KVM: x86: Prevent starting PIT timers in the absence of irqchip support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / audit_tree.c
blob5bf0790497e7779cf1001f6cb30c214de812ccd5
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
8 struct audit_tree;
9 struct audit_chunk;
11 struct audit_tree {
12 atomic_t count;
13 int goner;
14 struct audit_chunk *root;
15 struct list_head chunks;
16 struct list_head rules;
17 struct list_head list;
18 struct list_head same_root;
19 struct rcu_head head;
20 char pathname[];
23 struct audit_chunk {
24 struct list_head hash;
25 struct fsnotify_mark mark;
26 struct list_head trees; /* with root here */
27 int dead;
28 int count;
29 atomic_long_t refs;
30 struct rcu_head head;
31 struct node {
32 struct list_head list;
33 struct audit_tree *owner;
34 unsigned index; /* index; upper bit indicates 'will prune' */
35 } owners[];
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
42 * One struct chunk is attached to each inode of interest.
43 * We replace struct chunk on tagging/untagging.
44 * Rules have pointer to struct audit_tree.
45 * Rules have struct list_head rlist forming a list of rules over
46 * the same tree.
47 * References to struct chunk are collected at audit_inode{,_child}()
48 * time and used in AUDIT_TREE rule matching.
49 * These references are dropped at the same time we are calling
50 * audit_free_names(), etc.
52 * Cyclic lists galore:
53 * tree.chunks anchors chunk.owners[].list hash_lock
54 * tree.rules anchors rule.rlist audit_filter_mutex
55 * chunk.trees anchors tree.same_root hash_lock
56 * chunk.hash is a hash with middle bits of watch.inode as
57 * a hash function. RCU, hash_lock
59 * tree is refcounted; one reference for "some rules on rules_list refer to
60 * it", one for each chunk with pointer to it.
62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63 * of watch contributes 1 to .refs).
65 * node.index allows to get from node.list to containing chunk.
66 * MSB of that sucker is stolen to mark taggings that we might have to
67 * revert - several operations have very unpleasant cleanup logics and
68 * that makes a difference. Some.
71 static struct fsnotify_group *audit_tree_group;
73 static struct audit_tree *alloc_tree(const char *s)
75 struct audit_tree *tree;
77 tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
78 if (tree) {
79 atomic_set(&tree->count, 1);
80 tree->goner = 0;
81 INIT_LIST_HEAD(&tree->chunks);
82 INIT_LIST_HEAD(&tree->rules);
83 INIT_LIST_HEAD(&tree->list);
84 INIT_LIST_HEAD(&tree->same_root);
85 tree->root = NULL;
86 strcpy(tree->pathname, s);
88 return tree;
91 static inline void get_tree(struct audit_tree *tree)
93 atomic_inc(&tree->count);
96 static inline void put_tree(struct audit_tree *tree)
98 if (atomic_dec_and_test(&tree->count))
99 kfree_rcu(tree, head);
102 /* to avoid bringing the entire thing in audit.h */
103 const char *audit_tree_path(struct audit_tree *tree)
105 return tree->pathname;
108 static void free_chunk(struct audit_chunk *chunk)
110 int i;
112 for (i = 0; i < chunk->count; i++) {
113 if (chunk->owners[i].owner)
114 put_tree(chunk->owners[i].owner);
116 kfree(chunk);
119 void audit_put_chunk(struct audit_chunk *chunk)
121 if (atomic_long_dec_and_test(&chunk->refs))
122 free_chunk(chunk);
125 static void __put_chunk(struct rcu_head *rcu)
127 struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
128 audit_put_chunk(chunk);
131 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
134 call_rcu(&chunk->head, __put_chunk);
137 static struct audit_chunk *alloc_chunk(int count)
139 struct audit_chunk *chunk;
140 size_t size;
141 int i;
143 size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
144 chunk = kzalloc(size, GFP_KERNEL);
145 if (!chunk)
146 return NULL;
148 INIT_LIST_HEAD(&chunk->hash);
149 INIT_LIST_HEAD(&chunk->trees);
150 chunk->count = count;
151 atomic_long_set(&chunk->refs, 1);
152 for (i = 0; i < count; i++) {
153 INIT_LIST_HEAD(&chunk->owners[i].list);
154 chunk->owners[i].index = i;
156 fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
157 return chunk;
160 enum {HASH_SIZE = 128};
161 static struct list_head chunk_hash_heads[HASH_SIZE];
162 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
164 static inline struct list_head *chunk_hash(const struct inode *inode)
166 unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
167 return chunk_hash_heads + n % HASH_SIZE;
170 /* hash_lock & entry->lock is held by caller */
171 static void insert_hash(struct audit_chunk *chunk)
173 struct fsnotify_mark *entry = &chunk->mark;
174 struct list_head *list;
176 if (!entry->i.inode)
177 return;
178 list = chunk_hash(entry->i.inode);
179 list_add_rcu(&chunk->hash, list);
182 /* called under rcu_read_lock */
183 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
185 struct list_head *list = chunk_hash(inode);
186 struct audit_chunk *p;
188 list_for_each_entry_rcu(p, list, hash) {
189 /* mark.inode may have gone NULL, but who cares? */
190 if (p->mark.i.inode == inode) {
191 atomic_long_inc(&p->refs);
192 return p;
195 return NULL;
198 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
200 int n;
201 for (n = 0; n < chunk->count; n++)
202 if (chunk->owners[n].owner == tree)
203 return 1;
204 return 0;
207 /* tagging and untagging inodes with trees */
209 static struct audit_chunk *find_chunk(struct node *p)
211 int index = p->index & ~(1U<<31);
212 p -= index;
213 return container_of(p, struct audit_chunk, owners[0]);
216 static void untag_chunk(struct node *p)
218 struct audit_chunk *chunk = find_chunk(p);
219 struct fsnotify_mark *entry = &chunk->mark;
220 struct audit_chunk *new = NULL;
221 struct audit_tree *owner;
222 int size = chunk->count - 1;
223 int i, j;
225 fsnotify_get_mark(entry);
227 spin_unlock(&hash_lock);
229 if (size)
230 new = alloc_chunk(size);
232 spin_lock(&entry->lock);
233 if (chunk->dead || !entry->i.inode) {
234 spin_unlock(&entry->lock);
235 if (new)
236 free_chunk(new);
237 goto out;
240 owner = p->owner;
242 if (!size) {
243 chunk->dead = 1;
244 spin_lock(&hash_lock);
245 list_del_init(&chunk->trees);
246 if (owner->root == chunk)
247 owner->root = NULL;
248 list_del_init(&p->list);
249 list_del_rcu(&chunk->hash);
250 spin_unlock(&hash_lock);
251 spin_unlock(&entry->lock);
252 fsnotify_destroy_mark(entry);
253 fsnotify_put_mark(entry);
254 goto out;
257 if (!new)
258 goto Fallback;
260 fsnotify_duplicate_mark(&new->mark, entry);
261 if (fsnotify_add_mark(&new->mark, new->mark.group, new->mark.i.inode, NULL, 1)) {
262 free_chunk(new);
263 goto Fallback;
266 chunk->dead = 1;
267 spin_lock(&hash_lock);
268 list_replace_init(&chunk->trees, &new->trees);
269 if (owner->root == chunk) {
270 list_del_init(&owner->same_root);
271 owner->root = NULL;
274 for (i = j = 0; j <= size; i++, j++) {
275 struct audit_tree *s;
276 if (&chunk->owners[j] == p) {
277 list_del_init(&p->list);
278 i--;
279 continue;
281 s = chunk->owners[j].owner;
282 new->owners[i].owner = s;
283 new->owners[i].index = chunk->owners[j].index - j + i;
284 if (!s) /* result of earlier fallback */
285 continue;
286 get_tree(s);
287 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
290 list_replace_rcu(&chunk->hash, &new->hash);
291 list_for_each_entry(owner, &new->trees, same_root)
292 owner->root = new;
293 spin_unlock(&hash_lock);
294 spin_unlock(&entry->lock);
295 fsnotify_destroy_mark(entry);
296 fsnotify_put_mark(entry);
297 goto out;
299 Fallback:
300 // do the best we can
301 spin_lock(&hash_lock);
302 if (owner->root == chunk) {
303 list_del_init(&owner->same_root);
304 owner->root = NULL;
306 list_del_init(&p->list);
307 p->owner = NULL;
308 put_tree(owner);
309 spin_unlock(&hash_lock);
310 spin_unlock(&entry->lock);
311 out:
312 fsnotify_put_mark(entry);
313 spin_lock(&hash_lock);
316 static int create_chunk(struct inode *inode, struct audit_tree *tree)
318 struct fsnotify_mark *entry;
319 struct audit_chunk *chunk = alloc_chunk(1);
320 if (!chunk)
321 return -ENOMEM;
323 entry = &chunk->mark;
324 if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
325 free_chunk(chunk);
326 return -ENOSPC;
329 spin_lock(&entry->lock);
330 spin_lock(&hash_lock);
331 if (tree->goner) {
332 spin_unlock(&hash_lock);
333 chunk->dead = 1;
334 spin_unlock(&entry->lock);
335 fsnotify_destroy_mark(entry);
336 fsnotify_put_mark(entry);
337 return 0;
339 chunk->owners[0].index = (1U << 31);
340 chunk->owners[0].owner = tree;
341 get_tree(tree);
342 list_add(&chunk->owners[0].list, &tree->chunks);
343 if (!tree->root) {
344 tree->root = chunk;
345 list_add(&tree->same_root, &chunk->trees);
347 insert_hash(chunk);
348 spin_unlock(&hash_lock);
349 spin_unlock(&entry->lock);
350 return 0;
353 /* the first tagged inode becomes root of tree */
354 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
356 struct fsnotify_mark *old_entry, *chunk_entry;
357 struct audit_tree *owner;
358 struct audit_chunk *chunk, *old;
359 struct node *p;
360 int n;
362 old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
363 if (!old_entry)
364 return create_chunk(inode, tree);
366 old = container_of(old_entry, struct audit_chunk, mark);
368 /* are we already there? */
369 spin_lock(&hash_lock);
370 for (n = 0; n < old->count; n++) {
371 if (old->owners[n].owner == tree) {
372 spin_unlock(&hash_lock);
373 fsnotify_put_mark(old_entry);
374 return 0;
377 spin_unlock(&hash_lock);
379 chunk = alloc_chunk(old->count + 1);
380 if (!chunk) {
381 fsnotify_put_mark(old_entry);
382 return -ENOMEM;
385 chunk_entry = &chunk->mark;
387 spin_lock(&old_entry->lock);
388 if (!old_entry->i.inode) {
389 /* old_entry is being shot, lets just lie */
390 spin_unlock(&old_entry->lock);
391 fsnotify_put_mark(old_entry);
392 free_chunk(chunk);
393 return -ENOENT;
396 fsnotify_duplicate_mark(chunk_entry, old_entry);
397 if (fsnotify_add_mark(chunk_entry, chunk_entry->group, chunk_entry->i.inode, NULL, 1)) {
398 spin_unlock(&old_entry->lock);
399 free_chunk(chunk);
400 fsnotify_put_mark(old_entry);
401 return -ENOSPC;
404 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405 spin_lock(&chunk_entry->lock);
406 spin_lock(&hash_lock);
408 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
409 if (tree->goner) {
410 spin_unlock(&hash_lock);
411 chunk->dead = 1;
412 spin_unlock(&chunk_entry->lock);
413 spin_unlock(&old_entry->lock);
415 fsnotify_destroy_mark(chunk_entry);
417 fsnotify_put_mark(chunk_entry);
418 fsnotify_put_mark(old_entry);
419 return 0;
421 list_replace_init(&old->trees, &chunk->trees);
422 for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
423 struct audit_tree *s = old->owners[n].owner;
424 p->owner = s;
425 p->index = old->owners[n].index;
426 if (!s) /* result of fallback in untag */
427 continue;
428 get_tree(s);
429 list_replace_init(&old->owners[n].list, &p->list);
431 p->index = (chunk->count - 1) | (1U<<31);
432 p->owner = tree;
433 get_tree(tree);
434 list_add(&p->list, &tree->chunks);
435 list_replace_rcu(&old->hash, &chunk->hash);
436 list_for_each_entry(owner, &chunk->trees, same_root)
437 owner->root = chunk;
438 old->dead = 1;
439 if (!tree->root) {
440 tree->root = chunk;
441 list_add(&tree->same_root, &chunk->trees);
443 spin_unlock(&hash_lock);
444 spin_unlock(&chunk_entry->lock);
445 spin_unlock(&old_entry->lock);
446 fsnotify_destroy_mark(old_entry);
447 fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
448 fsnotify_put_mark(old_entry); /* and kill it */
449 return 0;
452 static void kill_rules(struct audit_tree *tree)
454 struct audit_krule *rule, *next;
455 struct audit_entry *entry;
456 struct audit_buffer *ab;
458 list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
459 entry = container_of(rule, struct audit_entry, rule);
461 list_del_init(&rule->rlist);
462 if (rule->tree) {
463 /* not a half-baked one */
464 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
465 audit_log_format(ab, "op=");
466 audit_log_string(ab, "remove rule");
467 audit_log_format(ab, " dir=");
468 audit_log_untrustedstring(ab, rule->tree->pathname);
469 audit_log_key(ab, rule->filterkey);
470 audit_log_format(ab, " list=%d res=1", rule->listnr);
471 audit_log_end(ab);
472 rule->tree = NULL;
473 list_del_rcu(&entry->list);
474 list_del(&entry->rule.list);
475 call_rcu(&entry->rcu, audit_free_rule_rcu);
481 * finish killing struct audit_tree
483 static void prune_one(struct audit_tree *victim)
485 spin_lock(&hash_lock);
486 while (!list_empty(&victim->chunks)) {
487 struct node *p;
489 p = list_entry(victim->chunks.next, struct node, list);
491 untag_chunk(p);
493 spin_unlock(&hash_lock);
494 put_tree(victim);
497 /* trim the uncommitted chunks from tree */
499 static void trim_marked(struct audit_tree *tree)
501 struct list_head *p, *q;
502 spin_lock(&hash_lock);
503 if (tree->goner) {
504 spin_unlock(&hash_lock);
505 return;
507 /* reorder */
508 for (p = tree->chunks.next; p != &tree->chunks; p = q) {
509 struct node *node = list_entry(p, struct node, list);
510 q = p->next;
511 if (node->index & (1U<<31)) {
512 list_del_init(p);
513 list_add(p, &tree->chunks);
517 while (!list_empty(&tree->chunks)) {
518 struct node *node;
520 node = list_entry(tree->chunks.next, struct node, list);
522 /* have we run out of marked? */
523 if (!(node->index & (1U<<31)))
524 break;
526 untag_chunk(node);
528 if (!tree->root && !tree->goner) {
529 tree->goner = 1;
530 spin_unlock(&hash_lock);
531 mutex_lock(&audit_filter_mutex);
532 kill_rules(tree);
533 list_del_init(&tree->list);
534 mutex_unlock(&audit_filter_mutex);
535 prune_one(tree);
536 } else {
537 spin_unlock(&hash_lock);
541 static void audit_schedule_prune(void);
543 /* called with audit_filter_mutex */
544 int audit_remove_tree_rule(struct audit_krule *rule)
546 struct audit_tree *tree;
547 tree = rule->tree;
548 if (tree) {
549 spin_lock(&hash_lock);
550 list_del_init(&rule->rlist);
551 if (list_empty(&tree->rules) && !tree->goner) {
552 tree->root = NULL;
553 list_del_init(&tree->same_root);
554 tree->goner = 1;
555 list_move(&tree->list, &prune_list);
556 rule->tree = NULL;
557 spin_unlock(&hash_lock);
558 audit_schedule_prune();
559 return 1;
561 rule->tree = NULL;
562 spin_unlock(&hash_lock);
563 return 1;
565 return 0;
568 static int compare_root(struct vfsmount *mnt, void *arg)
570 return mnt->mnt_root->d_inode == arg;
573 void audit_trim_trees(void)
575 struct list_head cursor;
577 mutex_lock(&audit_filter_mutex);
578 list_add(&cursor, &tree_list);
579 while (cursor.next != &tree_list) {
580 struct audit_tree *tree;
581 struct path path;
582 struct vfsmount *root_mnt;
583 struct node *node;
584 int err;
586 tree = container_of(cursor.next, struct audit_tree, list);
587 get_tree(tree);
588 list_del(&cursor);
589 list_add(&cursor, &tree->list);
590 mutex_unlock(&audit_filter_mutex);
592 err = kern_path(tree->pathname, 0, &path);
593 if (err)
594 goto skip_it;
596 root_mnt = collect_mounts(&path);
597 path_put(&path);
598 if (!root_mnt)
599 goto skip_it;
601 spin_lock(&hash_lock);
602 list_for_each_entry(node, &tree->chunks, list) {
603 struct audit_chunk *chunk = find_chunk(node);
604 /* this could be NULL if the watch is dying else where... */
605 struct inode *inode = chunk->mark.i.inode;
606 node->index |= 1U<<31;
607 if (iterate_mounts(compare_root, inode, root_mnt))
608 node->index &= ~(1U<<31);
610 spin_unlock(&hash_lock);
611 trim_marked(tree);
612 put_tree(tree);
613 drop_collected_mounts(root_mnt);
614 skip_it:
615 mutex_lock(&audit_filter_mutex);
617 list_del(&cursor);
618 mutex_unlock(&audit_filter_mutex);
621 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
624 if (pathname[0] != '/' ||
625 rule->listnr != AUDIT_FILTER_EXIT ||
626 op != Audit_equal ||
627 rule->inode_f || rule->watch || rule->tree)
628 return -EINVAL;
629 rule->tree = alloc_tree(pathname);
630 if (!rule->tree)
631 return -ENOMEM;
632 return 0;
635 void audit_put_tree(struct audit_tree *tree)
637 put_tree(tree);
640 static int tag_mount(struct vfsmount *mnt, void *arg)
642 return tag_chunk(mnt->mnt_root->d_inode, arg);
645 /* called with audit_filter_mutex */
646 int audit_add_tree_rule(struct audit_krule *rule)
648 struct audit_tree *seed = rule->tree, *tree;
649 struct path path;
650 struct vfsmount *mnt;
651 int err;
653 list_for_each_entry(tree, &tree_list, list) {
654 if (!strcmp(seed->pathname, tree->pathname)) {
655 put_tree(seed);
656 rule->tree = tree;
657 list_add(&rule->rlist, &tree->rules);
658 return 0;
661 tree = seed;
662 list_add(&tree->list, &tree_list);
663 list_add(&rule->rlist, &tree->rules);
664 /* do not set rule->tree yet */
665 mutex_unlock(&audit_filter_mutex);
667 err = kern_path(tree->pathname, 0, &path);
668 if (err)
669 goto Err;
670 mnt = collect_mounts(&path);
671 path_put(&path);
672 if (!mnt) {
673 err = -ENOMEM;
674 goto Err;
677 get_tree(tree);
678 err = iterate_mounts(tag_mount, tree, mnt);
679 drop_collected_mounts(mnt);
681 if (!err) {
682 struct node *node;
683 spin_lock(&hash_lock);
684 list_for_each_entry(node, &tree->chunks, list)
685 node->index &= ~(1U<<31);
686 spin_unlock(&hash_lock);
687 } else {
688 trim_marked(tree);
689 goto Err;
692 mutex_lock(&audit_filter_mutex);
693 if (list_empty(&rule->rlist)) {
694 put_tree(tree);
695 return -ENOENT;
697 rule->tree = tree;
698 put_tree(tree);
700 return 0;
701 Err:
702 mutex_lock(&audit_filter_mutex);
703 list_del_init(&tree->list);
704 list_del_init(&tree->rules);
705 put_tree(tree);
706 return err;
709 int audit_tag_tree(char *old, char *new)
711 struct list_head cursor, barrier;
712 int failed = 0;
713 struct path path1, path2;
714 struct vfsmount *tagged;
715 int err;
717 err = kern_path(new, 0, &path2);
718 if (err)
719 return err;
720 tagged = collect_mounts(&path2);
721 path_put(&path2);
722 if (!tagged)
723 return -ENOMEM;
725 err = kern_path(old, 0, &path1);
726 if (err) {
727 drop_collected_mounts(tagged);
728 return err;
731 mutex_lock(&audit_filter_mutex);
732 list_add(&barrier, &tree_list);
733 list_add(&cursor, &barrier);
735 while (cursor.next != &tree_list) {
736 struct audit_tree *tree;
737 int good_one = 0;
739 tree = container_of(cursor.next, struct audit_tree, list);
740 get_tree(tree);
741 list_del(&cursor);
742 list_add(&cursor, &tree->list);
743 mutex_unlock(&audit_filter_mutex);
745 err = kern_path(tree->pathname, 0, &path2);
746 if (!err) {
747 good_one = path_is_under(&path1, &path2);
748 path_put(&path2);
751 if (!good_one) {
752 put_tree(tree);
753 mutex_lock(&audit_filter_mutex);
754 continue;
757 failed = iterate_mounts(tag_mount, tree, tagged);
758 if (failed) {
759 put_tree(tree);
760 mutex_lock(&audit_filter_mutex);
761 break;
764 mutex_lock(&audit_filter_mutex);
765 spin_lock(&hash_lock);
766 if (!tree->goner) {
767 list_del(&tree->list);
768 list_add(&tree->list, &tree_list);
770 spin_unlock(&hash_lock);
771 put_tree(tree);
774 while (barrier.prev != &tree_list) {
775 struct audit_tree *tree;
777 tree = container_of(barrier.prev, struct audit_tree, list);
778 get_tree(tree);
779 list_del(&tree->list);
780 list_add(&tree->list, &barrier);
781 mutex_unlock(&audit_filter_mutex);
783 if (!failed) {
784 struct node *node;
785 spin_lock(&hash_lock);
786 list_for_each_entry(node, &tree->chunks, list)
787 node->index &= ~(1U<<31);
788 spin_unlock(&hash_lock);
789 } else {
790 trim_marked(tree);
793 put_tree(tree);
794 mutex_lock(&audit_filter_mutex);
796 list_del(&barrier);
797 list_del(&cursor);
798 mutex_unlock(&audit_filter_mutex);
799 path_put(&path1);
800 drop_collected_mounts(tagged);
801 return failed;
805 * That gets run when evict_chunk() ends up needing to kill audit_tree.
806 * Runs from a separate thread.
808 static int prune_tree_thread(void *unused)
810 mutex_lock(&audit_cmd_mutex);
811 mutex_lock(&audit_filter_mutex);
813 while (!list_empty(&prune_list)) {
814 struct audit_tree *victim;
816 victim = list_entry(prune_list.next, struct audit_tree, list);
817 list_del_init(&victim->list);
819 mutex_unlock(&audit_filter_mutex);
821 prune_one(victim);
823 mutex_lock(&audit_filter_mutex);
826 mutex_unlock(&audit_filter_mutex);
827 mutex_unlock(&audit_cmd_mutex);
828 return 0;
831 static void audit_schedule_prune(void)
833 kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
837 * ... and that one is done if evict_chunk() decides to delay until the end
838 * of syscall. Runs synchronously.
840 void audit_kill_trees(struct list_head *list)
842 mutex_lock(&audit_cmd_mutex);
843 mutex_lock(&audit_filter_mutex);
845 while (!list_empty(list)) {
846 struct audit_tree *victim;
848 victim = list_entry(list->next, struct audit_tree, list);
849 kill_rules(victim);
850 list_del_init(&victim->list);
852 mutex_unlock(&audit_filter_mutex);
854 prune_one(victim);
856 mutex_lock(&audit_filter_mutex);
859 mutex_unlock(&audit_filter_mutex);
860 mutex_unlock(&audit_cmd_mutex);
864 * Here comes the stuff asynchronous to auditctl operations
867 static void evict_chunk(struct audit_chunk *chunk)
869 struct audit_tree *owner;
870 struct list_head *postponed = audit_killed_trees();
871 int need_prune = 0;
872 int n;
874 if (chunk->dead)
875 return;
877 chunk->dead = 1;
878 mutex_lock(&audit_filter_mutex);
879 spin_lock(&hash_lock);
880 while (!list_empty(&chunk->trees)) {
881 owner = list_entry(chunk->trees.next,
882 struct audit_tree, same_root);
883 owner->goner = 1;
884 owner->root = NULL;
885 list_del_init(&owner->same_root);
886 spin_unlock(&hash_lock);
887 if (!postponed) {
888 kill_rules(owner);
889 list_move(&owner->list, &prune_list);
890 need_prune = 1;
891 } else {
892 list_move(&owner->list, postponed);
894 spin_lock(&hash_lock);
896 list_del_rcu(&chunk->hash);
897 for (n = 0; n < chunk->count; n++)
898 list_del_init(&chunk->owners[n].list);
899 spin_unlock(&hash_lock);
900 if (need_prune)
901 audit_schedule_prune();
902 mutex_unlock(&audit_filter_mutex);
905 static int audit_tree_handle_event(struct fsnotify_group *group,
906 struct fsnotify_mark *inode_mark,
907 struct fsnotify_mark *vfsmonut_mark,
908 struct fsnotify_event *event)
910 BUG();
911 return -EOPNOTSUPP;
914 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
916 struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
918 evict_chunk(chunk);
919 fsnotify_put_mark(entry);
922 static bool audit_tree_send_event(struct fsnotify_group *group, struct inode *inode,
923 struct fsnotify_mark *inode_mark,
924 struct fsnotify_mark *vfsmount_mark,
925 __u32 mask, void *data, int data_type)
927 return false;
930 static const struct fsnotify_ops audit_tree_ops = {
931 .handle_event = audit_tree_handle_event,
932 .should_send_event = audit_tree_send_event,
933 .free_group_priv = NULL,
934 .free_event_priv = NULL,
935 .freeing_mark = audit_tree_freeing_mark,
938 static int __init audit_tree_init(void)
940 int i;
942 audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
943 if (IS_ERR(audit_tree_group))
944 audit_panic("cannot initialize fsnotify group for rectree watches");
946 for (i = 0; i < HASH_SIZE; i++)
947 INIT_LIST_HEAD(&chunk_hash_heads[i]);
949 return 0;
951 __initcall(audit_tree_init);