ARM: 7214/1: mmc: mmci: Fixup handling of MCI_STARTBITERR
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mmc / host / mmci.c
blob94607cda5abd1aa207d8947afcbbe29b850587bb
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
33 #include <asm/div64.h>
34 #include <asm/io.h>
35 #include <asm/sizes.h>
37 #include "mmci.h"
39 #define DRIVER_NAME "mmci-pl18x"
41 static unsigned int fmax = 515633;
43 /**
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 * is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 * is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56 struct variant_data {
57 unsigned int clkreg;
58 unsigned int clkreg_enable;
59 unsigned int datalength_bits;
60 unsigned int fifosize;
61 unsigned int fifohalfsize;
62 bool sdio;
63 bool st_clkdiv;
64 bool blksz_datactrl16;
67 static struct variant_data variant_arm = {
68 .fifosize = 16 * 4,
69 .fifohalfsize = 8 * 4,
70 .datalength_bits = 16,
73 static struct variant_data variant_arm_extended_fifo = {
74 .fifosize = 128 * 4,
75 .fifohalfsize = 64 * 4,
76 .datalength_bits = 16,
79 static struct variant_data variant_u300 = {
80 .fifosize = 16 * 4,
81 .fifohalfsize = 8 * 4,
82 .clkreg_enable = MCI_ST_U300_HWFCEN,
83 .datalength_bits = 16,
84 .sdio = true,
87 static struct variant_data variant_ux500 = {
88 .fifosize = 30 * 4,
89 .fifohalfsize = 8 * 4,
90 .clkreg = MCI_CLK_ENABLE,
91 .clkreg_enable = MCI_ST_UX500_HWFCEN,
92 .datalength_bits = 24,
93 .sdio = true,
94 .st_clkdiv = true,
97 static struct variant_data variant_ux500v2 = {
98 .fifosize = 30 * 4,
99 .fifohalfsize = 8 * 4,
100 .clkreg = MCI_CLK_ENABLE,
101 .clkreg_enable = MCI_ST_UX500_HWFCEN,
102 .datalength_bits = 24,
103 .sdio = true,
104 .st_clkdiv = true,
105 .blksz_datactrl16 = true,
109 * This must be called with host->lock held
111 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
113 struct variant_data *variant = host->variant;
114 u32 clk = variant->clkreg;
116 if (desired) {
117 if (desired >= host->mclk) {
118 clk = MCI_CLK_BYPASS;
119 if (variant->st_clkdiv)
120 clk |= MCI_ST_UX500_NEG_EDGE;
121 host->cclk = host->mclk;
122 } else if (variant->st_clkdiv) {
124 * DB8500 TRM says f = mclk / (clkdiv + 2)
125 * => clkdiv = (mclk / f) - 2
126 * Round the divider up so we don't exceed the max
127 * frequency
129 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
130 if (clk >= 256)
131 clk = 255;
132 host->cclk = host->mclk / (clk + 2);
133 } else {
135 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136 * => clkdiv = mclk / (2 * f) - 1
138 clk = host->mclk / (2 * desired) - 1;
139 if (clk >= 256)
140 clk = 255;
141 host->cclk = host->mclk / (2 * (clk + 1));
144 clk |= variant->clkreg_enable;
145 clk |= MCI_CLK_ENABLE;
146 /* This hasn't proven to be worthwhile */
147 /* clk |= MCI_CLK_PWRSAVE; */
150 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
151 clk |= MCI_4BIT_BUS;
152 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
153 clk |= MCI_ST_8BIT_BUS;
155 writel(clk, host->base + MMCICLOCK);
158 static void
159 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
161 writel(0, host->base + MMCICOMMAND);
163 BUG_ON(host->data);
165 host->mrq = NULL;
166 host->cmd = NULL;
169 * Need to drop the host lock here; mmc_request_done may call
170 * back into the driver...
172 spin_unlock(&host->lock);
173 mmc_request_done(host->mmc, mrq);
174 spin_lock(&host->lock);
177 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
179 void __iomem *base = host->base;
181 if (host->singleirq) {
182 unsigned int mask0 = readl(base + MMCIMASK0);
184 mask0 &= ~MCI_IRQ1MASK;
185 mask0 |= mask;
187 writel(mask0, base + MMCIMASK0);
190 writel(mask, base + MMCIMASK1);
193 static void mmci_stop_data(struct mmci_host *host)
195 writel(0, host->base + MMCIDATACTRL);
196 mmci_set_mask1(host, 0);
197 host->data = NULL;
200 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
202 unsigned int flags = SG_MITER_ATOMIC;
204 if (data->flags & MMC_DATA_READ)
205 flags |= SG_MITER_TO_SG;
206 else
207 flags |= SG_MITER_FROM_SG;
209 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
213 * All the DMA operation mode stuff goes inside this ifdef.
214 * This assumes that you have a generic DMA device interface,
215 * no custom DMA interfaces are supported.
217 #ifdef CONFIG_DMA_ENGINE
218 static void __devinit mmci_dma_setup(struct mmci_host *host)
220 struct mmci_platform_data *plat = host->plat;
221 const char *rxname, *txname;
222 dma_cap_mask_t mask;
224 if (!plat || !plat->dma_filter) {
225 dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
226 return;
229 /* initialize pre request cookie */
230 host->next_data.cookie = 1;
232 /* Try to acquire a generic DMA engine slave channel */
233 dma_cap_zero(mask);
234 dma_cap_set(DMA_SLAVE, mask);
237 * If only an RX channel is specified, the driver will
238 * attempt to use it bidirectionally, however if it is
239 * is specified but cannot be located, DMA will be disabled.
241 if (plat->dma_rx_param) {
242 host->dma_rx_channel = dma_request_channel(mask,
243 plat->dma_filter,
244 plat->dma_rx_param);
245 /* E.g if no DMA hardware is present */
246 if (!host->dma_rx_channel)
247 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
250 if (plat->dma_tx_param) {
251 host->dma_tx_channel = dma_request_channel(mask,
252 plat->dma_filter,
253 plat->dma_tx_param);
254 if (!host->dma_tx_channel)
255 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
256 } else {
257 host->dma_tx_channel = host->dma_rx_channel;
260 if (host->dma_rx_channel)
261 rxname = dma_chan_name(host->dma_rx_channel);
262 else
263 rxname = "none";
265 if (host->dma_tx_channel)
266 txname = dma_chan_name(host->dma_tx_channel);
267 else
268 txname = "none";
270 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
271 rxname, txname);
274 * Limit the maximum segment size in any SG entry according to
275 * the parameters of the DMA engine device.
277 if (host->dma_tx_channel) {
278 struct device *dev = host->dma_tx_channel->device->dev;
279 unsigned int max_seg_size = dma_get_max_seg_size(dev);
281 if (max_seg_size < host->mmc->max_seg_size)
282 host->mmc->max_seg_size = max_seg_size;
284 if (host->dma_rx_channel) {
285 struct device *dev = host->dma_rx_channel->device->dev;
286 unsigned int max_seg_size = dma_get_max_seg_size(dev);
288 if (max_seg_size < host->mmc->max_seg_size)
289 host->mmc->max_seg_size = max_seg_size;
294 * This is used in __devinit or __devexit so inline it
295 * so it can be discarded.
297 static inline void mmci_dma_release(struct mmci_host *host)
299 struct mmci_platform_data *plat = host->plat;
301 if (host->dma_rx_channel)
302 dma_release_channel(host->dma_rx_channel);
303 if (host->dma_tx_channel && plat->dma_tx_param)
304 dma_release_channel(host->dma_tx_channel);
305 host->dma_rx_channel = host->dma_tx_channel = NULL;
308 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
310 struct dma_chan *chan = host->dma_current;
311 enum dma_data_direction dir;
312 u32 status;
313 int i;
315 /* Wait up to 1ms for the DMA to complete */
316 for (i = 0; ; i++) {
317 status = readl(host->base + MMCISTATUS);
318 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
319 break;
320 udelay(10);
324 * Check to see whether we still have some data left in the FIFO -
325 * this catches DMA controllers which are unable to monitor the
326 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
327 * contiguous buffers. On TX, we'll get a FIFO underrun error.
329 if (status & MCI_RXDATAAVLBLMASK) {
330 dmaengine_terminate_all(chan);
331 if (!data->error)
332 data->error = -EIO;
335 if (data->flags & MMC_DATA_WRITE) {
336 dir = DMA_TO_DEVICE;
337 } else {
338 dir = DMA_FROM_DEVICE;
341 if (!data->host_cookie)
342 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
345 * Use of DMA with scatter-gather is impossible.
346 * Give up with DMA and switch back to PIO mode.
348 if (status & MCI_RXDATAAVLBLMASK) {
349 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
350 mmci_dma_release(host);
354 static void mmci_dma_data_error(struct mmci_host *host)
356 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
357 dmaengine_terminate_all(host->dma_current);
360 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
361 struct mmci_host_next *next)
363 struct variant_data *variant = host->variant;
364 struct dma_slave_config conf = {
365 .src_addr = host->phybase + MMCIFIFO,
366 .dst_addr = host->phybase + MMCIFIFO,
367 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
368 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
369 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
370 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
372 struct dma_chan *chan;
373 struct dma_device *device;
374 struct dma_async_tx_descriptor *desc;
375 int nr_sg;
377 /* Check if next job is already prepared */
378 if (data->host_cookie && !next &&
379 host->dma_current && host->dma_desc_current)
380 return 0;
382 if (!next) {
383 host->dma_current = NULL;
384 host->dma_desc_current = NULL;
387 if (data->flags & MMC_DATA_READ) {
388 conf.direction = DMA_FROM_DEVICE;
389 chan = host->dma_rx_channel;
390 } else {
391 conf.direction = DMA_TO_DEVICE;
392 chan = host->dma_tx_channel;
395 /* If there's no DMA channel, fall back to PIO */
396 if (!chan)
397 return -EINVAL;
399 /* If less than or equal to the fifo size, don't bother with DMA */
400 if (data->blksz * data->blocks <= variant->fifosize)
401 return -EINVAL;
403 device = chan->device;
404 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
405 if (nr_sg == 0)
406 return -EINVAL;
408 dmaengine_slave_config(chan, &conf);
409 desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
410 conf.direction, DMA_CTRL_ACK);
411 if (!desc)
412 goto unmap_exit;
414 if (next) {
415 next->dma_chan = chan;
416 next->dma_desc = desc;
417 } else {
418 host->dma_current = chan;
419 host->dma_desc_current = desc;
422 return 0;
424 unmap_exit:
425 if (!next)
426 dmaengine_terminate_all(chan);
427 dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
428 return -ENOMEM;
431 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
433 int ret;
434 struct mmc_data *data = host->data;
436 ret = mmci_dma_prep_data(host, host->data, NULL);
437 if (ret)
438 return ret;
440 /* Okay, go for it. */
441 dev_vdbg(mmc_dev(host->mmc),
442 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
443 data->sg_len, data->blksz, data->blocks, data->flags);
444 dmaengine_submit(host->dma_desc_current);
445 dma_async_issue_pending(host->dma_current);
447 datactrl |= MCI_DPSM_DMAENABLE;
449 /* Trigger the DMA transfer */
450 writel(datactrl, host->base + MMCIDATACTRL);
453 * Let the MMCI say when the data is ended and it's time
454 * to fire next DMA request. When that happens, MMCI will
455 * call mmci_data_end()
457 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
458 host->base + MMCIMASK0);
459 return 0;
462 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
464 struct mmci_host_next *next = &host->next_data;
466 if (data->host_cookie && data->host_cookie != next->cookie) {
467 printk(KERN_WARNING "[%s] invalid cookie: data->host_cookie %d"
468 " host->next_data.cookie %d\n",
469 __func__, data->host_cookie, host->next_data.cookie);
470 data->host_cookie = 0;
473 if (!data->host_cookie)
474 return;
476 host->dma_desc_current = next->dma_desc;
477 host->dma_current = next->dma_chan;
479 next->dma_desc = NULL;
480 next->dma_chan = NULL;
483 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
484 bool is_first_req)
486 struct mmci_host *host = mmc_priv(mmc);
487 struct mmc_data *data = mrq->data;
488 struct mmci_host_next *nd = &host->next_data;
490 if (!data)
491 return;
493 if (data->host_cookie) {
494 data->host_cookie = 0;
495 return;
498 /* if config for dma */
499 if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
500 ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
501 if (mmci_dma_prep_data(host, data, nd))
502 data->host_cookie = 0;
503 else
504 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
508 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
509 int err)
511 struct mmci_host *host = mmc_priv(mmc);
512 struct mmc_data *data = mrq->data;
513 struct dma_chan *chan;
514 enum dma_data_direction dir;
516 if (!data)
517 return;
519 if (data->flags & MMC_DATA_READ) {
520 dir = DMA_FROM_DEVICE;
521 chan = host->dma_rx_channel;
522 } else {
523 dir = DMA_TO_DEVICE;
524 chan = host->dma_tx_channel;
528 /* if config for dma */
529 if (chan) {
530 if (err)
531 dmaengine_terminate_all(chan);
532 if (err || data->host_cookie)
533 dma_unmap_sg(mmc_dev(host->mmc), data->sg,
534 data->sg_len, dir);
535 mrq->data->host_cookie = 0;
539 #else
540 /* Blank functions if the DMA engine is not available */
541 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
544 static inline void mmci_dma_setup(struct mmci_host *host)
548 static inline void mmci_dma_release(struct mmci_host *host)
552 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
556 static inline void mmci_dma_data_error(struct mmci_host *host)
560 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
562 return -ENOSYS;
565 #define mmci_pre_request NULL
566 #define mmci_post_request NULL
568 #endif
570 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
572 struct variant_data *variant = host->variant;
573 unsigned int datactrl, timeout, irqmask;
574 unsigned long long clks;
575 void __iomem *base;
576 int blksz_bits;
578 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
579 data->blksz, data->blocks, data->flags);
581 host->data = data;
582 host->size = data->blksz * data->blocks;
583 data->bytes_xfered = 0;
585 clks = (unsigned long long)data->timeout_ns * host->cclk;
586 do_div(clks, 1000000000UL);
588 timeout = data->timeout_clks + (unsigned int)clks;
590 base = host->base;
591 writel(timeout, base + MMCIDATATIMER);
592 writel(host->size, base + MMCIDATALENGTH);
594 blksz_bits = ffs(data->blksz) - 1;
595 BUG_ON(1 << blksz_bits != data->blksz);
597 if (variant->blksz_datactrl16)
598 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
599 else
600 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
602 if (data->flags & MMC_DATA_READ)
603 datactrl |= MCI_DPSM_DIRECTION;
606 * Attempt to use DMA operation mode, if this
607 * should fail, fall back to PIO mode
609 if (!mmci_dma_start_data(host, datactrl))
610 return;
612 /* IRQ mode, map the SG list for CPU reading/writing */
613 mmci_init_sg(host, data);
615 if (data->flags & MMC_DATA_READ) {
616 irqmask = MCI_RXFIFOHALFFULLMASK;
619 * If we have less than the fifo 'half-full' threshold to
620 * transfer, trigger a PIO interrupt as soon as any data
621 * is available.
623 if (host->size < variant->fifohalfsize)
624 irqmask |= MCI_RXDATAAVLBLMASK;
625 } else {
627 * We don't actually need to include "FIFO empty" here
628 * since its implicit in "FIFO half empty".
630 irqmask = MCI_TXFIFOHALFEMPTYMASK;
633 /* The ST Micro variants has a special bit to enable SDIO */
634 if (variant->sdio && host->mmc->card)
635 if (mmc_card_sdio(host->mmc->card))
636 datactrl |= MCI_ST_DPSM_SDIOEN;
638 writel(datactrl, base + MMCIDATACTRL);
639 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
640 mmci_set_mask1(host, irqmask);
643 static void
644 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
646 void __iomem *base = host->base;
648 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
649 cmd->opcode, cmd->arg, cmd->flags);
651 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
652 writel(0, base + MMCICOMMAND);
653 udelay(1);
656 c |= cmd->opcode | MCI_CPSM_ENABLE;
657 if (cmd->flags & MMC_RSP_PRESENT) {
658 if (cmd->flags & MMC_RSP_136)
659 c |= MCI_CPSM_LONGRSP;
660 c |= MCI_CPSM_RESPONSE;
662 if (/*interrupt*/0)
663 c |= MCI_CPSM_INTERRUPT;
665 host->cmd = cmd;
667 writel(cmd->arg, base + MMCIARGUMENT);
668 writel(c, base + MMCICOMMAND);
671 static void
672 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
673 unsigned int status)
675 /* First check for errors */
676 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
677 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
678 u32 remain, success;
680 /* Terminate the DMA transfer */
681 if (dma_inprogress(host))
682 mmci_dma_data_error(host);
685 * Calculate how far we are into the transfer. Note that
686 * the data counter gives the number of bytes transferred
687 * on the MMC bus, not on the host side. On reads, this
688 * can be as much as a FIFO-worth of data ahead. This
689 * matters for FIFO overruns only.
691 remain = readl(host->base + MMCIDATACNT);
692 success = data->blksz * data->blocks - remain;
694 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
695 status, success);
696 if (status & MCI_DATACRCFAIL) {
697 /* Last block was not successful */
698 success -= 1;
699 data->error = -EILSEQ;
700 } else if (status & MCI_DATATIMEOUT) {
701 data->error = -ETIMEDOUT;
702 } else if (status & MCI_STARTBITERR) {
703 data->error = -ECOMM;
704 } else if (status & MCI_TXUNDERRUN) {
705 data->error = -EIO;
706 } else if (status & MCI_RXOVERRUN) {
707 if (success > host->variant->fifosize)
708 success -= host->variant->fifosize;
709 else
710 success = 0;
711 data->error = -EIO;
713 data->bytes_xfered = round_down(success, data->blksz);
716 if (status & MCI_DATABLOCKEND)
717 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
719 if (status & MCI_DATAEND || data->error) {
720 if (dma_inprogress(host))
721 mmci_dma_unmap(host, data);
722 mmci_stop_data(host);
724 if (!data->error)
725 /* The error clause is handled above, success! */
726 data->bytes_xfered = data->blksz * data->blocks;
728 if (!data->stop) {
729 mmci_request_end(host, data->mrq);
730 } else {
731 mmci_start_command(host, data->stop, 0);
736 static void
737 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
738 unsigned int status)
740 void __iomem *base = host->base;
742 host->cmd = NULL;
744 if (status & MCI_CMDTIMEOUT) {
745 cmd->error = -ETIMEDOUT;
746 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
747 cmd->error = -EILSEQ;
748 } else {
749 cmd->resp[0] = readl(base + MMCIRESPONSE0);
750 cmd->resp[1] = readl(base + MMCIRESPONSE1);
751 cmd->resp[2] = readl(base + MMCIRESPONSE2);
752 cmd->resp[3] = readl(base + MMCIRESPONSE3);
755 if (!cmd->data || cmd->error) {
756 if (host->data)
757 mmci_stop_data(host);
758 mmci_request_end(host, cmd->mrq);
759 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
760 mmci_start_data(host, cmd->data);
764 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
766 void __iomem *base = host->base;
767 char *ptr = buffer;
768 u32 status;
769 int host_remain = host->size;
771 do {
772 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
774 if (count > remain)
775 count = remain;
777 if (count <= 0)
778 break;
780 readsl(base + MMCIFIFO, ptr, count >> 2);
782 ptr += count;
783 remain -= count;
784 host_remain -= count;
786 if (remain == 0)
787 break;
789 status = readl(base + MMCISTATUS);
790 } while (status & MCI_RXDATAAVLBL);
792 return ptr - buffer;
795 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
797 struct variant_data *variant = host->variant;
798 void __iomem *base = host->base;
799 char *ptr = buffer;
801 do {
802 unsigned int count, maxcnt;
804 maxcnt = status & MCI_TXFIFOEMPTY ?
805 variant->fifosize : variant->fifohalfsize;
806 count = min(remain, maxcnt);
809 * The ST Micro variant for SDIO transfer sizes
810 * less then 8 bytes should have clock H/W flow
811 * control disabled.
813 if (variant->sdio &&
814 mmc_card_sdio(host->mmc->card)) {
815 if (count < 8)
816 writel(readl(host->base + MMCICLOCK) &
817 ~variant->clkreg_enable,
818 host->base + MMCICLOCK);
819 else
820 writel(readl(host->base + MMCICLOCK) |
821 variant->clkreg_enable,
822 host->base + MMCICLOCK);
826 * SDIO especially may want to send something that is
827 * not divisible by 4 (as opposed to card sectors
828 * etc), and the FIFO only accept full 32-bit writes.
829 * So compensate by adding +3 on the count, a single
830 * byte become a 32bit write, 7 bytes will be two
831 * 32bit writes etc.
833 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
835 ptr += count;
836 remain -= count;
838 if (remain == 0)
839 break;
841 status = readl(base + MMCISTATUS);
842 } while (status & MCI_TXFIFOHALFEMPTY);
844 return ptr - buffer;
848 * PIO data transfer IRQ handler.
850 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
852 struct mmci_host *host = dev_id;
853 struct sg_mapping_iter *sg_miter = &host->sg_miter;
854 struct variant_data *variant = host->variant;
855 void __iomem *base = host->base;
856 unsigned long flags;
857 u32 status;
859 status = readl(base + MMCISTATUS);
861 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
863 local_irq_save(flags);
865 do {
866 unsigned int remain, len;
867 char *buffer;
870 * For write, we only need to test the half-empty flag
871 * here - if the FIFO is completely empty, then by
872 * definition it is more than half empty.
874 * For read, check for data available.
876 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
877 break;
879 if (!sg_miter_next(sg_miter))
880 break;
882 buffer = sg_miter->addr;
883 remain = sg_miter->length;
885 len = 0;
886 if (status & MCI_RXACTIVE)
887 len = mmci_pio_read(host, buffer, remain);
888 if (status & MCI_TXACTIVE)
889 len = mmci_pio_write(host, buffer, remain, status);
891 sg_miter->consumed = len;
893 host->size -= len;
894 remain -= len;
896 if (remain)
897 break;
899 status = readl(base + MMCISTATUS);
900 } while (1);
902 sg_miter_stop(sg_miter);
904 local_irq_restore(flags);
907 * If we have less than the fifo 'half-full' threshold to transfer,
908 * trigger a PIO interrupt as soon as any data is available.
910 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
911 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
914 * If we run out of data, disable the data IRQs; this
915 * prevents a race where the FIFO becomes empty before
916 * the chip itself has disabled the data path, and
917 * stops us racing with our data end IRQ.
919 if (host->size == 0) {
920 mmci_set_mask1(host, 0);
921 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
924 return IRQ_HANDLED;
928 * Handle completion of command and data transfers.
930 static irqreturn_t mmci_irq(int irq, void *dev_id)
932 struct mmci_host *host = dev_id;
933 u32 status;
934 int ret = 0;
936 spin_lock(&host->lock);
938 do {
939 struct mmc_command *cmd;
940 struct mmc_data *data;
942 status = readl(host->base + MMCISTATUS);
944 if (host->singleirq) {
945 if (status & readl(host->base + MMCIMASK1))
946 mmci_pio_irq(irq, dev_id);
948 status &= ~MCI_IRQ1MASK;
951 status &= readl(host->base + MMCIMASK0);
952 writel(status, host->base + MMCICLEAR);
954 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
956 data = host->data;
957 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
958 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
959 MCI_DATABLOCKEND) && data)
960 mmci_data_irq(host, data, status);
962 cmd = host->cmd;
963 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
964 mmci_cmd_irq(host, cmd, status);
966 ret = 1;
967 } while (status);
969 spin_unlock(&host->lock);
971 return IRQ_RETVAL(ret);
974 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
976 struct mmci_host *host = mmc_priv(mmc);
977 unsigned long flags;
979 WARN_ON(host->mrq != NULL);
981 if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
982 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
983 mrq->data->blksz);
984 mrq->cmd->error = -EINVAL;
985 mmc_request_done(mmc, mrq);
986 return;
989 spin_lock_irqsave(&host->lock, flags);
991 host->mrq = mrq;
993 if (mrq->data)
994 mmci_get_next_data(host, mrq->data);
996 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
997 mmci_start_data(host, mrq->data);
999 mmci_start_command(host, mrq->cmd, 0);
1001 spin_unlock_irqrestore(&host->lock, flags);
1004 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1006 struct mmci_host *host = mmc_priv(mmc);
1007 u32 pwr = 0;
1008 unsigned long flags;
1009 int ret;
1011 switch (ios->power_mode) {
1012 case MMC_POWER_OFF:
1013 if (host->vcc)
1014 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1015 break;
1016 case MMC_POWER_UP:
1017 if (host->vcc) {
1018 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1019 if (ret) {
1020 dev_err(mmc_dev(mmc), "unable to set OCR\n");
1022 * The .set_ios() function in the mmc_host_ops
1023 * struct return void, and failing to set the
1024 * power should be rare so we print an error
1025 * and return here.
1027 return;
1030 if (host->plat->vdd_handler)
1031 pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1032 ios->power_mode);
1033 /* The ST version does not have this, fall through to POWER_ON */
1034 if (host->hw_designer != AMBA_VENDOR_ST) {
1035 pwr |= MCI_PWR_UP;
1036 break;
1038 case MMC_POWER_ON:
1039 pwr |= MCI_PWR_ON;
1040 break;
1043 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1044 if (host->hw_designer != AMBA_VENDOR_ST)
1045 pwr |= MCI_ROD;
1046 else {
1048 * The ST Micro variant use the ROD bit for something
1049 * else and only has OD (Open Drain).
1051 pwr |= MCI_OD;
1055 spin_lock_irqsave(&host->lock, flags);
1057 mmci_set_clkreg(host, ios->clock);
1059 if (host->pwr != pwr) {
1060 host->pwr = pwr;
1061 writel(pwr, host->base + MMCIPOWER);
1064 spin_unlock_irqrestore(&host->lock, flags);
1067 static int mmci_get_ro(struct mmc_host *mmc)
1069 struct mmci_host *host = mmc_priv(mmc);
1071 if (host->gpio_wp == -ENOSYS)
1072 return -ENOSYS;
1074 return gpio_get_value_cansleep(host->gpio_wp);
1077 static int mmci_get_cd(struct mmc_host *mmc)
1079 struct mmci_host *host = mmc_priv(mmc);
1080 struct mmci_platform_data *plat = host->plat;
1081 unsigned int status;
1083 if (host->gpio_cd == -ENOSYS) {
1084 if (!plat->status)
1085 return 1; /* Assume always present */
1087 status = plat->status(mmc_dev(host->mmc));
1088 } else
1089 status = !!gpio_get_value_cansleep(host->gpio_cd)
1090 ^ plat->cd_invert;
1093 * Use positive logic throughout - status is zero for no card,
1094 * non-zero for card inserted.
1096 return status;
1099 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1101 struct mmci_host *host = dev_id;
1103 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1105 return IRQ_HANDLED;
1108 static const struct mmc_host_ops mmci_ops = {
1109 .request = mmci_request,
1110 .pre_req = mmci_pre_request,
1111 .post_req = mmci_post_request,
1112 .set_ios = mmci_set_ios,
1113 .get_ro = mmci_get_ro,
1114 .get_cd = mmci_get_cd,
1117 static int __devinit mmci_probe(struct amba_device *dev,
1118 const struct amba_id *id)
1120 struct mmci_platform_data *plat = dev->dev.platform_data;
1121 struct variant_data *variant = id->data;
1122 struct mmci_host *host;
1123 struct mmc_host *mmc;
1124 int ret;
1126 /* must have platform data */
1127 if (!plat) {
1128 ret = -EINVAL;
1129 goto out;
1132 ret = amba_request_regions(dev, DRIVER_NAME);
1133 if (ret)
1134 goto out;
1136 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1137 if (!mmc) {
1138 ret = -ENOMEM;
1139 goto rel_regions;
1142 host = mmc_priv(mmc);
1143 host->mmc = mmc;
1145 host->gpio_wp = -ENOSYS;
1146 host->gpio_cd = -ENOSYS;
1147 host->gpio_cd_irq = -1;
1149 host->hw_designer = amba_manf(dev);
1150 host->hw_revision = amba_rev(dev);
1151 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1152 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1154 host->clk = clk_get(&dev->dev, NULL);
1155 if (IS_ERR(host->clk)) {
1156 ret = PTR_ERR(host->clk);
1157 host->clk = NULL;
1158 goto host_free;
1161 ret = clk_enable(host->clk);
1162 if (ret)
1163 goto clk_free;
1165 host->plat = plat;
1166 host->variant = variant;
1167 host->mclk = clk_get_rate(host->clk);
1169 * According to the spec, mclk is max 100 MHz,
1170 * so we try to adjust the clock down to this,
1171 * (if possible).
1173 if (host->mclk > 100000000) {
1174 ret = clk_set_rate(host->clk, 100000000);
1175 if (ret < 0)
1176 goto clk_disable;
1177 host->mclk = clk_get_rate(host->clk);
1178 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1179 host->mclk);
1181 host->phybase = dev->res.start;
1182 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1183 if (!host->base) {
1184 ret = -ENOMEM;
1185 goto clk_disable;
1188 mmc->ops = &mmci_ops;
1190 * The ARM and ST versions of the block have slightly different
1191 * clock divider equations which means that the minimum divider
1192 * differs too.
1194 if (variant->st_clkdiv)
1195 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1196 else
1197 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1199 * If the platform data supplies a maximum operating
1200 * frequency, this takes precedence. Else, we fall back
1201 * to using the module parameter, which has a (low)
1202 * default value in case it is not specified. Either
1203 * value must not exceed the clock rate into the block,
1204 * of course.
1206 if (plat->f_max)
1207 mmc->f_max = min(host->mclk, plat->f_max);
1208 else
1209 mmc->f_max = min(host->mclk, fmax);
1210 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1212 #ifdef CONFIG_REGULATOR
1213 /* If we're using the regulator framework, try to fetch a regulator */
1214 host->vcc = regulator_get(&dev->dev, "vmmc");
1215 if (IS_ERR(host->vcc))
1216 host->vcc = NULL;
1217 else {
1218 int mask = mmc_regulator_get_ocrmask(host->vcc);
1220 if (mask < 0)
1221 dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1222 mask);
1223 else {
1224 host->mmc->ocr_avail = (u32) mask;
1225 if (plat->ocr_mask)
1226 dev_warn(&dev->dev,
1227 "Provided ocr_mask/setpower will not be used "
1228 "(using regulator instead)\n");
1231 #endif
1232 /* Fall back to platform data if no regulator is found */
1233 if (host->vcc == NULL)
1234 mmc->ocr_avail = plat->ocr_mask;
1235 mmc->caps = plat->capabilities;
1238 * We can do SGIO
1240 mmc->max_segs = NR_SG;
1243 * Since only a certain number of bits are valid in the data length
1244 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1245 * single request.
1247 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1250 * Set the maximum segment size. Since we aren't doing DMA
1251 * (yet) we are only limited by the data length register.
1253 mmc->max_seg_size = mmc->max_req_size;
1256 * Block size can be up to 2048 bytes, but must be a power of two.
1258 mmc->max_blk_size = 2048;
1261 * No limit on the number of blocks transferred.
1263 mmc->max_blk_count = mmc->max_req_size;
1265 spin_lock_init(&host->lock);
1267 writel(0, host->base + MMCIMASK0);
1268 writel(0, host->base + MMCIMASK1);
1269 writel(0xfff, host->base + MMCICLEAR);
1271 if (gpio_is_valid(plat->gpio_cd)) {
1272 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1273 if (ret == 0)
1274 ret = gpio_direction_input(plat->gpio_cd);
1275 if (ret == 0)
1276 host->gpio_cd = plat->gpio_cd;
1277 else if (ret != -ENOSYS)
1278 goto err_gpio_cd;
1281 * A gpio pin that will detect cards when inserted and removed
1282 * will most likely want to trigger on the edges if it is
1283 * 0 when ejected and 1 when inserted (or mutatis mutandis
1284 * for the inverted case) so we request triggers on both
1285 * edges.
1287 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1288 mmci_cd_irq,
1289 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1290 DRIVER_NAME " (cd)", host);
1291 if (ret >= 0)
1292 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1294 if (gpio_is_valid(plat->gpio_wp)) {
1295 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1296 if (ret == 0)
1297 ret = gpio_direction_input(plat->gpio_wp);
1298 if (ret == 0)
1299 host->gpio_wp = plat->gpio_wp;
1300 else if (ret != -ENOSYS)
1301 goto err_gpio_wp;
1304 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1305 && host->gpio_cd_irq < 0)
1306 mmc->caps |= MMC_CAP_NEEDS_POLL;
1308 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1309 if (ret)
1310 goto unmap;
1312 if (dev->irq[1] == NO_IRQ)
1313 host->singleirq = true;
1314 else {
1315 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1316 DRIVER_NAME " (pio)", host);
1317 if (ret)
1318 goto irq0_free;
1321 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1323 amba_set_drvdata(dev, mmc);
1325 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1326 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1327 amba_rev(dev), (unsigned long long)dev->res.start,
1328 dev->irq[0], dev->irq[1]);
1330 mmci_dma_setup(host);
1332 mmc_add_host(mmc);
1334 return 0;
1336 irq0_free:
1337 free_irq(dev->irq[0], host);
1338 unmap:
1339 if (host->gpio_wp != -ENOSYS)
1340 gpio_free(host->gpio_wp);
1341 err_gpio_wp:
1342 if (host->gpio_cd_irq >= 0)
1343 free_irq(host->gpio_cd_irq, host);
1344 if (host->gpio_cd != -ENOSYS)
1345 gpio_free(host->gpio_cd);
1346 err_gpio_cd:
1347 iounmap(host->base);
1348 clk_disable:
1349 clk_disable(host->clk);
1350 clk_free:
1351 clk_put(host->clk);
1352 host_free:
1353 mmc_free_host(mmc);
1354 rel_regions:
1355 amba_release_regions(dev);
1356 out:
1357 return ret;
1360 static int __devexit mmci_remove(struct amba_device *dev)
1362 struct mmc_host *mmc = amba_get_drvdata(dev);
1364 amba_set_drvdata(dev, NULL);
1366 if (mmc) {
1367 struct mmci_host *host = mmc_priv(mmc);
1369 mmc_remove_host(mmc);
1371 writel(0, host->base + MMCIMASK0);
1372 writel(0, host->base + MMCIMASK1);
1374 writel(0, host->base + MMCICOMMAND);
1375 writel(0, host->base + MMCIDATACTRL);
1377 mmci_dma_release(host);
1378 free_irq(dev->irq[0], host);
1379 if (!host->singleirq)
1380 free_irq(dev->irq[1], host);
1382 if (host->gpio_wp != -ENOSYS)
1383 gpio_free(host->gpio_wp);
1384 if (host->gpio_cd_irq >= 0)
1385 free_irq(host->gpio_cd_irq, host);
1386 if (host->gpio_cd != -ENOSYS)
1387 gpio_free(host->gpio_cd);
1389 iounmap(host->base);
1390 clk_disable(host->clk);
1391 clk_put(host->clk);
1393 if (host->vcc)
1394 mmc_regulator_set_ocr(mmc, host->vcc, 0);
1395 regulator_put(host->vcc);
1397 mmc_free_host(mmc);
1399 amba_release_regions(dev);
1402 return 0;
1405 #ifdef CONFIG_PM
1406 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1408 struct mmc_host *mmc = amba_get_drvdata(dev);
1409 int ret = 0;
1411 if (mmc) {
1412 struct mmci_host *host = mmc_priv(mmc);
1414 ret = mmc_suspend_host(mmc);
1415 if (ret == 0)
1416 writel(0, host->base + MMCIMASK0);
1419 return ret;
1422 static int mmci_resume(struct amba_device *dev)
1424 struct mmc_host *mmc = amba_get_drvdata(dev);
1425 int ret = 0;
1427 if (mmc) {
1428 struct mmci_host *host = mmc_priv(mmc);
1430 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1432 ret = mmc_resume_host(mmc);
1435 return ret;
1437 #else
1438 #define mmci_suspend NULL
1439 #define mmci_resume NULL
1440 #endif
1442 static struct amba_id mmci_ids[] = {
1444 .id = 0x00041180,
1445 .mask = 0xff0fffff,
1446 .data = &variant_arm,
1449 .id = 0x01041180,
1450 .mask = 0xff0fffff,
1451 .data = &variant_arm_extended_fifo,
1454 .id = 0x00041181,
1455 .mask = 0x000fffff,
1456 .data = &variant_arm,
1458 /* ST Micro variants */
1460 .id = 0x00180180,
1461 .mask = 0x00ffffff,
1462 .data = &variant_u300,
1465 .id = 0x00280180,
1466 .mask = 0x00ffffff,
1467 .data = &variant_u300,
1470 .id = 0x00480180,
1471 .mask = 0xf0ffffff,
1472 .data = &variant_ux500,
1475 .id = 0x10480180,
1476 .mask = 0xf0ffffff,
1477 .data = &variant_ux500v2,
1479 { 0, 0 },
1482 static struct amba_driver mmci_driver = {
1483 .drv = {
1484 .name = DRIVER_NAME,
1486 .probe = mmci_probe,
1487 .remove = __devexit_p(mmci_remove),
1488 .suspend = mmci_suspend,
1489 .resume = mmci_resume,
1490 .id_table = mmci_ids,
1493 static int __init mmci_init(void)
1495 return amba_driver_register(&mmci_driver);
1498 static void __exit mmci_exit(void)
1500 amba_driver_unregister(&mmci_driver);
1503 module_init(mmci_init);
1504 module_exit(mmci_exit);
1505 module_param(fmax, uint, 0444);
1507 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1508 MODULE_LICENSE("GPL");