x86, apic: Fix spurious error interrupts triggering on all non-boot APs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / libata-core.c
blobeae0322a62127f1a4d7b03abdc2a7fe8ef33a24a
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
68 #include "libata.h"
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops = {
77 .prereset = ata_std_prereset,
78 .postreset = ata_std_postreset,
79 .error_handler = ata_std_error_handler,
82 const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
85 .qc_defer = ata_std_qc_defer,
86 .hardreset = sata_std_hardreset,
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
100 struct workqueue_struct *ata_aux_wq;
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 static int atapi_an;
163 module_param(atapi_an, int, 0444);
164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166 MODULE_AUTHOR("Jeff Garzik");
167 MODULE_DESCRIPTION("Library module for ATA devices");
168 MODULE_LICENSE("GPL");
169 MODULE_VERSION(DRV_VERSION);
172 static bool ata_sstatus_online(u32 sstatus)
174 return (sstatus & 0xf) == 0x3;
178 * ata_link_next - link iteration helper
179 * @link: the previous link, NULL to start
180 * @ap: ATA port containing links to iterate
181 * @mode: iteration mode, one of ATA_LITER_*
183 * LOCKING:
184 * Host lock or EH context.
186 * RETURNS:
187 * Pointer to the next link.
189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
190 enum ata_link_iter_mode mode)
192 BUG_ON(mode != ATA_LITER_EDGE &&
193 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195 /* NULL link indicates start of iteration */
196 if (!link)
197 switch (mode) {
198 case ATA_LITER_EDGE:
199 case ATA_LITER_PMP_FIRST:
200 if (sata_pmp_attached(ap))
201 return ap->pmp_link;
202 /* fall through */
203 case ATA_LITER_HOST_FIRST:
204 return &ap->link;
207 /* we just iterated over the host link, what's next? */
208 if (link == &ap->link)
209 switch (mode) {
210 case ATA_LITER_HOST_FIRST:
211 if (sata_pmp_attached(ap))
212 return ap->pmp_link;
213 /* fall through */
214 case ATA_LITER_PMP_FIRST:
215 if (unlikely(ap->slave_link))
216 return ap->slave_link;
217 /* fall through */
218 case ATA_LITER_EDGE:
219 return NULL;
222 /* slave_link excludes PMP */
223 if (unlikely(link == ap->slave_link))
224 return NULL;
226 /* we were over a PMP link */
227 if (++link < ap->pmp_link + ap->nr_pmp_links)
228 return link;
230 if (mode == ATA_LITER_PMP_FIRST)
231 return &ap->link;
233 return NULL;
237 * ata_dev_next - device iteration helper
238 * @dev: the previous device, NULL to start
239 * @link: ATA link containing devices to iterate
240 * @mode: iteration mode, one of ATA_DITER_*
242 * LOCKING:
243 * Host lock or EH context.
245 * RETURNS:
246 * Pointer to the next device.
248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
249 enum ata_dev_iter_mode mode)
251 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
252 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254 /* NULL dev indicates start of iteration */
255 if (!dev)
256 switch (mode) {
257 case ATA_DITER_ENABLED:
258 case ATA_DITER_ALL:
259 dev = link->device;
260 goto check;
261 case ATA_DITER_ENABLED_REVERSE:
262 case ATA_DITER_ALL_REVERSE:
263 dev = link->device + ata_link_max_devices(link) - 1;
264 goto check;
267 next:
268 /* move to the next one */
269 switch (mode) {
270 case ATA_DITER_ENABLED:
271 case ATA_DITER_ALL:
272 if (++dev < link->device + ata_link_max_devices(link))
273 goto check;
274 return NULL;
275 case ATA_DITER_ENABLED_REVERSE:
276 case ATA_DITER_ALL_REVERSE:
277 if (--dev >= link->device)
278 goto check;
279 return NULL;
282 check:
283 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
284 !ata_dev_enabled(dev))
285 goto next;
286 return dev;
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
297 * LOCKING:
298 * Don't care.
300 * RETURNS:
301 * Pointer to the found physical link.
303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 struct ata_port *ap = dev->link->ap;
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
315 * ata_force_cbl - force cable type according to libata.force
316 * @ap: ATA port of interest
318 * Force cable type according to libata.force and whine about it.
319 * The last entry which has matching port number is used, so it
320 * can be specified as part of device force parameters. For
321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322 * same effect.
324 * LOCKING:
325 * EH context.
327 void ata_force_cbl(struct ata_port *ap)
329 int i;
331 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 const struct ata_force_ent *fe = &ata_force_tbl[i];
334 if (fe->port != -1 && fe->port != ap->print_id)
335 continue;
337 if (fe->param.cbl == ATA_CBL_NONE)
338 continue;
340 ap->cbl = fe->param.cbl;
341 ata_port_printk(ap, KERN_NOTICE,
342 "FORCE: cable set to %s\n", fe->param.name);
343 return;
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
360 * LOCKING:
361 * EH context.
363 static void ata_force_link_limits(struct ata_link *link)
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
369 if (ata_is_host_link(link))
370 linkno += 15;
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_printk(link, KERN_NOTICE,
385 "FORCE: PHY spd limit set to %s\n",
386 fe->param.name);
387 did_spd = true;
390 /* let lflags stack */
391 if (fe->param.lflags) {
392 link->flags |= fe->param.lflags;
393 ata_link_printk(link, KERN_NOTICE,
394 "FORCE: link flag 0x%x forced -> 0x%x\n",
395 fe->param.lflags, link->flags);
401 * ata_force_xfermask - force xfermask according to libata.force
402 * @dev: ATA device of interest
404 * Force xfer_mask according to libata.force and whine about it.
405 * For consistency with link selection, device number 15 selects
406 * the first device connected to the host link.
408 * LOCKING:
409 * EH context.
411 static void ata_force_xfermask(struct ata_device *dev)
413 int devno = dev->link->pmp + dev->devno;
414 int alt_devno = devno;
415 int i;
417 /* allow n.15/16 for devices attached to host port */
418 if (ata_is_host_link(dev->link))
419 alt_devno += 15;
421 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 const struct ata_force_ent *fe = &ata_force_tbl[i];
423 unsigned long pio_mask, mwdma_mask, udma_mask;
425 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 continue;
428 if (fe->device != -1 && fe->device != devno &&
429 fe->device != alt_devno)
430 continue;
432 if (!fe->param.xfer_mask)
433 continue;
435 ata_unpack_xfermask(fe->param.xfer_mask,
436 &pio_mask, &mwdma_mask, &udma_mask);
437 if (udma_mask)
438 dev->udma_mask = udma_mask;
439 else if (mwdma_mask) {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = mwdma_mask;
442 } else {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = 0;
445 dev->pio_mask = pio_mask;
448 ata_dev_printk(dev, KERN_NOTICE,
449 "FORCE: xfer_mask set to %s\n", fe->param.name);
450 return;
455 * ata_force_horkage - force horkage according to libata.force
456 * @dev: ATA device of interest
458 * Force horkage according to libata.force and whine about it.
459 * For consistency with link selection, device number 15 selects
460 * the first device connected to the host link.
462 * LOCKING:
463 * EH context.
465 static void ata_force_horkage(struct ata_device *dev)
467 int devno = dev->link->pmp + dev->devno;
468 int alt_devno = devno;
469 int i;
471 /* allow n.15/16 for devices attached to host port */
472 if (ata_is_host_link(dev->link))
473 alt_devno += 15;
475 for (i = 0; i < ata_force_tbl_size; i++) {
476 const struct ata_force_ent *fe = &ata_force_tbl[i];
478 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 continue;
481 if (fe->device != -1 && fe->device != devno &&
482 fe->device != alt_devno)
483 continue;
485 if (!(~dev->horkage & fe->param.horkage_on) &&
486 !(dev->horkage & fe->param.horkage_off))
487 continue;
489 dev->horkage |= fe->param.horkage_on;
490 dev->horkage &= ~fe->param.horkage_off;
492 ata_dev_printk(dev, KERN_NOTICE,
493 "FORCE: horkage modified (%s)\n", fe->param.name);
498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499 * @opcode: SCSI opcode
501 * Determine ATAPI command type from @opcode.
503 * LOCKING:
504 * None.
506 * RETURNS:
507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
509 int atapi_cmd_type(u8 opcode)
511 switch (opcode) {
512 case GPCMD_READ_10:
513 case GPCMD_READ_12:
514 return ATAPI_READ;
516 case GPCMD_WRITE_10:
517 case GPCMD_WRITE_12:
518 case GPCMD_WRITE_AND_VERIFY_10:
519 return ATAPI_WRITE;
521 case GPCMD_READ_CD:
522 case GPCMD_READ_CD_MSF:
523 return ATAPI_READ_CD;
525 case ATA_16:
526 case ATA_12:
527 if (atapi_passthru16)
528 return ATAPI_PASS_THRU;
529 /* fall thru */
530 default:
531 return ATAPI_MISC;
536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537 * @tf: Taskfile to convert
538 * @pmp: Port multiplier port
539 * @is_cmd: This FIS is for command
540 * @fis: Buffer into which data will output
542 * Converts a standard ATA taskfile to a Serial ATA
543 * FIS structure (Register - Host to Device).
545 * LOCKING:
546 * Inherited from caller.
548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
550 fis[0] = 0x27; /* Register - Host to Device FIS */
551 fis[1] = pmp & 0xf; /* Port multiplier number*/
552 if (is_cmd)
553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
555 fis[2] = tf->command;
556 fis[3] = tf->feature;
558 fis[4] = tf->lbal;
559 fis[5] = tf->lbam;
560 fis[6] = tf->lbah;
561 fis[7] = tf->device;
563 fis[8] = tf->hob_lbal;
564 fis[9] = tf->hob_lbam;
565 fis[10] = tf->hob_lbah;
566 fis[11] = tf->hob_feature;
568 fis[12] = tf->nsect;
569 fis[13] = tf->hob_nsect;
570 fis[14] = 0;
571 fis[15] = tf->ctl;
573 fis[16] = 0;
574 fis[17] = 0;
575 fis[18] = 0;
576 fis[19] = 0;
580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581 * @fis: Buffer from which data will be input
582 * @tf: Taskfile to output
584 * Converts a serial ATA FIS structure to a standard ATA taskfile.
586 * LOCKING:
587 * Inherited from caller.
590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
592 tf->command = fis[2]; /* status */
593 tf->feature = fis[3]; /* error */
595 tf->lbal = fis[4];
596 tf->lbam = fis[5];
597 tf->lbah = fis[6];
598 tf->device = fis[7];
600 tf->hob_lbal = fis[8];
601 tf->hob_lbam = fis[9];
602 tf->hob_lbah = fis[10];
604 tf->nsect = fis[12];
605 tf->hob_nsect = fis[13];
608 static const u8 ata_rw_cmds[] = {
609 /* pio multi */
610 ATA_CMD_READ_MULTI,
611 ATA_CMD_WRITE_MULTI,
612 ATA_CMD_READ_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_EXT,
617 ATA_CMD_WRITE_MULTI_FUA_EXT,
618 /* pio */
619 ATA_CMD_PIO_READ,
620 ATA_CMD_PIO_WRITE,
621 ATA_CMD_PIO_READ_EXT,
622 ATA_CMD_PIO_WRITE_EXT,
627 /* dma */
628 ATA_CMD_READ,
629 ATA_CMD_WRITE,
630 ATA_CMD_READ_EXT,
631 ATA_CMD_WRITE_EXT,
635 ATA_CMD_WRITE_FUA_EXT
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @tf: command to examine and configure
641 * @dev: device tf belongs to
643 * Examine the device configuration and tf->flags to calculate
644 * the proper read/write commands and protocol to use.
646 * LOCKING:
647 * caller.
649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
651 u8 cmd;
653 int index, fua, lba48, write;
655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
659 if (dev->flags & ATA_DFLAG_PIO) {
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 /* Unable to use DMA due to host limitation */
664 tf->protocol = ATA_PROT_PIO;
665 index = dev->multi_count ? 0 : 8;
666 } else {
667 tf->protocol = ATA_PROT_DMA;
668 index = 16;
671 cmd = ata_rw_cmds[index + fua + lba48 + write];
672 if (cmd) {
673 tf->command = cmd;
674 return 0;
676 return -1;
680 * ata_tf_read_block - Read block address from ATA taskfile
681 * @tf: ATA taskfile of interest
682 * @dev: ATA device @tf belongs to
684 * LOCKING:
685 * None.
687 * Read block address from @tf. This function can handle all
688 * three address formats - LBA, LBA48 and CHS. tf->protocol and
689 * flags select the address format to use.
691 * RETURNS:
692 * Block address read from @tf.
694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
696 u64 block = 0;
698 if (tf->flags & ATA_TFLAG_LBA) {
699 if (tf->flags & ATA_TFLAG_LBA48) {
700 block |= (u64)tf->hob_lbah << 40;
701 block |= (u64)tf->hob_lbam << 32;
702 block |= (u64)tf->hob_lbal << 24;
703 } else
704 block |= (tf->device & 0xf) << 24;
706 block |= tf->lbah << 16;
707 block |= tf->lbam << 8;
708 block |= tf->lbal;
709 } else {
710 u32 cyl, head, sect;
712 cyl = tf->lbam | (tf->lbah << 8);
713 head = tf->device & 0xf;
714 sect = tf->lbal;
716 if (!sect) {
717 ata_dev_printk(dev, KERN_WARNING, "device reported "
718 "invalid CHS sector 0\n");
719 sect = 1; /* oh well */
722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
725 return block;
729 * ata_build_rw_tf - Build ATA taskfile for given read/write request
730 * @tf: Target ATA taskfile
731 * @dev: ATA device @tf belongs to
732 * @block: Block address
733 * @n_block: Number of blocks
734 * @tf_flags: RW/FUA etc...
735 * @tag: tag
737 * LOCKING:
738 * None.
740 * Build ATA taskfile @tf for read/write request described by
741 * @block, @n_block, @tf_flags and @tag on @dev.
743 * RETURNS:
745 * 0 on success, -ERANGE if the request is too large for @dev,
746 * -EINVAL if the request is invalid.
748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 u64 block, u32 n_block, unsigned int tf_flags,
750 unsigned int tag)
752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 tf->flags |= tf_flags;
755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 /* yay, NCQ */
757 if (!lba_48_ok(block, n_block))
758 return -ERANGE;
760 tf->protocol = ATA_PROT_NCQ;
761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
763 if (tf->flags & ATA_TFLAG_WRITE)
764 tf->command = ATA_CMD_FPDMA_WRITE;
765 else
766 tf->command = ATA_CMD_FPDMA_READ;
768 tf->nsect = tag << 3;
769 tf->hob_feature = (n_block >> 8) & 0xff;
770 tf->feature = n_block & 0xff;
772 tf->hob_lbah = (block >> 40) & 0xff;
773 tf->hob_lbam = (block >> 32) & 0xff;
774 tf->hob_lbal = (block >> 24) & 0xff;
775 tf->lbah = (block >> 16) & 0xff;
776 tf->lbam = (block >> 8) & 0xff;
777 tf->lbal = block & 0xff;
779 tf->device = 1 << 6;
780 if (tf->flags & ATA_TFLAG_FUA)
781 tf->device |= 1 << 7;
782 } else if (dev->flags & ATA_DFLAG_LBA) {
783 tf->flags |= ATA_TFLAG_LBA;
785 if (lba_28_ok(block, n_block)) {
786 /* use LBA28 */
787 tf->device |= (block >> 24) & 0xf;
788 } else if (lba_48_ok(block, n_block)) {
789 if (!(dev->flags & ATA_DFLAG_LBA48))
790 return -ERANGE;
792 /* use LBA48 */
793 tf->flags |= ATA_TFLAG_LBA48;
795 tf->hob_nsect = (n_block >> 8) & 0xff;
797 tf->hob_lbah = (block >> 40) & 0xff;
798 tf->hob_lbam = (block >> 32) & 0xff;
799 tf->hob_lbal = (block >> 24) & 0xff;
800 } else
801 /* request too large even for LBA48 */
802 return -ERANGE;
804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 return -EINVAL;
807 tf->nsect = n_block & 0xff;
809 tf->lbah = (block >> 16) & 0xff;
810 tf->lbam = (block >> 8) & 0xff;
811 tf->lbal = block & 0xff;
813 tf->device |= ATA_LBA;
814 } else {
815 /* CHS */
816 u32 sect, head, cyl, track;
818 /* The request -may- be too large for CHS addressing. */
819 if (!lba_28_ok(block, n_block))
820 return -ERANGE;
822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 return -EINVAL;
825 /* Convert LBA to CHS */
826 track = (u32)block / dev->sectors;
827 cyl = track / dev->heads;
828 head = track % dev->heads;
829 sect = (u32)block % dev->sectors + 1;
831 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 (u32)block, track, cyl, head, sect);
834 /* Check whether the converted CHS can fit.
835 Cylinder: 0-65535
836 Head: 0-15
837 Sector: 1-255*/
838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 return -ERANGE;
841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 tf->lbal = sect;
843 tf->lbam = cyl;
844 tf->lbah = cyl >> 8;
845 tf->device |= head;
848 return 0;
852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853 * @pio_mask: pio_mask
854 * @mwdma_mask: mwdma_mask
855 * @udma_mask: udma_mask
857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858 * unsigned int xfer_mask.
860 * LOCKING:
861 * None.
863 * RETURNS:
864 * Packed xfer_mask.
866 unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 unsigned long mwdma_mask,
868 unsigned long udma_mask)
870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877 * @xfer_mask: xfer_mask to unpack
878 * @pio_mask: resulting pio_mask
879 * @mwdma_mask: resulting mwdma_mask
880 * @udma_mask: resulting udma_mask
882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883 * Any NULL distination masks will be ignored.
885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 unsigned long *mwdma_mask, unsigned long *udma_mask)
888 if (pio_mask)
889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 if (mwdma_mask)
891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 if (udma_mask)
893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
896 static const struct ata_xfer_ent {
897 int shift, bits;
898 u8 base;
899 } ata_xfer_tbl[] = {
900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 { -1, },
907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908 * @xfer_mask: xfer_mask of interest
910 * Return matching XFER_* value for @xfer_mask. Only the highest
911 * bit of @xfer_mask is considered.
913 * LOCKING:
914 * None.
916 * RETURNS:
917 * Matching XFER_* value, 0xff if no match found.
919 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
921 int highbit = fls(xfer_mask) - 1;
922 const struct ata_xfer_ent *ent;
924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 return ent->base + highbit - ent->shift;
927 return 0xff;
931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932 * @xfer_mode: XFER_* of interest
934 * Return matching xfer_mask for @xfer_mode.
936 * LOCKING:
937 * None.
939 * RETURNS:
940 * Matching xfer_mask, 0 if no match found.
942 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
944 const struct ata_xfer_ent *ent;
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 & ~((1 << ent->shift) - 1);
950 return 0;
954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955 * @xfer_mode: XFER_* of interest
957 * Return matching xfer_shift for @xfer_mode.
959 * LOCKING:
960 * None.
962 * RETURNS:
963 * Matching xfer_shift, -1 if no match found.
965 int ata_xfer_mode2shift(unsigned long xfer_mode)
967 const struct ata_xfer_ent *ent;
969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 return ent->shift;
972 return -1;
976 * ata_mode_string - convert xfer_mask to string
977 * @xfer_mask: mask of bits supported; only highest bit counts.
979 * Determine string which represents the highest speed
980 * (highest bit in @modemask).
982 * LOCKING:
983 * None.
985 * RETURNS:
986 * Constant C string representing highest speed listed in
987 * @mode_mask, or the constant C string "<n/a>".
989 const char *ata_mode_string(unsigned long xfer_mask)
991 static const char * const xfer_mode_str[] = {
992 "PIO0",
993 "PIO1",
994 "PIO2",
995 "PIO3",
996 "PIO4",
997 "PIO5",
998 "PIO6",
999 "MWDMA0",
1000 "MWDMA1",
1001 "MWDMA2",
1002 "MWDMA3",
1003 "MWDMA4",
1004 "UDMA/16",
1005 "UDMA/25",
1006 "UDMA/33",
1007 "UDMA/44",
1008 "UDMA/66",
1009 "UDMA/100",
1010 "UDMA/133",
1011 "UDMA7",
1013 int highbit;
1015 highbit = fls(xfer_mask) - 1;
1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 return xfer_mode_str[highbit];
1018 return "<n/a>";
1021 static const char *sata_spd_string(unsigned int spd)
1023 static const char * const spd_str[] = {
1024 "1.5 Gbps",
1025 "3.0 Gbps",
1026 "6.0 Gbps",
1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 return "<unknown>";
1031 return spd_str[spd - 1];
1034 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1036 struct ata_link *link = dev->link;
1037 struct ata_port *ap = link->ap;
1038 u32 scontrol;
1039 unsigned int err_mask;
1040 int rc;
1043 * disallow DIPM for drivers which haven't set
1044 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1045 * phy ready will be set in the interrupt status on
1046 * state changes, which will cause some drivers to
1047 * think there are errors - additionally drivers will
1048 * need to disable hot plug.
1050 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1051 ap->pm_policy = NOT_AVAILABLE;
1052 return -EINVAL;
1056 * For DIPM, we will only enable it for the
1057 * min_power setting.
1059 * Why? Because Disks are too stupid to know that
1060 * If the host rejects a request to go to SLUMBER
1061 * they should retry at PARTIAL, and instead it
1062 * just would give up. So, for medium_power to
1063 * work at all, we need to only allow HIPM.
1065 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1066 if (rc)
1067 return rc;
1069 switch (policy) {
1070 case MIN_POWER:
1071 /* no restrictions on IPM transitions */
1072 scontrol &= ~(0x3 << 8);
1073 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1074 if (rc)
1075 return rc;
1077 /* enable DIPM */
1078 if (dev->flags & ATA_DFLAG_DIPM)
1079 err_mask = ata_dev_set_feature(dev,
1080 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1081 break;
1082 case MEDIUM_POWER:
1083 /* allow IPM to PARTIAL */
1084 scontrol &= ~(0x1 << 8);
1085 scontrol |= (0x2 << 8);
1086 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1087 if (rc)
1088 return rc;
1091 * we don't have to disable DIPM since IPM flags
1092 * disallow transitions to SLUMBER, which effectively
1093 * disable DIPM if it does not support PARTIAL
1095 break;
1096 case NOT_AVAILABLE:
1097 case MAX_PERFORMANCE:
1098 /* disable all IPM transitions */
1099 scontrol |= (0x3 << 8);
1100 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1101 if (rc)
1102 return rc;
1105 * we don't have to disable DIPM since IPM flags
1106 * disallow all transitions which effectively
1107 * disable DIPM anyway.
1109 break;
1112 /* FIXME: handle SET FEATURES failure */
1113 (void) err_mask;
1115 return 0;
1119 * ata_dev_enable_pm - enable SATA interface power management
1120 * @dev: device to enable power management
1121 * @policy: the link power management policy
1123 * Enable SATA Interface power management. This will enable
1124 * Device Interface Power Management (DIPM) for min_power
1125 * policy, and then call driver specific callbacks for
1126 * enabling Host Initiated Power management.
1128 * Locking: Caller.
1129 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1131 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1133 int rc = 0;
1134 struct ata_port *ap = dev->link->ap;
1136 /* set HIPM first, then DIPM */
1137 if (ap->ops->enable_pm)
1138 rc = ap->ops->enable_pm(ap, policy);
1139 if (rc)
1140 goto enable_pm_out;
1141 rc = ata_dev_set_dipm(dev, policy);
1143 enable_pm_out:
1144 if (rc)
1145 ap->pm_policy = MAX_PERFORMANCE;
1146 else
1147 ap->pm_policy = policy;
1148 return /* rc */; /* hopefully we can use 'rc' eventually */
1151 #ifdef CONFIG_PM
1153 * ata_dev_disable_pm - disable SATA interface power management
1154 * @dev: device to disable power management
1156 * Disable SATA Interface power management. This will disable
1157 * Device Interface Power Management (DIPM) without changing
1158 * policy, call driver specific callbacks for disabling Host
1159 * Initiated Power management.
1161 * Locking: Caller.
1162 * Returns: void
1164 static void ata_dev_disable_pm(struct ata_device *dev)
1166 struct ata_port *ap = dev->link->ap;
1168 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1169 if (ap->ops->disable_pm)
1170 ap->ops->disable_pm(ap);
1172 #endif /* CONFIG_PM */
1174 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1176 ap->pm_policy = policy;
1177 ap->link.eh_info.action |= ATA_EH_LPM;
1178 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1179 ata_port_schedule_eh(ap);
1182 #ifdef CONFIG_PM
1183 static void ata_lpm_enable(struct ata_host *host)
1185 struct ata_link *link;
1186 struct ata_port *ap;
1187 struct ata_device *dev;
1188 int i;
1190 for (i = 0; i < host->n_ports; i++) {
1191 ap = host->ports[i];
1192 ata_for_each_link(link, ap, EDGE) {
1193 ata_for_each_dev(dev, link, ALL)
1194 ata_dev_disable_pm(dev);
1199 static void ata_lpm_disable(struct ata_host *host)
1201 int i;
1203 for (i = 0; i < host->n_ports; i++) {
1204 struct ata_port *ap = host->ports[i];
1205 ata_lpm_schedule(ap, ap->pm_policy);
1208 #endif /* CONFIG_PM */
1211 * ata_dev_classify - determine device type based on ATA-spec signature
1212 * @tf: ATA taskfile register set for device to be identified
1214 * Determine from taskfile register contents whether a device is
1215 * ATA or ATAPI, as per "Signature and persistence" section
1216 * of ATA/PI spec (volume 1, sect 5.14).
1218 * LOCKING:
1219 * None.
1221 * RETURNS:
1222 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1223 * %ATA_DEV_UNKNOWN the event of failure.
1225 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1227 /* Apple's open source Darwin code hints that some devices only
1228 * put a proper signature into the LBA mid/high registers,
1229 * So, we only check those. It's sufficient for uniqueness.
1231 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1232 * signatures for ATA and ATAPI devices attached on SerialATA,
1233 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1234 * spec has never mentioned about using different signatures
1235 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1236 * Multiplier specification began to use 0x69/0x96 to identify
1237 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1238 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1239 * 0x69/0x96 shortly and described them as reserved for
1240 * SerialATA.
1242 * We follow the current spec and consider that 0x69/0x96
1243 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1244 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1245 * SEMB signature. This is worked around in
1246 * ata_dev_read_id().
1248 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1249 DPRINTK("found ATA device by sig\n");
1250 return ATA_DEV_ATA;
1253 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1254 DPRINTK("found ATAPI device by sig\n");
1255 return ATA_DEV_ATAPI;
1258 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1259 DPRINTK("found PMP device by sig\n");
1260 return ATA_DEV_PMP;
1263 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1264 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1265 return ATA_DEV_SEMB;
1268 DPRINTK("unknown device\n");
1269 return ATA_DEV_UNKNOWN;
1273 * ata_id_string - Convert IDENTIFY DEVICE page into string
1274 * @id: IDENTIFY DEVICE results we will examine
1275 * @s: string into which data is output
1276 * @ofs: offset into identify device page
1277 * @len: length of string to return. must be an even number.
1279 * The strings in the IDENTIFY DEVICE page are broken up into
1280 * 16-bit chunks. Run through the string, and output each
1281 * 8-bit chunk linearly, regardless of platform.
1283 * LOCKING:
1284 * caller.
1287 void ata_id_string(const u16 *id, unsigned char *s,
1288 unsigned int ofs, unsigned int len)
1290 unsigned int c;
1292 BUG_ON(len & 1);
1294 while (len > 0) {
1295 c = id[ofs] >> 8;
1296 *s = c;
1297 s++;
1299 c = id[ofs] & 0xff;
1300 *s = c;
1301 s++;
1303 ofs++;
1304 len -= 2;
1309 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1310 * @id: IDENTIFY DEVICE results we will examine
1311 * @s: string into which data is output
1312 * @ofs: offset into identify device page
1313 * @len: length of string to return. must be an odd number.
1315 * This function is identical to ata_id_string except that it
1316 * trims trailing spaces and terminates the resulting string with
1317 * null. @len must be actual maximum length (even number) + 1.
1319 * LOCKING:
1320 * caller.
1322 void ata_id_c_string(const u16 *id, unsigned char *s,
1323 unsigned int ofs, unsigned int len)
1325 unsigned char *p;
1327 ata_id_string(id, s, ofs, len - 1);
1329 p = s + strnlen(s, len - 1);
1330 while (p > s && p[-1] == ' ')
1331 p--;
1332 *p = '\0';
1335 static u64 ata_id_n_sectors(const u16 *id)
1337 if (ata_id_has_lba(id)) {
1338 if (ata_id_has_lba48(id))
1339 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1340 else
1341 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1342 } else {
1343 if (ata_id_current_chs_valid(id))
1344 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1345 id[ATA_ID_CUR_SECTORS];
1346 else
1347 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1348 id[ATA_ID_SECTORS];
1352 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1354 u64 sectors = 0;
1356 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1357 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1358 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1359 sectors |= (tf->lbah & 0xff) << 16;
1360 sectors |= (tf->lbam & 0xff) << 8;
1361 sectors |= (tf->lbal & 0xff);
1363 return sectors;
1366 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1368 u64 sectors = 0;
1370 sectors |= (tf->device & 0x0f) << 24;
1371 sectors |= (tf->lbah & 0xff) << 16;
1372 sectors |= (tf->lbam & 0xff) << 8;
1373 sectors |= (tf->lbal & 0xff);
1375 return sectors;
1379 * ata_read_native_max_address - Read native max address
1380 * @dev: target device
1381 * @max_sectors: out parameter for the result native max address
1383 * Perform an LBA48 or LBA28 native size query upon the device in
1384 * question.
1386 * RETURNS:
1387 * 0 on success, -EACCES if command is aborted by the drive.
1388 * -EIO on other errors.
1390 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1392 unsigned int err_mask;
1393 struct ata_taskfile tf;
1394 int lba48 = ata_id_has_lba48(dev->id);
1396 ata_tf_init(dev, &tf);
1398 /* always clear all address registers */
1399 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1401 if (lba48) {
1402 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1403 tf.flags |= ATA_TFLAG_LBA48;
1404 } else
1405 tf.command = ATA_CMD_READ_NATIVE_MAX;
1407 tf.protocol |= ATA_PROT_NODATA;
1408 tf.device |= ATA_LBA;
1410 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1411 if (err_mask) {
1412 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1413 "max address (err_mask=0x%x)\n", err_mask);
1414 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1415 return -EACCES;
1416 return -EIO;
1419 if (lba48)
1420 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1421 else
1422 *max_sectors = ata_tf_to_lba(&tf) + 1;
1423 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1424 (*max_sectors)--;
1425 return 0;
1429 * ata_set_max_sectors - Set max sectors
1430 * @dev: target device
1431 * @new_sectors: new max sectors value to set for the device
1433 * Set max sectors of @dev to @new_sectors.
1435 * RETURNS:
1436 * 0 on success, -EACCES if command is aborted or denied (due to
1437 * previous non-volatile SET_MAX) by the drive. -EIO on other
1438 * errors.
1440 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1442 unsigned int err_mask;
1443 struct ata_taskfile tf;
1444 int lba48 = ata_id_has_lba48(dev->id);
1446 new_sectors--;
1448 ata_tf_init(dev, &tf);
1450 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1452 if (lba48) {
1453 tf.command = ATA_CMD_SET_MAX_EXT;
1454 tf.flags |= ATA_TFLAG_LBA48;
1456 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1457 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1458 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1459 } else {
1460 tf.command = ATA_CMD_SET_MAX;
1462 tf.device |= (new_sectors >> 24) & 0xf;
1465 tf.protocol |= ATA_PROT_NODATA;
1466 tf.device |= ATA_LBA;
1468 tf.lbal = (new_sectors >> 0) & 0xff;
1469 tf.lbam = (new_sectors >> 8) & 0xff;
1470 tf.lbah = (new_sectors >> 16) & 0xff;
1472 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1473 if (err_mask) {
1474 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1475 "max address (err_mask=0x%x)\n", err_mask);
1476 if (err_mask == AC_ERR_DEV &&
1477 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1478 return -EACCES;
1479 return -EIO;
1482 return 0;
1486 * ata_hpa_resize - Resize a device with an HPA set
1487 * @dev: Device to resize
1489 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1490 * it if required to the full size of the media. The caller must check
1491 * the drive has the HPA feature set enabled.
1493 * RETURNS:
1494 * 0 on success, -errno on failure.
1496 static int ata_hpa_resize(struct ata_device *dev)
1498 struct ata_eh_context *ehc = &dev->link->eh_context;
1499 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1500 u64 sectors = ata_id_n_sectors(dev->id);
1501 u64 native_sectors;
1502 int rc;
1504 /* do we need to do it? */
1505 if (dev->class != ATA_DEV_ATA ||
1506 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1507 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1508 return 0;
1510 /* read native max address */
1511 rc = ata_read_native_max_address(dev, &native_sectors);
1512 if (rc) {
1513 /* If device aborted the command or HPA isn't going to
1514 * be unlocked, skip HPA resizing.
1516 if (rc == -EACCES || !ata_ignore_hpa) {
1517 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1518 "broken, skipping HPA handling\n");
1519 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1521 /* we can continue if device aborted the command */
1522 if (rc == -EACCES)
1523 rc = 0;
1526 return rc;
1528 dev->n_native_sectors = native_sectors;
1530 /* nothing to do? */
1531 if (native_sectors <= sectors || !ata_ignore_hpa) {
1532 if (!print_info || native_sectors == sectors)
1533 return 0;
1535 if (native_sectors > sectors)
1536 ata_dev_printk(dev, KERN_INFO,
1537 "HPA detected: current %llu, native %llu\n",
1538 (unsigned long long)sectors,
1539 (unsigned long long)native_sectors);
1540 else if (native_sectors < sectors)
1541 ata_dev_printk(dev, KERN_WARNING,
1542 "native sectors (%llu) is smaller than "
1543 "sectors (%llu)\n",
1544 (unsigned long long)native_sectors,
1545 (unsigned long long)sectors);
1546 return 0;
1549 /* let's unlock HPA */
1550 rc = ata_set_max_sectors(dev, native_sectors);
1551 if (rc == -EACCES) {
1552 /* if device aborted the command, skip HPA resizing */
1553 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1554 "(%llu -> %llu), skipping HPA handling\n",
1555 (unsigned long long)sectors,
1556 (unsigned long long)native_sectors);
1557 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1558 return 0;
1559 } else if (rc)
1560 return rc;
1562 /* re-read IDENTIFY data */
1563 rc = ata_dev_reread_id(dev, 0);
1564 if (rc) {
1565 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1566 "data after HPA resizing\n");
1567 return rc;
1570 if (print_info) {
1571 u64 new_sectors = ata_id_n_sectors(dev->id);
1572 ata_dev_printk(dev, KERN_INFO,
1573 "HPA unlocked: %llu -> %llu, native %llu\n",
1574 (unsigned long long)sectors,
1575 (unsigned long long)new_sectors,
1576 (unsigned long long)native_sectors);
1579 return 0;
1583 * ata_dump_id - IDENTIFY DEVICE info debugging output
1584 * @id: IDENTIFY DEVICE page to dump
1586 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1587 * page.
1589 * LOCKING:
1590 * caller.
1593 static inline void ata_dump_id(const u16 *id)
1595 DPRINTK("49==0x%04x "
1596 "53==0x%04x "
1597 "63==0x%04x "
1598 "64==0x%04x "
1599 "75==0x%04x \n",
1600 id[49],
1601 id[53],
1602 id[63],
1603 id[64],
1604 id[75]);
1605 DPRINTK("80==0x%04x "
1606 "81==0x%04x "
1607 "82==0x%04x "
1608 "83==0x%04x "
1609 "84==0x%04x \n",
1610 id[80],
1611 id[81],
1612 id[82],
1613 id[83],
1614 id[84]);
1615 DPRINTK("88==0x%04x "
1616 "93==0x%04x\n",
1617 id[88],
1618 id[93]);
1622 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1623 * @id: IDENTIFY data to compute xfer mask from
1625 * Compute the xfermask for this device. This is not as trivial
1626 * as it seems if we must consider early devices correctly.
1628 * FIXME: pre IDE drive timing (do we care ?).
1630 * LOCKING:
1631 * None.
1633 * RETURNS:
1634 * Computed xfermask
1636 unsigned long ata_id_xfermask(const u16 *id)
1638 unsigned long pio_mask, mwdma_mask, udma_mask;
1640 /* Usual case. Word 53 indicates word 64 is valid */
1641 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1642 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1643 pio_mask <<= 3;
1644 pio_mask |= 0x7;
1645 } else {
1646 /* If word 64 isn't valid then Word 51 high byte holds
1647 * the PIO timing number for the maximum. Turn it into
1648 * a mask.
1650 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1651 if (mode < 5) /* Valid PIO range */
1652 pio_mask = (2 << mode) - 1;
1653 else
1654 pio_mask = 1;
1656 /* But wait.. there's more. Design your standards by
1657 * committee and you too can get a free iordy field to
1658 * process. However its the speeds not the modes that
1659 * are supported... Note drivers using the timing API
1660 * will get this right anyway
1664 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1666 if (ata_id_is_cfa(id)) {
1668 * Process compact flash extended modes
1670 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1671 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1673 if (pio)
1674 pio_mask |= (1 << 5);
1675 if (pio > 1)
1676 pio_mask |= (1 << 6);
1677 if (dma)
1678 mwdma_mask |= (1 << 3);
1679 if (dma > 1)
1680 mwdma_mask |= (1 << 4);
1683 udma_mask = 0;
1684 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1685 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1687 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1691 * ata_pio_queue_task - Queue port_task
1692 * @ap: The ata_port to queue port_task for
1693 * @data: data for @fn to use
1694 * @delay: delay time in msecs for workqueue function
1696 * Schedule @fn(@data) for execution after @delay jiffies using
1697 * port_task. There is one port_task per port and it's the
1698 * user(low level driver)'s responsibility to make sure that only
1699 * one task is active at any given time.
1701 * libata core layer takes care of synchronization between
1702 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1703 * synchronization.
1705 * LOCKING:
1706 * Inherited from caller.
1708 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1710 ap->port_task_data = data;
1712 /* may fail if ata_port_flush_task() in progress */
1713 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1717 * ata_port_flush_task - Flush port_task
1718 * @ap: The ata_port to flush port_task for
1720 * After this function completes, port_task is guranteed not to
1721 * be running or scheduled.
1723 * LOCKING:
1724 * Kernel thread context (may sleep)
1726 void ata_port_flush_task(struct ata_port *ap)
1728 DPRINTK("ENTER\n");
1730 cancel_rearming_delayed_work(&ap->port_task);
1732 if (ata_msg_ctl(ap))
1733 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1736 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1738 struct completion *waiting = qc->private_data;
1740 complete(waiting);
1744 * ata_exec_internal_sg - execute libata internal command
1745 * @dev: Device to which the command is sent
1746 * @tf: Taskfile registers for the command and the result
1747 * @cdb: CDB for packet command
1748 * @dma_dir: Data tranfer direction of the command
1749 * @sgl: sg list for the data buffer of the command
1750 * @n_elem: Number of sg entries
1751 * @timeout: Timeout in msecs (0 for default)
1753 * Executes libata internal command with timeout. @tf contains
1754 * command on entry and result on return. Timeout and error
1755 * conditions are reported via return value. No recovery action
1756 * is taken after a command times out. It's caller's duty to
1757 * clean up after timeout.
1759 * LOCKING:
1760 * None. Should be called with kernel context, might sleep.
1762 * RETURNS:
1763 * Zero on success, AC_ERR_* mask on failure
1765 unsigned ata_exec_internal_sg(struct ata_device *dev,
1766 struct ata_taskfile *tf, const u8 *cdb,
1767 int dma_dir, struct scatterlist *sgl,
1768 unsigned int n_elem, unsigned long timeout)
1770 struct ata_link *link = dev->link;
1771 struct ata_port *ap = link->ap;
1772 u8 command = tf->command;
1773 int auto_timeout = 0;
1774 struct ata_queued_cmd *qc;
1775 unsigned int tag, preempted_tag;
1776 u32 preempted_sactive, preempted_qc_active;
1777 int preempted_nr_active_links;
1778 DECLARE_COMPLETION_ONSTACK(wait);
1779 unsigned long flags;
1780 unsigned int err_mask;
1781 int rc;
1783 spin_lock_irqsave(ap->lock, flags);
1785 /* no internal command while frozen */
1786 if (ap->pflags & ATA_PFLAG_FROZEN) {
1787 spin_unlock_irqrestore(ap->lock, flags);
1788 return AC_ERR_SYSTEM;
1791 /* initialize internal qc */
1793 /* XXX: Tag 0 is used for drivers with legacy EH as some
1794 * drivers choke if any other tag is given. This breaks
1795 * ata_tag_internal() test for those drivers. Don't use new
1796 * EH stuff without converting to it.
1798 if (ap->ops->error_handler)
1799 tag = ATA_TAG_INTERNAL;
1800 else
1801 tag = 0;
1803 if (test_and_set_bit(tag, &ap->qc_allocated))
1804 BUG();
1805 qc = __ata_qc_from_tag(ap, tag);
1807 qc->tag = tag;
1808 qc->scsicmd = NULL;
1809 qc->ap = ap;
1810 qc->dev = dev;
1811 ata_qc_reinit(qc);
1813 preempted_tag = link->active_tag;
1814 preempted_sactive = link->sactive;
1815 preempted_qc_active = ap->qc_active;
1816 preempted_nr_active_links = ap->nr_active_links;
1817 link->active_tag = ATA_TAG_POISON;
1818 link->sactive = 0;
1819 ap->qc_active = 0;
1820 ap->nr_active_links = 0;
1822 /* prepare & issue qc */
1823 qc->tf = *tf;
1824 if (cdb)
1825 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1826 qc->flags |= ATA_QCFLAG_RESULT_TF;
1827 qc->dma_dir = dma_dir;
1828 if (dma_dir != DMA_NONE) {
1829 unsigned int i, buflen = 0;
1830 struct scatterlist *sg;
1832 for_each_sg(sgl, sg, n_elem, i)
1833 buflen += sg->length;
1835 ata_sg_init(qc, sgl, n_elem);
1836 qc->nbytes = buflen;
1839 qc->private_data = &wait;
1840 qc->complete_fn = ata_qc_complete_internal;
1842 ata_qc_issue(qc);
1844 spin_unlock_irqrestore(ap->lock, flags);
1846 if (!timeout) {
1847 if (ata_probe_timeout)
1848 timeout = ata_probe_timeout * 1000;
1849 else {
1850 timeout = ata_internal_cmd_timeout(dev, command);
1851 auto_timeout = 1;
1855 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1857 ata_port_flush_task(ap);
1859 if (!rc) {
1860 spin_lock_irqsave(ap->lock, flags);
1862 /* We're racing with irq here. If we lose, the
1863 * following test prevents us from completing the qc
1864 * twice. If we win, the port is frozen and will be
1865 * cleaned up by ->post_internal_cmd().
1867 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1868 qc->err_mask |= AC_ERR_TIMEOUT;
1870 if (ap->ops->error_handler)
1871 ata_port_freeze(ap);
1872 else
1873 ata_qc_complete(qc);
1875 if (ata_msg_warn(ap))
1876 ata_dev_printk(dev, KERN_WARNING,
1877 "qc timeout (cmd 0x%x)\n", command);
1880 spin_unlock_irqrestore(ap->lock, flags);
1883 /* do post_internal_cmd */
1884 if (ap->ops->post_internal_cmd)
1885 ap->ops->post_internal_cmd(qc);
1887 /* perform minimal error analysis */
1888 if (qc->flags & ATA_QCFLAG_FAILED) {
1889 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1890 qc->err_mask |= AC_ERR_DEV;
1892 if (!qc->err_mask)
1893 qc->err_mask |= AC_ERR_OTHER;
1895 if (qc->err_mask & ~AC_ERR_OTHER)
1896 qc->err_mask &= ~AC_ERR_OTHER;
1899 /* finish up */
1900 spin_lock_irqsave(ap->lock, flags);
1902 *tf = qc->result_tf;
1903 err_mask = qc->err_mask;
1905 ata_qc_free(qc);
1906 link->active_tag = preempted_tag;
1907 link->sactive = preempted_sactive;
1908 ap->qc_active = preempted_qc_active;
1909 ap->nr_active_links = preempted_nr_active_links;
1911 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1912 * Until those drivers are fixed, we detect the condition
1913 * here, fail the command with AC_ERR_SYSTEM and reenable the
1914 * port.
1916 * Note that this doesn't change any behavior as internal
1917 * command failure results in disabling the device in the
1918 * higher layer for LLDDs without new reset/EH callbacks.
1920 * Kill the following code as soon as those drivers are fixed.
1922 if (ap->flags & ATA_FLAG_DISABLED) {
1923 err_mask |= AC_ERR_SYSTEM;
1924 ata_port_probe(ap);
1927 spin_unlock_irqrestore(ap->lock, flags);
1929 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1930 ata_internal_cmd_timed_out(dev, command);
1932 return err_mask;
1936 * ata_exec_internal - execute libata internal command
1937 * @dev: Device to which the command is sent
1938 * @tf: Taskfile registers for the command and the result
1939 * @cdb: CDB for packet command
1940 * @dma_dir: Data tranfer direction of the command
1941 * @buf: Data buffer of the command
1942 * @buflen: Length of data buffer
1943 * @timeout: Timeout in msecs (0 for default)
1945 * Wrapper around ata_exec_internal_sg() which takes simple
1946 * buffer instead of sg list.
1948 * LOCKING:
1949 * None. Should be called with kernel context, might sleep.
1951 * RETURNS:
1952 * Zero on success, AC_ERR_* mask on failure
1954 unsigned ata_exec_internal(struct ata_device *dev,
1955 struct ata_taskfile *tf, const u8 *cdb,
1956 int dma_dir, void *buf, unsigned int buflen,
1957 unsigned long timeout)
1959 struct scatterlist *psg = NULL, sg;
1960 unsigned int n_elem = 0;
1962 if (dma_dir != DMA_NONE) {
1963 WARN_ON(!buf);
1964 sg_init_one(&sg, buf, buflen);
1965 psg = &sg;
1966 n_elem++;
1969 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1970 timeout);
1974 * ata_do_simple_cmd - execute simple internal command
1975 * @dev: Device to which the command is sent
1976 * @cmd: Opcode to execute
1978 * Execute a 'simple' command, that only consists of the opcode
1979 * 'cmd' itself, without filling any other registers
1981 * LOCKING:
1982 * Kernel thread context (may sleep).
1984 * RETURNS:
1985 * Zero on success, AC_ERR_* mask on failure
1987 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1989 struct ata_taskfile tf;
1991 ata_tf_init(dev, &tf);
1993 tf.command = cmd;
1994 tf.flags |= ATA_TFLAG_DEVICE;
1995 tf.protocol = ATA_PROT_NODATA;
1997 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2001 * ata_pio_need_iordy - check if iordy needed
2002 * @adev: ATA device
2004 * Check if the current speed of the device requires IORDY. Used
2005 * by various controllers for chip configuration.
2007 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2009 /* Don't set IORDY if we're preparing for reset. IORDY may
2010 * lead to controller lock up on certain controllers if the
2011 * port is not occupied. See bko#11703 for details.
2013 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2014 return 0;
2015 /* Controller doesn't support IORDY. Probably a pointless
2016 * check as the caller should know this.
2018 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2019 return 0;
2020 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2021 if (ata_id_is_cfa(adev->id)
2022 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2023 return 0;
2024 /* PIO3 and higher it is mandatory */
2025 if (adev->pio_mode > XFER_PIO_2)
2026 return 1;
2027 /* We turn it on when possible */
2028 if (ata_id_has_iordy(adev->id))
2029 return 1;
2030 return 0;
2034 * ata_pio_mask_no_iordy - Return the non IORDY mask
2035 * @adev: ATA device
2037 * Compute the highest mode possible if we are not using iordy. Return
2038 * -1 if no iordy mode is available.
2040 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2042 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2043 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2044 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2045 /* Is the speed faster than the drive allows non IORDY ? */
2046 if (pio) {
2047 /* This is cycle times not frequency - watch the logic! */
2048 if (pio > 240) /* PIO2 is 240nS per cycle */
2049 return 3 << ATA_SHIFT_PIO;
2050 return 7 << ATA_SHIFT_PIO;
2053 return 3 << ATA_SHIFT_PIO;
2057 * ata_do_dev_read_id - default ID read method
2058 * @dev: device
2059 * @tf: proposed taskfile
2060 * @id: data buffer
2062 * Issue the identify taskfile and hand back the buffer containing
2063 * identify data. For some RAID controllers and for pre ATA devices
2064 * this function is wrapped or replaced by the driver
2066 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2067 struct ata_taskfile *tf, u16 *id)
2069 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2070 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2074 * ata_dev_read_id - Read ID data from the specified device
2075 * @dev: target device
2076 * @p_class: pointer to class of the target device (may be changed)
2077 * @flags: ATA_READID_* flags
2078 * @id: buffer to read IDENTIFY data into
2080 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2081 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2082 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2083 * for pre-ATA4 drives.
2085 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2086 * now we abort if we hit that case.
2088 * LOCKING:
2089 * Kernel thread context (may sleep)
2091 * RETURNS:
2092 * 0 on success, -errno otherwise.
2094 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2095 unsigned int flags, u16 *id)
2097 struct ata_port *ap = dev->link->ap;
2098 unsigned int class = *p_class;
2099 struct ata_taskfile tf;
2100 unsigned int err_mask = 0;
2101 const char *reason;
2102 bool is_semb = class == ATA_DEV_SEMB;
2103 int may_fallback = 1, tried_spinup = 0;
2104 int rc;
2106 if (ata_msg_ctl(ap))
2107 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2109 retry:
2110 ata_tf_init(dev, &tf);
2112 switch (class) {
2113 case ATA_DEV_SEMB:
2114 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2115 case ATA_DEV_ATA:
2116 tf.command = ATA_CMD_ID_ATA;
2117 break;
2118 case ATA_DEV_ATAPI:
2119 tf.command = ATA_CMD_ID_ATAPI;
2120 break;
2121 default:
2122 rc = -ENODEV;
2123 reason = "unsupported class";
2124 goto err_out;
2127 tf.protocol = ATA_PROT_PIO;
2129 /* Some devices choke if TF registers contain garbage. Make
2130 * sure those are properly initialized.
2132 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2134 /* Device presence detection is unreliable on some
2135 * controllers. Always poll IDENTIFY if available.
2137 tf.flags |= ATA_TFLAG_POLLING;
2139 if (ap->ops->read_id)
2140 err_mask = ap->ops->read_id(dev, &tf, id);
2141 else
2142 err_mask = ata_do_dev_read_id(dev, &tf, id);
2144 if (err_mask) {
2145 if (err_mask & AC_ERR_NODEV_HINT) {
2146 ata_dev_printk(dev, KERN_DEBUG,
2147 "NODEV after polling detection\n");
2148 return -ENOENT;
2151 if (is_semb) {
2152 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2153 "device w/ SEMB sig, disabled\n");
2154 /* SEMB is not supported yet */
2155 *p_class = ATA_DEV_SEMB_UNSUP;
2156 return 0;
2159 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2160 /* Device or controller might have reported
2161 * the wrong device class. Give a shot at the
2162 * other IDENTIFY if the current one is
2163 * aborted by the device.
2165 if (may_fallback) {
2166 may_fallback = 0;
2168 if (class == ATA_DEV_ATA)
2169 class = ATA_DEV_ATAPI;
2170 else
2171 class = ATA_DEV_ATA;
2172 goto retry;
2175 /* Control reaches here iff the device aborted
2176 * both flavors of IDENTIFYs which happens
2177 * sometimes with phantom devices.
2179 ata_dev_printk(dev, KERN_DEBUG,
2180 "both IDENTIFYs aborted, assuming NODEV\n");
2181 return -ENOENT;
2184 rc = -EIO;
2185 reason = "I/O error";
2186 goto err_out;
2189 /* Falling back doesn't make sense if ID data was read
2190 * successfully at least once.
2192 may_fallback = 0;
2194 swap_buf_le16(id, ATA_ID_WORDS);
2196 /* sanity check */
2197 rc = -EINVAL;
2198 reason = "device reports invalid type";
2200 if (class == ATA_DEV_ATA) {
2201 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2202 goto err_out;
2203 } else {
2204 if (ata_id_is_ata(id))
2205 goto err_out;
2208 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2209 tried_spinup = 1;
2211 * Drive powered-up in standby mode, and requires a specific
2212 * SET_FEATURES spin-up subcommand before it will accept
2213 * anything other than the original IDENTIFY command.
2215 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2216 if (err_mask && id[2] != 0x738c) {
2217 rc = -EIO;
2218 reason = "SPINUP failed";
2219 goto err_out;
2222 * If the drive initially returned incomplete IDENTIFY info,
2223 * we now must reissue the IDENTIFY command.
2225 if (id[2] == 0x37c8)
2226 goto retry;
2229 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2231 * The exact sequence expected by certain pre-ATA4 drives is:
2232 * SRST RESET
2233 * IDENTIFY (optional in early ATA)
2234 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2235 * anything else..
2236 * Some drives were very specific about that exact sequence.
2238 * Note that ATA4 says lba is mandatory so the second check
2239 * shoud never trigger.
2241 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2242 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2243 if (err_mask) {
2244 rc = -EIO;
2245 reason = "INIT_DEV_PARAMS failed";
2246 goto err_out;
2249 /* current CHS translation info (id[53-58]) might be
2250 * changed. reread the identify device info.
2252 flags &= ~ATA_READID_POSTRESET;
2253 goto retry;
2257 *p_class = class;
2259 return 0;
2261 err_out:
2262 if (ata_msg_warn(ap))
2263 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2264 "(%s, err_mask=0x%x)\n", reason, err_mask);
2265 return rc;
2268 static int ata_do_link_spd_horkage(struct ata_device *dev)
2270 struct ata_link *plink = ata_dev_phys_link(dev);
2271 u32 target, target_limit;
2273 if (!sata_scr_valid(plink))
2274 return 0;
2276 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2277 target = 1;
2278 else
2279 return 0;
2281 target_limit = (1 << target) - 1;
2283 /* if already on stricter limit, no need to push further */
2284 if (plink->sata_spd_limit <= target_limit)
2285 return 0;
2287 plink->sata_spd_limit = target_limit;
2289 /* Request another EH round by returning -EAGAIN if link is
2290 * going faster than the target speed. Forward progress is
2291 * guaranteed by setting sata_spd_limit to target_limit above.
2293 if (plink->sata_spd > target) {
2294 ata_dev_printk(dev, KERN_INFO,
2295 "applying link speed limit horkage to %s\n",
2296 sata_spd_string(target));
2297 return -EAGAIN;
2299 return 0;
2302 static inline u8 ata_dev_knobble(struct ata_device *dev)
2304 struct ata_port *ap = dev->link->ap;
2306 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2307 return 0;
2309 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2312 static int ata_dev_config_ncq(struct ata_device *dev,
2313 char *desc, size_t desc_sz)
2315 struct ata_port *ap = dev->link->ap;
2316 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2317 unsigned int err_mask;
2318 char *aa_desc = "";
2320 if (!ata_id_has_ncq(dev->id)) {
2321 desc[0] = '\0';
2322 return 0;
2324 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2325 snprintf(desc, desc_sz, "NCQ (not used)");
2326 return 0;
2328 if (ap->flags & ATA_FLAG_NCQ) {
2329 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2330 dev->flags |= ATA_DFLAG_NCQ;
2333 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2334 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2335 ata_id_has_fpdma_aa(dev->id)) {
2336 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2337 SATA_FPDMA_AA);
2338 if (err_mask) {
2339 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2340 "(error_mask=0x%x)\n", err_mask);
2341 if (err_mask != AC_ERR_DEV) {
2342 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2343 return -EIO;
2345 } else
2346 aa_desc = ", AA";
2349 if (hdepth >= ddepth)
2350 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2351 else
2352 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2353 ddepth, aa_desc);
2354 return 0;
2358 * ata_dev_configure - Configure the specified ATA/ATAPI device
2359 * @dev: Target device to configure
2361 * Configure @dev according to @dev->id. Generic and low-level
2362 * driver specific fixups are also applied.
2364 * LOCKING:
2365 * Kernel thread context (may sleep)
2367 * RETURNS:
2368 * 0 on success, -errno otherwise
2370 int ata_dev_configure(struct ata_device *dev)
2372 struct ata_port *ap = dev->link->ap;
2373 struct ata_eh_context *ehc = &dev->link->eh_context;
2374 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2375 const u16 *id = dev->id;
2376 unsigned long xfer_mask;
2377 char revbuf[7]; /* XYZ-99\0 */
2378 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2379 char modelbuf[ATA_ID_PROD_LEN+1];
2380 int rc;
2382 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2383 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2384 __func__);
2385 return 0;
2388 if (ata_msg_probe(ap))
2389 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2391 /* set horkage */
2392 dev->horkage |= ata_dev_blacklisted(dev);
2393 ata_force_horkage(dev);
2395 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2396 ata_dev_printk(dev, KERN_INFO,
2397 "unsupported device, disabling\n");
2398 ata_dev_disable(dev);
2399 return 0;
2402 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2403 dev->class == ATA_DEV_ATAPI) {
2404 ata_dev_printk(dev, KERN_WARNING,
2405 "WARNING: ATAPI is %s, device ignored.\n",
2406 atapi_enabled ? "not supported with this driver"
2407 : "disabled");
2408 ata_dev_disable(dev);
2409 return 0;
2412 rc = ata_do_link_spd_horkage(dev);
2413 if (rc)
2414 return rc;
2416 /* let ACPI work its magic */
2417 rc = ata_acpi_on_devcfg(dev);
2418 if (rc)
2419 return rc;
2421 /* massage HPA, do it early as it might change IDENTIFY data */
2422 rc = ata_hpa_resize(dev);
2423 if (rc)
2424 return rc;
2426 /* print device capabilities */
2427 if (ata_msg_probe(ap))
2428 ata_dev_printk(dev, KERN_DEBUG,
2429 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2430 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2431 __func__,
2432 id[49], id[82], id[83], id[84],
2433 id[85], id[86], id[87], id[88]);
2435 /* initialize to-be-configured parameters */
2436 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2437 dev->max_sectors = 0;
2438 dev->cdb_len = 0;
2439 dev->n_sectors = 0;
2440 dev->cylinders = 0;
2441 dev->heads = 0;
2442 dev->sectors = 0;
2443 dev->multi_count = 0;
2446 * common ATA, ATAPI feature tests
2449 /* find max transfer mode; for printk only */
2450 xfer_mask = ata_id_xfermask(id);
2452 if (ata_msg_probe(ap))
2453 ata_dump_id(id);
2455 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2456 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2457 sizeof(fwrevbuf));
2459 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2460 sizeof(modelbuf));
2462 /* ATA-specific feature tests */
2463 if (dev->class == ATA_DEV_ATA) {
2464 if (ata_id_is_cfa(id)) {
2465 /* CPRM may make this media unusable */
2466 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2467 ata_dev_printk(dev, KERN_WARNING,
2468 "supports DRM functions and may "
2469 "not be fully accessable.\n");
2470 snprintf(revbuf, 7, "CFA");
2471 } else {
2472 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2473 /* Warn the user if the device has TPM extensions */
2474 if (ata_id_has_tpm(id))
2475 ata_dev_printk(dev, KERN_WARNING,
2476 "supports DRM functions and may "
2477 "not be fully accessable.\n");
2480 dev->n_sectors = ata_id_n_sectors(id);
2482 /* get current R/W Multiple count setting */
2483 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2484 unsigned int max = dev->id[47] & 0xff;
2485 unsigned int cnt = dev->id[59] & 0xff;
2486 /* only recognize/allow powers of two here */
2487 if (is_power_of_2(max) && is_power_of_2(cnt))
2488 if (cnt <= max)
2489 dev->multi_count = cnt;
2492 if (ata_id_has_lba(id)) {
2493 const char *lba_desc;
2494 char ncq_desc[24];
2496 lba_desc = "LBA";
2497 dev->flags |= ATA_DFLAG_LBA;
2498 if (ata_id_has_lba48(id)) {
2499 dev->flags |= ATA_DFLAG_LBA48;
2500 lba_desc = "LBA48";
2502 if (dev->n_sectors >= (1UL << 28) &&
2503 ata_id_has_flush_ext(id))
2504 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2507 /* config NCQ */
2508 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2509 if (rc)
2510 return rc;
2512 /* print device info to dmesg */
2513 if (ata_msg_drv(ap) && print_info) {
2514 ata_dev_printk(dev, KERN_INFO,
2515 "%s: %s, %s, max %s\n",
2516 revbuf, modelbuf, fwrevbuf,
2517 ata_mode_string(xfer_mask));
2518 ata_dev_printk(dev, KERN_INFO,
2519 "%Lu sectors, multi %u: %s %s\n",
2520 (unsigned long long)dev->n_sectors,
2521 dev->multi_count, lba_desc, ncq_desc);
2523 } else {
2524 /* CHS */
2526 /* Default translation */
2527 dev->cylinders = id[1];
2528 dev->heads = id[3];
2529 dev->sectors = id[6];
2531 if (ata_id_current_chs_valid(id)) {
2532 /* Current CHS translation is valid. */
2533 dev->cylinders = id[54];
2534 dev->heads = id[55];
2535 dev->sectors = id[56];
2538 /* print device info to dmesg */
2539 if (ata_msg_drv(ap) && print_info) {
2540 ata_dev_printk(dev, KERN_INFO,
2541 "%s: %s, %s, max %s\n",
2542 revbuf, modelbuf, fwrevbuf,
2543 ata_mode_string(xfer_mask));
2544 ata_dev_printk(dev, KERN_INFO,
2545 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2546 (unsigned long long)dev->n_sectors,
2547 dev->multi_count, dev->cylinders,
2548 dev->heads, dev->sectors);
2552 dev->cdb_len = 16;
2555 /* ATAPI-specific feature tests */
2556 else if (dev->class == ATA_DEV_ATAPI) {
2557 const char *cdb_intr_string = "";
2558 const char *atapi_an_string = "";
2559 const char *dma_dir_string = "";
2560 u32 sntf;
2562 rc = atapi_cdb_len(id);
2563 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2564 if (ata_msg_warn(ap))
2565 ata_dev_printk(dev, KERN_WARNING,
2566 "unsupported CDB len\n");
2567 rc = -EINVAL;
2568 goto err_out_nosup;
2570 dev->cdb_len = (unsigned int) rc;
2572 /* Enable ATAPI AN if both the host and device have
2573 * the support. If PMP is attached, SNTF is required
2574 * to enable ATAPI AN to discern between PHY status
2575 * changed notifications and ATAPI ANs.
2577 if (atapi_an &&
2578 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2579 (!sata_pmp_attached(ap) ||
2580 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2581 unsigned int err_mask;
2583 /* issue SET feature command to turn this on */
2584 err_mask = ata_dev_set_feature(dev,
2585 SETFEATURES_SATA_ENABLE, SATA_AN);
2586 if (err_mask)
2587 ata_dev_printk(dev, KERN_ERR,
2588 "failed to enable ATAPI AN "
2589 "(err_mask=0x%x)\n", err_mask);
2590 else {
2591 dev->flags |= ATA_DFLAG_AN;
2592 atapi_an_string = ", ATAPI AN";
2596 if (ata_id_cdb_intr(dev->id)) {
2597 dev->flags |= ATA_DFLAG_CDB_INTR;
2598 cdb_intr_string = ", CDB intr";
2601 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2602 dev->flags |= ATA_DFLAG_DMADIR;
2603 dma_dir_string = ", DMADIR";
2606 /* print device info to dmesg */
2607 if (ata_msg_drv(ap) && print_info)
2608 ata_dev_printk(dev, KERN_INFO,
2609 "ATAPI: %s, %s, max %s%s%s%s\n",
2610 modelbuf, fwrevbuf,
2611 ata_mode_string(xfer_mask),
2612 cdb_intr_string, atapi_an_string,
2613 dma_dir_string);
2616 /* determine max_sectors */
2617 dev->max_sectors = ATA_MAX_SECTORS;
2618 if (dev->flags & ATA_DFLAG_LBA48)
2619 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2621 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2622 if (ata_id_has_hipm(dev->id))
2623 dev->flags |= ATA_DFLAG_HIPM;
2624 if (ata_id_has_dipm(dev->id))
2625 dev->flags |= ATA_DFLAG_DIPM;
2628 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2629 200 sectors */
2630 if (ata_dev_knobble(dev)) {
2631 if (ata_msg_drv(ap) && print_info)
2632 ata_dev_printk(dev, KERN_INFO,
2633 "applying bridge limits\n");
2634 dev->udma_mask &= ATA_UDMA5;
2635 dev->max_sectors = ATA_MAX_SECTORS;
2638 if ((dev->class == ATA_DEV_ATAPI) &&
2639 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2640 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2641 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2644 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2645 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2646 dev->max_sectors);
2648 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2649 dev->horkage |= ATA_HORKAGE_IPM;
2651 /* reset link pm_policy for this port to no pm */
2652 ap->pm_policy = MAX_PERFORMANCE;
2655 if (ap->ops->dev_config)
2656 ap->ops->dev_config(dev);
2658 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2659 /* Let the user know. We don't want to disallow opens for
2660 rescue purposes, or in case the vendor is just a blithering
2661 idiot. Do this after the dev_config call as some controllers
2662 with buggy firmware may want to avoid reporting false device
2663 bugs */
2665 if (print_info) {
2666 ata_dev_printk(dev, KERN_WARNING,
2667 "Drive reports diagnostics failure. This may indicate a drive\n");
2668 ata_dev_printk(dev, KERN_WARNING,
2669 "fault or invalid emulation. Contact drive vendor for information.\n");
2673 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2674 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2675 "firmware update to be fully functional.\n");
2676 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2677 "or visit http://ata.wiki.kernel.org.\n");
2680 return 0;
2682 err_out_nosup:
2683 if (ata_msg_probe(ap))
2684 ata_dev_printk(dev, KERN_DEBUG,
2685 "%s: EXIT, err\n", __func__);
2686 return rc;
2690 * ata_cable_40wire - return 40 wire cable type
2691 * @ap: port
2693 * Helper method for drivers which want to hardwire 40 wire cable
2694 * detection.
2697 int ata_cable_40wire(struct ata_port *ap)
2699 return ATA_CBL_PATA40;
2703 * ata_cable_80wire - return 80 wire cable type
2704 * @ap: port
2706 * Helper method for drivers which want to hardwire 80 wire cable
2707 * detection.
2710 int ata_cable_80wire(struct ata_port *ap)
2712 return ATA_CBL_PATA80;
2716 * ata_cable_unknown - return unknown PATA cable.
2717 * @ap: port
2719 * Helper method for drivers which have no PATA cable detection.
2722 int ata_cable_unknown(struct ata_port *ap)
2724 return ATA_CBL_PATA_UNK;
2728 * ata_cable_ignore - return ignored PATA cable.
2729 * @ap: port
2731 * Helper method for drivers which don't use cable type to limit
2732 * transfer mode.
2734 int ata_cable_ignore(struct ata_port *ap)
2736 return ATA_CBL_PATA_IGN;
2740 * ata_cable_sata - return SATA cable type
2741 * @ap: port
2743 * Helper method for drivers which have SATA cables
2746 int ata_cable_sata(struct ata_port *ap)
2748 return ATA_CBL_SATA;
2752 * ata_bus_probe - Reset and probe ATA bus
2753 * @ap: Bus to probe
2755 * Master ATA bus probing function. Initiates a hardware-dependent
2756 * bus reset, then attempts to identify any devices found on
2757 * the bus.
2759 * LOCKING:
2760 * PCI/etc. bus probe sem.
2762 * RETURNS:
2763 * Zero on success, negative errno otherwise.
2766 int ata_bus_probe(struct ata_port *ap)
2768 unsigned int classes[ATA_MAX_DEVICES];
2769 int tries[ATA_MAX_DEVICES];
2770 int rc;
2771 struct ata_device *dev;
2773 ata_port_probe(ap);
2775 ata_for_each_dev(dev, &ap->link, ALL)
2776 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2778 retry:
2779 ata_for_each_dev(dev, &ap->link, ALL) {
2780 /* If we issue an SRST then an ATA drive (not ATAPI)
2781 * may change configuration and be in PIO0 timing. If
2782 * we do a hard reset (or are coming from power on)
2783 * this is true for ATA or ATAPI. Until we've set a
2784 * suitable controller mode we should not touch the
2785 * bus as we may be talking too fast.
2787 dev->pio_mode = XFER_PIO_0;
2789 /* If the controller has a pio mode setup function
2790 * then use it to set the chipset to rights. Don't
2791 * touch the DMA setup as that will be dealt with when
2792 * configuring devices.
2794 if (ap->ops->set_piomode)
2795 ap->ops->set_piomode(ap, dev);
2798 /* reset and determine device classes */
2799 ap->ops->phy_reset(ap);
2801 ata_for_each_dev(dev, &ap->link, ALL) {
2802 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2803 dev->class != ATA_DEV_UNKNOWN)
2804 classes[dev->devno] = dev->class;
2805 else
2806 classes[dev->devno] = ATA_DEV_NONE;
2808 dev->class = ATA_DEV_UNKNOWN;
2811 ata_port_probe(ap);
2813 /* read IDENTIFY page and configure devices. We have to do the identify
2814 specific sequence bass-ackwards so that PDIAG- is released by
2815 the slave device */
2817 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2818 if (tries[dev->devno])
2819 dev->class = classes[dev->devno];
2821 if (!ata_dev_enabled(dev))
2822 continue;
2824 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2825 dev->id);
2826 if (rc)
2827 goto fail;
2830 /* Now ask for the cable type as PDIAG- should have been released */
2831 if (ap->ops->cable_detect)
2832 ap->cbl = ap->ops->cable_detect(ap);
2834 /* We may have SATA bridge glue hiding here irrespective of
2835 * the reported cable types and sensed types. When SATA
2836 * drives indicate we have a bridge, we don't know which end
2837 * of the link the bridge is which is a problem.
2839 ata_for_each_dev(dev, &ap->link, ENABLED)
2840 if (ata_id_is_sata(dev->id))
2841 ap->cbl = ATA_CBL_SATA;
2843 /* After the identify sequence we can now set up the devices. We do
2844 this in the normal order so that the user doesn't get confused */
2846 ata_for_each_dev(dev, &ap->link, ENABLED) {
2847 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2848 rc = ata_dev_configure(dev);
2849 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2850 if (rc)
2851 goto fail;
2854 /* configure transfer mode */
2855 rc = ata_set_mode(&ap->link, &dev);
2856 if (rc)
2857 goto fail;
2859 ata_for_each_dev(dev, &ap->link, ENABLED)
2860 return 0;
2862 /* no device present, disable port */
2863 ata_port_disable(ap);
2864 return -ENODEV;
2866 fail:
2867 tries[dev->devno]--;
2869 switch (rc) {
2870 case -EINVAL:
2871 /* eeek, something went very wrong, give up */
2872 tries[dev->devno] = 0;
2873 break;
2875 case -ENODEV:
2876 /* give it just one more chance */
2877 tries[dev->devno] = min(tries[dev->devno], 1);
2878 case -EIO:
2879 if (tries[dev->devno] == 1) {
2880 /* This is the last chance, better to slow
2881 * down than lose it.
2883 sata_down_spd_limit(&ap->link, 0);
2884 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2888 if (!tries[dev->devno])
2889 ata_dev_disable(dev);
2891 goto retry;
2895 * ata_port_probe - Mark port as enabled
2896 * @ap: Port for which we indicate enablement
2898 * Modify @ap data structure such that the system
2899 * thinks that the entire port is enabled.
2901 * LOCKING: host lock, or some other form of
2902 * serialization.
2905 void ata_port_probe(struct ata_port *ap)
2907 ap->flags &= ~ATA_FLAG_DISABLED;
2911 * sata_print_link_status - Print SATA link status
2912 * @link: SATA link to printk link status about
2914 * This function prints link speed and status of a SATA link.
2916 * LOCKING:
2917 * None.
2919 static void sata_print_link_status(struct ata_link *link)
2921 u32 sstatus, scontrol, tmp;
2923 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2924 return;
2925 sata_scr_read(link, SCR_CONTROL, &scontrol);
2927 if (ata_phys_link_online(link)) {
2928 tmp = (sstatus >> 4) & 0xf;
2929 ata_link_printk(link, KERN_INFO,
2930 "SATA link up %s (SStatus %X SControl %X)\n",
2931 sata_spd_string(tmp), sstatus, scontrol);
2932 } else {
2933 ata_link_printk(link, KERN_INFO,
2934 "SATA link down (SStatus %X SControl %X)\n",
2935 sstatus, scontrol);
2940 * ata_dev_pair - return other device on cable
2941 * @adev: device
2943 * Obtain the other device on the same cable, or if none is
2944 * present NULL is returned
2947 struct ata_device *ata_dev_pair(struct ata_device *adev)
2949 struct ata_link *link = adev->link;
2950 struct ata_device *pair = &link->device[1 - adev->devno];
2951 if (!ata_dev_enabled(pair))
2952 return NULL;
2953 return pair;
2957 * ata_port_disable - Disable port.
2958 * @ap: Port to be disabled.
2960 * Modify @ap data structure such that the system
2961 * thinks that the entire port is disabled, and should
2962 * never attempt to probe or communicate with devices
2963 * on this port.
2965 * LOCKING: host lock, or some other form of
2966 * serialization.
2969 void ata_port_disable(struct ata_port *ap)
2971 ap->link.device[0].class = ATA_DEV_NONE;
2972 ap->link.device[1].class = ATA_DEV_NONE;
2973 ap->flags |= ATA_FLAG_DISABLED;
2977 * sata_down_spd_limit - adjust SATA spd limit downward
2978 * @link: Link to adjust SATA spd limit for
2979 * @spd_limit: Additional limit
2981 * Adjust SATA spd limit of @link downward. Note that this
2982 * function only adjusts the limit. The change must be applied
2983 * using sata_set_spd().
2985 * If @spd_limit is non-zero, the speed is limited to equal to or
2986 * lower than @spd_limit if such speed is supported. If
2987 * @spd_limit is slower than any supported speed, only the lowest
2988 * supported speed is allowed.
2990 * LOCKING:
2991 * Inherited from caller.
2993 * RETURNS:
2994 * 0 on success, negative errno on failure
2996 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2998 u32 sstatus, spd, mask;
2999 int rc, bit;
3001 if (!sata_scr_valid(link))
3002 return -EOPNOTSUPP;
3004 /* If SCR can be read, use it to determine the current SPD.
3005 * If not, use cached value in link->sata_spd.
3007 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3008 if (rc == 0 && ata_sstatus_online(sstatus))
3009 spd = (sstatus >> 4) & 0xf;
3010 else
3011 spd = link->sata_spd;
3013 mask = link->sata_spd_limit;
3014 if (mask <= 1)
3015 return -EINVAL;
3017 /* unconditionally mask off the highest bit */
3018 bit = fls(mask) - 1;
3019 mask &= ~(1 << bit);
3021 /* Mask off all speeds higher than or equal to the current
3022 * one. Force 1.5Gbps if current SPD is not available.
3024 if (spd > 1)
3025 mask &= (1 << (spd - 1)) - 1;
3026 else
3027 mask &= 1;
3029 /* were we already at the bottom? */
3030 if (!mask)
3031 return -EINVAL;
3033 if (spd_limit) {
3034 if (mask & ((1 << spd_limit) - 1))
3035 mask &= (1 << spd_limit) - 1;
3036 else {
3037 bit = ffs(mask) - 1;
3038 mask = 1 << bit;
3042 link->sata_spd_limit = mask;
3044 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3045 sata_spd_string(fls(mask)));
3047 return 0;
3050 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3052 struct ata_link *host_link = &link->ap->link;
3053 u32 limit, target, spd;
3055 limit = link->sata_spd_limit;
3057 /* Don't configure downstream link faster than upstream link.
3058 * It doesn't speed up anything and some PMPs choke on such
3059 * configuration.
3061 if (!ata_is_host_link(link) && host_link->sata_spd)
3062 limit &= (1 << host_link->sata_spd) - 1;
3064 if (limit == UINT_MAX)
3065 target = 0;
3066 else
3067 target = fls(limit);
3069 spd = (*scontrol >> 4) & 0xf;
3070 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3072 return spd != target;
3076 * sata_set_spd_needed - is SATA spd configuration needed
3077 * @link: Link in question
3079 * Test whether the spd limit in SControl matches
3080 * @link->sata_spd_limit. This function is used to determine
3081 * whether hardreset is necessary to apply SATA spd
3082 * configuration.
3084 * LOCKING:
3085 * Inherited from caller.
3087 * RETURNS:
3088 * 1 if SATA spd configuration is needed, 0 otherwise.
3090 static int sata_set_spd_needed(struct ata_link *link)
3092 u32 scontrol;
3094 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3095 return 1;
3097 return __sata_set_spd_needed(link, &scontrol);
3101 * sata_set_spd - set SATA spd according to spd limit
3102 * @link: Link to set SATA spd for
3104 * Set SATA spd of @link according to sata_spd_limit.
3106 * LOCKING:
3107 * Inherited from caller.
3109 * RETURNS:
3110 * 0 if spd doesn't need to be changed, 1 if spd has been
3111 * changed. Negative errno if SCR registers are inaccessible.
3113 int sata_set_spd(struct ata_link *link)
3115 u32 scontrol;
3116 int rc;
3118 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3119 return rc;
3121 if (!__sata_set_spd_needed(link, &scontrol))
3122 return 0;
3124 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3125 return rc;
3127 return 1;
3131 * This mode timing computation functionality is ported over from
3132 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3135 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3136 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3137 * for UDMA6, which is currently supported only by Maxtor drives.
3139 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3142 static const struct ata_timing ata_timing[] = {
3143 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3144 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3145 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3146 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3147 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3148 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3149 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3150 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3152 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3153 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3154 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3156 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3157 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3158 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3159 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3160 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3162 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3163 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3164 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3165 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3166 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3167 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3168 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3169 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3171 { 0xFF }
3174 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3175 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3177 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3179 q->setup = EZ(t->setup * 1000, T);
3180 q->act8b = EZ(t->act8b * 1000, T);
3181 q->rec8b = EZ(t->rec8b * 1000, T);
3182 q->cyc8b = EZ(t->cyc8b * 1000, T);
3183 q->active = EZ(t->active * 1000, T);
3184 q->recover = EZ(t->recover * 1000, T);
3185 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3186 q->cycle = EZ(t->cycle * 1000, T);
3187 q->udma = EZ(t->udma * 1000, UT);
3190 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3191 struct ata_timing *m, unsigned int what)
3193 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3194 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3195 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3196 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3197 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3198 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3199 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3200 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3201 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3204 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3206 const struct ata_timing *t = ata_timing;
3208 while (xfer_mode > t->mode)
3209 t++;
3211 if (xfer_mode == t->mode)
3212 return t;
3213 return NULL;
3216 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3217 struct ata_timing *t, int T, int UT)
3219 const struct ata_timing *s;
3220 struct ata_timing p;
3223 * Find the mode.
3226 if (!(s = ata_timing_find_mode(speed)))
3227 return -EINVAL;
3229 memcpy(t, s, sizeof(*s));
3232 * If the drive is an EIDE drive, it can tell us it needs extended
3233 * PIO/MW_DMA cycle timing.
3236 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3237 memset(&p, 0, sizeof(p));
3238 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3239 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3240 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3241 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3242 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3244 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3248 * Convert the timing to bus clock counts.
3251 ata_timing_quantize(t, t, T, UT);
3254 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3255 * S.M.A.R.T * and some other commands. We have to ensure that the
3256 * DMA cycle timing is slower/equal than the fastest PIO timing.
3259 if (speed > XFER_PIO_6) {
3260 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3261 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3265 * Lengthen active & recovery time so that cycle time is correct.
3268 if (t->act8b + t->rec8b < t->cyc8b) {
3269 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3270 t->rec8b = t->cyc8b - t->act8b;
3273 if (t->active + t->recover < t->cycle) {
3274 t->active += (t->cycle - (t->active + t->recover)) / 2;
3275 t->recover = t->cycle - t->active;
3278 /* In a few cases quantisation may produce enough errors to
3279 leave t->cycle too low for the sum of active and recovery
3280 if so we must correct this */
3281 if (t->active + t->recover > t->cycle)
3282 t->cycle = t->active + t->recover;
3284 return 0;
3288 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3289 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3290 * @cycle: cycle duration in ns
3292 * Return matching xfer mode for @cycle. The returned mode is of
3293 * the transfer type specified by @xfer_shift. If @cycle is too
3294 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3295 * than the fastest known mode, the fasted mode is returned.
3297 * LOCKING:
3298 * None.
3300 * RETURNS:
3301 * Matching xfer_mode, 0xff if no match found.
3303 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3305 u8 base_mode = 0xff, last_mode = 0xff;
3306 const struct ata_xfer_ent *ent;
3307 const struct ata_timing *t;
3309 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3310 if (ent->shift == xfer_shift)
3311 base_mode = ent->base;
3313 for (t = ata_timing_find_mode(base_mode);
3314 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3315 unsigned short this_cycle;
3317 switch (xfer_shift) {
3318 case ATA_SHIFT_PIO:
3319 case ATA_SHIFT_MWDMA:
3320 this_cycle = t->cycle;
3321 break;
3322 case ATA_SHIFT_UDMA:
3323 this_cycle = t->udma;
3324 break;
3325 default:
3326 return 0xff;
3329 if (cycle > this_cycle)
3330 break;
3332 last_mode = t->mode;
3335 return last_mode;
3339 * ata_down_xfermask_limit - adjust dev xfer masks downward
3340 * @dev: Device to adjust xfer masks
3341 * @sel: ATA_DNXFER_* selector
3343 * Adjust xfer masks of @dev downward. Note that this function
3344 * does not apply the change. Invoking ata_set_mode() afterwards
3345 * will apply the limit.
3347 * LOCKING:
3348 * Inherited from caller.
3350 * RETURNS:
3351 * 0 on success, negative errno on failure
3353 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3355 char buf[32];
3356 unsigned long orig_mask, xfer_mask;
3357 unsigned long pio_mask, mwdma_mask, udma_mask;
3358 int quiet, highbit;
3360 quiet = !!(sel & ATA_DNXFER_QUIET);
3361 sel &= ~ATA_DNXFER_QUIET;
3363 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3364 dev->mwdma_mask,
3365 dev->udma_mask);
3366 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3368 switch (sel) {
3369 case ATA_DNXFER_PIO:
3370 highbit = fls(pio_mask) - 1;
3371 pio_mask &= ~(1 << highbit);
3372 break;
3374 case ATA_DNXFER_DMA:
3375 if (udma_mask) {
3376 highbit = fls(udma_mask) - 1;
3377 udma_mask &= ~(1 << highbit);
3378 if (!udma_mask)
3379 return -ENOENT;
3380 } else if (mwdma_mask) {
3381 highbit = fls(mwdma_mask) - 1;
3382 mwdma_mask &= ~(1 << highbit);
3383 if (!mwdma_mask)
3384 return -ENOENT;
3386 break;
3388 case ATA_DNXFER_40C:
3389 udma_mask &= ATA_UDMA_MASK_40C;
3390 break;
3392 case ATA_DNXFER_FORCE_PIO0:
3393 pio_mask &= 1;
3394 case ATA_DNXFER_FORCE_PIO:
3395 mwdma_mask = 0;
3396 udma_mask = 0;
3397 break;
3399 default:
3400 BUG();
3403 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3405 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3406 return -ENOENT;
3408 if (!quiet) {
3409 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3410 snprintf(buf, sizeof(buf), "%s:%s",
3411 ata_mode_string(xfer_mask),
3412 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3413 else
3414 snprintf(buf, sizeof(buf), "%s",
3415 ata_mode_string(xfer_mask));
3417 ata_dev_printk(dev, KERN_WARNING,
3418 "limiting speed to %s\n", buf);
3421 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3422 &dev->udma_mask);
3424 return 0;
3427 static int ata_dev_set_mode(struct ata_device *dev)
3429 struct ata_port *ap = dev->link->ap;
3430 struct ata_eh_context *ehc = &dev->link->eh_context;
3431 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3432 const char *dev_err_whine = "";
3433 int ign_dev_err = 0;
3434 unsigned int err_mask = 0;
3435 int rc;
3437 dev->flags &= ~ATA_DFLAG_PIO;
3438 if (dev->xfer_shift == ATA_SHIFT_PIO)
3439 dev->flags |= ATA_DFLAG_PIO;
3441 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3442 dev_err_whine = " (SET_XFERMODE skipped)";
3443 else {
3444 if (nosetxfer)
3445 ata_dev_printk(dev, KERN_WARNING,
3446 "NOSETXFER but PATA detected - can't "
3447 "skip SETXFER, might malfunction\n");
3448 err_mask = ata_dev_set_xfermode(dev);
3451 if (err_mask & ~AC_ERR_DEV)
3452 goto fail;
3454 /* revalidate */
3455 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3456 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3457 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3458 if (rc)
3459 return rc;
3461 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3462 /* Old CFA may refuse this command, which is just fine */
3463 if (ata_id_is_cfa(dev->id))
3464 ign_dev_err = 1;
3465 /* Catch several broken garbage emulations plus some pre
3466 ATA devices */
3467 if (ata_id_major_version(dev->id) == 0 &&
3468 dev->pio_mode <= XFER_PIO_2)
3469 ign_dev_err = 1;
3470 /* Some very old devices and some bad newer ones fail
3471 any kind of SET_XFERMODE request but support PIO0-2
3472 timings and no IORDY */
3473 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3474 ign_dev_err = 1;
3476 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3477 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3478 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3479 dev->dma_mode == XFER_MW_DMA_0 &&
3480 (dev->id[63] >> 8) & 1)
3481 ign_dev_err = 1;
3483 /* if the device is actually configured correctly, ignore dev err */
3484 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3485 ign_dev_err = 1;
3487 if (err_mask & AC_ERR_DEV) {
3488 if (!ign_dev_err)
3489 goto fail;
3490 else
3491 dev_err_whine = " (device error ignored)";
3494 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3495 dev->xfer_shift, (int)dev->xfer_mode);
3497 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3498 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3499 dev_err_whine);
3501 return 0;
3503 fail:
3504 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3505 "(err_mask=0x%x)\n", err_mask);
3506 return -EIO;
3510 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3511 * @link: link on which timings will be programmed
3512 * @r_failed_dev: out parameter for failed device
3514 * Standard implementation of the function used to tune and set
3515 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3516 * ata_dev_set_mode() fails, pointer to the failing device is
3517 * returned in @r_failed_dev.
3519 * LOCKING:
3520 * PCI/etc. bus probe sem.
3522 * RETURNS:
3523 * 0 on success, negative errno otherwise
3526 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3528 struct ata_port *ap = link->ap;
3529 struct ata_device *dev;
3530 int rc = 0, used_dma = 0, found = 0;
3532 /* step 1: calculate xfer_mask */
3533 ata_for_each_dev(dev, link, ENABLED) {
3534 unsigned long pio_mask, dma_mask;
3535 unsigned int mode_mask;
3537 mode_mask = ATA_DMA_MASK_ATA;
3538 if (dev->class == ATA_DEV_ATAPI)
3539 mode_mask = ATA_DMA_MASK_ATAPI;
3540 else if (ata_id_is_cfa(dev->id))
3541 mode_mask = ATA_DMA_MASK_CFA;
3543 ata_dev_xfermask(dev);
3544 ata_force_xfermask(dev);
3546 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3547 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3549 if (libata_dma_mask & mode_mask)
3550 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3551 else
3552 dma_mask = 0;
3554 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3555 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3557 found = 1;
3558 if (ata_dma_enabled(dev))
3559 used_dma = 1;
3561 if (!found)
3562 goto out;
3564 /* step 2: always set host PIO timings */
3565 ata_for_each_dev(dev, link, ENABLED) {
3566 if (dev->pio_mode == 0xff) {
3567 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3568 rc = -EINVAL;
3569 goto out;
3572 dev->xfer_mode = dev->pio_mode;
3573 dev->xfer_shift = ATA_SHIFT_PIO;
3574 if (ap->ops->set_piomode)
3575 ap->ops->set_piomode(ap, dev);
3578 /* step 3: set host DMA timings */
3579 ata_for_each_dev(dev, link, ENABLED) {
3580 if (!ata_dma_enabled(dev))
3581 continue;
3583 dev->xfer_mode = dev->dma_mode;
3584 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3585 if (ap->ops->set_dmamode)
3586 ap->ops->set_dmamode(ap, dev);
3589 /* step 4: update devices' xfer mode */
3590 ata_for_each_dev(dev, link, ENABLED) {
3591 rc = ata_dev_set_mode(dev);
3592 if (rc)
3593 goto out;
3596 /* Record simplex status. If we selected DMA then the other
3597 * host channels are not permitted to do so.
3599 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3600 ap->host->simplex_claimed = ap;
3602 out:
3603 if (rc)
3604 *r_failed_dev = dev;
3605 return rc;
3609 * ata_wait_ready - wait for link to become ready
3610 * @link: link to be waited on
3611 * @deadline: deadline jiffies for the operation
3612 * @check_ready: callback to check link readiness
3614 * Wait for @link to become ready. @check_ready should return
3615 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3616 * link doesn't seem to be occupied, other errno for other error
3617 * conditions.
3619 * Transient -ENODEV conditions are allowed for
3620 * ATA_TMOUT_FF_WAIT.
3622 * LOCKING:
3623 * EH context.
3625 * RETURNS:
3626 * 0 if @linke is ready before @deadline; otherwise, -errno.
3628 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3629 int (*check_ready)(struct ata_link *link))
3631 unsigned long start = jiffies;
3632 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3633 int warned = 0;
3635 /* Slave readiness can't be tested separately from master. On
3636 * M/S emulation configuration, this function should be called
3637 * only on the master and it will handle both master and slave.
3639 WARN_ON(link == link->ap->slave_link);
3641 if (time_after(nodev_deadline, deadline))
3642 nodev_deadline = deadline;
3644 while (1) {
3645 unsigned long now = jiffies;
3646 int ready, tmp;
3648 ready = tmp = check_ready(link);
3649 if (ready > 0)
3650 return 0;
3652 /* -ENODEV could be transient. Ignore -ENODEV if link
3653 * is online. Also, some SATA devices take a long
3654 * time to clear 0xff after reset. For example,
3655 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3656 * GoVault needs even more than that. Wait for
3657 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3659 * Note that some PATA controllers (pata_ali) explode
3660 * if status register is read more than once when
3661 * there's no device attached.
3663 if (ready == -ENODEV) {
3664 if (ata_link_online(link))
3665 ready = 0;
3666 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3667 !ata_link_offline(link) &&
3668 time_before(now, nodev_deadline))
3669 ready = 0;
3672 if (ready)
3673 return ready;
3674 if (time_after(now, deadline))
3675 return -EBUSY;
3677 if (!warned && time_after(now, start + 5 * HZ) &&
3678 (deadline - now > 3 * HZ)) {
3679 ata_link_printk(link, KERN_WARNING,
3680 "link is slow to respond, please be patient "
3681 "(ready=%d)\n", tmp);
3682 warned = 1;
3685 msleep(50);
3690 * ata_wait_after_reset - wait for link to become ready after reset
3691 * @link: link to be waited on
3692 * @deadline: deadline jiffies for the operation
3693 * @check_ready: callback to check link readiness
3695 * Wait for @link to become ready after reset.
3697 * LOCKING:
3698 * EH context.
3700 * RETURNS:
3701 * 0 if @linke is ready before @deadline; otherwise, -errno.
3703 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3704 int (*check_ready)(struct ata_link *link))
3706 msleep(ATA_WAIT_AFTER_RESET);
3708 return ata_wait_ready(link, deadline, check_ready);
3712 * sata_link_debounce - debounce SATA phy status
3713 * @link: ATA link to debounce SATA phy status for
3714 * @params: timing parameters { interval, duratinon, timeout } in msec
3715 * @deadline: deadline jiffies for the operation
3717 * Make sure SStatus of @link reaches stable state, determined by
3718 * holding the same value where DET is not 1 for @duration polled
3719 * every @interval, before @timeout. Timeout constraints the
3720 * beginning of the stable state. Because DET gets stuck at 1 on
3721 * some controllers after hot unplugging, this functions waits
3722 * until timeout then returns 0 if DET is stable at 1.
3724 * @timeout is further limited by @deadline. The sooner of the
3725 * two is used.
3727 * LOCKING:
3728 * Kernel thread context (may sleep)
3730 * RETURNS:
3731 * 0 on success, -errno on failure.
3733 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3734 unsigned long deadline)
3736 unsigned long interval = params[0];
3737 unsigned long duration = params[1];
3738 unsigned long last_jiffies, t;
3739 u32 last, cur;
3740 int rc;
3742 t = ata_deadline(jiffies, params[2]);
3743 if (time_before(t, deadline))
3744 deadline = t;
3746 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3747 return rc;
3748 cur &= 0xf;
3750 last = cur;
3751 last_jiffies = jiffies;
3753 while (1) {
3754 msleep(interval);
3755 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3756 return rc;
3757 cur &= 0xf;
3759 /* DET stable? */
3760 if (cur == last) {
3761 if (cur == 1 && time_before(jiffies, deadline))
3762 continue;
3763 if (time_after(jiffies,
3764 ata_deadline(last_jiffies, duration)))
3765 return 0;
3766 continue;
3769 /* unstable, start over */
3770 last = cur;
3771 last_jiffies = jiffies;
3773 /* Check deadline. If debouncing failed, return
3774 * -EPIPE to tell upper layer to lower link speed.
3776 if (time_after(jiffies, deadline))
3777 return -EPIPE;
3782 * sata_link_resume - resume SATA link
3783 * @link: ATA link to resume SATA
3784 * @params: timing parameters { interval, duratinon, timeout } in msec
3785 * @deadline: deadline jiffies for the operation
3787 * Resume SATA phy @link and debounce it.
3789 * LOCKING:
3790 * Kernel thread context (may sleep)
3792 * RETURNS:
3793 * 0 on success, -errno on failure.
3795 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3796 unsigned long deadline)
3798 int tries = ATA_LINK_RESUME_TRIES;
3799 u32 scontrol, serror;
3800 int rc;
3802 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3803 return rc;
3806 * Writes to SControl sometimes get ignored under certain
3807 * controllers (ata_piix SIDPR). Make sure DET actually is
3808 * cleared.
3810 do {
3811 scontrol = (scontrol & 0x0f0) | 0x300;
3812 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3813 return rc;
3815 * Some PHYs react badly if SStatus is pounded
3816 * immediately after resuming. Delay 200ms before
3817 * debouncing.
3819 msleep(200);
3821 /* is SControl restored correctly? */
3822 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3823 return rc;
3824 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3826 if ((scontrol & 0xf0f) != 0x300) {
3827 ata_link_printk(link, KERN_ERR,
3828 "failed to resume link (SControl %X)\n",
3829 scontrol);
3830 return 0;
3833 if (tries < ATA_LINK_RESUME_TRIES)
3834 ata_link_printk(link, KERN_WARNING,
3835 "link resume succeeded after %d retries\n",
3836 ATA_LINK_RESUME_TRIES - tries);
3838 if ((rc = sata_link_debounce(link, params, deadline)))
3839 return rc;
3841 /* clear SError, some PHYs require this even for SRST to work */
3842 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3843 rc = sata_scr_write(link, SCR_ERROR, serror);
3845 return rc != -EINVAL ? rc : 0;
3849 * ata_std_prereset - prepare for reset
3850 * @link: ATA link to be reset
3851 * @deadline: deadline jiffies for the operation
3853 * @link is about to be reset. Initialize it. Failure from
3854 * prereset makes libata abort whole reset sequence and give up
3855 * that port, so prereset should be best-effort. It does its
3856 * best to prepare for reset sequence but if things go wrong, it
3857 * should just whine, not fail.
3859 * LOCKING:
3860 * Kernel thread context (may sleep)
3862 * RETURNS:
3863 * 0 on success, -errno otherwise.
3865 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3867 struct ata_port *ap = link->ap;
3868 struct ata_eh_context *ehc = &link->eh_context;
3869 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3870 int rc;
3872 /* if we're about to do hardreset, nothing more to do */
3873 if (ehc->i.action & ATA_EH_HARDRESET)
3874 return 0;
3876 /* if SATA, resume link */
3877 if (ap->flags & ATA_FLAG_SATA) {
3878 rc = sata_link_resume(link, timing, deadline);
3879 /* whine about phy resume failure but proceed */
3880 if (rc && rc != -EOPNOTSUPP)
3881 ata_link_printk(link, KERN_WARNING, "failed to resume "
3882 "link for reset (errno=%d)\n", rc);
3885 /* no point in trying softreset on offline link */
3886 if (ata_phys_link_offline(link))
3887 ehc->i.action &= ~ATA_EH_SOFTRESET;
3889 return 0;
3893 * sata_link_hardreset - reset link via SATA phy reset
3894 * @link: link to reset
3895 * @timing: timing parameters { interval, duratinon, timeout } in msec
3896 * @deadline: deadline jiffies for the operation
3897 * @online: optional out parameter indicating link onlineness
3898 * @check_ready: optional callback to check link readiness
3900 * SATA phy-reset @link using DET bits of SControl register.
3901 * After hardreset, link readiness is waited upon using
3902 * ata_wait_ready() if @check_ready is specified. LLDs are
3903 * allowed to not specify @check_ready and wait itself after this
3904 * function returns. Device classification is LLD's
3905 * responsibility.
3907 * *@online is set to one iff reset succeeded and @link is online
3908 * after reset.
3910 * LOCKING:
3911 * Kernel thread context (may sleep)
3913 * RETURNS:
3914 * 0 on success, -errno otherwise.
3916 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3917 unsigned long deadline,
3918 bool *online, int (*check_ready)(struct ata_link *))
3920 u32 scontrol;
3921 int rc;
3923 DPRINTK("ENTER\n");
3925 if (online)
3926 *online = false;
3928 if (sata_set_spd_needed(link)) {
3929 /* SATA spec says nothing about how to reconfigure
3930 * spd. To be on the safe side, turn off phy during
3931 * reconfiguration. This works for at least ICH7 AHCI
3932 * and Sil3124.
3934 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3935 goto out;
3937 scontrol = (scontrol & 0x0f0) | 0x304;
3939 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3940 goto out;
3942 sata_set_spd(link);
3945 /* issue phy wake/reset */
3946 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3947 goto out;
3949 scontrol = (scontrol & 0x0f0) | 0x301;
3951 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3952 goto out;
3954 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3955 * 10.4.2 says at least 1 ms.
3957 msleep(1);
3959 /* bring link back */
3960 rc = sata_link_resume(link, timing, deadline);
3961 if (rc)
3962 goto out;
3963 /* if link is offline nothing more to do */
3964 if (ata_phys_link_offline(link))
3965 goto out;
3967 /* Link is online. From this point, -ENODEV too is an error. */
3968 if (online)
3969 *online = true;
3971 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3972 /* If PMP is supported, we have to do follow-up SRST.
3973 * Some PMPs don't send D2H Reg FIS after hardreset if
3974 * the first port is empty. Wait only for
3975 * ATA_TMOUT_PMP_SRST_WAIT.
3977 if (check_ready) {
3978 unsigned long pmp_deadline;
3980 pmp_deadline = ata_deadline(jiffies,
3981 ATA_TMOUT_PMP_SRST_WAIT);
3982 if (time_after(pmp_deadline, deadline))
3983 pmp_deadline = deadline;
3984 ata_wait_ready(link, pmp_deadline, check_ready);
3986 rc = -EAGAIN;
3987 goto out;
3990 rc = 0;
3991 if (check_ready)
3992 rc = ata_wait_ready(link, deadline, check_ready);
3993 out:
3994 if (rc && rc != -EAGAIN) {
3995 /* online is set iff link is online && reset succeeded */
3996 if (online)
3997 *online = false;
3998 ata_link_printk(link, KERN_ERR,
3999 "COMRESET failed (errno=%d)\n", rc);
4001 DPRINTK("EXIT, rc=%d\n", rc);
4002 return rc;
4006 * sata_std_hardreset - COMRESET w/o waiting or classification
4007 * @link: link to reset
4008 * @class: resulting class of attached device
4009 * @deadline: deadline jiffies for the operation
4011 * Standard SATA COMRESET w/o waiting or classification.
4013 * LOCKING:
4014 * Kernel thread context (may sleep)
4016 * RETURNS:
4017 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4019 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4020 unsigned long deadline)
4022 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4023 bool online;
4024 int rc;
4026 /* do hardreset */
4027 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4028 return online ? -EAGAIN : rc;
4032 * ata_std_postreset - standard postreset callback
4033 * @link: the target ata_link
4034 * @classes: classes of attached devices
4036 * This function is invoked after a successful reset. Note that
4037 * the device might have been reset more than once using
4038 * different reset methods before postreset is invoked.
4040 * LOCKING:
4041 * Kernel thread context (may sleep)
4043 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4045 u32 serror;
4047 DPRINTK("ENTER\n");
4049 /* reset complete, clear SError */
4050 if (!sata_scr_read(link, SCR_ERROR, &serror))
4051 sata_scr_write(link, SCR_ERROR, serror);
4053 /* print link status */
4054 sata_print_link_status(link);
4056 DPRINTK("EXIT\n");
4060 * ata_dev_same_device - Determine whether new ID matches configured device
4061 * @dev: device to compare against
4062 * @new_class: class of the new device
4063 * @new_id: IDENTIFY page of the new device
4065 * Compare @new_class and @new_id against @dev and determine
4066 * whether @dev is the device indicated by @new_class and
4067 * @new_id.
4069 * LOCKING:
4070 * None.
4072 * RETURNS:
4073 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4075 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4076 const u16 *new_id)
4078 const u16 *old_id = dev->id;
4079 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4080 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4082 if (dev->class != new_class) {
4083 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4084 dev->class, new_class);
4085 return 0;
4088 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4089 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4090 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4091 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4093 if (strcmp(model[0], model[1])) {
4094 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4095 "'%s' != '%s'\n", model[0], model[1]);
4096 return 0;
4099 if (strcmp(serial[0], serial[1])) {
4100 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4101 "'%s' != '%s'\n", serial[0], serial[1]);
4102 return 0;
4105 return 1;
4109 * ata_dev_reread_id - Re-read IDENTIFY data
4110 * @dev: target ATA device
4111 * @readid_flags: read ID flags
4113 * Re-read IDENTIFY page and make sure @dev is still attached to
4114 * the port.
4116 * LOCKING:
4117 * Kernel thread context (may sleep)
4119 * RETURNS:
4120 * 0 on success, negative errno otherwise
4122 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4124 unsigned int class = dev->class;
4125 u16 *id = (void *)dev->link->ap->sector_buf;
4126 int rc;
4128 /* read ID data */
4129 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4130 if (rc)
4131 return rc;
4133 /* is the device still there? */
4134 if (!ata_dev_same_device(dev, class, id))
4135 return -ENODEV;
4137 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4138 return 0;
4142 * ata_dev_revalidate - Revalidate ATA device
4143 * @dev: device to revalidate
4144 * @new_class: new class code
4145 * @readid_flags: read ID flags
4147 * Re-read IDENTIFY page, make sure @dev is still attached to the
4148 * port and reconfigure it according to the new IDENTIFY page.
4150 * LOCKING:
4151 * Kernel thread context (may sleep)
4153 * RETURNS:
4154 * 0 on success, negative errno otherwise
4156 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4157 unsigned int readid_flags)
4159 u64 n_sectors = dev->n_sectors;
4160 u64 n_native_sectors = dev->n_native_sectors;
4161 int rc;
4163 if (!ata_dev_enabled(dev))
4164 return -ENODEV;
4166 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4167 if (ata_class_enabled(new_class) &&
4168 new_class != ATA_DEV_ATA &&
4169 new_class != ATA_DEV_ATAPI &&
4170 new_class != ATA_DEV_SEMB) {
4171 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4172 dev->class, new_class);
4173 rc = -ENODEV;
4174 goto fail;
4177 /* re-read ID */
4178 rc = ata_dev_reread_id(dev, readid_flags);
4179 if (rc)
4180 goto fail;
4182 /* configure device according to the new ID */
4183 rc = ata_dev_configure(dev);
4184 if (rc)
4185 goto fail;
4187 /* verify n_sectors hasn't changed */
4188 if (dev->class == ATA_DEV_ATA && n_sectors &&
4189 dev->n_sectors != n_sectors) {
4190 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch "
4191 "%llu != %llu\n",
4192 (unsigned long long)n_sectors,
4193 (unsigned long long)dev->n_sectors);
4195 * Something could have caused HPA to be unlocked
4196 * involuntarily. If n_native_sectors hasn't changed
4197 * and the new size matches it, keep the device.
4199 if (dev->n_native_sectors == n_native_sectors &&
4200 dev->n_sectors > n_sectors &&
4201 dev->n_sectors == n_native_sectors) {
4202 ata_dev_printk(dev, KERN_WARNING,
4203 "new n_sectors matches native, probably "
4204 "late HPA unlock, continuing\n");
4205 /* keep using the old n_sectors */
4206 dev->n_sectors = n_sectors;
4207 } else {
4208 /* restore original n_[native]_sectors and fail */
4209 dev->n_native_sectors = n_native_sectors;
4210 dev->n_sectors = n_sectors;
4211 rc = -ENODEV;
4212 goto fail;
4216 return 0;
4218 fail:
4219 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4220 return rc;
4223 struct ata_blacklist_entry {
4224 const char *model_num;
4225 const char *model_rev;
4226 unsigned long horkage;
4229 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4230 /* Devices with DMA related problems under Linux */
4231 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4232 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4233 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4234 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4235 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4236 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4237 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4238 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4239 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4240 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4241 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4242 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4243 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4244 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4245 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4246 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4247 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4248 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4249 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4250 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4251 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4252 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4253 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4254 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4255 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4256 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4257 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4258 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4259 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4260 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4261 /* Odd clown on sil3726/4726 PMPs */
4262 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4264 /* Weird ATAPI devices */
4265 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4266 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4268 /* Devices we expect to fail diagnostics */
4270 /* Devices where NCQ should be avoided */
4271 /* NCQ is slow */
4272 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4273 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4274 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4275 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4276 /* NCQ is broken */
4277 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4278 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4279 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4280 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4281 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4283 /* Seagate NCQ + FLUSH CACHE firmware bug */
4284 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4285 ATA_HORKAGE_FIRMWARE_WARN },
4286 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4287 ATA_HORKAGE_FIRMWARE_WARN },
4288 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4289 ATA_HORKAGE_FIRMWARE_WARN },
4290 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4291 ATA_HORKAGE_FIRMWARE_WARN },
4292 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4293 ATA_HORKAGE_FIRMWARE_WARN },
4295 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4296 ATA_HORKAGE_FIRMWARE_WARN },
4297 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4298 ATA_HORKAGE_FIRMWARE_WARN },
4299 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4300 ATA_HORKAGE_FIRMWARE_WARN },
4301 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4302 ATA_HORKAGE_FIRMWARE_WARN },
4303 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4304 ATA_HORKAGE_FIRMWARE_WARN },
4306 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4307 ATA_HORKAGE_FIRMWARE_WARN },
4308 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4309 ATA_HORKAGE_FIRMWARE_WARN },
4310 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4311 ATA_HORKAGE_FIRMWARE_WARN },
4312 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4313 ATA_HORKAGE_FIRMWARE_WARN },
4314 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4315 ATA_HORKAGE_FIRMWARE_WARN },
4317 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4318 ATA_HORKAGE_FIRMWARE_WARN },
4319 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4320 ATA_HORKAGE_FIRMWARE_WARN },
4321 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4322 ATA_HORKAGE_FIRMWARE_WARN },
4323 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4324 ATA_HORKAGE_FIRMWARE_WARN },
4325 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4326 ATA_HORKAGE_FIRMWARE_WARN },
4328 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4329 ATA_HORKAGE_FIRMWARE_WARN },
4330 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4331 ATA_HORKAGE_FIRMWARE_WARN },
4332 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4333 ATA_HORKAGE_FIRMWARE_WARN },
4334 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4335 ATA_HORKAGE_FIRMWARE_WARN },
4336 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4337 ATA_HORKAGE_FIRMWARE_WARN },
4339 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4340 ATA_HORKAGE_FIRMWARE_WARN },
4341 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4342 ATA_HORKAGE_FIRMWARE_WARN },
4343 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4344 ATA_HORKAGE_FIRMWARE_WARN },
4345 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4346 ATA_HORKAGE_FIRMWARE_WARN },
4347 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4348 ATA_HORKAGE_FIRMWARE_WARN },
4350 /* Blacklist entries taken from Silicon Image 3124/3132
4351 Windows driver .inf file - also several Linux problem reports */
4352 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4353 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4354 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4356 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4357 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4359 /* devices which puke on READ_NATIVE_MAX */
4360 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4361 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4362 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4363 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4365 /* this one allows HPA unlocking but fails IOs on the area */
4366 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4368 /* Devices which report 1 sector over size HPA */
4369 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4370 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4371 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4373 /* Devices which get the IVB wrong */
4374 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4375 /* Maybe we should just blacklist TSSTcorp... */
4376 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4377 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4378 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4379 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4380 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4381 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4383 /* Devices that do not need bridging limits applied */
4384 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4386 /* Devices which aren't very happy with higher link speeds */
4387 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4390 * Devices which choke on SETXFER. Applies only if both the
4391 * device and controller are SATA.
4393 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4395 /* End Marker */
4399 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4401 const char *p;
4402 int len;
4405 * check for trailing wildcard: *\0
4407 p = strchr(patt, wildchar);
4408 if (p && ((*(p + 1)) == 0))
4409 len = p - patt;
4410 else {
4411 len = strlen(name);
4412 if (!len) {
4413 if (!*patt)
4414 return 0;
4415 return -1;
4419 return strncmp(patt, name, len);
4422 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4424 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4425 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4426 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4428 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4429 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4431 while (ad->model_num) {
4432 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4433 if (ad->model_rev == NULL)
4434 return ad->horkage;
4435 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4436 return ad->horkage;
4438 ad++;
4440 return 0;
4443 static int ata_dma_blacklisted(const struct ata_device *dev)
4445 /* We don't support polling DMA.
4446 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4447 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4449 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4450 (dev->flags & ATA_DFLAG_CDB_INTR))
4451 return 1;
4452 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4456 * ata_is_40wire - check drive side detection
4457 * @dev: device
4459 * Perform drive side detection decoding, allowing for device vendors
4460 * who can't follow the documentation.
4463 static int ata_is_40wire(struct ata_device *dev)
4465 if (dev->horkage & ATA_HORKAGE_IVB)
4466 return ata_drive_40wire_relaxed(dev->id);
4467 return ata_drive_40wire(dev->id);
4471 * cable_is_40wire - 40/80/SATA decider
4472 * @ap: port to consider
4474 * This function encapsulates the policy for speed management
4475 * in one place. At the moment we don't cache the result but
4476 * there is a good case for setting ap->cbl to the result when
4477 * we are called with unknown cables (and figuring out if it
4478 * impacts hotplug at all).
4480 * Return 1 if the cable appears to be 40 wire.
4483 static int cable_is_40wire(struct ata_port *ap)
4485 struct ata_link *link;
4486 struct ata_device *dev;
4488 /* If the controller thinks we are 40 wire, we are. */
4489 if (ap->cbl == ATA_CBL_PATA40)
4490 return 1;
4492 /* If the controller thinks we are 80 wire, we are. */
4493 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4494 return 0;
4496 /* If the system is known to be 40 wire short cable (eg
4497 * laptop), then we allow 80 wire modes even if the drive
4498 * isn't sure.
4500 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4501 return 0;
4503 /* If the controller doesn't know, we scan.
4505 * Note: We look for all 40 wire detects at this point. Any
4506 * 80 wire detect is taken to be 80 wire cable because
4507 * - in many setups only the one drive (slave if present) will
4508 * give a valid detect
4509 * - if you have a non detect capable drive you don't want it
4510 * to colour the choice
4512 ata_for_each_link(link, ap, EDGE) {
4513 ata_for_each_dev(dev, link, ENABLED) {
4514 if (!ata_is_40wire(dev))
4515 return 0;
4518 return 1;
4522 * ata_dev_xfermask - Compute supported xfermask of the given device
4523 * @dev: Device to compute xfermask for
4525 * Compute supported xfermask of @dev and store it in
4526 * dev->*_mask. This function is responsible for applying all
4527 * known limits including host controller limits, device
4528 * blacklist, etc...
4530 * LOCKING:
4531 * None.
4533 static void ata_dev_xfermask(struct ata_device *dev)
4535 struct ata_link *link = dev->link;
4536 struct ata_port *ap = link->ap;
4537 struct ata_host *host = ap->host;
4538 unsigned long xfer_mask;
4540 /* controller modes available */
4541 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4542 ap->mwdma_mask, ap->udma_mask);
4544 /* drive modes available */
4545 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4546 dev->mwdma_mask, dev->udma_mask);
4547 xfer_mask &= ata_id_xfermask(dev->id);
4550 * CFA Advanced TrueIDE timings are not allowed on a shared
4551 * cable
4553 if (ata_dev_pair(dev)) {
4554 /* No PIO5 or PIO6 */
4555 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4556 /* No MWDMA3 or MWDMA 4 */
4557 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4560 if (ata_dma_blacklisted(dev)) {
4561 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4562 ata_dev_printk(dev, KERN_WARNING,
4563 "device is on DMA blacklist, disabling DMA\n");
4566 if ((host->flags & ATA_HOST_SIMPLEX) &&
4567 host->simplex_claimed && host->simplex_claimed != ap) {
4568 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4569 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4570 "other device, disabling DMA\n");
4573 if (ap->flags & ATA_FLAG_NO_IORDY)
4574 xfer_mask &= ata_pio_mask_no_iordy(dev);
4576 if (ap->ops->mode_filter)
4577 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4579 /* Apply cable rule here. Don't apply it early because when
4580 * we handle hot plug the cable type can itself change.
4581 * Check this last so that we know if the transfer rate was
4582 * solely limited by the cable.
4583 * Unknown or 80 wire cables reported host side are checked
4584 * drive side as well. Cases where we know a 40wire cable
4585 * is used safely for 80 are not checked here.
4587 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4588 /* UDMA/44 or higher would be available */
4589 if (cable_is_40wire(ap)) {
4590 ata_dev_printk(dev, KERN_WARNING,
4591 "limited to UDMA/33 due to 40-wire cable\n");
4592 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4595 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4596 &dev->mwdma_mask, &dev->udma_mask);
4600 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4601 * @dev: Device to which command will be sent
4603 * Issue SET FEATURES - XFER MODE command to device @dev
4604 * on port @ap.
4606 * LOCKING:
4607 * PCI/etc. bus probe sem.
4609 * RETURNS:
4610 * 0 on success, AC_ERR_* mask otherwise.
4613 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4615 struct ata_taskfile tf;
4616 unsigned int err_mask;
4618 /* set up set-features taskfile */
4619 DPRINTK("set features - xfer mode\n");
4621 /* Some controllers and ATAPI devices show flaky interrupt
4622 * behavior after setting xfer mode. Use polling instead.
4624 ata_tf_init(dev, &tf);
4625 tf.command = ATA_CMD_SET_FEATURES;
4626 tf.feature = SETFEATURES_XFER;
4627 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4628 tf.protocol = ATA_PROT_NODATA;
4629 /* If we are using IORDY we must send the mode setting command */
4630 if (ata_pio_need_iordy(dev))
4631 tf.nsect = dev->xfer_mode;
4632 /* If the device has IORDY and the controller does not - turn it off */
4633 else if (ata_id_has_iordy(dev->id))
4634 tf.nsect = 0x01;
4635 else /* In the ancient relic department - skip all of this */
4636 return 0;
4638 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4640 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4641 return err_mask;
4644 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4645 * @dev: Device to which command will be sent
4646 * @enable: Whether to enable or disable the feature
4647 * @feature: The sector count represents the feature to set
4649 * Issue SET FEATURES - SATA FEATURES command to device @dev
4650 * on port @ap with sector count
4652 * LOCKING:
4653 * PCI/etc. bus probe sem.
4655 * RETURNS:
4656 * 0 on success, AC_ERR_* mask otherwise.
4658 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4659 u8 feature)
4661 struct ata_taskfile tf;
4662 unsigned int err_mask;
4664 /* set up set-features taskfile */
4665 DPRINTK("set features - SATA features\n");
4667 ata_tf_init(dev, &tf);
4668 tf.command = ATA_CMD_SET_FEATURES;
4669 tf.feature = enable;
4670 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4671 tf.protocol = ATA_PROT_NODATA;
4672 tf.nsect = feature;
4674 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4676 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4677 return err_mask;
4681 * ata_dev_init_params - Issue INIT DEV PARAMS command
4682 * @dev: Device to which command will be sent
4683 * @heads: Number of heads (taskfile parameter)
4684 * @sectors: Number of sectors (taskfile parameter)
4686 * LOCKING:
4687 * Kernel thread context (may sleep)
4689 * RETURNS:
4690 * 0 on success, AC_ERR_* mask otherwise.
4692 static unsigned int ata_dev_init_params(struct ata_device *dev,
4693 u16 heads, u16 sectors)
4695 struct ata_taskfile tf;
4696 unsigned int err_mask;
4698 /* Number of sectors per track 1-255. Number of heads 1-16 */
4699 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4700 return AC_ERR_INVALID;
4702 /* set up init dev params taskfile */
4703 DPRINTK("init dev params \n");
4705 ata_tf_init(dev, &tf);
4706 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4707 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4708 tf.protocol = ATA_PROT_NODATA;
4709 tf.nsect = sectors;
4710 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4712 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4713 /* A clean abort indicates an original or just out of spec drive
4714 and we should continue as we issue the setup based on the
4715 drive reported working geometry */
4716 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4717 err_mask = 0;
4719 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4720 return err_mask;
4724 * ata_sg_clean - Unmap DMA memory associated with command
4725 * @qc: Command containing DMA memory to be released
4727 * Unmap all mapped DMA memory associated with this command.
4729 * LOCKING:
4730 * spin_lock_irqsave(host lock)
4732 void ata_sg_clean(struct ata_queued_cmd *qc)
4734 struct ata_port *ap = qc->ap;
4735 struct scatterlist *sg = qc->sg;
4736 int dir = qc->dma_dir;
4738 WARN_ON_ONCE(sg == NULL);
4740 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4742 if (qc->n_elem)
4743 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4745 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4746 qc->sg = NULL;
4750 * atapi_check_dma - Check whether ATAPI DMA can be supported
4751 * @qc: Metadata associated with taskfile to check
4753 * Allow low-level driver to filter ATA PACKET commands, returning
4754 * a status indicating whether or not it is OK to use DMA for the
4755 * supplied PACKET command.
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4760 * RETURNS: 0 when ATAPI DMA can be used
4761 * nonzero otherwise
4763 int atapi_check_dma(struct ata_queued_cmd *qc)
4765 struct ata_port *ap = qc->ap;
4767 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4768 * few ATAPI devices choke on such DMA requests.
4770 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4771 unlikely(qc->nbytes & 15))
4772 return 1;
4774 if (ap->ops->check_atapi_dma)
4775 return ap->ops->check_atapi_dma(qc);
4777 return 0;
4781 * ata_std_qc_defer - Check whether a qc needs to be deferred
4782 * @qc: ATA command in question
4784 * Non-NCQ commands cannot run with any other command, NCQ or
4785 * not. As upper layer only knows the queue depth, we are
4786 * responsible for maintaining exclusion. This function checks
4787 * whether a new command @qc can be issued.
4789 * LOCKING:
4790 * spin_lock_irqsave(host lock)
4792 * RETURNS:
4793 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4795 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4797 struct ata_link *link = qc->dev->link;
4799 if (qc->tf.protocol == ATA_PROT_NCQ) {
4800 if (!ata_tag_valid(link->active_tag))
4801 return 0;
4802 } else {
4803 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4804 return 0;
4807 return ATA_DEFER_LINK;
4810 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4813 * ata_sg_init - Associate command with scatter-gather table.
4814 * @qc: Command to be associated
4815 * @sg: Scatter-gather table.
4816 * @n_elem: Number of elements in s/g table.
4818 * Initialize the data-related elements of queued_cmd @qc
4819 * to point to a scatter-gather table @sg, containing @n_elem
4820 * elements.
4822 * LOCKING:
4823 * spin_lock_irqsave(host lock)
4825 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4826 unsigned int n_elem)
4828 qc->sg = sg;
4829 qc->n_elem = n_elem;
4830 qc->cursg = qc->sg;
4834 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4835 * @qc: Command with scatter-gather table to be mapped.
4837 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4839 * LOCKING:
4840 * spin_lock_irqsave(host lock)
4842 * RETURNS:
4843 * Zero on success, negative on error.
4846 static int ata_sg_setup(struct ata_queued_cmd *qc)
4848 struct ata_port *ap = qc->ap;
4849 unsigned int n_elem;
4851 VPRINTK("ENTER, ata%u\n", ap->print_id);
4853 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4854 if (n_elem < 1)
4855 return -1;
4857 DPRINTK("%d sg elements mapped\n", n_elem);
4858 qc->orig_n_elem = qc->n_elem;
4859 qc->n_elem = n_elem;
4860 qc->flags |= ATA_QCFLAG_DMAMAP;
4862 return 0;
4866 * swap_buf_le16 - swap halves of 16-bit words in place
4867 * @buf: Buffer to swap
4868 * @buf_words: Number of 16-bit words in buffer.
4870 * Swap halves of 16-bit words if needed to convert from
4871 * little-endian byte order to native cpu byte order, or
4872 * vice-versa.
4874 * LOCKING:
4875 * Inherited from caller.
4877 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4879 #ifdef __BIG_ENDIAN
4880 unsigned int i;
4882 for (i = 0; i < buf_words; i++)
4883 buf[i] = le16_to_cpu(buf[i]);
4884 #endif /* __BIG_ENDIAN */
4888 * ata_qc_new - Request an available ATA command, for queueing
4889 * @ap: target port
4891 * LOCKING:
4892 * None.
4895 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4897 struct ata_queued_cmd *qc = NULL;
4898 unsigned int i;
4900 /* no command while frozen */
4901 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4902 return NULL;
4904 /* the last tag is reserved for internal command. */
4905 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4906 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4907 qc = __ata_qc_from_tag(ap, i);
4908 break;
4911 if (qc)
4912 qc->tag = i;
4914 return qc;
4918 * ata_qc_new_init - Request an available ATA command, and initialize it
4919 * @dev: Device from whom we request an available command structure
4921 * LOCKING:
4922 * None.
4925 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4927 struct ata_port *ap = dev->link->ap;
4928 struct ata_queued_cmd *qc;
4930 qc = ata_qc_new(ap);
4931 if (qc) {
4932 qc->scsicmd = NULL;
4933 qc->ap = ap;
4934 qc->dev = dev;
4936 ata_qc_reinit(qc);
4939 return qc;
4943 * ata_qc_free - free unused ata_queued_cmd
4944 * @qc: Command to complete
4946 * Designed to free unused ata_queued_cmd object
4947 * in case something prevents using it.
4949 * LOCKING:
4950 * spin_lock_irqsave(host lock)
4952 void ata_qc_free(struct ata_queued_cmd *qc)
4954 struct ata_port *ap;
4955 unsigned int tag;
4957 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4958 ap = qc->ap;
4960 qc->flags = 0;
4961 tag = qc->tag;
4962 if (likely(ata_tag_valid(tag))) {
4963 qc->tag = ATA_TAG_POISON;
4964 clear_bit(tag, &ap->qc_allocated);
4968 void __ata_qc_complete(struct ata_queued_cmd *qc)
4970 struct ata_port *ap;
4971 struct ata_link *link;
4973 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4974 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4975 ap = qc->ap;
4976 link = qc->dev->link;
4978 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4979 ata_sg_clean(qc);
4981 /* command should be marked inactive atomically with qc completion */
4982 if (qc->tf.protocol == ATA_PROT_NCQ) {
4983 link->sactive &= ~(1 << qc->tag);
4984 if (!link->sactive)
4985 ap->nr_active_links--;
4986 } else {
4987 link->active_tag = ATA_TAG_POISON;
4988 ap->nr_active_links--;
4991 /* clear exclusive status */
4992 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4993 ap->excl_link == link))
4994 ap->excl_link = NULL;
4996 /* atapi: mark qc as inactive to prevent the interrupt handler
4997 * from completing the command twice later, before the error handler
4998 * is called. (when rc != 0 and atapi request sense is needed)
5000 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5001 ap->qc_active &= ~(1 << qc->tag);
5003 /* call completion callback */
5004 qc->complete_fn(qc);
5007 static void fill_result_tf(struct ata_queued_cmd *qc)
5009 struct ata_port *ap = qc->ap;
5011 qc->result_tf.flags = qc->tf.flags;
5012 ap->ops->qc_fill_rtf(qc);
5015 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5017 struct ata_device *dev = qc->dev;
5019 if (ata_is_nodata(qc->tf.protocol))
5020 return;
5022 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5023 return;
5025 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5029 * ata_qc_complete - Complete an active ATA command
5030 * @qc: Command to complete
5032 * Indicate to the mid and upper layers that an ATA
5033 * command has completed, with either an ok or not-ok status.
5035 * LOCKING:
5036 * spin_lock_irqsave(host lock)
5038 void ata_qc_complete(struct ata_queued_cmd *qc)
5040 struct ata_port *ap = qc->ap;
5042 /* XXX: New EH and old EH use different mechanisms to
5043 * synchronize EH with regular execution path.
5045 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5046 * Normal execution path is responsible for not accessing a
5047 * failed qc. libata core enforces the rule by returning NULL
5048 * from ata_qc_from_tag() for failed qcs.
5050 * Old EH depends on ata_qc_complete() nullifying completion
5051 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5052 * not synchronize with interrupt handler. Only PIO task is
5053 * taken care of.
5055 if (ap->ops->error_handler) {
5056 struct ata_device *dev = qc->dev;
5057 struct ata_eh_info *ehi = &dev->link->eh_info;
5059 if (unlikely(qc->err_mask))
5060 qc->flags |= ATA_QCFLAG_FAILED;
5063 * Finish internal commands without any further processing
5064 * and always with the result TF filled.
5066 if (unlikely(ata_tag_internal(qc->tag))) {
5067 fill_result_tf(qc);
5068 __ata_qc_complete(qc);
5069 return;
5073 * Non-internal qc has failed. Fill the result TF and
5074 * summon EH.
5076 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5077 fill_result_tf(qc);
5078 ata_qc_schedule_eh(qc);
5079 return;
5082 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5084 /* read result TF if requested */
5085 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5086 fill_result_tf(qc);
5088 /* Some commands need post-processing after successful
5089 * completion.
5091 switch (qc->tf.command) {
5092 case ATA_CMD_SET_FEATURES:
5093 if (qc->tf.feature != SETFEATURES_WC_ON &&
5094 qc->tf.feature != SETFEATURES_WC_OFF)
5095 break;
5096 /* fall through */
5097 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5098 case ATA_CMD_SET_MULTI: /* multi_count changed */
5099 /* revalidate device */
5100 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5101 ata_port_schedule_eh(ap);
5102 break;
5104 case ATA_CMD_SLEEP:
5105 dev->flags |= ATA_DFLAG_SLEEPING;
5106 break;
5109 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5110 ata_verify_xfer(qc);
5112 __ata_qc_complete(qc);
5113 } else {
5114 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5115 return;
5117 /* read result TF if failed or requested */
5118 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5119 fill_result_tf(qc);
5121 __ata_qc_complete(qc);
5126 * ata_qc_complete_multiple - Complete multiple qcs successfully
5127 * @ap: port in question
5128 * @qc_active: new qc_active mask
5130 * Complete in-flight commands. This functions is meant to be
5131 * called from low-level driver's interrupt routine to complete
5132 * requests normally. ap->qc_active and @qc_active is compared
5133 * and commands are completed accordingly.
5135 * LOCKING:
5136 * spin_lock_irqsave(host lock)
5138 * RETURNS:
5139 * Number of completed commands on success, -errno otherwise.
5141 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5143 int nr_done = 0;
5144 u32 done_mask;
5146 done_mask = ap->qc_active ^ qc_active;
5148 if (unlikely(done_mask & qc_active)) {
5149 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5150 "(%08x->%08x)\n", ap->qc_active, qc_active);
5151 return -EINVAL;
5154 while (done_mask) {
5155 struct ata_queued_cmd *qc;
5156 unsigned int tag = __ffs(done_mask);
5158 qc = ata_qc_from_tag(ap, tag);
5159 if (qc) {
5160 ata_qc_complete(qc);
5161 nr_done++;
5163 done_mask &= ~(1 << tag);
5166 return nr_done;
5170 * ata_qc_issue - issue taskfile to device
5171 * @qc: command to issue to device
5173 * Prepare an ATA command to submission to device.
5174 * This includes mapping the data into a DMA-able
5175 * area, filling in the S/G table, and finally
5176 * writing the taskfile to hardware, starting the command.
5178 * LOCKING:
5179 * spin_lock_irqsave(host lock)
5181 void ata_qc_issue(struct ata_queued_cmd *qc)
5183 struct ata_port *ap = qc->ap;
5184 struct ata_link *link = qc->dev->link;
5185 u8 prot = qc->tf.protocol;
5187 /* Make sure only one non-NCQ command is outstanding. The
5188 * check is skipped for old EH because it reuses active qc to
5189 * request ATAPI sense.
5191 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5193 if (ata_is_ncq(prot)) {
5194 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5196 if (!link->sactive)
5197 ap->nr_active_links++;
5198 link->sactive |= 1 << qc->tag;
5199 } else {
5200 WARN_ON_ONCE(link->sactive);
5202 ap->nr_active_links++;
5203 link->active_tag = qc->tag;
5206 qc->flags |= ATA_QCFLAG_ACTIVE;
5207 ap->qc_active |= 1 << qc->tag;
5209 /* We guarantee to LLDs that they will have at least one
5210 * non-zero sg if the command is a data command.
5212 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5214 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5215 (ap->flags & ATA_FLAG_PIO_DMA)))
5216 if (ata_sg_setup(qc))
5217 goto sg_err;
5219 /* if device is sleeping, schedule reset and abort the link */
5220 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5221 link->eh_info.action |= ATA_EH_RESET;
5222 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5223 ata_link_abort(link);
5224 return;
5227 ap->ops->qc_prep(qc);
5229 qc->err_mask |= ap->ops->qc_issue(qc);
5230 if (unlikely(qc->err_mask))
5231 goto err;
5232 return;
5234 sg_err:
5235 qc->err_mask |= AC_ERR_SYSTEM;
5236 err:
5237 ata_qc_complete(qc);
5241 * sata_scr_valid - test whether SCRs are accessible
5242 * @link: ATA link to test SCR accessibility for
5244 * Test whether SCRs are accessible for @link.
5246 * LOCKING:
5247 * None.
5249 * RETURNS:
5250 * 1 if SCRs are accessible, 0 otherwise.
5252 int sata_scr_valid(struct ata_link *link)
5254 struct ata_port *ap = link->ap;
5256 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5260 * sata_scr_read - read SCR register of the specified port
5261 * @link: ATA link to read SCR for
5262 * @reg: SCR to read
5263 * @val: Place to store read value
5265 * Read SCR register @reg of @link into *@val. This function is
5266 * guaranteed to succeed if @link is ap->link, the cable type of
5267 * the port is SATA and the port implements ->scr_read.
5269 * LOCKING:
5270 * None if @link is ap->link. Kernel thread context otherwise.
5272 * RETURNS:
5273 * 0 on success, negative errno on failure.
5275 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5277 if (ata_is_host_link(link)) {
5278 if (sata_scr_valid(link))
5279 return link->ap->ops->scr_read(link, reg, val);
5280 return -EOPNOTSUPP;
5283 return sata_pmp_scr_read(link, reg, val);
5287 * sata_scr_write - write SCR register of the specified port
5288 * @link: ATA link to write SCR for
5289 * @reg: SCR to write
5290 * @val: value to write
5292 * Write @val to SCR register @reg of @link. This function is
5293 * guaranteed to succeed if @link is ap->link, the cable type of
5294 * the port is SATA and the port implements ->scr_read.
5296 * LOCKING:
5297 * None if @link is ap->link. Kernel thread context otherwise.
5299 * RETURNS:
5300 * 0 on success, negative errno on failure.
5302 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5304 if (ata_is_host_link(link)) {
5305 if (sata_scr_valid(link))
5306 return link->ap->ops->scr_write(link, reg, val);
5307 return -EOPNOTSUPP;
5310 return sata_pmp_scr_write(link, reg, val);
5314 * sata_scr_write_flush - write SCR register of the specified port and flush
5315 * @link: ATA link to write SCR for
5316 * @reg: SCR to write
5317 * @val: value to write
5319 * This function is identical to sata_scr_write() except that this
5320 * function performs flush after writing to the register.
5322 * LOCKING:
5323 * None if @link is ap->link. Kernel thread context otherwise.
5325 * RETURNS:
5326 * 0 on success, negative errno on failure.
5328 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5330 if (ata_is_host_link(link)) {
5331 int rc;
5333 if (sata_scr_valid(link)) {
5334 rc = link->ap->ops->scr_write(link, reg, val);
5335 if (rc == 0)
5336 rc = link->ap->ops->scr_read(link, reg, &val);
5337 return rc;
5339 return -EOPNOTSUPP;
5342 return sata_pmp_scr_write(link, reg, val);
5346 * ata_phys_link_online - test whether the given link is online
5347 * @link: ATA link to test
5349 * Test whether @link is online. Note that this function returns
5350 * 0 if online status of @link cannot be obtained, so
5351 * ata_link_online(link) != !ata_link_offline(link).
5353 * LOCKING:
5354 * None.
5356 * RETURNS:
5357 * True if the port online status is available and online.
5359 bool ata_phys_link_online(struct ata_link *link)
5361 u32 sstatus;
5363 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5364 ata_sstatus_online(sstatus))
5365 return true;
5366 return false;
5370 * ata_phys_link_offline - test whether the given link is offline
5371 * @link: ATA link to test
5373 * Test whether @link is offline. Note that this function
5374 * returns 0 if offline status of @link cannot be obtained, so
5375 * ata_link_online(link) != !ata_link_offline(link).
5377 * LOCKING:
5378 * None.
5380 * RETURNS:
5381 * True if the port offline status is available and offline.
5383 bool ata_phys_link_offline(struct ata_link *link)
5385 u32 sstatus;
5387 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5388 !ata_sstatus_online(sstatus))
5389 return true;
5390 return false;
5394 * ata_link_online - test whether the given link is online
5395 * @link: ATA link to test
5397 * Test whether @link is online. This is identical to
5398 * ata_phys_link_online() when there's no slave link. When
5399 * there's a slave link, this function should only be called on
5400 * the master link and will return true if any of M/S links is
5401 * online.
5403 * LOCKING:
5404 * None.
5406 * RETURNS:
5407 * True if the port online status is available and online.
5409 bool ata_link_online(struct ata_link *link)
5411 struct ata_link *slave = link->ap->slave_link;
5413 WARN_ON(link == slave); /* shouldn't be called on slave link */
5415 return ata_phys_link_online(link) ||
5416 (slave && ata_phys_link_online(slave));
5420 * ata_link_offline - test whether the given link is offline
5421 * @link: ATA link to test
5423 * Test whether @link is offline. This is identical to
5424 * ata_phys_link_offline() when there's no slave link. When
5425 * there's a slave link, this function should only be called on
5426 * the master link and will return true if both M/S links are
5427 * offline.
5429 * LOCKING:
5430 * None.
5432 * RETURNS:
5433 * True if the port offline status is available and offline.
5435 bool ata_link_offline(struct ata_link *link)
5437 struct ata_link *slave = link->ap->slave_link;
5439 WARN_ON(link == slave); /* shouldn't be called on slave link */
5441 return ata_phys_link_offline(link) &&
5442 (!slave || ata_phys_link_offline(slave));
5445 #ifdef CONFIG_PM
5446 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5447 unsigned int action, unsigned int ehi_flags,
5448 int wait)
5450 unsigned long flags;
5451 int i, rc;
5453 for (i = 0; i < host->n_ports; i++) {
5454 struct ata_port *ap = host->ports[i];
5455 struct ata_link *link;
5457 /* Previous resume operation might still be in
5458 * progress. Wait for PM_PENDING to clear.
5460 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5461 ata_port_wait_eh(ap);
5462 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5465 /* request PM ops to EH */
5466 spin_lock_irqsave(ap->lock, flags);
5468 ap->pm_mesg = mesg;
5469 if (wait) {
5470 rc = 0;
5471 ap->pm_result = &rc;
5474 ap->pflags |= ATA_PFLAG_PM_PENDING;
5475 ata_for_each_link(link, ap, HOST_FIRST) {
5476 link->eh_info.action |= action;
5477 link->eh_info.flags |= ehi_flags;
5480 ata_port_schedule_eh(ap);
5482 spin_unlock_irqrestore(ap->lock, flags);
5484 /* wait and check result */
5485 if (wait) {
5486 ata_port_wait_eh(ap);
5487 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5488 if (rc)
5489 return rc;
5493 return 0;
5497 * ata_host_suspend - suspend host
5498 * @host: host to suspend
5499 * @mesg: PM message
5501 * Suspend @host. Actual operation is performed by EH. This
5502 * function requests EH to perform PM operations and waits for EH
5503 * to finish.
5505 * LOCKING:
5506 * Kernel thread context (may sleep).
5508 * RETURNS:
5509 * 0 on success, -errno on failure.
5511 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5513 int rc;
5516 * disable link pm on all ports before requesting
5517 * any pm activity
5519 ata_lpm_enable(host);
5521 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5522 if (rc == 0)
5523 host->dev->power.power_state = mesg;
5524 return rc;
5528 * ata_host_resume - resume host
5529 * @host: host to resume
5531 * Resume @host. Actual operation is performed by EH. This
5532 * function requests EH to perform PM operations and returns.
5533 * Note that all resume operations are performed parallely.
5535 * LOCKING:
5536 * Kernel thread context (may sleep).
5538 void ata_host_resume(struct ata_host *host)
5540 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5541 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5542 host->dev->power.power_state = PMSG_ON;
5544 /* reenable link pm */
5545 ata_lpm_disable(host);
5547 #endif
5550 * ata_port_start - Set port up for dma.
5551 * @ap: Port to initialize
5553 * Called just after data structures for each port are
5554 * initialized. Allocates space for PRD table.
5556 * May be used as the port_start() entry in ata_port_operations.
5558 * LOCKING:
5559 * Inherited from caller.
5561 int ata_port_start(struct ata_port *ap)
5563 struct device *dev = ap->dev;
5565 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5566 GFP_KERNEL);
5567 if (!ap->prd)
5568 return -ENOMEM;
5570 return 0;
5574 * ata_dev_init - Initialize an ata_device structure
5575 * @dev: Device structure to initialize
5577 * Initialize @dev in preparation for probing.
5579 * LOCKING:
5580 * Inherited from caller.
5582 void ata_dev_init(struct ata_device *dev)
5584 struct ata_link *link = ata_dev_phys_link(dev);
5585 struct ata_port *ap = link->ap;
5586 unsigned long flags;
5588 /* SATA spd limit is bound to the attached device, reset together */
5589 link->sata_spd_limit = link->hw_sata_spd_limit;
5590 link->sata_spd = 0;
5592 /* High bits of dev->flags are used to record warm plug
5593 * requests which occur asynchronously. Synchronize using
5594 * host lock.
5596 spin_lock_irqsave(ap->lock, flags);
5597 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5598 dev->horkage = 0;
5599 spin_unlock_irqrestore(ap->lock, flags);
5601 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5602 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5603 dev->pio_mask = UINT_MAX;
5604 dev->mwdma_mask = UINT_MAX;
5605 dev->udma_mask = UINT_MAX;
5609 * ata_link_init - Initialize an ata_link structure
5610 * @ap: ATA port link is attached to
5611 * @link: Link structure to initialize
5612 * @pmp: Port multiplier port number
5614 * Initialize @link.
5616 * LOCKING:
5617 * Kernel thread context (may sleep)
5619 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5621 int i;
5623 /* clear everything except for devices */
5624 memset(link, 0, offsetof(struct ata_link, device[0]));
5626 link->ap = ap;
5627 link->pmp = pmp;
5628 link->active_tag = ATA_TAG_POISON;
5629 link->hw_sata_spd_limit = UINT_MAX;
5631 /* can't use iterator, ap isn't initialized yet */
5632 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5633 struct ata_device *dev = &link->device[i];
5635 dev->link = link;
5636 dev->devno = dev - link->device;
5637 #ifdef CONFIG_ATA_ACPI
5638 dev->gtf_filter = ata_acpi_gtf_filter;
5639 #endif
5640 ata_dev_init(dev);
5645 * sata_link_init_spd - Initialize link->sata_spd_limit
5646 * @link: Link to configure sata_spd_limit for
5648 * Initialize @link->[hw_]sata_spd_limit to the currently
5649 * configured value.
5651 * LOCKING:
5652 * Kernel thread context (may sleep).
5654 * RETURNS:
5655 * 0 on success, -errno on failure.
5657 int sata_link_init_spd(struct ata_link *link)
5659 u8 spd;
5660 int rc;
5662 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5663 if (rc)
5664 return rc;
5666 spd = (link->saved_scontrol >> 4) & 0xf;
5667 if (spd)
5668 link->hw_sata_spd_limit &= (1 << spd) - 1;
5670 ata_force_link_limits(link);
5672 link->sata_spd_limit = link->hw_sata_spd_limit;
5674 return 0;
5678 * ata_port_alloc - allocate and initialize basic ATA port resources
5679 * @host: ATA host this allocated port belongs to
5681 * Allocate and initialize basic ATA port resources.
5683 * RETURNS:
5684 * Allocate ATA port on success, NULL on failure.
5686 * LOCKING:
5687 * Inherited from calling layer (may sleep).
5689 struct ata_port *ata_port_alloc(struct ata_host *host)
5691 struct ata_port *ap;
5693 DPRINTK("ENTER\n");
5695 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5696 if (!ap)
5697 return NULL;
5699 ap->pflags |= ATA_PFLAG_INITIALIZING;
5700 ap->lock = &host->lock;
5701 ap->flags = ATA_FLAG_DISABLED;
5702 ap->print_id = -1;
5703 ap->ctl = ATA_DEVCTL_OBS;
5704 ap->host = host;
5705 ap->dev = host->dev;
5706 ap->last_ctl = 0xFF;
5708 #if defined(ATA_VERBOSE_DEBUG)
5709 /* turn on all debugging levels */
5710 ap->msg_enable = 0x00FF;
5711 #elif defined(ATA_DEBUG)
5712 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5713 #else
5714 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5715 #endif
5717 #ifdef CONFIG_ATA_SFF
5718 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5719 #else
5720 INIT_DELAYED_WORK(&ap->port_task, NULL);
5721 #endif
5722 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5723 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5724 INIT_LIST_HEAD(&ap->eh_done_q);
5725 init_waitqueue_head(&ap->eh_wait_q);
5726 init_completion(&ap->park_req_pending);
5727 init_timer_deferrable(&ap->fastdrain_timer);
5728 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5729 ap->fastdrain_timer.data = (unsigned long)ap;
5731 ap->cbl = ATA_CBL_NONE;
5733 ata_link_init(ap, &ap->link, 0);
5735 #ifdef ATA_IRQ_TRAP
5736 ap->stats.unhandled_irq = 1;
5737 ap->stats.idle_irq = 1;
5738 #endif
5739 return ap;
5742 static void ata_host_release(struct device *gendev, void *res)
5744 struct ata_host *host = dev_get_drvdata(gendev);
5745 int i;
5747 for (i = 0; i < host->n_ports; i++) {
5748 struct ata_port *ap = host->ports[i];
5750 if (!ap)
5751 continue;
5753 if (ap->scsi_host)
5754 scsi_host_put(ap->scsi_host);
5756 kfree(ap->pmp_link);
5757 kfree(ap->slave_link);
5758 kfree(ap);
5759 host->ports[i] = NULL;
5762 dev_set_drvdata(gendev, NULL);
5766 * ata_host_alloc - allocate and init basic ATA host resources
5767 * @dev: generic device this host is associated with
5768 * @max_ports: maximum number of ATA ports associated with this host
5770 * Allocate and initialize basic ATA host resources. LLD calls
5771 * this function to allocate a host, initializes it fully and
5772 * attaches it using ata_host_register().
5774 * @max_ports ports are allocated and host->n_ports is
5775 * initialized to @max_ports. The caller is allowed to decrease
5776 * host->n_ports before calling ata_host_register(). The unused
5777 * ports will be automatically freed on registration.
5779 * RETURNS:
5780 * Allocate ATA host on success, NULL on failure.
5782 * LOCKING:
5783 * Inherited from calling layer (may sleep).
5785 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5787 struct ata_host *host;
5788 size_t sz;
5789 int i;
5791 DPRINTK("ENTER\n");
5793 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5794 return NULL;
5796 /* alloc a container for our list of ATA ports (buses) */
5797 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5798 /* alloc a container for our list of ATA ports (buses) */
5799 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5800 if (!host)
5801 goto err_out;
5803 devres_add(dev, host);
5804 dev_set_drvdata(dev, host);
5806 spin_lock_init(&host->lock);
5807 host->dev = dev;
5808 host->n_ports = max_ports;
5810 /* allocate ports bound to this host */
5811 for (i = 0; i < max_ports; i++) {
5812 struct ata_port *ap;
5814 ap = ata_port_alloc(host);
5815 if (!ap)
5816 goto err_out;
5818 ap->port_no = i;
5819 host->ports[i] = ap;
5822 devres_remove_group(dev, NULL);
5823 return host;
5825 err_out:
5826 devres_release_group(dev, NULL);
5827 return NULL;
5831 * ata_host_alloc_pinfo - alloc host and init with port_info array
5832 * @dev: generic device this host is associated with
5833 * @ppi: array of ATA port_info to initialize host with
5834 * @n_ports: number of ATA ports attached to this host
5836 * Allocate ATA host and initialize with info from @ppi. If NULL
5837 * terminated, @ppi may contain fewer entries than @n_ports. The
5838 * last entry will be used for the remaining ports.
5840 * RETURNS:
5841 * Allocate ATA host on success, NULL on failure.
5843 * LOCKING:
5844 * Inherited from calling layer (may sleep).
5846 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5847 const struct ata_port_info * const * ppi,
5848 int n_ports)
5850 const struct ata_port_info *pi;
5851 struct ata_host *host;
5852 int i, j;
5854 host = ata_host_alloc(dev, n_ports);
5855 if (!host)
5856 return NULL;
5858 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5859 struct ata_port *ap = host->ports[i];
5861 if (ppi[j])
5862 pi = ppi[j++];
5864 ap->pio_mask = pi->pio_mask;
5865 ap->mwdma_mask = pi->mwdma_mask;
5866 ap->udma_mask = pi->udma_mask;
5867 ap->flags |= pi->flags;
5868 ap->link.flags |= pi->link_flags;
5869 ap->ops = pi->port_ops;
5871 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5872 host->ops = pi->port_ops;
5875 return host;
5879 * ata_slave_link_init - initialize slave link
5880 * @ap: port to initialize slave link for
5882 * Create and initialize slave link for @ap. This enables slave
5883 * link handling on the port.
5885 * In libata, a port contains links and a link contains devices.
5886 * There is single host link but if a PMP is attached to it,
5887 * there can be multiple fan-out links. On SATA, there's usually
5888 * a single device connected to a link but PATA and SATA
5889 * controllers emulating TF based interface can have two - master
5890 * and slave.
5892 * However, there are a few controllers which don't fit into this
5893 * abstraction too well - SATA controllers which emulate TF
5894 * interface with both master and slave devices but also have
5895 * separate SCR register sets for each device. These controllers
5896 * need separate links for physical link handling
5897 * (e.g. onlineness, link speed) but should be treated like a
5898 * traditional M/S controller for everything else (e.g. command
5899 * issue, softreset).
5901 * slave_link is libata's way of handling this class of
5902 * controllers without impacting core layer too much. For
5903 * anything other than physical link handling, the default host
5904 * link is used for both master and slave. For physical link
5905 * handling, separate @ap->slave_link is used. All dirty details
5906 * are implemented inside libata core layer. From LLD's POV, the
5907 * only difference is that prereset, hardreset and postreset are
5908 * called once more for the slave link, so the reset sequence
5909 * looks like the following.
5911 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5912 * softreset(M) -> postreset(M) -> postreset(S)
5914 * Note that softreset is called only for the master. Softreset
5915 * resets both M/S by definition, so SRST on master should handle
5916 * both (the standard method will work just fine).
5918 * LOCKING:
5919 * Should be called before host is registered.
5921 * RETURNS:
5922 * 0 on success, -errno on failure.
5924 int ata_slave_link_init(struct ata_port *ap)
5926 struct ata_link *link;
5928 WARN_ON(ap->slave_link);
5929 WARN_ON(ap->flags & ATA_FLAG_PMP);
5931 link = kzalloc(sizeof(*link), GFP_KERNEL);
5932 if (!link)
5933 return -ENOMEM;
5935 ata_link_init(ap, link, 1);
5936 ap->slave_link = link;
5937 return 0;
5940 static void ata_host_stop(struct device *gendev, void *res)
5942 struct ata_host *host = dev_get_drvdata(gendev);
5943 int i;
5945 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5947 for (i = 0; i < host->n_ports; i++) {
5948 struct ata_port *ap = host->ports[i];
5950 if (ap->ops->port_stop)
5951 ap->ops->port_stop(ap);
5954 if (host->ops->host_stop)
5955 host->ops->host_stop(host);
5959 * ata_finalize_port_ops - finalize ata_port_operations
5960 * @ops: ata_port_operations to finalize
5962 * An ata_port_operations can inherit from another ops and that
5963 * ops can again inherit from another. This can go on as many
5964 * times as necessary as long as there is no loop in the
5965 * inheritance chain.
5967 * Ops tables are finalized when the host is started. NULL or
5968 * unspecified entries are inherited from the closet ancestor
5969 * which has the method and the entry is populated with it.
5970 * After finalization, the ops table directly points to all the
5971 * methods and ->inherits is no longer necessary and cleared.
5973 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5975 * LOCKING:
5976 * None.
5978 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5980 static DEFINE_SPINLOCK(lock);
5981 const struct ata_port_operations *cur;
5982 void **begin = (void **)ops;
5983 void **end = (void **)&ops->inherits;
5984 void **pp;
5986 if (!ops || !ops->inherits)
5987 return;
5989 spin_lock(&lock);
5991 for (cur = ops->inherits; cur; cur = cur->inherits) {
5992 void **inherit = (void **)cur;
5994 for (pp = begin; pp < end; pp++, inherit++)
5995 if (!*pp)
5996 *pp = *inherit;
5999 for (pp = begin; pp < end; pp++)
6000 if (IS_ERR(*pp))
6001 *pp = NULL;
6003 ops->inherits = NULL;
6005 spin_unlock(&lock);
6009 * ata_host_start - start and freeze ports of an ATA host
6010 * @host: ATA host to start ports for
6012 * Start and then freeze ports of @host. Started status is
6013 * recorded in host->flags, so this function can be called
6014 * multiple times. Ports are guaranteed to get started only
6015 * once. If host->ops isn't initialized yet, its set to the
6016 * first non-dummy port ops.
6018 * LOCKING:
6019 * Inherited from calling layer (may sleep).
6021 * RETURNS:
6022 * 0 if all ports are started successfully, -errno otherwise.
6024 int ata_host_start(struct ata_host *host)
6026 int have_stop = 0;
6027 void *start_dr = NULL;
6028 int i, rc;
6030 if (host->flags & ATA_HOST_STARTED)
6031 return 0;
6033 ata_finalize_port_ops(host->ops);
6035 for (i = 0; i < host->n_ports; i++) {
6036 struct ata_port *ap = host->ports[i];
6038 ata_finalize_port_ops(ap->ops);
6040 if (!host->ops && !ata_port_is_dummy(ap))
6041 host->ops = ap->ops;
6043 if (ap->ops->port_stop)
6044 have_stop = 1;
6047 if (host->ops->host_stop)
6048 have_stop = 1;
6050 if (have_stop) {
6051 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6052 if (!start_dr)
6053 return -ENOMEM;
6056 for (i = 0; i < host->n_ports; i++) {
6057 struct ata_port *ap = host->ports[i];
6059 if (ap->ops->port_start) {
6060 rc = ap->ops->port_start(ap);
6061 if (rc) {
6062 if (rc != -ENODEV)
6063 dev_printk(KERN_ERR, host->dev,
6064 "failed to start port %d "
6065 "(errno=%d)\n", i, rc);
6066 goto err_out;
6069 ata_eh_freeze_port(ap);
6072 if (start_dr)
6073 devres_add(host->dev, start_dr);
6074 host->flags |= ATA_HOST_STARTED;
6075 return 0;
6077 err_out:
6078 while (--i >= 0) {
6079 struct ata_port *ap = host->ports[i];
6081 if (ap->ops->port_stop)
6082 ap->ops->port_stop(ap);
6084 devres_free(start_dr);
6085 return rc;
6089 * ata_sas_host_init - Initialize a host struct
6090 * @host: host to initialize
6091 * @dev: device host is attached to
6092 * @flags: host flags
6093 * @ops: port_ops
6095 * LOCKING:
6096 * PCI/etc. bus probe sem.
6099 /* KILLME - the only user left is ipr */
6100 void ata_host_init(struct ata_host *host, struct device *dev,
6101 unsigned long flags, struct ata_port_operations *ops)
6103 spin_lock_init(&host->lock);
6104 host->dev = dev;
6105 host->flags = flags;
6106 host->ops = ops;
6110 static void async_port_probe(void *data, async_cookie_t cookie)
6112 int rc;
6113 struct ata_port *ap = data;
6116 * If we're not allowed to scan this host in parallel,
6117 * we need to wait until all previous scans have completed
6118 * before going further.
6119 * Jeff Garzik says this is only within a controller, so we
6120 * don't need to wait for port 0, only for later ports.
6122 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6123 async_synchronize_cookie(cookie);
6125 /* probe */
6126 if (ap->ops->error_handler) {
6127 struct ata_eh_info *ehi = &ap->link.eh_info;
6128 unsigned long flags;
6130 ata_port_probe(ap);
6132 /* kick EH for boot probing */
6133 spin_lock_irqsave(ap->lock, flags);
6135 ehi->probe_mask |= ATA_ALL_DEVICES;
6136 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6137 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6139 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6140 ap->pflags |= ATA_PFLAG_LOADING;
6141 ata_port_schedule_eh(ap);
6143 spin_unlock_irqrestore(ap->lock, flags);
6145 /* wait for EH to finish */
6146 ata_port_wait_eh(ap);
6147 } else {
6148 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6149 rc = ata_bus_probe(ap);
6150 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6152 if (rc) {
6153 /* FIXME: do something useful here?
6154 * Current libata behavior will
6155 * tear down everything when
6156 * the module is removed
6157 * or the h/w is unplugged.
6162 /* in order to keep device order, we need to synchronize at this point */
6163 async_synchronize_cookie(cookie);
6165 ata_scsi_scan_host(ap, 1);
6169 * ata_host_register - register initialized ATA host
6170 * @host: ATA host to register
6171 * @sht: template for SCSI host
6173 * Register initialized ATA host. @host is allocated using
6174 * ata_host_alloc() and fully initialized by LLD. This function
6175 * starts ports, registers @host with ATA and SCSI layers and
6176 * probe registered devices.
6178 * LOCKING:
6179 * Inherited from calling layer (may sleep).
6181 * RETURNS:
6182 * 0 on success, -errno otherwise.
6184 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6186 int i, rc;
6188 /* host must have been started */
6189 if (!(host->flags & ATA_HOST_STARTED)) {
6190 dev_printk(KERN_ERR, host->dev,
6191 "BUG: trying to register unstarted host\n");
6192 WARN_ON(1);
6193 return -EINVAL;
6196 /* Blow away unused ports. This happens when LLD can't
6197 * determine the exact number of ports to allocate at
6198 * allocation time.
6200 for (i = host->n_ports; host->ports[i]; i++)
6201 kfree(host->ports[i]);
6203 /* give ports names and add SCSI hosts */
6204 for (i = 0; i < host->n_ports; i++)
6205 host->ports[i]->print_id = ata_print_id++;
6207 rc = ata_scsi_add_hosts(host, sht);
6208 if (rc)
6209 return rc;
6211 /* associate with ACPI nodes */
6212 ata_acpi_associate(host);
6214 /* set cable, sata_spd_limit and report */
6215 for (i = 0; i < host->n_ports; i++) {
6216 struct ata_port *ap = host->ports[i];
6217 unsigned long xfer_mask;
6219 /* set SATA cable type if still unset */
6220 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6221 ap->cbl = ATA_CBL_SATA;
6223 /* init sata_spd_limit to the current value */
6224 sata_link_init_spd(&ap->link);
6225 if (ap->slave_link)
6226 sata_link_init_spd(ap->slave_link);
6228 /* print per-port info to dmesg */
6229 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6230 ap->udma_mask);
6232 if (!ata_port_is_dummy(ap)) {
6233 ata_port_printk(ap, KERN_INFO,
6234 "%cATA max %s %s\n",
6235 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6236 ata_mode_string(xfer_mask),
6237 ap->link.eh_info.desc);
6238 ata_ehi_clear_desc(&ap->link.eh_info);
6239 } else
6240 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6243 /* perform each probe asynchronously */
6244 for (i = 0; i < host->n_ports; i++) {
6245 struct ata_port *ap = host->ports[i];
6246 async_schedule(async_port_probe, ap);
6249 return 0;
6253 * ata_host_activate - start host, request IRQ and register it
6254 * @host: target ATA host
6255 * @irq: IRQ to request
6256 * @irq_handler: irq_handler used when requesting IRQ
6257 * @irq_flags: irq_flags used when requesting IRQ
6258 * @sht: scsi_host_template to use when registering the host
6260 * After allocating an ATA host and initializing it, most libata
6261 * LLDs perform three steps to activate the host - start host,
6262 * request IRQ and register it. This helper takes necessasry
6263 * arguments and performs the three steps in one go.
6265 * An invalid IRQ skips the IRQ registration and expects the host to
6266 * have set polling mode on the port. In this case, @irq_handler
6267 * should be NULL.
6269 * LOCKING:
6270 * Inherited from calling layer (may sleep).
6272 * RETURNS:
6273 * 0 on success, -errno otherwise.
6275 int ata_host_activate(struct ata_host *host, int irq,
6276 irq_handler_t irq_handler, unsigned long irq_flags,
6277 struct scsi_host_template *sht)
6279 int i, rc;
6281 rc = ata_host_start(host);
6282 if (rc)
6283 return rc;
6285 /* Special case for polling mode */
6286 if (!irq) {
6287 WARN_ON(irq_handler);
6288 return ata_host_register(host, sht);
6291 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6292 dev_driver_string(host->dev), host);
6293 if (rc)
6294 return rc;
6296 for (i = 0; i < host->n_ports; i++)
6297 ata_port_desc(host->ports[i], "irq %d", irq);
6299 rc = ata_host_register(host, sht);
6300 /* if failed, just free the IRQ and leave ports alone */
6301 if (rc)
6302 devm_free_irq(host->dev, irq, host);
6304 return rc;
6308 * ata_port_detach - Detach ATA port in prepration of device removal
6309 * @ap: ATA port to be detached
6311 * Detach all ATA devices and the associated SCSI devices of @ap;
6312 * then, remove the associated SCSI host. @ap is guaranteed to
6313 * be quiescent on return from this function.
6315 * LOCKING:
6316 * Kernel thread context (may sleep).
6318 static void ata_port_detach(struct ata_port *ap)
6320 unsigned long flags;
6322 if (!ap->ops->error_handler)
6323 goto skip_eh;
6325 /* tell EH we're leaving & flush EH */
6326 spin_lock_irqsave(ap->lock, flags);
6327 ap->pflags |= ATA_PFLAG_UNLOADING;
6328 ata_port_schedule_eh(ap);
6329 spin_unlock_irqrestore(ap->lock, flags);
6331 /* wait till EH commits suicide */
6332 ata_port_wait_eh(ap);
6334 /* it better be dead now */
6335 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6337 cancel_rearming_delayed_work(&ap->hotplug_task);
6339 skip_eh:
6340 /* remove the associated SCSI host */
6341 scsi_remove_host(ap->scsi_host);
6345 * ata_host_detach - Detach all ports of an ATA host
6346 * @host: Host to detach
6348 * Detach all ports of @host.
6350 * LOCKING:
6351 * Kernel thread context (may sleep).
6353 void ata_host_detach(struct ata_host *host)
6355 int i;
6357 for (i = 0; i < host->n_ports; i++)
6358 ata_port_detach(host->ports[i]);
6360 /* the host is dead now, dissociate ACPI */
6361 ata_acpi_dissociate(host);
6364 #ifdef CONFIG_PCI
6367 * ata_pci_remove_one - PCI layer callback for device removal
6368 * @pdev: PCI device that was removed
6370 * PCI layer indicates to libata via this hook that hot-unplug or
6371 * module unload event has occurred. Detach all ports. Resource
6372 * release is handled via devres.
6374 * LOCKING:
6375 * Inherited from PCI layer (may sleep).
6377 void ata_pci_remove_one(struct pci_dev *pdev)
6379 struct device *dev = &pdev->dev;
6380 struct ata_host *host = dev_get_drvdata(dev);
6382 ata_host_detach(host);
6385 /* move to PCI subsystem */
6386 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6388 unsigned long tmp = 0;
6390 switch (bits->width) {
6391 case 1: {
6392 u8 tmp8 = 0;
6393 pci_read_config_byte(pdev, bits->reg, &tmp8);
6394 tmp = tmp8;
6395 break;
6397 case 2: {
6398 u16 tmp16 = 0;
6399 pci_read_config_word(pdev, bits->reg, &tmp16);
6400 tmp = tmp16;
6401 break;
6403 case 4: {
6404 u32 tmp32 = 0;
6405 pci_read_config_dword(pdev, bits->reg, &tmp32);
6406 tmp = tmp32;
6407 break;
6410 default:
6411 return -EINVAL;
6414 tmp &= bits->mask;
6416 return (tmp == bits->val) ? 1 : 0;
6419 #ifdef CONFIG_PM
6420 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6422 pci_save_state(pdev);
6423 pci_disable_device(pdev);
6425 if (mesg.event & PM_EVENT_SLEEP)
6426 pci_set_power_state(pdev, PCI_D3hot);
6429 int ata_pci_device_do_resume(struct pci_dev *pdev)
6431 int rc;
6433 pci_set_power_state(pdev, PCI_D0);
6434 pci_restore_state(pdev);
6436 rc = pcim_enable_device(pdev);
6437 if (rc) {
6438 dev_printk(KERN_ERR, &pdev->dev,
6439 "failed to enable device after resume (%d)\n", rc);
6440 return rc;
6443 pci_set_master(pdev);
6444 return 0;
6447 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6449 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6450 int rc = 0;
6452 rc = ata_host_suspend(host, mesg);
6453 if (rc)
6454 return rc;
6456 ata_pci_device_do_suspend(pdev, mesg);
6458 return 0;
6461 int ata_pci_device_resume(struct pci_dev *pdev)
6463 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6464 int rc;
6466 rc = ata_pci_device_do_resume(pdev);
6467 if (rc == 0)
6468 ata_host_resume(host);
6469 return rc;
6471 #endif /* CONFIG_PM */
6473 #endif /* CONFIG_PCI */
6475 static int __init ata_parse_force_one(char **cur,
6476 struct ata_force_ent *force_ent,
6477 const char **reason)
6479 /* FIXME: Currently, there's no way to tag init const data and
6480 * using __initdata causes build failure on some versions of
6481 * gcc. Once __initdataconst is implemented, add const to the
6482 * following structure.
6484 static struct ata_force_param force_tbl[] __initdata = {
6485 { "40c", .cbl = ATA_CBL_PATA40 },
6486 { "80c", .cbl = ATA_CBL_PATA80 },
6487 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6488 { "unk", .cbl = ATA_CBL_PATA_UNK },
6489 { "ign", .cbl = ATA_CBL_PATA_IGN },
6490 { "sata", .cbl = ATA_CBL_SATA },
6491 { "1.5Gbps", .spd_limit = 1 },
6492 { "3.0Gbps", .spd_limit = 2 },
6493 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6494 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6495 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6496 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6497 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6498 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6499 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6500 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6501 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6502 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6503 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6504 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6505 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6506 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6507 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6508 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6509 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6510 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6511 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6512 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6513 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6514 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6515 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6516 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6517 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6518 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6519 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6520 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6521 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6522 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6523 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6524 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6525 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6526 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6527 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6528 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6529 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6530 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6531 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6533 char *start = *cur, *p = *cur;
6534 char *id, *val, *endp;
6535 const struct ata_force_param *match_fp = NULL;
6536 int nr_matches = 0, i;
6538 /* find where this param ends and update *cur */
6539 while (*p != '\0' && *p != ',')
6540 p++;
6542 if (*p == '\0')
6543 *cur = p;
6544 else
6545 *cur = p + 1;
6547 *p = '\0';
6549 /* parse */
6550 p = strchr(start, ':');
6551 if (!p) {
6552 val = strstrip(start);
6553 goto parse_val;
6555 *p = '\0';
6557 id = strstrip(start);
6558 val = strstrip(p + 1);
6560 /* parse id */
6561 p = strchr(id, '.');
6562 if (p) {
6563 *p++ = '\0';
6564 force_ent->device = simple_strtoul(p, &endp, 10);
6565 if (p == endp || *endp != '\0') {
6566 *reason = "invalid device";
6567 return -EINVAL;
6571 force_ent->port = simple_strtoul(id, &endp, 10);
6572 if (p == endp || *endp != '\0') {
6573 *reason = "invalid port/link";
6574 return -EINVAL;
6577 parse_val:
6578 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6579 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6580 const struct ata_force_param *fp = &force_tbl[i];
6582 if (strncasecmp(val, fp->name, strlen(val)))
6583 continue;
6585 nr_matches++;
6586 match_fp = fp;
6588 if (strcasecmp(val, fp->name) == 0) {
6589 nr_matches = 1;
6590 break;
6594 if (!nr_matches) {
6595 *reason = "unknown value";
6596 return -EINVAL;
6598 if (nr_matches > 1) {
6599 *reason = "ambigious value";
6600 return -EINVAL;
6603 force_ent->param = *match_fp;
6605 return 0;
6608 static void __init ata_parse_force_param(void)
6610 int idx = 0, size = 1;
6611 int last_port = -1, last_device = -1;
6612 char *p, *cur, *next;
6614 /* calculate maximum number of params and allocate force_tbl */
6615 for (p = ata_force_param_buf; *p; p++)
6616 if (*p == ',')
6617 size++;
6619 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6620 if (!ata_force_tbl) {
6621 printk(KERN_WARNING "ata: failed to extend force table, "
6622 "libata.force ignored\n");
6623 return;
6626 /* parse and populate the table */
6627 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6628 const char *reason = "";
6629 struct ata_force_ent te = { .port = -1, .device = -1 };
6631 next = cur;
6632 if (ata_parse_force_one(&next, &te, &reason)) {
6633 printk(KERN_WARNING "ata: failed to parse force "
6634 "parameter \"%s\" (%s)\n",
6635 cur, reason);
6636 continue;
6639 if (te.port == -1) {
6640 te.port = last_port;
6641 te.device = last_device;
6644 ata_force_tbl[idx++] = te;
6646 last_port = te.port;
6647 last_device = te.device;
6650 ata_force_tbl_size = idx;
6653 static int __init ata_init(void)
6655 ata_parse_force_param();
6658 * FIXME: In UP case, there is only one workqueue thread and if you
6659 * have more than one PIO device, latency is bloody awful, with
6660 * occasional multi-second "hiccups" as one PIO device waits for
6661 * another. It's an ugly wart that users DO occasionally complain
6662 * about; luckily most users have at most one PIO polled device.
6664 ata_wq = create_workqueue("ata");
6665 if (!ata_wq)
6666 goto free_force_tbl;
6668 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6669 if (!ata_aux_wq)
6670 goto free_wq;
6672 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6673 return 0;
6675 free_wq:
6676 destroy_workqueue(ata_wq);
6677 free_force_tbl:
6678 kfree(ata_force_tbl);
6679 return -ENOMEM;
6682 static void __exit ata_exit(void)
6684 kfree(ata_force_tbl);
6685 destroy_workqueue(ata_wq);
6686 destroy_workqueue(ata_aux_wq);
6689 subsys_initcall(ata_init);
6690 module_exit(ata_exit);
6692 static unsigned long ratelimit_time;
6693 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6695 int ata_ratelimit(void)
6697 int rc;
6698 unsigned long flags;
6700 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6702 if (time_after(jiffies, ratelimit_time)) {
6703 rc = 1;
6704 ratelimit_time = jiffies + (HZ/5);
6705 } else
6706 rc = 0;
6708 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6710 return rc;
6714 * ata_wait_register - wait until register value changes
6715 * @reg: IO-mapped register
6716 * @mask: Mask to apply to read register value
6717 * @val: Wait condition
6718 * @interval: polling interval in milliseconds
6719 * @timeout: timeout in milliseconds
6721 * Waiting for some bits of register to change is a common
6722 * operation for ATA controllers. This function reads 32bit LE
6723 * IO-mapped register @reg and tests for the following condition.
6725 * (*@reg & mask) != val
6727 * If the condition is met, it returns; otherwise, the process is
6728 * repeated after @interval_msec until timeout.
6730 * LOCKING:
6731 * Kernel thread context (may sleep)
6733 * RETURNS:
6734 * The final register value.
6736 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6737 unsigned long interval, unsigned long timeout)
6739 unsigned long deadline;
6740 u32 tmp;
6742 tmp = ioread32(reg);
6744 /* Calculate timeout _after_ the first read to make sure
6745 * preceding writes reach the controller before starting to
6746 * eat away the timeout.
6748 deadline = ata_deadline(jiffies, timeout);
6750 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6751 msleep(interval);
6752 tmp = ioread32(reg);
6755 return tmp;
6759 * Dummy port_ops
6761 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6763 return AC_ERR_SYSTEM;
6766 static void ata_dummy_error_handler(struct ata_port *ap)
6768 /* truly dummy */
6771 struct ata_port_operations ata_dummy_port_ops = {
6772 .qc_prep = ata_noop_qc_prep,
6773 .qc_issue = ata_dummy_qc_issue,
6774 .error_handler = ata_dummy_error_handler,
6777 const struct ata_port_info ata_dummy_port_info = {
6778 .port_ops = &ata_dummy_port_ops,
6782 * libata is essentially a library of internal helper functions for
6783 * low-level ATA host controller drivers. As such, the API/ABI is
6784 * likely to change as new drivers are added and updated.
6785 * Do not depend on ABI/API stability.
6787 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6788 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6789 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6790 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6791 EXPORT_SYMBOL_GPL(sata_port_ops);
6792 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6793 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6794 EXPORT_SYMBOL_GPL(ata_link_next);
6795 EXPORT_SYMBOL_GPL(ata_dev_next);
6796 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6797 EXPORT_SYMBOL_GPL(ata_host_init);
6798 EXPORT_SYMBOL_GPL(ata_host_alloc);
6799 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6800 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6801 EXPORT_SYMBOL_GPL(ata_host_start);
6802 EXPORT_SYMBOL_GPL(ata_host_register);
6803 EXPORT_SYMBOL_GPL(ata_host_activate);
6804 EXPORT_SYMBOL_GPL(ata_host_detach);
6805 EXPORT_SYMBOL_GPL(ata_sg_init);
6806 EXPORT_SYMBOL_GPL(ata_qc_complete);
6807 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6808 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6809 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6810 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6811 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6812 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6813 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6814 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6815 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6816 EXPORT_SYMBOL_GPL(ata_mode_string);
6817 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6818 EXPORT_SYMBOL_GPL(ata_port_start);
6819 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6820 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6821 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6822 EXPORT_SYMBOL_GPL(ata_port_probe);
6823 EXPORT_SYMBOL_GPL(ata_dev_disable);
6824 EXPORT_SYMBOL_GPL(sata_set_spd);
6825 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6826 EXPORT_SYMBOL_GPL(sata_link_debounce);
6827 EXPORT_SYMBOL_GPL(sata_link_resume);
6828 EXPORT_SYMBOL_GPL(ata_std_prereset);
6829 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6830 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6831 EXPORT_SYMBOL_GPL(ata_std_postreset);
6832 EXPORT_SYMBOL_GPL(ata_dev_classify);
6833 EXPORT_SYMBOL_GPL(ata_dev_pair);
6834 EXPORT_SYMBOL_GPL(ata_port_disable);
6835 EXPORT_SYMBOL_GPL(ata_ratelimit);
6836 EXPORT_SYMBOL_GPL(ata_wait_register);
6837 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6838 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6839 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6840 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6841 EXPORT_SYMBOL_GPL(sata_scr_valid);
6842 EXPORT_SYMBOL_GPL(sata_scr_read);
6843 EXPORT_SYMBOL_GPL(sata_scr_write);
6844 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6845 EXPORT_SYMBOL_GPL(ata_link_online);
6846 EXPORT_SYMBOL_GPL(ata_link_offline);
6847 #ifdef CONFIG_PM
6848 EXPORT_SYMBOL_GPL(ata_host_suspend);
6849 EXPORT_SYMBOL_GPL(ata_host_resume);
6850 #endif /* CONFIG_PM */
6851 EXPORT_SYMBOL_GPL(ata_id_string);
6852 EXPORT_SYMBOL_GPL(ata_id_c_string);
6853 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6854 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6856 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6857 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6858 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6859 EXPORT_SYMBOL_GPL(ata_timing_compute);
6860 EXPORT_SYMBOL_GPL(ata_timing_merge);
6861 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6863 #ifdef CONFIG_PCI
6864 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6865 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6866 #ifdef CONFIG_PM
6867 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6868 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6869 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6870 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6871 #endif /* CONFIG_PM */
6872 #endif /* CONFIG_PCI */
6874 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6875 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6876 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6877 EXPORT_SYMBOL_GPL(ata_port_desc);
6878 #ifdef CONFIG_PCI
6879 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6880 #endif /* CONFIG_PCI */
6881 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6882 EXPORT_SYMBOL_GPL(ata_link_abort);
6883 EXPORT_SYMBOL_GPL(ata_port_abort);
6884 EXPORT_SYMBOL_GPL(ata_port_freeze);
6885 EXPORT_SYMBOL_GPL(sata_async_notification);
6886 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6887 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6888 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6889 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6890 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6891 EXPORT_SYMBOL_GPL(ata_do_eh);
6892 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6894 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6895 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6896 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6897 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6898 EXPORT_SYMBOL_GPL(ata_cable_sata);