KVM: x86: Prevent starting PIT timers in the absence of irqchip support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blobe8fae15667fb2c12c50cc521c3441ee9b7dc2ca7
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
82 * Array of node states.
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 [N_CPU] = { { [0] = 1UL } },
93 #endif /* NUMA */
95 EXPORT_SYMBOL(node_states);
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
136 static void __free_pages_ok(struct page *page, unsigned int order);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
158 #endif
162 EXPORT_SYMBOL(totalram_pages);
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 "DMA32",
170 #endif
171 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 "HighMem",
174 #endif
175 "Movable",
178 int min_free_kbytes = 1024;
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209 static unsigned long __initdata required_kernelcore;
210 static unsigned long __initdata required_movablecore;
211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
218 #if MAX_NUMNODES > 1
219 int nr_node_ids __read_mostly = MAX_NUMNODES;
220 int nr_online_nodes __read_mostly = 1;
221 EXPORT_SYMBOL(nr_node_ids);
222 EXPORT_SYMBOL(nr_online_nodes);
223 #endif
225 int page_group_by_mobility_disabled __read_mostly;
227 static void set_pageblock_migratetype(struct page *page, int migratetype)
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
237 bool oom_killer_disabled __read_mostly;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
254 return ret;
257 static int page_is_consistent(struct zone *zone, struct page *page)
259 if (!pfn_valid_within(page_to_pfn(page)))
260 return 0;
261 if (zone != page_zone(page))
262 return 0;
264 return 1;
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone *zone, struct page *page)
271 if (page_outside_zone_boundaries(zone, page))
272 return 1;
273 if (!page_is_consistent(zone, page))
274 return 1;
276 return 0;
278 #else
279 static inline int bad_range(struct zone *zone, struct page *page)
281 return 0;
283 #endif
285 static void bad_page(struct page *page)
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
293 reset_page_mapcount(page); /* remove PageBuddy */
294 return;
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
306 if (nr_unshown) {
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
309 nr_unshown);
310 nr_unshown = 0;
312 nr_shown = 0;
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
318 current->comm, page_to_pfn(page));
319 dump_page(page);
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page *page)
345 __free_pages_ok(page, compound_order(page));
348 void prep_compound_page(struct page *page, unsigned long order)
350 int i;
351 int nr_pages = 1 << order;
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
377 __ClearPageHead(page);
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
386 __ClearPageTail(p);
389 return bad;
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394 int i;
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
405 static inline void set_page_order(struct page *page, int order)
407 set_page_private(page, order);
408 __SetPageBuddy(page);
411 static inline void rmv_page_order(struct page *page)
413 __ClearPageBuddy(page);
414 set_page_private(page, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx, unsigned int order)
437 return page_idx ^ (1 << order);
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 * For recording page's order, we use page_private(page).
453 static inline int page_is_buddy(struct page *page, struct page *buddy,
454 int order)
456 if (!pfn_valid_within(page_to_pfn(buddy)))
457 return 0;
459 if (page_zone_id(page) != page_zone_id(buddy))
460 return 0;
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
463 VM_BUG_ON(page_count(buddy) != 0);
464 return 1;
466 return 0;
470 * Freeing function for a buddy system allocator.
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
490 * -- wli
493 static inline void __free_one_page(struct page *page,
494 struct zone *zone, unsigned int order,
495 int migratetype)
497 unsigned long page_idx;
498 unsigned long combined_idx;
499 unsigned long uninitialized_var(buddy_idx);
500 struct page *buddy;
502 if (unlikely(PageCompound(page)))
503 if (unlikely(destroy_compound_page(page, order)))
504 return;
506 VM_BUG_ON(migratetype == -1);
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
510 VM_BUG_ON(page_idx & ((1 << order) - 1));
511 VM_BUG_ON(bad_range(zone, page));
513 while (order < MAX_ORDER-1) {
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
516 if (!page_is_buddy(page, buddy, order))
517 break;
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy->lru);
521 zone->free_area[order].nr_free--;
522 rmv_page_order(buddy);
523 combined_idx = buddy_idx & page_idx;
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
528 set_page_order(page, order);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
539 struct page *higher_page, *higher_buddy;
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552 out:
553 zone->free_area[order].nr_free++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page *page)
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
567 static inline int free_pages_check(struct page *page)
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
571 (atomic_read(&page->_count) != 0) |
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
574 bad_page(page);
575 return 1;
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
596 int migratetype = 0;
597 int batch_free = 0;
598 int to_free = count;
600 spin_lock(&zone->lock);
601 zone->all_unreclaimable = 0;
602 zone->pages_scanned = 0;
604 while (to_free) {
605 struct page *page;
606 struct list_head *list;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
615 do {
616 batch_free++;
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
626 do {
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
633 } while (--to_free && --batch_free && !list_empty(list));
635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
636 spin_unlock(&zone->lock);
639 static void free_one_page(struct zone *zone, struct page *page, int order,
640 int migratetype)
642 spin_lock(&zone->lock);
643 zone->all_unreclaimable = 0;
644 zone->pages_scanned = 0;
646 __free_one_page(page, zone, order, migratetype);
647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
648 spin_unlock(&zone->lock);
651 static bool free_pages_prepare(struct page *page, unsigned int order)
653 int i;
654 int bad = 0;
656 trace_mm_page_free_direct(page, order);
657 kmemcheck_free_shadow(page, order);
659 if (PageAnon(page))
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
663 if (bad)
664 return false;
666 if (!PageHighMem(page)) {
667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
668 debug_check_no_obj_freed(page_address(page),
669 PAGE_SIZE << order);
671 arch_free_page(page, order);
672 kernel_map_pages(page, 1 << order, 0);
674 return true;
677 static void __free_pages_ok(struct page *page, unsigned int order)
679 unsigned long flags;
680 int wasMlocked = __TestClearPageMlocked(page);
682 if (!free_pages_prepare(page, order))
683 return;
685 local_irq_save(flags);
686 if (unlikely(wasMlocked))
687 free_page_mlock(page);
688 __count_vm_events(PGFREE, 1 << order);
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
691 local_irq_restore(flags);
695 * permit the bootmem allocator to evade page validation on high-order frees
697 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
699 if (order == 0) {
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
702 set_page_refcounted(page);
703 __free_page(page);
704 } else {
705 int loop;
707 prefetchw(page);
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
711 if (loop + 1 < BITS_PER_LONG)
712 prefetchw(p + 1);
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
717 set_page_refcounted(page);
718 __free_pages(page, order);
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
735 * -- wli
737 static inline void expand(struct zone *zone, struct page *page,
738 int low, int high, struct free_area *area,
739 int migratetype)
741 unsigned long size = 1 << high;
743 while (high > low) {
744 area--;
745 high--;
746 size >>= 1;
747 VM_BUG_ON(bad_range(zone, &page[size]));
748 list_add(&page[size].lru, &area->free_list[migratetype]);
749 area->nr_free++;
750 set_page_order(&page[size], high);
755 * This page is about to be returned from the page allocator
757 static inline int check_new_page(struct page *page)
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
761 (atomic_read(&page->_count) != 0) |
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
764 bad_page(page);
765 return 1;
767 return 0;
770 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
772 int i;
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
777 return 1;
780 set_page_private(page, 0);
781 set_page_refcounted(page);
783 arch_alloc_page(page, order);
784 kernel_map_pages(page, 1 << order, 1);
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
792 return 0;
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
799 static inline
800 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
801 int migratetype)
803 unsigned int current_order;
804 struct free_area * area;
805 struct page *page;
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
811 continue;
813 page = list_entry(area->free_list[migratetype].next,
814 struct page, lru);
815 list_del(&page->lru);
816 rmv_page_order(page);
817 area->nr_free--;
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
822 return NULL;
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
830 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
842 static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
844 int migratetype)
846 struct page *page;
847 unsigned long order;
848 int pages_moved = 0;
850 #ifndef CONFIG_HOLES_IN_ZONE
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
859 #endif
861 for (page = start_page; page <= end_page;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
865 if (!pfn_valid_within(page_to_pfn(page))) {
866 page++;
867 continue;
870 if (!PageBuddy(page)) {
871 page++;
872 continue;
875 order = page_order(page);
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 page += 1 << order;
879 pages_moved += 1 << order;
882 return pages_moved;
885 static int move_freepages_block(struct zone *zone, struct page *page,
886 int migratetype)
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
891 start_pfn = page_to_pfn(page);
892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
893 start_page = pfn_to_page(start_pfn);
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
899 start_page = page;
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 return 0;
903 return move_freepages(zone, start_page, end_page, migratetype);
906 static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page *
919 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
921 struct free_area * area;
922 int current_order;
923 struct page *page;
924 int migratetype, i;
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
928 --current_order) {
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
934 continue;
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
938 continue;
940 page = list_entry(area->free_list[migratetype].next,
941 struct page, lru);
942 area->nr_free--;
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
953 unsigned long pages;
954 pages = move_freepages_block(zone, page,
955 start_migratetype);
957 /* Claim the whole block if over half of it is free */
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
960 set_pageblock_migratetype(page,
961 start_migratetype);
963 migratetype = start_migratetype;
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
973 start_migratetype);
975 expand(zone, page, order, current_order, area, migratetype);
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
980 return page;
984 return NULL;
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
991 static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 int migratetype)
994 struct page *page;
996 retry_reserve:
997 page = __rmqueue_smallest(zone, order, migratetype);
999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1000 page = __rmqueue_fallback(zone, order, migratetype);
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1007 if (!page) {
1008 migratetype = MIGRATE_RESERVE;
1009 goto retry_reserve;
1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1014 return page;
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1022 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1023 unsigned long count, struct list_head *list,
1024 int migratetype, int cold)
1026 int i;
1028 spin_lock(&zone->lock);
1029 for (i = 0; i < count; ++i) {
1030 struct page *page = __rmqueue(zone, order, migratetype);
1031 if (unlikely(page == NULL))
1032 break;
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1041 * properly.
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1045 else
1046 list_add_tail(&page->lru, list);
1047 set_page_private(page, migratetype);
1048 list = &page->lru;
1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1051 spin_unlock(&zone->lock);
1052 return i;
1055 #ifdef CONFIG_NUMA
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1064 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1066 unsigned long flags;
1067 int to_drain;
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1072 else
1073 to_drain = pcp->count;
1074 free_pcppages_bulk(zone, to_drain, pcp);
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
1078 #endif
1081 * Drain pages of the indicated processor.
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1087 static void drain_pages(unsigned int cpu)
1089 unsigned long flags;
1090 struct zone *zone;
1092 for_each_populated_zone(zone) {
1093 struct per_cpu_pageset *pset;
1094 struct per_cpu_pages *pcp;
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
1099 pcp = &pset->pcp;
1100 if (pcp->count) {
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1102 pcp->count = 0;
1104 local_irq_restore(flags);
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 void drain_local_pages(void *arg)
1113 drain_pages(smp_processor_id());
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 void drain_all_pages(void)
1121 on_each_cpu(drain_local_pages, NULL, 1);
1124 #ifdef CONFIG_HIBERNATION
1126 void mark_free_pages(struct zone *zone)
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
1130 int order, t;
1131 struct list_head *curr;
1133 if (!zone->spanned_pages)
1134 return;
1136 spin_lock_irqsave(&zone->lock, flags);
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1149 unsigned long i;
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
1153 swsusp_set_page_free(pfn_to_page(pfn + i));
1156 spin_unlock_irqrestore(&zone->lock, flags);
1158 #endif /* CONFIG_PM */
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1164 void free_hot_cold_page(struct page *page, int cold)
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
1169 int migratetype;
1170 int wasMlocked = __TestClearPageMlocked(page);
1172 if (!free_pages_prepare(page, 0))
1173 return;
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1177 local_irq_save(flags);
1178 if (unlikely(wasMlocked))
1179 free_page_mlock(page);
1180 __count_vm_event(PGFREE);
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1192 goto out;
1194 migratetype = MIGRATE_MOVABLE;
1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1198 if (cold)
1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1200 else
1201 list_add(&page->lru, &pcp->lists[migratetype]);
1202 pcp->count++;
1203 if (pcp->count >= pcp->high) {
1204 free_pcppages_bulk(zone, pcp->batch, pcp);
1205 pcp->count -= pcp->batch;
1208 out:
1209 local_irq_restore(flags);
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1220 void split_page(struct page *page, unsigned int order)
1222 int i;
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
1227 #ifdef CONFIG_KMEMCHECK
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1234 #endif
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1250 int split_free_page(struct page *page)
1252 unsigned int order;
1253 unsigned long watermark;
1254 struct zone *zone;
1256 BUG_ON(!PageBuddy(page));
1258 zone = page_zone(page);
1259 order = page_order(page);
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 return 0;
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1282 return 1 << order;
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 * or two.
1290 static inline
1291 struct page *buffered_rmqueue(struct zone *preferred_zone,
1292 struct zone *zone, int order, gfp_t gfp_flags,
1293 int migratetype)
1295 unsigned long flags;
1296 struct page *page;
1297 int cold = !!(gfp_flags & __GFP_COLD);
1299 again:
1300 if (likely(order == 0)) {
1301 struct per_cpu_pages *pcp;
1302 struct list_head *list;
1304 local_irq_save(flags);
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
1307 if (list_empty(list)) {
1308 pcp->count += rmqueue_bulk(zone, 0,
1309 pcp->batch, list,
1310 migratetype, cold);
1311 if (unlikely(list_empty(list)))
1312 goto failed;
1315 if (cold)
1316 page = list_entry(list->prev, struct page, lru);
1317 else
1318 page = list_entry(list->next, struct page, lru);
1320 list_del(&page->lru);
1321 pcp->count--;
1322 } else {
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1325 * __GFP_NOFAIL is not to be used in new code.
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1332 * __GFP_NOFAIL.
1334 WARN_ON_ONCE(order > 1);
1336 spin_lock_irqsave(&zone->lock, flags);
1337 page = __rmqueue(zone, order, migratetype);
1338 spin_unlock(&zone->lock);
1339 if (!page)
1340 goto failed;
1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1345 zone_statistics(preferred_zone, zone, gfp_flags);
1346 local_irq_restore(flags);
1348 VM_BUG_ON(bad_range(zone, page));
1349 if (prep_new_page(page, order, gfp_flags))
1350 goto again;
1351 return page;
1353 failed:
1354 local_irq_restore(flags);
1355 return NULL;
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1373 static struct {
1374 struct fault_attr attr;
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
1378 u32 min_order;
1379 } fail_page_alloc = {
1380 .attr = FAULT_ATTR_INITIALIZER,
1381 .ignore_gfp_wait = 1,
1382 .ignore_gfp_highmem = 1,
1383 .min_order = 1,
1386 static int __init setup_fail_page_alloc(char *str)
1388 return setup_fault_attr(&fail_page_alloc.attr, str);
1390 __setup("fail_page_alloc=", setup_fail_page_alloc);
1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1394 if (order < fail_page_alloc.min_order)
1395 return 0;
1396 if (gfp_mask & __GFP_NOFAIL)
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399 return 0;
1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401 return 0;
1403 return should_fail(&fail_page_alloc.attr, 1 << order);
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408 static int __init fail_page_alloc_debugfs(void)
1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411 struct dentry *dir;
1413 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1414 &fail_page_alloc.attr);
1415 if (IS_ERR(dir))
1416 return PTR_ERR(dir);
1418 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1419 &fail_page_alloc.ignore_gfp_wait))
1420 goto fail;
1421 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1422 &fail_page_alloc.ignore_gfp_highmem))
1423 goto fail;
1424 if (!debugfs_create_u32("min-order", mode, dir,
1425 &fail_page_alloc.min_order))
1426 goto fail;
1428 return 0;
1429 fail:
1430 debugfs_remove_recursive(dir);
1432 return -ENOMEM;
1435 late_initcall(fail_page_alloc_debugfs);
1437 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1439 #else /* CONFIG_FAIL_PAGE_ALLOC */
1441 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1443 return 0;
1446 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1449 * Return true if free pages are above 'mark'. This takes into account the order
1450 * of the allocation.
1452 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1453 int classzone_idx, int alloc_flags, long free_pages)
1455 /* free_pages my go negative - that's OK */
1456 long min = mark;
1457 int o;
1459 free_pages -= (1 << order) + 1;
1460 if (alloc_flags & ALLOC_HIGH)
1461 min -= min / 2;
1462 if (alloc_flags & ALLOC_HARDER)
1463 min -= min / 4;
1465 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1466 return false;
1467 for (o = 0; o < order; o++) {
1468 /* At the next order, this order's pages become unavailable */
1469 free_pages -= z->free_area[o].nr_free << o;
1471 /* Require fewer higher order pages to be free */
1472 min >>= 1;
1474 if (free_pages <= min)
1475 return false;
1477 return true;
1480 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1481 int classzone_idx, int alloc_flags)
1483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1484 zone_page_state(z, NR_FREE_PAGES));
1487 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1488 int classzone_idx, int alloc_flags)
1490 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1492 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1493 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1496 free_pages);
1499 #ifdef CONFIG_NUMA
1501 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1502 * skip over zones that are not allowed by the cpuset, or that have
1503 * been recently (in last second) found to be nearly full. See further
1504 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1505 * that have to skip over a lot of full or unallowed zones.
1507 * If the zonelist cache is present in the passed in zonelist, then
1508 * returns a pointer to the allowed node mask (either the current
1509 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1511 * If the zonelist cache is not available for this zonelist, does
1512 * nothing and returns NULL.
1514 * If the fullzones BITMAP in the zonelist cache is stale (more than
1515 * a second since last zap'd) then we zap it out (clear its bits.)
1517 * We hold off even calling zlc_setup, until after we've checked the
1518 * first zone in the zonelist, on the theory that most allocations will
1519 * be satisfied from that first zone, so best to examine that zone as
1520 * quickly as we can.
1522 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1524 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1525 nodemask_t *allowednodes; /* zonelist_cache approximation */
1527 zlc = zonelist->zlcache_ptr;
1528 if (!zlc)
1529 return NULL;
1531 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1532 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1533 zlc->last_full_zap = jiffies;
1536 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1537 &cpuset_current_mems_allowed :
1538 &node_states[N_HIGH_MEMORY];
1539 return allowednodes;
1543 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1544 * if it is worth looking at further for free memory:
1545 * 1) Check that the zone isn't thought to be full (doesn't have its
1546 * bit set in the zonelist_cache fullzones BITMAP).
1547 * 2) Check that the zones node (obtained from the zonelist_cache
1548 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1549 * Return true (non-zero) if zone is worth looking at further, or
1550 * else return false (zero) if it is not.
1552 * This check -ignores- the distinction between various watermarks,
1553 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1554 * found to be full for any variation of these watermarks, it will
1555 * be considered full for up to one second by all requests, unless
1556 * we are so low on memory on all allowed nodes that we are forced
1557 * into the second scan of the zonelist.
1559 * In the second scan we ignore this zonelist cache and exactly
1560 * apply the watermarks to all zones, even it is slower to do so.
1561 * We are low on memory in the second scan, and should leave no stone
1562 * unturned looking for a free page.
1564 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1565 nodemask_t *allowednodes)
1567 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1568 int i; /* index of *z in zonelist zones */
1569 int n; /* node that zone *z is on */
1571 zlc = zonelist->zlcache_ptr;
1572 if (!zlc)
1573 return 1;
1575 i = z - zonelist->_zonerefs;
1576 n = zlc->z_to_n[i];
1578 /* This zone is worth trying if it is allowed but not full */
1579 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1583 * Given 'z' scanning a zonelist, set the corresponding bit in
1584 * zlc->fullzones, so that subsequent attempts to allocate a page
1585 * from that zone don't waste time re-examining it.
1587 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1589 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1590 int i; /* index of *z in zonelist zones */
1592 zlc = zonelist->zlcache_ptr;
1593 if (!zlc)
1594 return;
1596 i = z - zonelist->_zonerefs;
1598 set_bit(i, zlc->fullzones);
1602 * clear all zones full, called after direct reclaim makes progress so that
1603 * a zone that was recently full is not skipped over for up to a second
1605 static void zlc_clear_zones_full(struct zonelist *zonelist)
1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1609 zlc = zonelist->zlcache_ptr;
1610 if (!zlc)
1611 return;
1613 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1616 #else /* CONFIG_NUMA */
1618 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1620 return NULL;
1623 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1624 nodemask_t *allowednodes)
1626 return 1;
1629 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1633 static void zlc_clear_zones_full(struct zonelist *zonelist)
1636 #endif /* CONFIG_NUMA */
1639 * get_page_from_freelist goes through the zonelist trying to allocate
1640 * a page.
1642 static struct page *
1643 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1644 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1645 struct zone *preferred_zone, int migratetype)
1647 struct zoneref *z;
1648 struct page *page = NULL;
1649 int classzone_idx;
1650 struct zone *zone;
1651 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1652 int zlc_active = 0; /* set if using zonelist_cache */
1653 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1655 classzone_idx = zone_idx(preferred_zone);
1656 zonelist_scan:
1658 * Scan zonelist, looking for a zone with enough free.
1659 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1661 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1662 high_zoneidx, nodemask) {
1663 if (NUMA_BUILD && zlc_active &&
1664 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1665 continue;
1666 if ((alloc_flags & ALLOC_CPUSET) &&
1667 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1668 continue;
1670 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1671 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1672 unsigned long mark;
1673 int ret;
1675 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1676 if (zone_watermark_ok(zone, order, mark,
1677 classzone_idx, alloc_flags))
1678 goto try_this_zone;
1680 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1682 * we do zlc_setup if there are multiple nodes
1683 * and before considering the first zone allowed
1684 * by the cpuset.
1686 allowednodes = zlc_setup(zonelist, alloc_flags);
1687 zlc_active = 1;
1688 did_zlc_setup = 1;
1691 if (zone_reclaim_mode == 0)
1692 goto this_zone_full;
1695 * As we may have just activated ZLC, check if the first
1696 * eligible zone has failed zone_reclaim recently.
1698 if (NUMA_BUILD && zlc_active &&
1699 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1700 continue;
1702 ret = zone_reclaim(zone, gfp_mask, order);
1703 switch (ret) {
1704 case ZONE_RECLAIM_NOSCAN:
1705 /* did not scan */
1706 continue;
1707 case ZONE_RECLAIM_FULL:
1708 /* scanned but unreclaimable */
1709 continue;
1710 default:
1711 /* did we reclaim enough */
1712 if (!zone_watermark_ok(zone, order, mark,
1713 classzone_idx, alloc_flags))
1714 goto this_zone_full;
1718 try_this_zone:
1719 page = buffered_rmqueue(preferred_zone, zone, order,
1720 gfp_mask, migratetype);
1721 if (page)
1722 break;
1723 this_zone_full:
1724 if (NUMA_BUILD)
1725 zlc_mark_zone_full(zonelist, z);
1728 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1729 /* Disable zlc cache for second zonelist scan */
1730 zlc_active = 0;
1731 goto zonelist_scan;
1733 return page;
1737 * Large machines with many possible nodes should not always dump per-node
1738 * meminfo in irq context.
1740 static inline bool should_suppress_show_mem(void)
1742 bool ret = false;
1744 #if NODES_SHIFT > 8
1745 ret = in_interrupt();
1746 #endif
1747 return ret;
1750 static DEFINE_RATELIMIT_STATE(nopage_rs,
1751 DEFAULT_RATELIMIT_INTERVAL,
1752 DEFAULT_RATELIMIT_BURST);
1754 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1756 va_list args;
1757 unsigned int filter = SHOW_MEM_FILTER_NODES;
1759 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1760 return;
1763 * This documents exceptions given to allocations in certain
1764 * contexts that are allowed to allocate outside current's set
1765 * of allowed nodes.
1767 if (!(gfp_mask & __GFP_NOMEMALLOC))
1768 if (test_thread_flag(TIF_MEMDIE) ||
1769 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1770 filter &= ~SHOW_MEM_FILTER_NODES;
1771 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1772 filter &= ~SHOW_MEM_FILTER_NODES;
1774 if (fmt) {
1775 printk(KERN_WARNING);
1776 va_start(args, fmt);
1777 vprintk(fmt, args);
1778 va_end(args);
1781 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1782 current->comm, order, gfp_mask);
1784 dump_stack();
1785 if (!should_suppress_show_mem())
1786 show_mem(filter);
1789 static inline int
1790 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1791 unsigned long pages_reclaimed)
1793 /* Do not loop if specifically requested */
1794 if (gfp_mask & __GFP_NORETRY)
1795 return 0;
1798 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1799 * means __GFP_NOFAIL, but that may not be true in other
1800 * implementations.
1802 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1803 return 1;
1806 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1807 * specified, then we retry until we no longer reclaim any pages
1808 * (above), or we've reclaimed an order of pages at least as
1809 * large as the allocation's order. In both cases, if the
1810 * allocation still fails, we stop retrying.
1812 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1813 return 1;
1816 * Don't let big-order allocations loop unless the caller
1817 * explicitly requests that.
1819 if (gfp_mask & __GFP_NOFAIL)
1820 return 1;
1822 return 0;
1825 static inline struct page *
1826 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1827 struct zonelist *zonelist, enum zone_type high_zoneidx,
1828 nodemask_t *nodemask, struct zone *preferred_zone,
1829 int migratetype)
1831 struct page *page;
1833 /* Acquire the OOM killer lock for the zones in zonelist */
1834 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1835 schedule_timeout_uninterruptible(1);
1836 return NULL;
1840 * Go through the zonelist yet one more time, keep very high watermark
1841 * here, this is only to catch a parallel oom killing, we must fail if
1842 * we're still under heavy pressure.
1844 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1845 order, zonelist, high_zoneidx,
1846 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1847 preferred_zone, migratetype);
1848 if (page)
1849 goto out;
1851 if (!(gfp_mask & __GFP_NOFAIL)) {
1852 /* The OOM killer will not help higher order allocs */
1853 if (order > PAGE_ALLOC_COSTLY_ORDER)
1854 goto out;
1855 /* The OOM killer does not needlessly kill tasks for lowmem */
1856 if (high_zoneidx < ZONE_NORMAL)
1857 goto out;
1859 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1860 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1861 * The caller should handle page allocation failure by itself if
1862 * it specifies __GFP_THISNODE.
1863 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1865 if (gfp_mask & __GFP_THISNODE)
1866 goto out;
1868 /* Exhausted what can be done so it's blamo time */
1869 out_of_memory(zonelist, gfp_mask, order, nodemask);
1871 out:
1872 clear_zonelist_oom(zonelist, gfp_mask);
1873 return page;
1876 #ifdef CONFIG_COMPACTION
1877 /* Try memory compaction for high-order allocations before reclaim */
1878 static struct page *
1879 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1880 struct zonelist *zonelist, enum zone_type high_zoneidx,
1881 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1882 int migratetype, unsigned long *did_some_progress,
1883 bool sync_migration)
1885 struct page *page;
1887 if (!order || compaction_deferred(preferred_zone))
1888 return NULL;
1890 current->flags |= PF_MEMALLOC;
1891 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1892 nodemask, sync_migration);
1893 current->flags &= ~PF_MEMALLOC;
1894 if (*did_some_progress != COMPACT_SKIPPED) {
1896 /* Page migration frees to the PCP lists but we want merging */
1897 drain_pages(get_cpu());
1898 put_cpu();
1900 page = get_page_from_freelist(gfp_mask, nodemask,
1901 order, zonelist, high_zoneidx,
1902 alloc_flags, preferred_zone,
1903 migratetype);
1904 if (page) {
1905 preferred_zone->compact_considered = 0;
1906 preferred_zone->compact_defer_shift = 0;
1907 count_vm_event(COMPACTSUCCESS);
1908 return page;
1912 * It's bad if compaction run occurs and fails.
1913 * The most likely reason is that pages exist,
1914 * but not enough to satisfy watermarks.
1916 count_vm_event(COMPACTFAIL);
1917 defer_compaction(preferred_zone);
1919 cond_resched();
1922 return NULL;
1924 #else
1925 static inline struct page *
1926 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1927 struct zonelist *zonelist, enum zone_type high_zoneidx,
1928 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1929 int migratetype, unsigned long *did_some_progress,
1930 bool sync_migration)
1932 return NULL;
1934 #endif /* CONFIG_COMPACTION */
1936 /* The really slow allocator path where we enter direct reclaim */
1937 static inline struct page *
1938 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1939 struct zonelist *zonelist, enum zone_type high_zoneidx,
1940 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1941 int migratetype, unsigned long *did_some_progress)
1943 struct page *page = NULL;
1944 struct reclaim_state reclaim_state;
1945 bool drained = false;
1947 cond_resched();
1949 /* We now go into synchronous reclaim */
1950 cpuset_memory_pressure_bump();
1951 current->flags |= PF_MEMALLOC;
1952 lockdep_set_current_reclaim_state(gfp_mask);
1953 reclaim_state.reclaimed_slab = 0;
1954 current->reclaim_state = &reclaim_state;
1956 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1958 current->reclaim_state = NULL;
1959 lockdep_clear_current_reclaim_state();
1960 current->flags &= ~PF_MEMALLOC;
1962 cond_resched();
1964 if (unlikely(!(*did_some_progress)))
1965 return NULL;
1967 /* After successful reclaim, reconsider all zones for allocation */
1968 if (NUMA_BUILD)
1969 zlc_clear_zones_full(zonelist);
1971 retry:
1972 page = get_page_from_freelist(gfp_mask, nodemask, order,
1973 zonelist, high_zoneidx,
1974 alloc_flags, preferred_zone,
1975 migratetype);
1978 * If an allocation failed after direct reclaim, it could be because
1979 * pages are pinned on the per-cpu lists. Drain them and try again
1981 if (!page && !drained) {
1982 drain_all_pages();
1983 drained = true;
1984 goto retry;
1987 return page;
1991 * This is called in the allocator slow-path if the allocation request is of
1992 * sufficient urgency to ignore watermarks and take other desperate measures
1994 static inline struct page *
1995 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1996 struct zonelist *zonelist, enum zone_type high_zoneidx,
1997 nodemask_t *nodemask, struct zone *preferred_zone,
1998 int migratetype)
2000 struct page *page;
2002 do {
2003 page = get_page_from_freelist(gfp_mask, nodemask, order,
2004 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2005 preferred_zone, migratetype);
2007 if (!page && gfp_mask & __GFP_NOFAIL)
2008 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2009 } while (!page && (gfp_mask & __GFP_NOFAIL));
2011 return page;
2014 static inline
2015 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2016 enum zone_type high_zoneidx,
2017 enum zone_type classzone_idx)
2019 struct zoneref *z;
2020 struct zone *zone;
2022 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2023 wakeup_kswapd(zone, order, classzone_idx);
2026 static inline int
2027 gfp_to_alloc_flags(gfp_t gfp_mask)
2029 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2030 const gfp_t wait = gfp_mask & __GFP_WAIT;
2032 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2033 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2036 * The caller may dip into page reserves a bit more if the caller
2037 * cannot run direct reclaim, or if the caller has realtime scheduling
2038 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2039 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2041 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2043 if (!wait) {
2045 * Not worth trying to allocate harder for
2046 * __GFP_NOMEMALLOC even if it can't schedule.
2048 if (!(gfp_mask & __GFP_NOMEMALLOC))
2049 alloc_flags |= ALLOC_HARDER;
2051 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2052 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2054 alloc_flags &= ~ALLOC_CPUSET;
2055 } else if (unlikely(rt_task(current)) && !in_interrupt())
2056 alloc_flags |= ALLOC_HARDER;
2058 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2059 if (!in_interrupt() &&
2060 ((current->flags & PF_MEMALLOC) ||
2061 unlikely(test_thread_flag(TIF_MEMDIE))))
2062 alloc_flags |= ALLOC_NO_WATERMARKS;
2065 return alloc_flags;
2068 static inline struct page *
2069 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2070 struct zonelist *zonelist, enum zone_type high_zoneidx,
2071 nodemask_t *nodemask, struct zone *preferred_zone,
2072 int migratetype)
2074 const gfp_t wait = gfp_mask & __GFP_WAIT;
2075 struct page *page = NULL;
2076 int alloc_flags;
2077 unsigned long pages_reclaimed = 0;
2078 unsigned long did_some_progress;
2079 bool sync_migration = false;
2082 * In the slowpath, we sanity check order to avoid ever trying to
2083 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2084 * be using allocators in order of preference for an area that is
2085 * too large.
2087 if (order >= MAX_ORDER) {
2088 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2089 return NULL;
2093 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2094 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2095 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2096 * using a larger set of nodes after it has established that the
2097 * allowed per node queues are empty and that nodes are
2098 * over allocated.
2100 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2101 goto nopage;
2103 restart:
2104 if (!(gfp_mask & __GFP_NO_KSWAPD))
2105 wake_all_kswapd(order, zonelist, high_zoneidx,
2106 zone_idx(preferred_zone));
2109 * OK, we're below the kswapd watermark and have kicked background
2110 * reclaim. Now things get more complex, so set up alloc_flags according
2111 * to how we want to proceed.
2113 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2116 * Find the true preferred zone if the allocation is unconstrained by
2117 * cpusets.
2119 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2120 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2121 &preferred_zone);
2123 rebalance:
2124 /* This is the last chance, in general, before the goto nopage. */
2125 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2126 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2127 preferred_zone, migratetype);
2128 if (page)
2129 goto got_pg;
2131 /* Allocate without watermarks if the context allows */
2132 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2133 page = __alloc_pages_high_priority(gfp_mask, order,
2134 zonelist, high_zoneidx, nodemask,
2135 preferred_zone, migratetype);
2136 if (page)
2137 goto got_pg;
2140 /* Atomic allocations - we can't balance anything */
2141 if (!wait)
2142 goto nopage;
2144 /* Avoid recursion of direct reclaim */
2145 if (current->flags & PF_MEMALLOC)
2146 goto nopage;
2148 /* Avoid allocations with no watermarks from looping endlessly */
2149 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2150 goto nopage;
2153 * Try direct compaction. The first pass is asynchronous. Subsequent
2154 * attempts after direct reclaim are synchronous
2156 page = __alloc_pages_direct_compact(gfp_mask, order,
2157 zonelist, high_zoneidx,
2158 nodemask,
2159 alloc_flags, preferred_zone,
2160 migratetype, &did_some_progress,
2161 sync_migration);
2162 if (page)
2163 goto got_pg;
2164 sync_migration = true;
2166 /* Try direct reclaim and then allocating */
2167 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2168 zonelist, high_zoneidx,
2169 nodemask,
2170 alloc_flags, preferred_zone,
2171 migratetype, &did_some_progress);
2172 if (page)
2173 goto got_pg;
2176 * If we failed to make any progress reclaiming, then we are
2177 * running out of options and have to consider going OOM
2179 if (!did_some_progress) {
2180 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2181 if (oom_killer_disabled)
2182 goto nopage;
2183 page = __alloc_pages_may_oom(gfp_mask, order,
2184 zonelist, high_zoneidx,
2185 nodemask, preferred_zone,
2186 migratetype);
2187 if (page)
2188 goto got_pg;
2190 if (!(gfp_mask & __GFP_NOFAIL)) {
2192 * The oom killer is not called for high-order
2193 * allocations that may fail, so if no progress
2194 * is being made, there are no other options and
2195 * retrying is unlikely to help.
2197 if (order > PAGE_ALLOC_COSTLY_ORDER)
2198 goto nopage;
2200 * The oom killer is not called for lowmem
2201 * allocations to prevent needlessly killing
2202 * innocent tasks.
2204 if (high_zoneidx < ZONE_NORMAL)
2205 goto nopage;
2208 goto restart;
2212 /* Check if we should retry the allocation */
2213 pages_reclaimed += did_some_progress;
2214 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2215 /* Wait for some write requests to complete then retry */
2216 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2217 goto rebalance;
2218 } else {
2220 * High-order allocations do not necessarily loop after
2221 * direct reclaim and reclaim/compaction depends on compaction
2222 * being called after reclaim so call directly if necessary
2224 page = __alloc_pages_direct_compact(gfp_mask, order,
2225 zonelist, high_zoneidx,
2226 nodemask,
2227 alloc_flags, preferred_zone,
2228 migratetype, &did_some_progress,
2229 sync_migration);
2230 if (page)
2231 goto got_pg;
2234 nopage:
2235 warn_alloc_failed(gfp_mask, order, NULL);
2236 return page;
2237 got_pg:
2238 if (kmemcheck_enabled)
2239 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2240 return page;
2245 * This is the 'heart' of the zoned buddy allocator.
2247 struct page *
2248 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2249 struct zonelist *zonelist, nodemask_t *nodemask)
2251 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2252 struct zone *preferred_zone;
2253 struct page *page;
2254 int migratetype = allocflags_to_migratetype(gfp_mask);
2256 gfp_mask &= gfp_allowed_mask;
2258 lockdep_trace_alloc(gfp_mask);
2260 might_sleep_if(gfp_mask & __GFP_WAIT);
2262 if (should_fail_alloc_page(gfp_mask, order))
2263 return NULL;
2266 * Check the zones suitable for the gfp_mask contain at least one
2267 * valid zone. It's possible to have an empty zonelist as a result
2268 * of GFP_THISNODE and a memoryless node
2270 if (unlikely(!zonelist->_zonerefs->zone))
2271 return NULL;
2273 get_mems_allowed();
2274 /* The preferred zone is used for statistics later */
2275 first_zones_zonelist(zonelist, high_zoneidx,
2276 nodemask ? : &cpuset_current_mems_allowed,
2277 &preferred_zone);
2278 if (!preferred_zone) {
2279 put_mems_allowed();
2280 return NULL;
2283 /* First allocation attempt */
2284 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2285 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2286 preferred_zone, migratetype);
2287 if (unlikely(!page))
2288 page = __alloc_pages_slowpath(gfp_mask, order,
2289 zonelist, high_zoneidx, nodemask,
2290 preferred_zone, migratetype);
2291 put_mems_allowed();
2293 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2294 return page;
2296 EXPORT_SYMBOL(__alloc_pages_nodemask);
2299 * Common helper functions.
2301 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2303 struct page *page;
2306 * __get_free_pages() returns a 32-bit address, which cannot represent
2307 * a highmem page
2309 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2311 page = alloc_pages(gfp_mask, order);
2312 if (!page)
2313 return 0;
2314 return (unsigned long) page_address(page);
2316 EXPORT_SYMBOL(__get_free_pages);
2318 unsigned long get_zeroed_page(gfp_t gfp_mask)
2320 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2322 EXPORT_SYMBOL(get_zeroed_page);
2324 void __pagevec_free(struct pagevec *pvec)
2326 int i = pagevec_count(pvec);
2328 while (--i >= 0) {
2329 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2330 free_hot_cold_page(pvec->pages[i], pvec->cold);
2334 void __free_pages(struct page *page, unsigned int order)
2336 if (put_page_testzero(page)) {
2337 if (order == 0)
2338 free_hot_cold_page(page, 0);
2339 else
2340 __free_pages_ok(page, order);
2344 EXPORT_SYMBOL(__free_pages);
2346 void free_pages(unsigned long addr, unsigned int order)
2348 if (addr != 0) {
2349 VM_BUG_ON(!virt_addr_valid((void *)addr));
2350 __free_pages(virt_to_page((void *)addr), order);
2354 EXPORT_SYMBOL(free_pages);
2356 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2358 if (addr) {
2359 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2360 unsigned long used = addr + PAGE_ALIGN(size);
2362 split_page(virt_to_page((void *)addr), order);
2363 while (used < alloc_end) {
2364 free_page(used);
2365 used += PAGE_SIZE;
2368 return (void *)addr;
2372 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2373 * @size: the number of bytes to allocate
2374 * @gfp_mask: GFP flags for the allocation
2376 * This function is similar to alloc_pages(), except that it allocates the
2377 * minimum number of pages to satisfy the request. alloc_pages() can only
2378 * allocate memory in power-of-two pages.
2380 * This function is also limited by MAX_ORDER.
2382 * Memory allocated by this function must be released by free_pages_exact().
2384 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2386 unsigned int order = get_order(size);
2387 unsigned long addr;
2389 addr = __get_free_pages(gfp_mask, order);
2390 return make_alloc_exact(addr, order, size);
2392 EXPORT_SYMBOL(alloc_pages_exact);
2395 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2396 * pages on a node.
2397 * @nid: the preferred node ID where memory should be allocated
2398 * @size: the number of bytes to allocate
2399 * @gfp_mask: GFP flags for the allocation
2401 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2402 * back.
2403 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2404 * but is not exact.
2406 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2408 unsigned order = get_order(size);
2409 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2410 if (!p)
2411 return NULL;
2412 return make_alloc_exact((unsigned long)page_address(p), order, size);
2414 EXPORT_SYMBOL(alloc_pages_exact_nid);
2417 * free_pages_exact - release memory allocated via alloc_pages_exact()
2418 * @virt: the value returned by alloc_pages_exact.
2419 * @size: size of allocation, same value as passed to alloc_pages_exact().
2421 * Release the memory allocated by a previous call to alloc_pages_exact.
2423 void free_pages_exact(void *virt, size_t size)
2425 unsigned long addr = (unsigned long)virt;
2426 unsigned long end = addr + PAGE_ALIGN(size);
2428 while (addr < end) {
2429 free_page(addr);
2430 addr += PAGE_SIZE;
2433 EXPORT_SYMBOL(free_pages_exact);
2435 static unsigned int nr_free_zone_pages(int offset)
2437 struct zoneref *z;
2438 struct zone *zone;
2440 /* Just pick one node, since fallback list is circular */
2441 unsigned int sum = 0;
2443 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2445 for_each_zone_zonelist(zone, z, zonelist, offset) {
2446 unsigned long size = zone->present_pages;
2447 unsigned long high = high_wmark_pages(zone);
2448 if (size > high)
2449 sum += size - high;
2452 return sum;
2456 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2458 unsigned int nr_free_buffer_pages(void)
2460 return nr_free_zone_pages(gfp_zone(GFP_USER));
2462 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2465 * Amount of free RAM allocatable within all zones
2467 unsigned int nr_free_pagecache_pages(void)
2469 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2472 static inline void show_node(struct zone *zone)
2474 if (NUMA_BUILD)
2475 printk("Node %d ", zone_to_nid(zone));
2478 void si_meminfo(struct sysinfo *val)
2480 val->totalram = totalram_pages;
2481 val->sharedram = 0;
2482 val->freeram = global_page_state(NR_FREE_PAGES);
2483 val->bufferram = nr_blockdev_pages();
2484 val->totalhigh = totalhigh_pages;
2485 val->freehigh = nr_free_highpages();
2486 val->mem_unit = PAGE_SIZE;
2489 EXPORT_SYMBOL(si_meminfo);
2491 #ifdef CONFIG_NUMA
2492 void si_meminfo_node(struct sysinfo *val, int nid)
2494 pg_data_t *pgdat = NODE_DATA(nid);
2496 val->totalram = pgdat->node_present_pages;
2497 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2498 #ifdef CONFIG_HIGHMEM
2499 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2500 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2501 NR_FREE_PAGES);
2502 #else
2503 val->totalhigh = 0;
2504 val->freehigh = 0;
2505 #endif
2506 val->mem_unit = PAGE_SIZE;
2508 #endif
2511 * Determine whether the node should be displayed or not, depending on whether
2512 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2514 bool skip_free_areas_node(unsigned int flags, int nid)
2516 bool ret = false;
2518 if (!(flags & SHOW_MEM_FILTER_NODES))
2519 goto out;
2521 get_mems_allowed();
2522 ret = !node_isset(nid, cpuset_current_mems_allowed);
2523 put_mems_allowed();
2524 out:
2525 return ret;
2528 #define K(x) ((x) << (PAGE_SHIFT-10))
2531 * Show free area list (used inside shift_scroll-lock stuff)
2532 * We also calculate the percentage fragmentation. We do this by counting the
2533 * memory on each free list with the exception of the first item on the list.
2534 * Suppresses nodes that are not allowed by current's cpuset if
2535 * SHOW_MEM_FILTER_NODES is passed.
2537 void show_free_areas(unsigned int filter)
2539 int cpu;
2540 struct zone *zone;
2542 for_each_populated_zone(zone) {
2543 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2544 continue;
2545 show_node(zone);
2546 printk("%s per-cpu:\n", zone->name);
2548 for_each_online_cpu(cpu) {
2549 struct per_cpu_pageset *pageset;
2551 pageset = per_cpu_ptr(zone->pageset, cpu);
2553 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2554 cpu, pageset->pcp.high,
2555 pageset->pcp.batch, pageset->pcp.count);
2559 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2560 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2561 " unevictable:%lu"
2562 " dirty:%lu writeback:%lu unstable:%lu\n"
2563 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2564 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2565 global_page_state(NR_ACTIVE_ANON),
2566 global_page_state(NR_INACTIVE_ANON),
2567 global_page_state(NR_ISOLATED_ANON),
2568 global_page_state(NR_ACTIVE_FILE),
2569 global_page_state(NR_INACTIVE_FILE),
2570 global_page_state(NR_ISOLATED_FILE),
2571 global_page_state(NR_UNEVICTABLE),
2572 global_page_state(NR_FILE_DIRTY),
2573 global_page_state(NR_WRITEBACK),
2574 global_page_state(NR_UNSTABLE_NFS),
2575 global_page_state(NR_FREE_PAGES),
2576 global_page_state(NR_SLAB_RECLAIMABLE),
2577 global_page_state(NR_SLAB_UNRECLAIMABLE),
2578 global_page_state(NR_FILE_MAPPED),
2579 global_page_state(NR_SHMEM),
2580 global_page_state(NR_PAGETABLE),
2581 global_page_state(NR_BOUNCE));
2583 for_each_populated_zone(zone) {
2584 int i;
2586 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2587 continue;
2588 show_node(zone);
2589 printk("%s"
2590 " free:%lukB"
2591 " min:%lukB"
2592 " low:%lukB"
2593 " high:%lukB"
2594 " active_anon:%lukB"
2595 " inactive_anon:%lukB"
2596 " active_file:%lukB"
2597 " inactive_file:%lukB"
2598 " unevictable:%lukB"
2599 " isolated(anon):%lukB"
2600 " isolated(file):%lukB"
2601 " present:%lukB"
2602 " mlocked:%lukB"
2603 " dirty:%lukB"
2604 " writeback:%lukB"
2605 " mapped:%lukB"
2606 " shmem:%lukB"
2607 " slab_reclaimable:%lukB"
2608 " slab_unreclaimable:%lukB"
2609 " kernel_stack:%lukB"
2610 " pagetables:%lukB"
2611 " unstable:%lukB"
2612 " bounce:%lukB"
2613 " writeback_tmp:%lukB"
2614 " pages_scanned:%lu"
2615 " all_unreclaimable? %s"
2616 "\n",
2617 zone->name,
2618 K(zone_page_state(zone, NR_FREE_PAGES)),
2619 K(min_wmark_pages(zone)),
2620 K(low_wmark_pages(zone)),
2621 K(high_wmark_pages(zone)),
2622 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2623 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2624 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2625 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2626 K(zone_page_state(zone, NR_UNEVICTABLE)),
2627 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2628 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2629 K(zone->present_pages),
2630 K(zone_page_state(zone, NR_MLOCK)),
2631 K(zone_page_state(zone, NR_FILE_DIRTY)),
2632 K(zone_page_state(zone, NR_WRITEBACK)),
2633 K(zone_page_state(zone, NR_FILE_MAPPED)),
2634 K(zone_page_state(zone, NR_SHMEM)),
2635 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2636 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2637 zone_page_state(zone, NR_KERNEL_STACK) *
2638 THREAD_SIZE / 1024,
2639 K(zone_page_state(zone, NR_PAGETABLE)),
2640 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2641 K(zone_page_state(zone, NR_BOUNCE)),
2642 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2643 zone->pages_scanned,
2644 (zone->all_unreclaimable ? "yes" : "no")
2646 printk("lowmem_reserve[]:");
2647 for (i = 0; i < MAX_NR_ZONES; i++)
2648 printk(" %lu", zone->lowmem_reserve[i]);
2649 printk("\n");
2652 for_each_populated_zone(zone) {
2653 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2655 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2656 continue;
2657 show_node(zone);
2658 printk("%s: ", zone->name);
2660 spin_lock_irqsave(&zone->lock, flags);
2661 for (order = 0; order < MAX_ORDER; order++) {
2662 nr[order] = zone->free_area[order].nr_free;
2663 total += nr[order] << order;
2665 spin_unlock_irqrestore(&zone->lock, flags);
2666 for (order = 0; order < MAX_ORDER; order++)
2667 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2668 printk("= %lukB\n", K(total));
2671 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2673 show_swap_cache_info();
2676 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2678 zoneref->zone = zone;
2679 zoneref->zone_idx = zone_idx(zone);
2683 * Builds allocation fallback zone lists.
2685 * Add all populated zones of a node to the zonelist.
2687 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2688 int nr_zones, enum zone_type zone_type)
2690 struct zone *zone;
2692 BUG_ON(zone_type >= MAX_NR_ZONES);
2693 zone_type++;
2695 do {
2696 zone_type--;
2697 zone = pgdat->node_zones + zone_type;
2698 if (populated_zone(zone)) {
2699 zoneref_set_zone(zone,
2700 &zonelist->_zonerefs[nr_zones++]);
2701 check_highest_zone(zone_type);
2704 } while (zone_type);
2705 return nr_zones;
2710 * zonelist_order:
2711 * 0 = automatic detection of better ordering.
2712 * 1 = order by ([node] distance, -zonetype)
2713 * 2 = order by (-zonetype, [node] distance)
2715 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2716 * the same zonelist. So only NUMA can configure this param.
2718 #define ZONELIST_ORDER_DEFAULT 0
2719 #define ZONELIST_ORDER_NODE 1
2720 #define ZONELIST_ORDER_ZONE 2
2722 /* zonelist order in the kernel.
2723 * set_zonelist_order() will set this to NODE or ZONE.
2725 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2726 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2729 #ifdef CONFIG_NUMA
2730 /* The value user specified ....changed by config */
2731 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2732 /* string for sysctl */
2733 #define NUMA_ZONELIST_ORDER_LEN 16
2734 char numa_zonelist_order[16] = "default";
2737 * interface for configure zonelist ordering.
2738 * command line option "numa_zonelist_order"
2739 * = "[dD]efault - default, automatic configuration.
2740 * = "[nN]ode - order by node locality, then by zone within node
2741 * = "[zZ]one - order by zone, then by locality within zone
2744 static int __parse_numa_zonelist_order(char *s)
2746 if (*s == 'd' || *s == 'D') {
2747 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2748 } else if (*s == 'n' || *s == 'N') {
2749 user_zonelist_order = ZONELIST_ORDER_NODE;
2750 } else if (*s == 'z' || *s == 'Z') {
2751 user_zonelist_order = ZONELIST_ORDER_ZONE;
2752 } else {
2753 printk(KERN_WARNING
2754 "Ignoring invalid numa_zonelist_order value: "
2755 "%s\n", s);
2756 return -EINVAL;
2758 return 0;
2761 static __init int setup_numa_zonelist_order(char *s)
2763 int ret;
2765 if (!s)
2766 return 0;
2768 ret = __parse_numa_zonelist_order(s);
2769 if (ret == 0)
2770 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2772 return ret;
2774 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2777 * sysctl handler for numa_zonelist_order
2779 int numa_zonelist_order_handler(ctl_table *table, int write,
2780 void __user *buffer, size_t *length,
2781 loff_t *ppos)
2783 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2784 int ret;
2785 static DEFINE_MUTEX(zl_order_mutex);
2787 mutex_lock(&zl_order_mutex);
2788 if (write)
2789 strcpy(saved_string, (char*)table->data);
2790 ret = proc_dostring(table, write, buffer, length, ppos);
2791 if (ret)
2792 goto out;
2793 if (write) {
2794 int oldval = user_zonelist_order;
2795 if (__parse_numa_zonelist_order((char*)table->data)) {
2797 * bogus value. restore saved string
2799 strncpy((char*)table->data, saved_string,
2800 NUMA_ZONELIST_ORDER_LEN);
2801 user_zonelist_order = oldval;
2802 } else if (oldval != user_zonelist_order) {
2803 mutex_lock(&zonelists_mutex);
2804 build_all_zonelists(NULL);
2805 mutex_unlock(&zonelists_mutex);
2808 out:
2809 mutex_unlock(&zl_order_mutex);
2810 return ret;
2814 #define MAX_NODE_LOAD (nr_online_nodes)
2815 static int node_load[MAX_NUMNODES];
2818 * find_next_best_node - find the next node that should appear in a given node's fallback list
2819 * @node: node whose fallback list we're appending
2820 * @used_node_mask: nodemask_t of already used nodes
2822 * We use a number of factors to determine which is the next node that should
2823 * appear on a given node's fallback list. The node should not have appeared
2824 * already in @node's fallback list, and it should be the next closest node
2825 * according to the distance array (which contains arbitrary distance values
2826 * from each node to each node in the system), and should also prefer nodes
2827 * with no CPUs, since presumably they'll have very little allocation pressure
2828 * on them otherwise.
2829 * It returns -1 if no node is found.
2831 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2833 int n, val;
2834 int min_val = INT_MAX;
2835 int best_node = -1;
2836 const struct cpumask *tmp = cpumask_of_node(0);
2838 /* Use the local node if we haven't already */
2839 if (!node_isset(node, *used_node_mask)) {
2840 node_set(node, *used_node_mask);
2841 return node;
2844 for_each_node_state(n, N_HIGH_MEMORY) {
2846 /* Don't want a node to appear more than once */
2847 if (node_isset(n, *used_node_mask))
2848 continue;
2850 /* Use the distance array to find the distance */
2851 val = node_distance(node, n);
2853 /* Penalize nodes under us ("prefer the next node") */
2854 val += (n < node);
2856 /* Give preference to headless and unused nodes */
2857 tmp = cpumask_of_node(n);
2858 if (!cpumask_empty(tmp))
2859 val += PENALTY_FOR_NODE_WITH_CPUS;
2861 /* Slight preference for less loaded node */
2862 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2863 val += node_load[n];
2865 if (val < min_val) {
2866 min_val = val;
2867 best_node = n;
2871 if (best_node >= 0)
2872 node_set(best_node, *used_node_mask);
2874 return best_node;
2879 * Build zonelists ordered by node and zones within node.
2880 * This results in maximum locality--normal zone overflows into local
2881 * DMA zone, if any--but risks exhausting DMA zone.
2883 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2885 int j;
2886 struct zonelist *zonelist;
2888 zonelist = &pgdat->node_zonelists[0];
2889 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2891 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2892 MAX_NR_ZONES - 1);
2893 zonelist->_zonerefs[j].zone = NULL;
2894 zonelist->_zonerefs[j].zone_idx = 0;
2898 * Build gfp_thisnode zonelists
2900 static void build_thisnode_zonelists(pg_data_t *pgdat)
2902 int j;
2903 struct zonelist *zonelist;
2905 zonelist = &pgdat->node_zonelists[1];
2906 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2907 zonelist->_zonerefs[j].zone = NULL;
2908 zonelist->_zonerefs[j].zone_idx = 0;
2912 * Build zonelists ordered by zone and nodes within zones.
2913 * This results in conserving DMA zone[s] until all Normal memory is
2914 * exhausted, but results in overflowing to remote node while memory
2915 * may still exist in local DMA zone.
2917 static int node_order[MAX_NUMNODES];
2919 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2921 int pos, j, node;
2922 int zone_type; /* needs to be signed */
2923 struct zone *z;
2924 struct zonelist *zonelist;
2926 zonelist = &pgdat->node_zonelists[0];
2927 pos = 0;
2928 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2929 for (j = 0; j < nr_nodes; j++) {
2930 node = node_order[j];
2931 z = &NODE_DATA(node)->node_zones[zone_type];
2932 if (populated_zone(z)) {
2933 zoneref_set_zone(z,
2934 &zonelist->_zonerefs[pos++]);
2935 check_highest_zone(zone_type);
2939 zonelist->_zonerefs[pos].zone = NULL;
2940 zonelist->_zonerefs[pos].zone_idx = 0;
2943 static int default_zonelist_order(void)
2945 int nid, zone_type;
2946 unsigned long low_kmem_size,total_size;
2947 struct zone *z;
2948 int average_size;
2950 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2951 * If they are really small and used heavily, the system can fall
2952 * into OOM very easily.
2953 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2955 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2956 low_kmem_size = 0;
2957 total_size = 0;
2958 for_each_online_node(nid) {
2959 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2960 z = &NODE_DATA(nid)->node_zones[zone_type];
2961 if (populated_zone(z)) {
2962 if (zone_type < ZONE_NORMAL)
2963 low_kmem_size += z->present_pages;
2964 total_size += z->present_pages;
2965 } else if (zone_type == ZONE_NORMAL) {
2967 * If any node has only lowmem, then node order
2968 * is preferred to allow kernel allocations
2969 * locally; otherwise, they can easily infringe
2970 * on other nodes when there is an abundance of
2971 * lowmem available to allocate from.
2973 return ZONELIST_ORDER_NODE;
2977 if (!low_kmem_size || /* there are no DMA area. */
2978 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2979 return ZONELIST_ORDER_NODE;
2981 * look into each node's config.
2982 * If there is a node whose DMA/DMA32 memory is very big area on
2983 * local memory, NODE_ORDER may be suitable.
2985 average_size = total_size /
2986 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2987 for_each_online_node(nid) {
2988 low_kmem_size = 0;
2989 total_size = 0;
2990 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2991 z = &NODE_DATA(nid)->node_zones[zone_type];
2992 if (populated_zone(z)) {
2993 if (zone_type < ZONE_NORMAL)
2994 low_kmem_size += z->present_pages;
2995 total_size += z->present_pages;
2998 if (low_kmem_size &&
2999 total_size > average_size && /* ignore small node */
3000 low_kmem_size > total_size * 70/100)
3001 return ZONELIST_ORDER_NODE;
3003 return ZONELIST_ORDER_ZONE;
3006 static void set_zonelist_order(void)
3008 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3009 current_zonelist_order = default_zonelist_order();
3010 else
3011 current_zonelist_order = user_zonelist_order;
3014 static void build_zonelists(pg_data_t *pgdat)
3016 int j, node, load;
3017 enum zone_type i;
3018 nodemask_t used_mask;
3019 int local_node, prev_node;
3020 struct zonelist *zonelist;
3021 int order = current_zonelist_order;
3023 /* initialize zonelists */
3024 for (i = 0; i < MAX_ZONELISTS; i++) {
3025 zonelist = pgdat->node_zonelists + i;
3026 zonelist->_zonerefs[0].zone = NULL;
3027 zonelist->_zonerefs[0].zone_idx = 0;
3030 /* NUMA-aware ordering of nodes */
3031 local_node = pgdat->node_id;
3032 load = nr_online_nodes;
3033 prev_node = local_node;
3034 nodes_clear(used_mask);
3036 memset(node_order, 0, sizeof(node_order));
3037 j = 0;
3039 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3040 int distance = node_distance(local_node, node);
3043 * If another node is sufficiently far away then it is better
3044 * to reclaim pages in a zone before going off node.
3046 if (distance > RECLAIM_DISTANCE)
3047 zone_reclaim_mode = 1;
3050 * We don't want to pressure a particular node.
3051 * So adding penalty to the first node in same
3052 * distance group to make it round-robin.
3054 if (distance != node_distance(local_node, prev_node))
3055 node_load[node] = load;
3057 prev_node = node;
3058 load--;
3059 if (order == ZONELIST_ORDER_NODE)
3060 build_zonelists_in_node_order(pgdat, node);
3061 else
3062 node_order[j++] = node; /* remember order */
3065 if (order == ZONELIST_ORDER_ZONE) {
3066 /* calculate node order -- i.e., DMA last! */
3067 build_zonelists_in_zone_order(pgdat, j);
3070 build_thisnode_zonelists(pgdat);
3073 /* Construct the zonelist performance cache - see further mmzone.h */
3074 static void build_zonelist_cache(pg_data_t *pgdat)
3076 struct zonelist *zonelist;
3077 struct zonelist_cache *zlc;
3078 struct zoneref *z;
3080 zonelist = &pgdat->node_zonelists[0];
3081 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3082 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3083 for (z = zonelist->_zonerefs; z->zone; z++)
3084 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3087 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3089 * Return node id of node used for "local" allocations.
3090 * I.e., first node id of first zone in arg node's generic zonelist.
3091 * Used for initializing percpu 'numa_mem', which is used primarily
3092 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3094 int local_memory_node(int node)
3096 struct zone *zone;
3098 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3099 gfp_zone(GFP_KERNEL),
3100 NULL,
3101 &zone);
3102 return zone->node;
3104 #endif
3106 #else /* CONFIG_NUMA */
3108 static void set_zonelist_order(void)
3110 current_zonelist_order = ZONELIST_ORDER_ZONE;
3113 static void build_zonelists(pg_data_t *pgdat)
3115 int node, local_node;
3116 enum zone_type j;
3117 struct zonelist *zonelist;
3119 local_node = pgdat->node_id;
3121 zonelist = &pgdat->node_zonelists[0];
3122 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3125 * Now we build the zonelist so that it contains the zones
3126 * of all the other nodes.
3127 * We don't want to pressure a particular node, so when
3128 * building the zones for node N, we make sure that the
3129 * zones coming right after the local ones are those from
3130 * node N+1 (modulo N)
3132 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3133 if (!node_online(node))
3134 continue;
3135 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3136 MAX_NR_ZONES - 1);
3138 for (node = 0; node < local_node; node++) {
3139 if (!node_online(node))
3140 continue;
3141 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3142 MAX_NR_ZONES - 1);
3145 zonelist->_zonerefs[j].zone = NULL;
3146 zonelist->_zonerefs[j].zone_idx = 0;
3149 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3150 static void build_zonelist_cache(pg_data_t *pgdat)
3152 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3155 #endif /* CONFIG_NUMA */
3158 * Boot pageset table. One per cpu which is going to be used for all
3159 * zones and all nodes. The parameters will be set in such a way
3160 * that an item put on a list will immediately be handed over to
3161 * the buddy list. This is safe since pageset manipulation is done
3162 * with interrupts disabled.
3164 * The boot_pagesets must be kept even after bootup is complete for
3165 * unused processors and/or zones. They do play a role for bootstrapping
3166 * hotplugged processors.
3168 * zoneinfo_show() and maybe other functions do
3169 * not check if the processor is online before following the pageset pointer.
3170 * Other parts of the kernel may not check if the zone is available.
3172 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3173 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3174 static void setup_zone_pageset(struct zone *zone);
3177 * Global mutex to protect against size modification of zonelists
3178 * as well as to serialize pageset setup for the new populated zone.
3180 DEFINE_MUTEX(zonelists_mutex);
3182 /* return values int ....just for stop_machine() */
3183 static __init_refok int __build_all_zonelists(void *data)
3185 int nid;
3186 int cpu;
3188 #ifdef CONFIG_NUMA
3189 memset(node_load, 0, sizeof(node_load));
3190 #endif
3191 for_each_online_node(nid) {
3192 pg_data_t *pgdat = NODE_DATA(nid);
3194 build_zonelists(pgdat);
3195 build_zonelist_cache(pgdat);
3199 * Initialize the boot_pagesets that are going to be used
3200 * for bootstrapping processors. The real pagesets for
3201 * each zone will be allocated later when the per cpu
3202 * allocator is available.
3204 * boot_pagesets are used also for bootstrapping offline
3205 * cpus if the system is already booted because the pagesets
3206 * are needed to initialize allocators on a specific cpu too.
3207 * F.e. the percpu allocator needs the page allocator which
3208 * needs the percpu allocator in order to allocate its pagesets
3209 * (a chicken-egg dilemma).
3211 for_each_possible_cpu(cpu) {
3212 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3214 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3216 * We now know the "local memory node" for each node--
3217 * i.e., the node of the first zone in the generic zonelist.
3218 * Set up numa_mem percpu variable for on-line cpus. During
3219 * boot, only the boot cpu should be on-line; we'll init the
3220 * secondary cpus' numa_mem as they come on-line. During
3221 * node/memory hotplug, we'll fixup all on-line cpus.
3223 if (cpu_online(cpu))
3224 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3225 #endif
3228 return 0;
3232 * Called with zonelists_mutex held always
3233 * unless system_state == SYSTEM_BOOTING.
3235 void __ref build_all_zonelists(void *data)
3237 set_zonelist_order();
3239 if (system_state == SYSTEM_BOOTING) {
3240 __build_all_zonelists(NULL);
3241 mminit_verify_zonelist();
3242 cpuset_init_current_mems_allowed();
3243 } else {
3244 /* we have to stop all cpus to guarantee there is no user
3245 of zonelist */
3246 #ifdef CONFIG_MEMORY_HOTPLUG
3247 if (data)
3248 setup_zone_pageset((struct zone *)data);
3249 #endif
3250 stop_machine(__build_all_zonelists, NULL, NULL);
3251 /* cpuset refresh routine should be here */
3253 vm_total_pages = nr_free_pagecache_pages();
3255 * Disable grouping by mobility if the number of pages in the
3256 * system is too low to allow the mechanism to work. It would be
3257 * more accurate, but expensive to check per-zone. This check is
3258 * made on memory-hotadd so a system can start with mobility
3259 * disabled and enable it later
3261 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3262 page_group_by_mobility_disabled = 1;
3263 else
3264 page_group_by_mobility_disabled = 0;
3266 printk("Built %i zonelists in %s order, mobility grouping %s. "
3267 "Total pages: %ld\n",
3268 nr_online_nodes,
3269 zonelist_order_name[current_zonelist_order],
3270 page_group_by_mobility_disabled ? "off" : "on",
3271 vm_total_pages);
3272 #ifdef CONFIG_NUMA
3273 printk("Policy zone: %s\n", zone_names[policy_zone]);
3274 #endif
3278 * Helper functions to size the waitqueue hash table.
3279 * Essentially these want to choose hash table sizes sufficiently
3280 * large so that collisions trying to wait on pages are rare.
3281 * But in fact, the number of active page waitqueues on typical
3282 * systems is ridiculously low, less than 200. So this is even
3283 * conservative, even though it seems large.
3285 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3286 * waitqueues, i.e. the size of the waitq table given the number of pages.
3288 #define PAGES_PER_WAITQUEUE 256
3290 #ifndef CONFIG_MEMORY_HOTPLUG
3291 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3293 unsigned long size = 1;
3295 pages /= PAGES_PER_WAITQUEUE;
3297 while (size < pages)
3298 size <<= 1;
3301 * Once we have dozens or even hundreds of threads sleeping
3302 * on IO we've got bigger problems than wait queue collision.
3303 * Limit the size of the wait table to a reasonable size.
3305 size = min(size, 4096UL);
3307 return max(size, 4UL);
3309 #else
3311 * A zone's size might be changed by hot-add, so it is not possible to determine
3312 * a suitable size for its wait_table. So we use the maximum size now.
3314 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3316 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3317 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3318 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3320 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3321 * or more by the traditional way. (See above). It equals:
3323 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3324 * ia64(16K page size) : = ( 8G + 4M)byte.
3325 * powerpc (64K page size) : = (32G +16M)byte.
3327 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3329 return 4096UL;
3331 #endif
3334 * This is an integer logarithm so that shifts can be used later
3335 * to extract the more random high bits from the multiplicative
3336 * hash function before the remainder is taken.
3338 static inline unsigned long wait_table_bits(unsigned long size)
3340 return ffz(~size);
3343 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3346 * Check if a pageblock contains reserved pages
3348 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3350 unsigned long pfn;
3352 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3353 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3354 return 1;
3356 return 0;
3360 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3361 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3362 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3363 * higher will lead to a bigger reserve which will get freed as contiguous
3364 * blocks as reclaim kicks in
3366 static void setup_zone_migrate_reserve(struct zone *zone)
3368 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3369 struct page *page;
3370 unsigned long block_migratetype;
3371 int reserve;
3374 * Get the start pfn, end pfn and the number of blocks to reserve
3375 * We have to be careful to be aligned to pageblock_nr_pages to
3376 * make sure that we always check pfn_valid for the first page in
3377 * the block.
3379 start_pfn = zone->zone_start_pfn;
3380 end_pfn = start_pfn + zone->spanned_pages;
3381 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3382 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3383 pageblock_order;
3386 * Reserve blocks are generally in place to help high-order atomic
3387 * allocations that are short-lived. A min_free_kbytes value that
3388 * would result in more than 2 reserve blocks for atomic allocations
3389 * is assumed to be in place to help anti-fragmentation for the
3390 * future allocation of hugepages at runtime.
3392 reserve = min(2, reserve);
3394 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3395 if (!pfn_valid(pfn))
3396 continue;
3397 page = pfn_to_page(pfn);
3399 /* Watch out for overlapping nodes */
3400 if (page_to_nid(page) != zone_to_nid(zone))
3401 continue;
3403 /* Blocks with reserved pages will never free, skip them. */
3404 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3405 if (pageblock_is_reserved(pfn, block_end_pfn))
3406 continue;
3408 block_migratetype = get_pageblock_migratetype(page);
3410 /* If this block is reserved, account for it */
3411 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3412 reserve--;
3413 continue;
3416 /* Suitable for reserving if this block is movable */
3417 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3418 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3419 move_freepages_block(zone, page, MIGRATE_RESERVE);
3420 reserve--;
3421 continue;
3425 * If the reserve is met and this is a previous reserved block,
3426 * take it back
3428 if (block_migratetype == MIGRATE_RESERVE) {
3429 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3430 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3436 * Initially all pages are reserved - free ones are freed
3437 * up by free_all_bootmem() once the early boot process is
3438 * done. Non-atomic initialization, single-pass.
3440 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3441 unsigned long start_pfn, enum memmap_context context)
3443 struct page *page;
3444 unsigned long end_pfn = start_pfn + size;
3445 unsigned long pfn;
3446 struct zone *z;
3448 if (highest_memmap_pfn < end_pfn - 1)
3449 highest_memmap_pfn = end_pfn - 1;
3451 z = &NODE_DATA(nid)->node_zones[zone];
3452 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3454 * There can be holes in boot-time mem_map[]s
3455 * handed to this function. They do not
3456 * exist on hotplugged memory.
3458 if (context == MEMMAP_EARLY) {
3459 if (!early_pfn_valid(pfn))
3460 continue;
3461 if (!early_pfn_in_nid(pfn, nid))
3462 continue;
3464 page = pfn_to_page(pfn);
3465 set_page_links(page, zone, nid, pfn);
3466 mminit_verify_page_links(page, zone, nid, pfn);
3467 init_page_count(page);
3468 reset_page_mapcount(page);
3469 SetPageReserved(page);
3471 * Mark the block movable so that blocks are reserved for
3472 * movable at startup. This will force kernel allocations
3473 * to reserve their blocks rather than leaking throughout
3474 * the address space during boot when many long-lived
3475 * kernel allocations are made. Later some blocks near
3476 * the start are marked MIGRATE_RESERVE by
3477 * setup_zone_migrate_reserve()
3479 * bitmap is created for zone's valid pfn range. but memmap
3480 * can be created for invalid pages (for alignment)
3481 * check here not to call set_pageblock_migratetype() against
3482 * pfn out of zone.
3484 if ((z->zone_start_pfn <= pfn)
3485 && (pfn < z->zone_start_pfn + z->spanned_pages)
3486 && !(pfn & (pageblock_nr_pages - 1)))
3487 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3489 INIT_LIST_HEAD(&page->lru);
3490 #ifdef WANT_PAGE_VIRTUAL
3491 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3492 if (!is_highmem_idx(zone))
3493 set_page_address(page, __va(pfn << PAGE_SHIFT));
3494 #endif
3498 static void __meminit zone_init_free_lists(struct zone *zone)
3500 int order, t;
3501 for_each_migratetype_order(order, t) {
3502 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3503 zone->free_area[order].nr_free = 0;
3507 #ifndef __HAVE_ARCH_MEMMAP_INIT
3508 #define memmap_init(size, nid, zone, start_pfn) \
3509 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3510 #endif
3512 static int zone_batchsize(struct zone *zone)
3514 #ifdef CONFIG_MMU
3515 int batch;
3518 * The per-cpu-pages pools are set to around 1000th of the
3519 * size of the zone. But no more than 1/2 of a meg.
3521 * OK, so we don't know how big the cache is. So guess.
3523 batch = zone->present_pages / 1024;
3524 if (batch * PAGE_SIZE > 512 * 1024)
3525 batch = (512 * 1024) / PAGE_SIZE;
3526 batch /= 4; /* We effectively *= 4 below */
3527 if (batch < 1)
3528 batch = 1;
3531 * Clamp the batch to a 2^n - 1 value. Having a power
3532 * of 2 value was found to be more likely to have
3533 * suboptimal cache aliasing properties in some cases.
3535 * For example if 2 tasks are alternately allocating
3536 * batches of pages, one task can end up with a lot
3537 * of pages of one half of the possible page colors
3538 * and the other with pages of the other colors.
3540 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3542 return batch;
3544 #else
3545 /* The deferral and batching of frees should be suppressed under NOMMU
3546 * conditions.
3548 * The problem is that NOMMU needs to be able to allocate large chunks
3549 * of contiguous memory as there's no hardware page translation to
3550 * assemble apparent contiguous memory from discontiguous pages.
3552 * Queueing large contiguous runs of pages for batching, however,
3553 * causes the pages to actually be freed in smaller chunks. As there
3554 * can be a significant delay between the individual batches being
3555 * recycled, this leads to the once large chunks of space being
3556 * fragmented and becoming unavailable for high-order allocations.
3558 return 0;
3559 #endif
3562 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3564 struct per_cpu_pages *pcp;
3565 int migratetype;
3567 memset(p, 0, sizeof(*p));
3569 pcp = &p->pcp;
3570 pcp->count = 0;
3571 pcp->high = 6 * batch;
3572 pcp->batch = max(1UL, 1 * batch);
3573 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3574 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3578 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3579 * to the value high for the pageset p.
3582 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3583 unsigned long high)
3585 struct per_cpu_pages *pcp;
3587 pcp = &p->pcp;
3588 pcp->high = high;
3589 pcp->batch = max(1UL, high/4);
3590 if ((high/4) > (PAGE_SHIFT * 8))
3591 pcp->batch = PAGE_SHIFT * 8;
3594 static void setup_zone_pageset(struct zone *zone)
3596 int cpu;
3598 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3600 for_each_possible_cpu(cpu) {
3601 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3603 setup_pageset(pcp, zone_batchsize(zone));
3605 if (percpu_pagelist_fraction)
3606 setup_pagelist_highmark(pcp,
3607 (zone->present_pages /
3608 percpu_pagelist_fraction));
3613 * Allocate per cpu pagesets and initialize them.
3614 * Before this call only boot pagesets were available.
3616 void __init setup_per_cpu_pageset(void)
3618 struct zone *zone;
3620 for_each_populated_zone(zone)
3621 setup_zone_pageset(zone);
3624 static noinline __init_refok
3625 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3627 int i;
3628 struct pglist_data *pgdat = zone->zone_pgdat;
3629 size_t alloc_size;
3632 * The per-page waitqueue mechanism uses hashed waitqueues
3633 * per zone.
3635 zone->wait_table_hash_nr_entries =
3636 wait_table_hash_nr_entries(zone_size_pages);
3637 zone->wait_table_bits =
3638 wait_table_bits(zone->wait_table_hash_nr_entries);
3639 alloc_size = zone->wait_table_hash_nr_entries
3640 * sizeof(wait_queue_head_t);
3642 if (!slab_is_available()) {
3643 zone->wait_table = (wait_queue_head_t *)
3644 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3645 } else {
3647 * This case means that a zone whose size was 0 gets new memory
3648 * via memory hot-add.
3649 * But it may be the case that a new node was hot-added. In
3650 * this case vmalloc() will not be able to use this new node's
3651 * memory - this wait_table must be initialized to use this new
3652 * node itself as well.
3653 * To use this new node's memory, further consideration will be
3654 * necessary.
3656 zone->wait_table = vmalloc(alloc_size);
3658 if (!zone->wait_table)
3659 return -ENOMEM;
3661 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3662 init_waitqueue_head(zone->wait_table + i);
3664 return 0;
3667 static int __zone_pcp_update(void *data)
3669 struct zone *zone = data;
3670 int cpu;
3671 unsigned long batch = zone_batchsize(zone), flags;
3673 for_each_possible_cpu(cpu) {
3674 struct per_cpu_pageset *pset;
3675 struct per_cpu_pages *pcp;
3677 pset = per_cpu_ptr(zone->pageset, cpu);
3678 pcp = &pset->pcp;
3680 local_irq_save(flags);
3681 free_pcppages_bulk(zone, pcp->count, pcp);
3682 setup_pageset(pset, batch);
3683 local_irq_restore(flags);
3685 return 0;
3688 void zone_pcp_update(struct zone *zone)
3690 stop_machine(__zone_pcp_update, zone, NULL);
3693 static __meminit void zone_pcp_init(struct zone *zone)
3696 * per cpu subsystem is not up at this point. The following code
3697 * relies on the ability of the linker to provide the
3698 * offset of a (static) per cpu variable into the per cpu area.
3700 zone->pageset = &boot_pageset;
3702 if (zone->present_pages)
3703 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3704 zone->name, zone->present_pages,
3705 zone_batchsize(zone));
3708 __meminit int init_currently_empty_zone(struct zone *zone,
3709 unsigned long zone_start_pfn,
3710 unsigned long size,
3711 enum memmap_context context)
3713 struct pglist_data *pgdat = zone->zone_pgdat;
3714 int ret;
3715 ret = zone_wait_table_init(zone, size);
3716 if (ret)
3717 return ret;
3718 pgdat->nr_zones = zone_idx(zone) + 1;
3720 zone->zone_start_pfn = zone_start_pfn;
3722 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3723 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3724 pgdat->node_id,
3725 (unsigned long)zone_idx(zone),
3726 zone_start_pfn, (zone_start_pfn + size));
3728 zone_init_free_lists(zone);
3730 return 0;
3733 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3735 * Basic iterator support. Return the first range of PFNs for a node
3736 * Note: nid == MAX_NUMNODES returns first region regardless of node
3738 static int __meminit first_active_region_index_in_nid(int nid)
3740 int i;
3742 for (i = 0; i < nr_nodemap_entries; i++)
3743 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3744 return i;
3746 return -1;
3750 * Basic iterator support. Return the next active range of PFNs for a node
3751 * Note: nid == MAX_NUMNODES returns next region regardless of node
3753 static int __meminit next_active_region_index_in_nid(int index, int nid)
3755 for (index = index + 1; index < nr_nodemap_entries; index++)
3756 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3757 return index;
3759 return -1;
3762 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3764 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3765 * Architectures may implement their own version but if add_active_range()
3766 * was used and there are no special requirements, this is a convenient
3767 * alternative
3769 int __meminit __early_pfn_to_nid(unsigned long pfn)
3771 int i;
3773 for (i = 0; i < nr_nodemap_entries; i++) {
3774 unsigned long start_pfn = early_node_map[i].start_pfn;
3775 unsigned long end_pfn = early_node_map[i].end_pfn;
3777 if (start_pfn <= pfn && pfn < end_pfn)
3778 return early_node_map[i].nid;
3780 /* This is a memory hole */
3781 return -1;
3783 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3785 int __meminit early_pfn_to_nid(unsigned long pfn)
3787 int nid;
3789 nid = __early_pfn_to_nid(pfn);
3790 if (nid >= 0)
3791 return nid;
3792 /* just returns 0 */
3793 return 0;
3796 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3797 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3799 int nid;
3801 nid = __early_pfn_to_nid(pfn);
3802 if (nid >= 0 && nid != node)
3803 return false;
3804 return true;
3806 #endif
3808 /* Basic iterator support to walk early_node_map[] */
3809 #define for_each_active_range_index_in_nid(i, nid) \
3810 for (i = first_active_region_index_in_nid(nid); i != -1; \
3811 i = next_active_region_index_in_nid(i, nid))
3814 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3815 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3816 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3818 * If an architecture guarantees that all ranges registered with
3819 * add_active_ranges() contain no holes and may be freed, this
3820 * this function may be used instead of calling free_bootmem() manually.
3822 void __init free_bootmem_with_active_regions(int nid,
3823 unsigned long max_low_pfn)
3825 int i;
3827 for_each_active_range_index_in_nid(i, nid) {
3828 unsigned long size_pages = 0;
3829 unsigned long end_pfn = early_node_map[i].end_pfn;
3831 if (early_node_map[i].start_pfn >= max_low_pfn)
3832 continue;
3834 if (end_pfn > max_low_pfn)
3835 end_pfn = max_low_pfn;
3837 size_pages = end_pfn - early_node_map[i].start_pfn;
3838 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3839 PFN_PHYS(early_node_map[i].start_pfn),
3840 size_pages << PAGE_SHIFT);
3844 #ifdef CONFIG_HAVE_MEMBLOCK
3846 * Basic iterator support. Return the last range of PFNs for a node
3847 * Note: nid == MAX_NUMNODES returns last region regardless of node
3849 static int __meminit last_active_region_index_in_nid(int nid)
3851 int i;
3853 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3854 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3855 return i;
3857 return -1;
3861 * Basic iterator support. Return the previous active range of PFNs for a node
3862 * Note: nid == MAX_NUMNODES returns next region regardless of node
3864 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3866 for (index = index - 1; index >= 0; index--)
3867 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3868 return index;
3870 return -1;
3873 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3874 for (i = last_active_region_index_in_nid(nid); i != -1; \
3875 i = previous_active_region_index_in_nid(i, nid))
3877 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3878 u64 goal, u64 limit)
3880 int i;
3882 /* Need to go over early_node_map to find out good range for node */
3883 for_each_active_range_index_in_nid_reverse(i, nid) {
3884 u64 addr;
3885 u64 ei_start, ei_last;
3886 u64 final_start, final_end;
3888 ei_last = early_node_map[i].end_pfn;
3889 ei_last <<= PAGE_SHIFT;
3890 ei_start = early_node_map[i].start_pfn;
3891 ei_start <<= PAGE_SHIFT;
3893 final_start = max(ei_start, goal);
3894 final_end = min(ei_last, limit);
3896 if (final_start >= final_end)
3897 continue;
3899 addr = memblock_find_in_range(final_start, final_end, size, align);
3901 if (addr == MEMBLOCK_ERROR)
3902 continue;
3904 return addr;
3907 return MEMBLOCK_ERROR;
3909 #endif
3911 int __init add_from_early_node_map(struct range *range, int az,
3912 int nr_range, int nid)
3914 int i;
3915 u64 start, end;
3917 /* need to go over early_node_map to find out good range for node */
3918 for_each_active_range_index_in_nid(i, nid) {
3919 start = early_node_map[i].start_pfn;
3920 end = early_node_map[i].end_pfn;
3921 nr_range = add_range(range, az, nr_range, start, end);
3923 return nr_range;
3926 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3928 int i;
3929 int ret;
3931 for_each_active_range_index_in_nid(i, nid) {
3932 ret = work_fn(early_node_map[i].start_pfn,
3933 early_node_map[i].end_pfn, data);
3934 if (ret)
3935 break;
3939 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3940 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3942 * If an architecture guarantees that all ranges registered with
3943 * add_active_ranges() contain no holes and may be freed, this
3944 * function may be used instead of calling memory_present() manually.
3946 void __init sparse_memory_present_with_active_regions(int nid)
3948 int i;
3950 for_each_active_range_index_in_nid(i, nid)
3951 memory_present(early_node_map[i].nid,
3952 early_node_map[i].start_pfn,
3953 early_node_map[i].end_pfn);
3957 * get_pfn_range_for_nid - Return the start and end page frames for a node
3958 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3959 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3960 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3962 * It returns the start and end page frame of a node based on information
3963 * provided by an arch calling add_active_range(). If called for a node
3964 * with no available memory, a warning is printed and the start and end
3965 * PFNs will be 0.
3967 void __meminit get_pfn_range_for_nid(unsigned int nid,
3968 unsigned long *start_pfn, unsigned long *end_pfn)
3970 int i;
3971 *start_pfn = -1UL;
3972 *end_pfn = 0;
3974 for_each_active_range_index_in_nid(i, nid) {
3975 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3976 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3979 if (*start_pfn == -1UL)
3980 *start_pfn = 0;
3984 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3985 * assumption is made that zones within a node are ordered in monotonic
3986 * increasing memory addresses so that the "highest" populated zone is used
3988 static void __init find_usable_zone_for_movable(void)
3990 int zone_index;
3991 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3992 if (zone_index == ZONE_MOVABLE)
3993 continue;
3995 if (arch_zone_highest_possible_pfn[zone_index] >
3996 arch_zone_lowest_possible_pfn[zone_index])
3997 break;
4000 VM_BUG_ON(zone_index == -1);
4001 movable_zone = zone_index;
4005 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4006 * because it is sized independent of architecture. Unlike the other zones,
4007 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4008 * in each node depending on the size of each node and how evenly kernelcore
4009 * is distributed. This helper function adjusts the zone ranges
4010 * provided by the architecture for a given node by using the end of the
4011 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4012 * zones within a node are in order of monotonic increases memory addresses
4014 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4015 unsigned long zone_type,
4016 unsigned long node_start_pfn,
4017 unsigned long node_end_pfn,
4018 unsigned long *zone_start_pfn,
4019 unsigned long *zone_end_pfn)
4021 /* Only adjust if ZONE_MOVABLE is on this node */
4022 if (zone_movable_pfn[nid]) {
4023 /* Size ZONE_MOVABLE */
4024 if (zone_type == ZONE_MOVABLE) {
4025 *zone_start_pfn = zone_movable_pfn[nid];
4026 *zone_end_pfn = min(node_end_pfn,
4027 arch_zone_highest_possible_pfn[movable_zone]);
4029 /* Adjust for ZONE_MOVABLE starting within this range */
4030 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4031 *zone_end_pfn > zone_movable_pfn[nid]) {
4032 *zone_end_pfn = zone_movable_pfn[nid];
4034 /* Check if this whole range is within ZONE_MOVABLE */
4035 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4036 *zone_start_pfn = *zone_end_pfn;
4041 * Return the number of pages a zone spans in a node, including holes
4042 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4044 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4045 unsigned long zone_type,
4046 unsigned long *ignored)
4048 unsigned long node_start_pfn, node_end_pfn;
4049 unsigned long zone_start_pfn, zone_end_pfn;
4051 /* Get the start and end of the node and zone */
4052 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4053 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4054 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4055 adjust_zone_range_for_zone_movable(nid, zone_type,
4056 node_start_pfn, node_end_pfn,
4057 &zone_start_pfn, &zone_end_pfn);
4059 /* Check that this node has pages within the zone's required range */
4060 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4061 return 0;
4063 /* Move the zone boundaries inside the node if necessary */
4064 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4065 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4067 /* Return the spanned pages */
4068 return zone_end_pfn - zone_start_pfn;
4072 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4073 * then all holes in the requested range will be accounted for.
4075 unsigned long __meminit __absent_pages_in_range(int nid,
4076 unsigned long range_start_pfn,
4077 unsigned long range_end_pfn)
4079 int i = 0;
4080 unsigned long prev_end_pfn = 0, hole_pages = 0;
4081 unsigned long start_pfn;
4083 /* Find the end_pfn of the first active range of pfns in the node */
4084 i = first_active_region_index_in_nid(nid);
4085 if (i == -1)
4086 return 0;
4088 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4090 /* Account for ranges before physical memory on this node */
4091 if (early_node_map[i].start_pfn > range_start_pfn)
4092 hole_pages = prev_end_pfn - range_start_pfn;
4094 /* Find all holes for the zone within the node */
4095 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4097 /* No need to continue if prev_end_pfn is outside the zone */
4098 if (prev_end_pfn >= range_end_pfn)
4099 break;
4101 /* Make sure the end of the zone is not within the hole */
4102 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4103 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4105 /* Update the hole size cound and move on */
4106 if (start_pfn > range_start_pfn) {
4107 BUG_ON(prev_end_pfn > start_pfn);
4108 hole_pages += start_pfn - prev_end_pfn;
4110 prev_end_pfn = early_node_map[i].end_pfn;
4113 /* Account for ranges past physical memory on this node */
4114 if (range_end_pfn > prev_end_pfn)
4115 hole_pages += range_end_pfn -
4116 max(range_start_pfn, prev_end_pfn);
4118 return hole_pages;
4122 * absent_pages_in_range - Return number of page frames in holes within a range
4123 * @start_pfn: The start PFN to start searching for holes
4124 * @end_pfn: The end PFN to stop searching for holes
4126 * It returns the number of pages frames in memory holes within a range.
4128 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4129 unsigned long end_pfn)
4131 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4134 /* Return the number of page frames in holes in a zone on a node */
4135 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4136 unsigned long zone_type,
4137 unsigned long *ignored)
4139 unsigned long node_start_pfn, node_end_pfn;
4140 unsigned long zone_start_pfn, zone_end_pfn;
4142 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4143 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4144 node_start_pfn);
4145 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4146 node_end_pfn);
4148 adjust_zone_range_for_zone_movable(nid, zone_type,
4149 node_start_pfn, node_end_pfn,
4150 &zone_start_pfn, &zone_end_pfn);
4151 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4154 #else
4155 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4156 unsigned long zone_type,
4157 unsigned long *zones_size)
4159 return zones_size[zone_type];
4162 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4163 unsigned long zone_type,
4164 unsigned long *zholes_size)
4166 if (!zholes_size)
4167 return 0;
4169 return zholes_size[zone_type];
4172 #endif
4174 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4175 unsigned long *zones_size, unsigned long *zholes_size)
4177 unsigned long realtotalpages, totalpages = 0;
4178 enum zone_type i;
4180 for (i = 0; i < MAX_NR_ZONES; i++)
4181 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4182 zones_size);
4183 pgdat->node_spanned_pages = totalpages;
4185 realtotalpages = totalpages;
4186 for (i = 0; i < MAX_NR_ZONES; i++)
4187 realtotalpages -=
4188 zone_absent_pages_in_node(pgdat->node_id, i,
4189 zholes_size);
4190 pgdat->node_present_pages = realtotalpages;
4191 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4192 realtotalpages);
4195 #ifndef CONFIG_SPARSEMEM
4197 * Calculate the size of the zone->blockflags rounded to an unsigned long
4198 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4199 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4200 * round what is now in bits to nearest long in bits, then return it in
4201 * bytes.
4203 static unsigned long __init usemap_size(unsigned long zonesize)
4205 unsigned long usemapsize;
4207 usemapsize = roundup(zonesize, pageblock_nr_pages);
4208 usemapsize = usemapsize >> pageblock_order;
4209 usemapsize *= NR_PAGEBLOCK_BITS;
4210 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4212 return usemapsize / 8;
4215 static void __init setup_usemap(struct pglist_data *pgdat,
4216 struct zone *zone, unsigned long zonesize)
4218 unsigned long usemapsize = usemap_size(zonesize);
4219 zone->pageblock_flags = NULL;
4220 if (usemapsize)
4221 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4222 usemapsize);
4224 #else
4225 static inline void setup_usemap(struct pglist_data *pgdat,
4226 struct zone *zone, unsigned long zonesize) {}
4227 #endif /* CONFIG_SPARSEMEM */
4229 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4231 /* Return a sensible default order for the pageblock size. */
4232 static inline int pageblock_default_order(void)
4234 if (HPAGE_SHIFT > PAGE_SHIFT)
4235 return HUGETLB_PAGE_ORDER;
4237 return MAX_ORDER-1;
4240 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4241 static inline void __init set_pageblock_order(unsigned int order)
4243 /* Check that pageblock_nr_pages has not already been setup */
4244 if (pageblock_order)
4245 return;
4248 * Assume the largest contiguous order of interest is a huge page.
4249 * This value may be variable depending on boot parameters on IA64
4251 pageblock_order = order;
4253 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4256 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4257 * and pageblock_default_order() are unused as pageblock_order is set
4258 * at compile-time. See include/linux/pageblock-flags.h for the values of
4259 * pageblock_order based on the kernel config
4261 static inline int pageblock_default_order(unsigned int order)
4263 return MAX_ORDER-1;
4265 #define set_pageblock_order(x) do {} while (0)
4267 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4270 * Set up the zone data structures:
4271 * - mark all pages reserved
4272 * - mark all memory queues empty
4273 * - clear the memory bitmaps
4275 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4276 unsigned long *zones_size, unsigned long *zholes_size)
4278 enum zone_type j;
4279 int nid = pgdat->node_id;
4280 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4281 int ret;
4283 pgdat_resize_init(pgdat);
4284 pgdat->nr_zones = 0;
4285 init_waitqueue_head(&pgdat->kswapd_wait);
4286 pgdat->kswapd_max_order = 0;
4287 pgdat_page_cgroup_init(pgdat);
4289 for (j = 0; j < MAX_NR_ZONES; j++) {
4290 struct zone *zone = pgdat->node_zones + j;
4291 unsigned long size, realsize, memmap_pages;
4292 enum lru_list l;
4294 size = zone_spanned_pages_in_node(nid, j, zones_size);
4295 realsize = size - zone_absent_pages_in_node(nid, j,
4296 zholes_size);
4299 * Adjust realsize so that it accounts for how much memory
4300 * is used by this zone for memmap. This affects the watermark
4301 * and per-cpu initialisations
4303 memmap_pages =
4304 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4305 if (realsize >= memmap_pages) {
4306 realsize -= memmap_pages;
4307 if (memmap_pages)
4308 printk(KERN_DEBUG
4309 " %s zone: %lu pages used for memmap\n",
4310 zone_names[j], memmap_pages);
4311 } else
4312 printk(KERN_WARNING
4313 " %s zone: %lu pages exceeds realsize %lu\n",
4314 zone_names[j], memmap_pages, realsize);
4316 /* Account for reserved pages */
4317 if (j == 0 && realsize > dma_reserve) {
4318 realsize -= dma_reserve;
4319 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4320 zone_names[0], dma_reserve);
4323 if (!is_highmem_idx(j))
4324 nr_kernel_pages += realsize;
4325 nr_all_pages += realsize;
4327 zone->spanned_pages = size;
4328 zone->present_pages = realsize;
4329 #ifdef CONFIG_NUMA
4330 zone->node = nid;
4331 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4332 / 100;
4333 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4334 #endif
4335 zone->name = zone_names[j];
4336 spin_lock_init(&zone->lock);
4337 spin_lock_init(&zone->lru_lock);
4338 zone_seqlock_init(zone);
4339 zone->zone_pgdat = pgdat;
4341 zone_pcp_init(zone);
4342 for_each_lru(l)
4343 INIT_LIST_HEAD(&zone->lru[l].list);
4344 zone->reclaim_stat.recent_rotated[0] = 0;
4345 zone->reclaim_stat.recent_rotated[1] = 0;
4346 zone->reclaim_stat.recent_scanned[0] = 0;
4347 zone->reclaim_stat.recent_scanned[1] = 0;
4348 zap_zone_vm_stats(zone);
4349 zone->flags = 0;
4350 if (!size)
4351 continue;
4353 set_pageblock_order(pageblock_default_order());
4354 setup_usemap(pgdat, zone, size);
4355 ret = init_currently_empty_zone(zone, zone_start_pfn,
4356 size, MEMMAP_EARLY);
4357 BUG_ON(ret);
4358 memmap_init(size, nid, j, zone_start_pfn);
4359 zone_start_pfn += size;
4363 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4365 /* Skip empty nodes */
4366 if (!pgdat->node_spanned_pages)
4367 return;
4369 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4370 /* ia64 gets its own node_mem_map, before this, without bootmem */
4371 if (!pgdat->node_mem_map) {
4372 unsigned long size, start, end;
4373 struct page *map;
4376 * The zone's endpoints aren't required to be MAX_ORDER
4377 * aligned but the node_mem_map endpoints must be in order
4378 * for the buddy allocator to function correctly.
4380 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4381 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4382 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4383 size = (end - start) * sizeof(struct page);
4384 map = alloc_remap(pgdat->node_id, size);
4385 if (!map)
4386 map = alloc_bootmem_node_nopanic(pgdat, size);
4387 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4389 #ifndef CONFIG_NEED_MULTIPLE_NODES
4391 * With no DISCONTIG, the global mem_map is just set as node 0's
4393 if (pgdat == NODE_DATA(0)) {
4394 mem_map = NODE_DATA(0)->node_mem_map;
4395 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4396 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4397 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4398 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4400 #endif
4401 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4404 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4405 unsigned long node_start_pfn, unsigned long *zholes_size)
4407 pg_data_t *pgdat = NODE_DATA(nid);
4409 pgdat->node_id = nid;
4410 pgdat->node_start_pfn = node_start_pfn;
4411 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4413 alloc_node_mem_map(pgdat);
4414 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4415 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4416 nid, (unsigned long)pgdat,
4417 (unsigned long)pgdat->node_mem_map);
4418 #endif
4420 free_area_init_core(pgdat, zones_size, zholes_size);
4423 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4425 #if MAX_NUMNODES > 1
4427 * Figure out the number of possible node ids.
4429 static void __init setup_nr_node_ids(void)
4431 unsigned int node;
4432 unsigned int highest = 0;
4434 for_each_node_mask(node, node_possible_map)
4435 highest = node;
4436 nr_node_ids = highest + 1;
4438 #else
4439 static inline void setup_nr_node_ids(void)
4442 #endif
4445 * add_active_range - Register a range of PFNs backed by physical memory
4446 * @nid: The node ID the range resides on
4447 * @start_pfn: The start PFN of the available physical memory
4448 * @end_pfn: The end PFN of the available physical memory
4450 * These ranges are stored in an early_node_map[] and later used by
4451 * free_area_init_nodes() to calculate zone sizes and holes. If the
4452 * range spans a memory hole, it is up to the architecture to ensure
4453 * the memory is not freed by the bootmem allocator. If possible
4454 * the range being registered will be merged with existing ranges.
4456 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4457 unsigned long end_pfn)
4459 int i;
4461 mminit_dprintk(MMINIT_TRACE, "memory_register",
4462 "Entering add_active_range(%d, %#lx, %#lx) "
4463 "%d entries of %d used\n",
4464 nid, start_pfn, end_pfn,
4465 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4467 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4469 /* Merge with existing active regions if possible */
4470 for (i = 0; i < nr_nodemap_entries; i++) {
4471 if (early_node_map[i].nid != nid)
4472 continue;
4474 /* Skip if an existing region covers this new one */
4475 if (start_pfn >= early_node_map[i].start_pfn &&
4476 end_pfn <= early_node_map[i].end_pfn)
4477 return;
4479 /* Merge forward if suitable */
4480 if (start_pfn <= early_node_map[i].end_pfn &&
4481 end_pfn > early_node_map[i].end_pfn) {
4482 early_node_map[i].end_pfn = end_pfn;
4483 return;
4486 /* Merge backward if suitable */
4487 if (start_pfn < early_node_map[i].start_pfn &&
4488 end_pfn >= early_node_map[i].start_pfn) {
4489 early_node_map[i].start_pfn = start_pfn;
4490 return;
4494 /* Check that early_node_map is large enough */
4495 if (i >= MAX_ACTIVE_REGIONS) {
4496 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4497 MAX_ACTIVE_REGIONS);
4498 return;
4501 early_node_map[i].nid = nid;
4502 early_node_map[i].start_pfn = start_pfn;
4503 early_node_map[i].end_pfn = end_pfn;
4504 nr_nodemap_entries = i + 1;
4508 * remove_active_range - Shrink an existing registered range of PFNs
4509 * @nid: The node id the range is on that should be shrunk
4510 * @start_pfn: The new PFN of the range
4511 * @end_pfn: The new PFN of the range
4513 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4514 * The map is kept near the end physical page range that has already been
4515 * registered. This function allows an arch to shrink an existing registered
4516 * range.
4518 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4519 unsigned long end_pfn)
4521 int i, j;
4522 int removed = 0;
4524 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4525 nid, start_pfn, end_pfn);
4527 /* Find the old active region end and shrink */
4528 for_each_active_range_index_in_nid(i, nid) {
4529 if (early_node_map[i].start_pfn >= start_pfn &&
4530 early_node_map[i].end_pfn <= end_pfn) {
4531 /* clear it */
4532 early_node_map[i].start_pfn = 0;
4533 early_node_map[i].end_pfn = 0;
4534 removed = 1;
4535 continue;
4537 if (early_node_map[i].start_pfn < start_pfn &&
4538 early_node_map[i].end_pfn > start_pfn) {
4539 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4540 early_node_map[i].end_pfn = start_pfn;
4541 if (temp_end_pfn > end_pfn)
4542 add_active_range(nid, end_pfn, temp_end_pfn);
4543 continue;
4545 if (early_node_map[i].start_pfn >= start_pfn &&
4546 early_node_map[i].end_pfn > end_pfn &&
4547 early_node_map[i].start_pfn < end_pfn) {
4548 early_node_map[i].start_pfn = end_pfn;
4549 continue;
4553 if (!removed)
4554 return;
4556 /* remove the blank ones */
4557 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4558 if (early_node_map[i].nid != nid)
4559 continue;
4560 if (early_node_map[i].end_pfn)
4561 continue;
4562 /* we found it, get rid of it */
4563 for (j = i; j < nr_nodemap_entries - 1; j++)
4564 memcpy(&early_node_map[j], &early_node_map[j+1],
4565 sizeof(early_node_map[j]));
4566 j = nr_nodemap_entries - 1;
4567 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4568 nr_nodemap_entries--;
4573 * remove_all_active_ranges - Remove all currently registered regions
4575 * During discovery, it may be found that a table like SRAT is invalid
4576 * and an alternative discovery method must be used. This function removes
4577 * all currently registered regions.
4579 void __init remove_all_active_ranges(void)
4581 memset(early_node_map, 0, sizeof(early_node_map));
4582 nr_nodemap_entries = 0;
4585 /* Compare two active node_active_regions */
4586 static int __init cmp_node_active_region(const void *a, const void *b)
4588 struct node_active_region *arange = (struct node_active_region *)a;
4589 struct node_active_region *brange = (struct node_active_region *)b;
4591 /* Done this way to avoid overflows */
4592 if (arange->start_pfn > brange->start_pfn)
4593 return 1;
4594 if (arange->start_pfn < brange->start_pfn)
4595 return -1;
4597 return 0;
4600 /* sort the node_map by start_pfn */
4601 void __init sort_node_map(void)
4603 sort(early_node_map, (size_t)nr_nodemap_entries,
4604 sizeof(struct node_active_region),
4605 cmp_node_active_region, NULL);
4609 * node_map_pfn_alignment - determine the maximum internode alignment
4611 * This function should be called after node map is populated and sorted.
4612 * It calculates the maximum power of two alignment which can distinguish
4613 * all the nodes.
4615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4617 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4618 * shifted, 1GiB is enough and this function will indicate so.
4620 * This is used to test whether pfn -> nid mapping of the chosen memory
4621 * model has fine enough granularity to avoid incorrect mapping for the
4622 * populated node map.
4624 * Returns the determined alignment in pfn's. 0 if there is no alignment
4625 * requirement (single node).
4627 unsigned long __init node_map_pfn_alignment(void)
4629 unsigned long accl_mask = 0, last_end = 0;
4630 int last_nid = -1;
4631 int i;
4633 for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4634 int nid = early_node_map[i].nid;
4635 unsigned long start = early_node_map[i].start_pfn;
4636 unsigned long end = early_node_map[i].end_pfn;
4637 unsigned long mask;
4639 if (!start || last_nid < 0 || last_nid == nid) {
4640 last_nid = nid;
4641 last_end = end;
4642 continue;
4646 * Start with a mask granular enough to pin-point to the
4647 * start pfn and tick off bits one-by-one until it becomes
4648 * too coarse to separate the current node from the last.
4650 mask = ~((1 << __ffs(start)) - 1);
4651 while (mask && last_end <= (start & (mask << 1)))
4652 mask <<= 1;
4654 /* accumulate all internode masks */
4655 accl_mask |= mask;
4658 /* convert mask to number of pages */
4659 return ~accl_mask + 1;
4662 /* Find the lowest pfn for a node */
4663 static unsigned long __init find_min_pfn_for_node(int nid)
4665 int i;
4666 unsigned long min_pfn = ULONG_MAX;
4668 /* Assuming a sorted map, the first range found has the starting pfn */
4669 for_each_active_range_index_in_nid(i, nid)
4670 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4672 if (min_pfn == ULONG_MAX) {
4673 printk(KERN_WARNING
4674 "Could not find start_pfn for node %d\n", nid);
4675 return 0;
4678 return min_pfn;
4682 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4684 * It returns the minimum PFN based on information provided via
4685 * add_active_range().
4687 unsigned long __init find_min_pfn_with_active_regions(void)
4689 return find_min_pfn_for_node(MAX_NUMNODES);
4693 * early_calculate_totalpages()
4694 * Sum pages in active regions for movable zone.
4695 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4697 static unsigned long __init early_calculate_totalpages(void)
4699 int i;
4700 unsigned long totalpages = 0;
4702 for (i = 0; i < nr_nodemap_entries; i++) {
4703 unsigned long pages = early_node_map[i].end_pfn -
4704 early_node_map[i].start_pfn;
4705 totalpages += pages;
4706 if (pages)
4707 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4709 return totalpages;
4713 * Find the PFN the Movable zone begins in each node. Kernel memory
4714 * is spread evenly between nodes as long as the nodes have enough
4715 * memory. When they don't, some nodes will have more kernelcore than
4716 * others
4718 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4720 int i, nid;
4721 unsigned long usable_startpfn;
4722 unsigned long kernelcore_node, kernelcore_remaining;
4723 /* save the state before borrow the nodemask */
4724 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4725 unsigned long totalpages = early_calculate_totalpages();
4726 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4729 * If movablecore was specified, calculate what size of
4730 * kernelcore that corresponds so that memory usable for
4731 * any allocation type is evenly spread. If both kernelcore
4732 * and movablecore are specified, then the value of kernelcore
4733 * will be used for required_kernelcore if it's greater than
4734 * what movablecore would have allowed.
4736 if (required_movablecore) {
4737 unsigned long corepages;
4740 * Round-up so that ZONE_MOVABLE is at least as large as what
4741 * was requested by the user
4743 required_movablecore =
4744 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4745 corepages = totalpages - required_movablecore;
4747 required_kernelcore = max(required_kernelcore, corepages);
4750 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4751 if (!required_kernelcore)
4752 goto out;
4754 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4755 find_usable_zone_for_movable();
4756 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4758 restart:
4759 /* Spread kernelcore memory as evenly as possible throughout nodes */
4760 kernelcore_node = required_kernelcore / usable_nodes;
4761 for_each_node_state(nid, N_HIGH_MEMORY) {
4763 * Recalculate kernelcore_node if the division per node
4764 * now exceeds what is necessary to satisfy the requested
4765 * amount of memory for the kernel
4767 if (required_kernelcore < kernelcore_node)
4768 kernelcore_node = required_kernelcore / usable_nodes;
4771 * As the map is walked, we track how much memory is usable
4772 * by the kernel using kernelcore_remaining. When it is
4773 * 0, the rest of the node is usable by ZONE_MOVABLE
4775 kernelcore_remaining = kernelcore_node;
4777 /* Go through each range of PFNs within this node */
4778 for_each_active_range_index_in_nid(i, nid) {
4779 unsigned long start_pfn, end_pfn;
4780 unsigned long size_pages;
4782 start_pfn = max(early_node_map[i].start_pfn,
4783 zone_movable_pfn[nid]);
4784 end_pfn = early_node_map[i].end_pfn;
4785 if (start_pfn >= end_pfn)
4786 continue;
4788 /* Account for what is only usable for kernelcore */
4789 if (start_pfn < usable_startpfn) {
4790 unsigned long kernel_pages;
4791 kernel_pages = min(end_pfn, usable_startpfn)
4792 - start_pfn;
4794 kernelcore_remaining -= min(kernel_pages,
4795 kernelcore_remaining);
4796 required_kernelcore -= min(kernel_pages,
4797 required_kernelcore);
4799 /* Continue if range is now fully accounted */
4800 if (end_pfn <= usable_startpfn) {
4803 * Push zone_movable_pfn to the end so
4804 * that if we have to rebalance
4805 * kernelcore across nodes, we will
4806 * not double account here
4808 zone_movable_pfn[nid] = end_pfn;
4809 continue;
4811 start_pfn = usable_startpfn;
4815 * The usable PFN range for ZONE_MOVABLE is from
4816 * start_pfn->end_pfn. Calculate size_pages as the
4817 * number of pages used as kernelcore
4819 size_pages = end_pfn - start_pfn;
4820 if (size_pages > kernelcore_remaining)
4821 size_pages = kernelcore_remaining;
4822 zone_movable_pfn[nid] = start_pfn + size_pages;
4825 * Some kernelcore has been met, update counts and
4826 * break if the kernelcore for this node has been
4827 * satisified
4829 required_kernelcore -= min(required_kernelcore,
4830 size_pages);
4831 kernelcore_remaining -= size_pages;
4832 if (!kernelcore_remaining)
4833 break;
4838 * If there is still required_kernelcore, we do another pass with one
4839 * less node in the count. This will push zone_movable_pfn[nid] further
4840 * along on the nodes that still have memory until kernelcore is
4841 * satisified
4843 usable_nodes--;
4844 if (usable_nodes && required_kernelcore > usable_nodes)
4845 goto restart;
4847 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4848 for (nid = 0; nid < MAX_NUMNODES; nid++)
4849 zone_movable_pfn[nid] =
4850 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4852 out:
4853 /* restore the node_state */
4854 node_states[N_HIGH_MEMORY] = saved_node_state;
4857 /* Any regular memory on that node ? */
4858 static void check_for_regular_memory(pg_data_t *pgdat)
4860 #ifdef CONFIG_HIGHMEM
4861 enum zone_type zone_type;
4863 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4864 struct zone *zone = &pgdat->node_zones[zone_type];
4865 if (zone->present_pages)
4866 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4868 #endif
4872 * free_area_init_nodes - Initialise all pg_data_t and zone data
4873 * @max_zone_pfn: an array of max PFNs for each zone
4875 * This will call free_area_init_node() for each active node in the system.
4876 * Using the page ranges provided by add_active_range(), the size of each
4877 * zone in each node and their holes is calculated. If the maximum PFN
4878 * between two adjacent zones match, it is assumed that the zone is empty.
4879 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4880 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4881 * starts where the previous one ended. For example, ZONE_DMA32 starts
4882 * at arch_max_dma_pfn.
4884 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4886 unsigned long nid;
4887 int i;
4889 /* Sort early_node_map as initialisation assumes it is sorted */
4890 sort_node_map();
4892 /* Record where the zone boundaries are */
4893 memset(arch_zone_lowest_possible_pfn, 0,
4894 sizeof(arch_zone_lowest_possible_pfn));
4895 memset(arch_zone_highest_possible_pfn, 0,
4896 sizeof(arch_zone_highest_possible_pfn));
4897 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4898 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4899 for (i = 1; i < MAX_NR_ZONES; i++) {
4900 if (i == ZONE_MOVABLE)
4901 continue;
4902 arch_zone_lowest_possible_pfn[i] =
4903 arch_zone_highest_possible_pfn[i-1];
4904 arch_zone_highest_possible_pfn[i] =
4905 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4907 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4908 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4910 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4911 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4912 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4914 /* Print out the zone ranges */
4915 printk("Zone PFN ranges:\n");
4916 for (i = 0; i < MAX_NR_ZONES; i++) {
4917 if (i == ZONE_MOVABLE)
4918 continue;
4919 printk(" %-8s ", zone_names[i]);
4920 if (arch_zone_lowest_possible_pfn[i] ==
4921 arch_zone_highest_possible_pfn[i])
4922 printk("empty\n");
4923 else
4924 printk("%0#10lx -> %0#10lx\n",
4925 arch_zone_lowest_possible_pfn[i],
4926 arch_zone_highest_possible_pfn[i]);
4929 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4930 printk("Movable zone start PFN for each node\n");
4931 for (i = 0; i < MAX_NUMNODES; i++) {
4932 if (zone_movable_pfn[i])
4933 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4936 /* Print out the early_node_map[] */
4937 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4938 for (i = 0; i < nr_nodemap_entries; i++)
4939 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4940 early_node_map[i].start_pfn,
4941 early_node_map[i].end_pfn);
4943 /* Initialise every node */
4944 mminit_verify_pageflags_layout();
4945 setup_nr_node_ids();
4946 for_each_online_node(nid) {
4947 pg_data_t *pgdat = NODE_DATA(nid);
4948 free_area_init_node(nid, NULL,
4949 find_min_pfn_for_node(nid), NULL);
4951 /* Any memory on that node */
4952 if (pgdat->node_present_pages)
4953 node_set_state(nid, N_HIGH_MEMORY);
4954 check_for_regular_memory(pgdat);
4958 static int __init cmdline_parse_core(char *p, unsigned long *core)
4960 unsigned long long coremem;
4961 if (!p)
4962 return -EINVAL;
4964 coremem = memparse(p, &p);
4965 *core = coremem >> PAGE_SHIFT;
4967 /* Paranoid check that UL is enough for the coremem value */
4968 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4970 return 0;
4974 * kernelcore=size sets the amount of memory for use for allocations that
4975 * cannot be reclaimed or migrated.
4977 static int __init cmdline_parse_kernelcore(char *p)
4979 return cmdline_parse_core(p, &required_kernelcore);
4983 * movablecore=size sets the amount of memory for use for allocations that
4984 * can be reclaimed or migrated.
4986 static int __init cmdline_parse_movablecore(char *p)
4988 return cmdline_parse_core(p, &required_movablecore);
4991 early_param("kernelcore", cmdline_parse_kernelcore);
4992 early_param("movablecore", cmdline_parse_movablecore);
4994 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4997 * set_dma_reserve - set the specified number of pages reserved in the first zone
4998 * @new_dma_reserve: The number of pages to mark reserved
5000 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5001 * In the DMA zone, a significant percentage may be consumed by kernel image
5002 * and other unfreeable allocations which can skew the watermarks badly. This
5003 * function may optionally be used to account for unfreeable pages in the
5004 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5005 * smaller per-cpu batchsize.
5007 void __init set_dma_reserve(unsigned long new_dma_reserve)
5009 dma_reserve = new_dma_reserve;
5012 void __init free_area_init(unsigned long *zones_size)
5014 free_area_init_node(0, zones_size,
5015 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5018 static int page_alloc_cpu_notify(struct notifier_block *self,
5019 unsigned long action, void *hcpu)
5021 int cpu = (unsigned long)hcpu;
5023 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5024 drain_pages(cpu);
5027 * Spill the event counters of the dead processor
5028 * into the current processors event counters.
5029 * This artificially elevates the count of the current
5030 * processor.
5032 vm_events_fold_cpu(cpu);
5035 * Zero the differential counters of the dead processor
5036 * so that the vm statistics are consistent.
5038 * This is only okay since the processor is dead and cannot
5039 * race with what we are doing.
5041 refresh_cpu_vm_stats(cpu);
5043 return NOTIFY_OK;
5046 void __init page_alloc_init(void)
5048 hotcpu_notifier(page_alloc_cpu_notify, 0);
5052 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5053 * or min_free_kbytes changes.
5055 static void calculate_totalreserve_pages(void)
5057 struct pglist_data *pgdat;
5058 unsigned long reserve_pages = 0;
5059 enum zone_type i, j;
5061 for_each_online_pgdat(pgdat) {
5062 for (i = 0; i < MAX_NR_ZONES; i++) {
5063 struct zone *zone = pgdat->node_zones + i;
5064 unsigned long max = 0;
5066 /* Find valid and maximum lowmem_reserve in the zone */
5067 for (j = i; j < MAX_NR_ZONES; j++) {
5068 if (zone->lowmem_reserve[j] > max)
5069 max = zone->lowmem_reserve[j];
5072 /* we treat the high watermark as reserved pages. */
5073 max += high_wmark_pages(zone);
5075 if (max > zone->present_pages)
5076 max = zone->present_pages;
5077 reserve_pages += max;
5080 totalreserve_pages = reserve_pages;
5084 * setup_per_zone_lowmem_reserve - called whenever
5085 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5086 * has a correct pages reserved value, so an adequate number of
5087 * pages are left in the zone after a successful __alloc_pages().
5089 static void setup_per_zone_lowmem_reserve(void)
5091 struct pglist_data *pgdat;
5092 enum zone_type j, idx;
5094 for_each_online_pgdat(pgdat) {
5095 for (j = 0; j < MAX_NR_ZONES; j++) {
5096 struct zone *zone = pgdat->node_zones + j;
5097 unsigned long present_pages = zone->present_pages;
5099 zone->lowmem_reserve[j] = 0;
5101 idx = j;
5102 while (idx) {
5103 struct zone *lower_zone;
5105 idx--;
5107 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5108 sysctl_lowmem_reserve_ratio[idx] = 1;
5110 lower_zone = pgdat->node_zones + idx;
5111 lower_zone->lowmem_reserve[j] = present_pages /
5112 sysctl_lowmem_reserve_ratio[idx];
5113 present_pages += lower_zone->present_pages;
5118 /* update totalreserve_pages */
5119 calculate_totalreserve_pages();
5123 * setup_per_zone_wmarks - called when min_free_kbytes changes
5124 * or when memory is hot-{added|removed}
5126 * Ensures that the watermark[min,low,high] values for each zone are set
5127 * correctly with respect to min_free_kbytes.
5129 void setup_per_zone_wmarks(void)
5131 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5132 unsigned long lowmem_pages = 0;
5133 struct zone *zone;
5134 unsigned long flags;
5136 /* Calculate total number of !ZONE_HIGHMEM pages */
5137 for_each_zone(zone) {
5138 if (!is_highmem(zone))
5139 lowmem_pages += zone->present_pages;
5142 for_each_zone(zone) {
5143 u64 tmp;
5145 spin_lock_irqsave(&zone->lock, flags);
5146 tmp = (u64)pages_min * zone->present_pages;
5147 do_div(tmp, lowmem_pages);
5148 if (is_highmem(zone)) {
5150 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5151 * need highmem pages, so cap pages_min to a small
5152 * value here.
5154 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5155 * deltas controls asynch page reclaim, and so should
5156 * not be capped for highmem.
5158 int min_pages;
5160 min_pages = zone->present_pages / 1024;
5161 if (min_pages < SWAP_CLUSTER_MAX)
5162 min_pages = SWAP_CLUSTER_MAX;
5163 if (min_pages > 128)
5164 min_pages = 128;
5165 zone->watermark[WMARK_MIN] = min_pages;
5166 } else {
5168 * If it's a lowmem zone, reserve a number of pages
5169 * proportionate to the zone's size.
5171 zone->watermark[WMARK_MIN] = tmp;
5174 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5175 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5176 setup_zone_migrate_reserve(zone);
5177 spin_unlock_irqrestore(&zone->lock, flags);
5180 /* update totalreserve_pages */
5181 calculate_totalreserve_pages();
5185 * The inactive anon list should be small enough that the VM never has to
5186 * do too much work, but large enough that each inactive page has a chance
5187 * to be referenced again before it is swapped out.
5189 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5190 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5191 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5192 * the anonymous pages are kept on the inactive list.
5194 * total target max
5195 * memory ratio inactive anon
5196 * -------------------------------------
5197 * 10MB 1 5MB
5198 * 100MB 1 50MB
5199 * 1GB 3 250MB
5200 * 10GB 10 0.9GB
5201 * 100GB 31 3GB
5202 * 1TB 101 10GB
5203 * 10TB 320 32GB
5205 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5207 unsigned int gb, ratio;
5209 /* Zone size in gigabytes */
5210 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5211 if (gb)
5212 ratio = int_sqrt(10 * gb);
5213 else
5214 ratio = 1;
5216 zone->inactive_ratio = ratio;
5219 static void __meminit setup_per_zone_inactive_ratio(void)
5221 struct zone *zone;
5223 for_each_zone(zone)
5224 calculate_zone_inactive_ratio(zone);
5228 * Initialise min_free_kbytes.
5230 * For small machines we want it small (128k min). For large machines
5231 * we want it large (64MB max). But it is not linear, because network
5232 * bandwidth does not increase linearly with machine size. We use
5234 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5235 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5237 * which yields
5239 * 16MB: 512k
5240 * 32MB: 724k
5241 * 64MB: 1024k
5242 * 128MB: 1448k
5243 * 256MB: 2048k
5244 * 512MB: 2896k
5245 * 1024MB: 4096k
5246 * 2048MB: 5792k
5247 * 4096MB: 8192k
5248 * 8192MB: 11584k
5249 * 16384MB: 16384k
5251 int __meminit init_per_zone_wmark_min(void)
5253 unsigned long lowmem_kbytes;
5255 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5257 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5258 if (min_free_kbytes < 128)
5259 min_free_kbytes = 128;
5260 if (min_free_kbytes > 65536)
5261 min_free_kbytes = 65536;
5262 setup_per_zone_wmarks();
5263 refresh_zone_stat_thresholds();
5264 setup_per_zone_lowmem_reserve();
5265 setup_per_zone_inactive_ratio();
5266 return 0;
5268 module_init(init_per_zone_wmark_min)
5271 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5272 * that we can call two helper functions whenever min_free_kbytes
5273 * changes.
5275 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5276 void __user *buffer, size_t *length, loff_t *ppos)
5278 proc_dointvec(table, write, buffer, length, ppos);
5279 if (write)
5280 setup_per_zone_wmarks();
5281 return 0;
5284 #ifdef CONFIG_NUMA
5285 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5286 void __user *buffer, size_t *length, loff_t *ppos)
5288 struct zone *zone;
5289 int rc;
5291 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5292 if (rc)
5293 return rc;
5295 for_each_zone(zone)
5296 zone->min_unmapped_pages = (zone->present_pages *
5297 sysctl_min_unmapped_ratio) / 100;
5298 return 0;
5301 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5302 void __user *buffer, size_t *length, loff_t *ppos)
5304 struct zone *zone;
5305 int rc;
5307 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5308 if (rc)
5309 return rc;
5311 for_each_zone(zone)
5312 zone->min_slab_pages = (zone->present_pages *
5313 sysctl_min_slab_ratio) / 100;
5314 return 0;
5316 #endif
5319 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5320 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5321 * whenever sysctl_lowmem_reserve_ratio changes.
5323 * The reserve ratio obviously has absolutely no relation with the
5324 * minimum watermarks. The lowmem reserve ratio can only make sense
5325 * if in function of the boot time zone sizes.
5327 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5328 void __user *buffer, size_t *length, loff_t *ppos)
5330 proc_dointvec_minmax(table, write, buffer, length, ppos);
5331 setup_per_zone_lowmem_reserve();
5332 return 0;
5336 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5337 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5338 * can have before it gets flushed back to buddy allocator.
5341 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5342 void __user *buffer, size_t *length, loff_t *ppos)
5344 struct zone *zone;
5345 unsigned int cpu;
5346 int ret;
5348 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5349 if (!write || (ret == -EINVAL))
5350 return ret;
5351 for_each_populated_zone(zone) {
5352 for_each_possible_cpu(cpu) {
5353 unsigned long high;
5354 high = zone->present_pages / percpu_pagelist_fraction;
5355 setup_pagelist_highmark(
5356 per_cpu_ptr(zone->pageset, cpu), high);
5359 return 0;
5362 int hashdist = HASHDIST_DEFAULT;
5364 #ifdef CONFIG_NUMA
5365 static int __init set_hashdist(char *str)
5367 if (!str)
5368 return 0;
5369 hashdist = simple_strtoul(str, &str, 0);
5370 return 1;
5372 __setup("hashdist=", set_hashdist);
5373 #endif
5376 * allocate a large system hash table from bootmem
5377 * - it is assumed that the hash table must contain an exact power-of-2
5378 * quantity of entries
5379 * - limit is the number of hash buckets, not the total allocation size
5381 void *__init alloc_large_system_hash(const char *tablename,
5382 unsigned long bucketsize,
5383 unsigned long numentries,
5384 int scale,
5385 int flags,
5386 unsigned int *_hash_shift,
5387 unsigned int *_hash_mask,
5388 unsigned long limit)
5390 unsigned long long max = limit;
5391 unsigned long log2qty, size;
5392 void *table = NULL;
5394 /* allow the kernel cmdline to have a say */
5395 if (!numentries) {
5396 /* round applicable memory size up to nearest megabyte */
5397 numentries = nr_kernel_pages;
5398 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5399 numentries >>= 20 - PAGE_SHIFT;
5400 numentries <<= 20 - PAGE_SHIFT;
5402 /* limit to 1 bucket per 2^scale bytes of low memory */
5403 if (scale > PAGE_SHIFT)
5404 numentries >>= (scale - PAGE_SHIFT);
5405 else
5406 numentries <<= (PAGE_SHIFT - scale);
5408 /* Make sure we've got at least a 0-order allocation.. */
5409 if (unlikely(flags & HASH_SMALL)) {
5410 /* Makes no sense without HASH_EARLY */
5411 WARN_ON(!(flags & HASH_EARLY));
5412 if (!(numentries >> *_hash_shift)) {
5413 numentries = 1UL << *_hash_shift;
5414 BUG_ON(!numentries);
5416 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5417 numentries = PAGE_SIZE / bucketsize;
5419 numentries = roundup_pow_of_two(numentries);
5421 /* limit allocation size to 1/16 total memory by default */
5422 if (max == 0) {
5423 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5424 do_div(max, bucketsize);
5427 if (numentries > max)
5428 numentries = max;
5430 log2qty = ilog2(numentries);
5432 do {
5433 size = bucketsize << log2qty;
5434 if (flags & HASH_EARLY)
5435 table = alloc_bootmem_nopanic(size);
5436 else if (hashdist)
5437 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5438 else {
5440 * If bucketsize is not a power-of-two, we may free
5441 * some pages at the end of hash table which
5442 * alloc_pages_exact() automatically does
5444 if (get_order(size) < MAX_ORDER) {
5445 table = alloc_pages_exact(size, GFP_ATOMIC);
5446 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5449 } while (!table && size > PAGE_SIZE && --log2qty);
5451 if (!table)
5452 panic("Failed to allocate %s hash table\n", tablename);
5454 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5455 tablename,
5456 (1UL << log2qty),
5457 ilog2(size) - PAGE_SHIFT,
5458 size);
5460 if (_hash_shift)
5461 *_hash_shift = log2qty;
5462 if (_hash_mask)
5463 *_hash_mask = (1 << log2qty) - 1;
5465 return table;
5468 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5469 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5470 unsigned long pfn)
5472 #ifdef CONFIG_SPARSEMEM
5473 return __pfn_to_section(pfn)->pageblock_flags;
5474 #else
5475 return zone->pageblock_flags;
5476 #endif /* CONFIG_SPARSEMEM */
5479 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5481 #ifdef CONFIG_SPARSEMEM
5482 pfn &= (PAGES_PER_SECTION-1);
5483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5484 #else
5485 pfn = pfn - zone->zone_start_pfn;
5486 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5487 #endif /* CONFIG_SPARSEMEM */
5491 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5492 * @page: The page within the block of interest
5493 * @start_bitidx: The first bit of interest to retrieve
5494 * @end_bitidx: The last bit of interest
5495 * returns pageblock_bits flags
5497 unsigned long get_pageblock_flags_group(struct page *page,
5498 int start_bitidx, int end_bitidx)
5500 struct zone *zone;
5501 unsigned long *bitmap;
5502 unsigned long pfn, bitidx;
5503 unsigned long flags = 0;
5504 unsigned long value = 1;
5506 zone = page_zone(page);
5507 pfn = page_to_pfn(page);
5508 bitmap = get_pageblock_bitmap(zone, pfn);
5509 bitidx = pfn_to_bitidx(zone, pfn);
5511 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5512 if (test_bit(bitidx + start_bitidx, bitmap))
5513 flags |= value;
5515 return flags;
5519 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5520 * @page: The page within the block of interest
5521 * @start_bitidx: The first bit of interest
5522 * @end_bitidx: The last bit of interest
5523 * @flags: The flags to set
5525 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5526 int start_bitidx, int end_bitidx)
5528 struct zone *zone;
5529 unsigned long *bitmap;
5530 unsigned long pfn, bitidx;
5531 unsigned long value = 1;
5533 zone = page_zone(page);
5534 pfn = page_to_pfn(page);
5535 bitmap = get_pageblock_bitmap(zone, pfn);
5536 bitidx = pfn_to_bitidx(zone, pfn);
5537 VM_BUG_ON(pfn < zone->zone_start_pfn);
5538 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5540 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5541 if (flags & value)
5542 __set_bit(bitidx + start_bitidx, bitmap);
5543 else
5544 __clear_bit(bitidx + start_bitidx, bitmap);
5548 * This is designed as sub function...plz see page_isolation.c also.
5549 * set/clear page block's type to be ISOLATE.
5550 * page allocater never alloc memory from ISOLATE block.
5553 static int
5554 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5556 unsigned long pfn, iter, found;
5558 * For avoiding noise data, lru_add_drain_all() should be called
5559 * If ZONE_MOVABLE, the zone never contains immobile pages
5561 if (zone_idx(zone) == ZONE_MOVABLE)
5562 return true;
5564 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5565 return true;
5567 pfn = page_to_pfn(page);
5568 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5569 unsigned long check = pfn + iter;
5571 if (!pfn_valid_within(check))
5572 continue;
5574 page = pfn_to_page(check);
5575 if (!page_count(page)) {
5576 if (PageBuddy(page))
5577 iter += (1 << page_order(page)) - 1;
5578 continue;
5580 if (!PageLRU(page))
5581 found++;
5583 * If there are RECLAIMABLE pages, we need to check it.
5584 * But now, memory offline itself doesn't call shrink_slab()
5585 * and it still to be fixed.
5588 * If the page is not RAM, page_count()should be 0.
5589 * we don't need more check. This is an _used_ not-movable page.
5591 * The problematic thing here is PG_reserved pages. PG_reserved
5592 * is set to both of a memory hole page and a _used_ kernel
5593 * page at boot.
5595 if (found > count)
5596 return false;
5598 return true;
5601 bool is_pageblock_removable_nolock(struct page *page)
5603 struct zone *zone = page_zone(page);
5604 return __count_immobile_pages(zone, page, 0);
5607 int set_migratetype_isolate(struct page *page)
5609 struct zone *zone;
5610 unsigned long flags, pfn;
5611 struct memory_isolate_notify arg;
5612 int notifier_ret;
5613 int ret = -EBUSY;
5615 zone = page_zone(page);
5617 spin_lock_irqsave(&zone->lock, flags);
5619 pfn = page_to_pfn(page);
5620 arg.start_pfn = pfn;
5621 arg.nr_pages = pageblock_nr_pages;
5622 arg.pages_found = 0;
5625 * It may be possible to isolate a pageblock even if the
5626 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5627 * notifier chain is used by balloon drivers to return the
5628 * number of pages in a range that are held by the balloon
5629 * driver to shrink memory. If all the pages are accounted for
5630 * by balloons, are free, or on the LRU, isolation can continue.
5631 * Later, for example, when memory hotplug notifier runs, these
5632 * pages reported as "can be isolated" should be isolated(freed)
5633 * by the balloon driver through the memory notifier chain.
5635 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5636 notifier_ret = notifier_to_errno(notifier_ret);
5637 if (notifier_ret)
5638 goto out;
5640 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5641 * We just check MOVABLE pages.
5643 if (__count_immobile_pages(zone, page, arg.pages_found))
5644 ret = 0;
5647 * immobile means "not-on-lru" paes. If immobile is larger than
5648 * removable-by-driver pages reported by notifier, we'll fail.
5651 out:
5652 if (!ret) {
5653 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5654 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5657 spin_unlock_irqrestore(&zone->lock, flags);
5658 if (!ret)
5659 drain_all_pages();
5660 return ret;
5663 void unset_migratetype_isolate(struct page *page)
5665 struct zone *zone;
5666 unsigned long flags;
5667 zone = page_zone(page);
5668 spin_lock_irqsave(&zone->lock, flags);
5669 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5670 goto out;
5671 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5672 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5673 out:
5674 spin_unlock_irqrestore(&zone->lock, flags);
5677 #ifdef CONFIG_MEMORY_HOTREMOVE
5679 * All pages in the range must be isolated before calling this.
5681 void
5682 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5684 struct page *page;
5685 struct zone *zone;
5686 int order, i;
5687 unsigned long pfn;
5688 unsigned long flags;
5689 /* find the first valid pfn */
5690 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5691 if (pfn_valid(pfn))
5692 break;
5693 if (pfn == end_pfn)
5694 return;
5695 zone = page_zone(pfn_to_page(pfn));
5696 spin_lock_irqsave(&zone->lock, flags);
5697 pfn = start_pfn;
5698 while (pfn < end_pfn) {
5699 if (!pfn_valid(pfn)) {
5700 pfn++;
5701 continue;
5703 page = pfn_to_page(pfn);
5704 BUG_ON(page_count(page));
5705 BUG_ON(!PageBuddy(page));
5706 order = page_order(page);
5707 #ifdef CONFIG_DEBUG_VM
5708 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5709 pfn, 1 << order, end_pfn);
5710 #endif
5711 list_del(&page->lru);
5712 rmv_page_order(page);
5713 zone->free_area[order].nr_free--;
5714 __mod_zone_page_state(zone, NR_FREE_PAGES,
5715 - (1UL << order));
5716 for (i = 0; i < (1 << order); i++)
5717 SetPageReserved((page+i));
5718 pfn += (1 << order);
5720 spin_unlock_irqrestore(&zone->lock, flags);
5722 #endif
5724 #ifdef CONFIG_MEMORY_FAILURE
5725 bool is_free_buddy_page(struct page *page)
5727 struct zone *zone = page_zone(page);
5728 unsigned long pfn = page_to_pfn(page);
5729 unsigned long flags;
5730 int order;
5732 spin_lock_irqsave(&zone->lock, flags);
5733 for (order = 0; order < MAX_ORDER; order++) {
5734 struct page *page_head = page - (pfn & ((1 << order) - 1));
5736 if (PageBuddy(page_head) && page_order(page_head) >= order)
5737 break;
5739 spin_unlock_irqrestore(&zone->lock, flags);
5741 return order < MAX_ORDER;
5743 #endif
5745 static struct trace_print_flags pageflag_names[] = {
5746 {1UL << PG_locked, "locked" },
5747 {1UL << PG_error, "error" },
5748 {1UL << PG_referenced, "referenced" },
5749 {1UL << PG_uptodate, "uptodate" },
5750 {1UL << PG_dirty, "dirty" },
5751 {1UL << PG_lru, "lru" },
5752 {1UL << PG_active, "active" },
5753 {1UL << PG_slab, "slab" },
5754 {1UL << PG_owner_priv_1, "owner_priv_1" },
5755 {1UL << PG_arch_1, "arch_1" },
5756 {1UL << PG_reserved, "reserved" },
5757 {1UL << PG_private, "private" },
5758 {1UL << PG_private_2, "private_2" },
5759 {1UL << PG_writeback, "writeback" },
5760 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5761 {1UL << PG_head, "head" },
5762 {1UL << PG_tail, "tail" },
5763 #else
5764 {1UL << PG_compound, "compound" },
5765 #endif
5766 {1UL << PG_swapcache, "swapcache" },
5767 {1UL << PG_mappedtodisk, "mappedtodisk" },
5768 {1UL << PG_reclaim, "reclaim" },
5769 {1UL << PG_swapbacked, "swapbacked" },
5770 {1UL << PG_unevictable, "unevictable" },
5771 #ifdef CONFIG_MMU
5772 {1UL << PG_mlocked, "mlocked" },
5773 #endif
5774 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5775 {1UL << PG_uncached, "uncached" },
5776 #endif
5777 #ifdef CONFIG_MEMORY_FAILURE
5778 {1UL << PG_hwpoison, "hwpoison" },
5779 #endif
5780 {-1UL, NULL },
5783 static void dump_page_flags(unsigned long flags)
5785 const char *delim = "";
5786 unsigned long mask;
5787 int i;
5789 printk(KERN_ALERT "page flags: %#lx(", flags);
5791 /* remove zone id */
5792 flags &= (1UL << NR_PAGEFLAGS) - 1;
5794 for (i = 0; pageflag_names[i].name && flags; i++) {
5796 mask = pageflag_names[i].mask;
5797 if ((flags & mask) != mask)
5798 continue;
5800 flags &= ~mask;
5801 printk("%s%s", delim, pageflag_names[i].name);
5802 delim = "|";
5805 /* check for left over flags */
5806 if (flags)
5807 printk("%s%#lx", delim, flags);
5809 printk(")\n");
5812 void dump_page(struct page *page)
5814 printk(KERN_ALERT
5815 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5816 page, atomic_read(&page->_count), page_mapcount(page),
5817 page->mapping, page->index);
5818 dump_page_flags(page->flags);
5819 mem_cgroup_print_bad_page(page);