;
1570 struct rb_node *next;
1572 if (!p->root.rb_node)
1573 return;
1574 spin_lock(&p->lock);
1575 next = rb_first(&p->root);
1576 while (next) {
1577 n = rb_entry(next, struct sp_node, nd);
1578 next = rb_next(&n->nd);
1579 rb_erase(&n->nd, &p->root);
1580 mpol_free(n->policy);
1581 kmem_cache_free(sn_cache, n);
1583 spin_unlock(&p->lock);
1586 /* assumes fs == KERNEL_DS */
1587 void __init numa_policy_init(void)
1589 policy_cache = kmem_cache_create("numa_policy",
1590 sizeof(struct mempolicy),
1591 0, SLAB_PANIC, NULL, NULL);
1593 sn_cache = kmem_cache_create("shared_policy_node",
1594 sizeof(struct sp_node),
1595 0, SLAB_PANIC, NULL, NULL);
1597 /* Set interleaving policy for system init. This way not all
1598 the data structures allocated at system boot end up in node zero. */
1600 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1601 printk("numa_policy_init: interleaving failed\n");
1604 /* Reset policy of current process to default */
1605 void numa_default_policy(void)
1607 do_set_mempolicy(MPOL_DEFAULT, NULL);
1610 /* Migrate a policy to a different set of nodes */
1611 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1613 nodemask_t *mpolmask;
1614 nodemask_t tmp;
1616 if (!pol)
1617 return;
1618 mpolmask = &pol->cpuset_mems_allowed;
1619 if (nodes_equal(*mpolmask, *newmask))
1620 return;
1622 switch (pol->policy) {
1623 case MPOL_DEFAULT:
1624 break;
1625 case MPOL_INTERLEAVE:
1626 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1627 pol->v.nodes = tmp;
1628 *mpolmask = *newmask;
1629 current->il_next = node_remap(current->il_next,
1630 *mpolmask, *newmask);
1631 break;
1632 case MPOL_PREFERRED:
1633 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1634 *mpolmask, *newmask);
1635 *mpolmask = *newmask;
1636 break;
1637 case MPOL_BIND: {
1638 nodemask_t nodes;
1639 struct zone **z;
1640 struct zonelist *zonelist;
1642 nodes_clear(nodes);
1643 for (z = pol->v.zonelist->zones; *z; z++)
1644 node_set((*z)->zone_pgdat->node_id, nodes);
1645 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1646 nodes = tmp;
1648 zonelist = bind_zonelist(&nodes);
1650 /* If no mem, then zonelist is NULL and we keep old zonelist.
1651 * If that old zonelist has no remaining mems_allowed nodes,
1652 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1655 if (zonelist) {
1656 /* Good - got mem - substitute new zonelist */
1657 kfree(pol->v.zonelist);
1658 pol->v.zonelist = zonelist;
1660 *mpolmask = *newmask;
1661 break;
1663 default:
1664 BUG();
1665 break;
1670 * Wrapper for mpol_rebind_policy() that just requires task
1671 * pointer, and updates task mempolicy.
1674 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1676 mpol_rebind_policy(tsk->mempolicy, new);
1680 * Rebind each vma in mm to new nodemask.
1682 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1685 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1687 struct vm_area_struct *vma;
1689 down_write(&mm->mmap_sem);
1690 for (vma = mm->mmap; vma; vma = vma->vm_next)
1691 mpol_rebind_policy(vma->vm_policy, new);
1692 up_write(&mm->mmap_sem);
1696 * Display pages allocated per node and memory policy via /proc.
1699 static const char *policy_types[] = { "default", "prefer", "bind",
1700 "interleave" };
1703 * Convert a mempolicy into a string.
1704 * Returns the number of characters in buffer (if positive)
1705 * or an error (negative)
1707 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1709 char *p = buffer;
1710 int l;
1711 nodemask_t nodes;
1712 int mode = pol ? pol->policy : MPOL_DEFAULT;
1714 switch (mode) {
1715 case MPOL_DEFAULT:
1716 nodes_clear(nodes);
1717 break;
1719 case MPOL_PREFERRED:
1720 nodes_clear(nodes);
1721 node_set(pol->v.preferred_node, nodes);
1722 break;
1724 case MPOL_BIND:
1725 get_zonemask(pol, &nodes);
1726 break;
1728 case MPOL_INTERLEAVE:
1729 nodes = pol->v.nodes;
1730 break;
1732 default:
1733 BUG();
1734 return -EFAULT;
1737 l = strlen(policy_types[mode]);
1738 if (buffer + maxlen < p + l + 1)
1739 return -ENOSPC;
1741 strcpy(p, policy_types[mode]);
1742 p += l;
1744 if (!nodes_empty(nodes)) {
1745 if (buffer + maxlen < p + 2)
1746 return -ENOSPC;
1747 *p++ = '=';
1748 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1750 return p - buffer;
1753 struct numa_maps {
1754 unsigned long pages;
1755 unsigned long anon;
1756 unsigned long active;
1757 unsigned long writeback;
1758 unsigned long mapcount_max;
1759 unsigned long dirty;
1760 unsigned long swapcache;
1761 unsigned long node[MAX_NUMNODES];
1764 static void gather_stats(struct page *page, void *private, int pte_dirty)
1766 struct numa_maps *md = private;
1767 int count = page_mapcount(page);
1769 md->pages++;
1770 if (pte_dirty || PageDirty(page))
1771 md->dirty++;
1773 if (PageSwapCache(page))
1774 md->swapcache++;
1776 if (PageActive(page))
1777 md->active++;
1779 if (PageWriteback(page))
1780 md->writeback++;
1782 if (PageAnon(page))
1783 md->anon++;
1785 if (count > md->mapcount_max)
1786 md->mapcount_max = count;
1788 md->node[page_to_nid(page)]++;
1789 cond_resched();
1792 #ifdef CONFIG_HUGETLB_PAGE
1793 static void check_huge_range(struct vm_area_struct *vma,
1794 unsigned long start, unsigned long end,
1795 struct numa_maps *md)
1797 unsigned long addr;
1798 struct page *page;
1800 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1801 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1802 pte_t pte;
1804 if (!ptep)
1805 continue;
1807 pte = *ptep;
1808 if (pte_none(pte))
1809 continue;
1811 page = pte_page(pte);
1812 if (!page)
1813 continue;
1815 gather_stats(page, md, pte_dirty(*ptep));
1818 #else
1819 static inline void check_huge_range(struct vm_area_struct *vma,
1820 unsigned long start, unsigned long end,
1821 struct numa_maps *md)
1824 #endif
1826 int show_numa_map(struct seq_file *m, void *v)
1828 struct task_struct *task = m->private;
1829 struct vm_area_struct *vma = v;
1830 struct numa_maps *md;
1831 struct file *file = vma->vm_file;
1832 struct mm_struct *mm = vma->vm_mm;
1833 int n;
1834 char buffer[50];
1836 if (!mm)
1837 return 0;
1839 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1840 if (!md)
1841 return 0;
1843 mpol_to_str(buffer, sizeof(buffer),
1844 get_vma_policy(task, vma, vma->vm_start));
1846 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1848 if (file) {
1849 seq_printf(m, " file=");
1850 seq_path(m, file->f_vfsmnt, file->f_dentry, "\n\t= ");
1851 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1852 seq_printf(m, " heap");
1853 } else if (vma->vm_start <= mm->start_stack &&
1854 vma->vm_end >= mm->start_stack) {
1855 seq_printf(m, " stack");
1858 if (is_vm_hugetlb_page(vma)) {
1859 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1860 seq_printf(m, " huge");
1861 } else {
1862 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1863 &node_online_map, MPOL_MF_STATS, md);
1866 if (!md->pages)
1867 goto out;
1869 if (md->anon)
1870 seq_printf(m," anon=%lu",md->anon);
1872 if (md->dirty)
1873 seq_printf(m," dirty=%lu",md->dirty);
1875 if (md->pages != md->anon && md->pages != md->dirty)
1876 seq_printf(m, " mapped=%lu", md->pages);
1878 if (md->mapcount_max > 1)
1879 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1881 if (md->swapcache)
1882 seq_printf(m," swapcache=%lu", md->swapcache);
1884 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1885 seq_printf(m," active=%lu", md->active);
1887 if (md->writeback)
1888 seq_printf(m," writeback=%lu", md->writeback);
1890 for_each_online_node(n)
1891 if (md->node[n])
1892 seq_printf(m, " N%d=%lu", n, md->node[n]);
1893 out:
1894 seq_putc(m, '\n');
1895 kfree(md);
1897 if (m->count < m->size)
1898 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
1899 return 0;