mmc: sdhci: Fix tuning timer incorrect setting when suspending host
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / xen / swiotlb-xen.c
blobfd60dffeb0fc79f72d535ea9bc9a8931c5153477
1 /*
2 * Copyright 2010
3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <xen/swiotlb-xen.h>
39 #include <xen/page.h>
40 #include <xen/xen-ops.h>
42 * Used to do a quick range check in swiotlb_tbl_unmap_single and
43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
44 * API.
47 static char *xen_io_tlb_start, *xen_io_tlb_end;
48 static unsigned long xen_io_tlb_nslabs;
50 * Quick lookup value of the bus address of the IOTLB.
53 u64 start_dma_addr;
55 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
57 return phys_to_machine(XPADDR(paddr)).maddr;
60 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
62 return machine_to_phys(XMADDR(baddr)).paddr;
65 static dma_addr_t xen_virt_to_bus(void *address)
67 return xen_phys_to_bus(virt_to_phys(address));
70 static int check_pages_physically_contiguous(unsigned long pfn,
71 unsigned int offset,
72 size_t length)
74 unsigned long next_mfn;
75 int i;
76 int nr_pages;
78 next_mfn = pfn_to_mfn(pfn);
79 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
81 for (i = 1; i < nr_pages; i++) {
82 if (pfn_to_mfn(++pfn) != ++next_mfn)
83 return 0;
85 return 1;
88 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
90 unsigned long pfn = PFN_DOWN(p);
91 unsigned int offset = p & ~PAGE_MASK;
93 if (offset + size <= PAGE_SIZE)
94 return 0;
95 if (check_pages_physically_contiguous(pfn, offset, size))
96 return 0;
97 return 1;
100 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
102 unsigned long mfn = PFN_DOWN(dma_addr);
103 unsigned long pfn = mfn_to_local_pfn(mfn);
104 phys_addr_t paddr;
106 /* If the address is outside our domain, it CAN
107 * have the same virtual address as another address
108 * in our domain. Therefore _only_ check address within our domain.
110 if (pfn_valid(pfn)) {
111 paddr = PFN_PHYS(pfn);
112 return paddr >= virt_to_phys(xen_io_tlb_start) &&
113 paddr < virt_to_phys(xen_io_tlb_end);
115 return 0;
118 static int max_dma_bits = 32;
120 static int
121 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
123 int i, rc;
124 int dma_bits;
126 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
128 i = 0;
129 do {
130 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
132 do {
133 rc = xen_create_contiguous_region(
134 (unsigned long)buf + (i << IO_TLB_SHIFT),
135 get_order(slabs << IO_TLB_SHIFT),
136 dma_bits);
137 } while (rc && dma_bits++ < max_dma_bits);
138 if (rc)
139 return rc;
141 i += slabs;
142 } while (i < nslabs);
143 return 0;
146 void __init xen_swiotlb_init(int verbose)
148 unsigned long bytes;
149 int rc;
150 unsigned long nr_tbl;
152 nr_tbl = swioltb_nr_tbl();
153 if (nr_tbl)
154 xen_io_tlb_nslabs = nr_tbl;
155 else {
156 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
157 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
160 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
163 * Get IO TLB memory from any location.
165 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
166 if (!xen_io_tlb_start)
167 panic("Cannot allocate SWIOTLB buffer");
169 xen_io_tlb_end = xen_io_tlb_start + bytes;
171 * And replace that memory with pages under 4GB.
173 rc = xen_swiotlb_fixup(xen_io_tlb_start,
174 bytes,
175 xen_io_tlb_nslabs);
176 if (rc)
177 goto error;
179 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
180 swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
182 return;
183 error:
184 panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
185 "We either don't have the permission or you do not have enough"\
186 "free memory under 4GB!\n", rc);
189 void *
190 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
191 dma_addr_t *dma_handle, gfp_t flags)
193 void *ret;
194 int order = get_order(size);
195 u64 dma_mask = DMA_BIT_MASK(32);
196 unsigned long vstart;
199 * Ignore region specifiers - the kernel's ideas of
200 * pseudo-phys memory layout has nothing to do with the
201 * machine physical layout. We can't allocate highmem
202 * because we can't return a pointer to it.
204 flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
206 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
207 return ret;
209 vstart = __get_free_pages(flags, order);
210 ret = (void *)vstart;
212 if (hwdev && hwdev->coherent_dma_mask)
213 dma_mask = dma_alloc_coherent_mask(hwdev, flags);
215 if (ret) {
216 if (xen_create_contiguous_region(vstart, order,
217 fls64(dma_mask)) != 0) {
218 free_pages(vstart, order);
219 return NULL;
221 memset(ret, 0, size);
222 *dma_handle = virt_to_machine(ret).maddr;
224 return ret;
226 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
228 void
229 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
230 dma_addr_t dev_addr)
232 int order = get_order(size);
234 if (dma_release_from_coherent(hwdev, order, vaddr))
235 return;
237 xen_destroy_contiguous_region((unsigned long)vaddr, order);
238 free_pages((unsigned long)vaddr, order);
240 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
244 * Map a single buffer of the indicated size for DMA in streaming mode. The
245 * physical address to use is returned.
247 * Once the device is given the dma address, the device owns this memory until
248 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
250 dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
251 unsigned long offset, size_t size,
252 enum dma_data_direction dir,
253 struct dma_attrs *attrs)
255 phys_addr_t phys = page_to_phys(page) + offset;
256 dma_addr_t dev_addr = xen_phys_to_bus(phys);
257 void *map;
259 BUG_ON(dir == DMA_NONE);
261 * If the address happens to be in the device's DMA window,
262 * we can safely return the device addr and not worry about bounce
263 * buffering it.
265 if (dma_capable(dev, dev_addr, size) &&
266 !range_straddles_page_boundary(phys, size) && !swiotlb_force)
267 return dev_addr;
270 * Oh well, have to allocate and map a bounce buffer.
272 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
273 if (!map)
274 return DMA_ERROR_CODE;
276 dev_addr = xen_virt_to_bus(map);
279 * Ensure that the address returned is DMA'ble
281 if (!dma_capable(dev, dev_addr, size)) {
282 swiotlb_tbl_unmap_single(dev, map, size, dir);
283 dev_addr = 0;
285 return dev_addr;
287 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
290 * Unmap a single streaming mode DMA translation. The dma_addr and size must
291 * match what was provided for in a previous xen_swiotlb_map_page call. All
292 * other usages are undefined.
294 * After this call, reads by the cpu to the buffer are guaranteed to see
295 * whatever the device wrote there.
297 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
298 size_t size, enum dma_data_direction dir)
300 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
302 BUG_ON(dir == DMA_NONE);
304 /* NOTE: We use dev_addr here, not paddr! */
305 if (is_xen_swiotlb_buffer(dev_addr)) {
306 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
307 return;
310 if (dir != DMA_FROM_DEVICE)
311 return;
314 * phys_to_virt doesn't work with hihgmem page but we could
315 * call dma_mark_clean() with hihgmem page here. However, we
316 * are fine since dma_mark_clean() is null on POWERPC. We can
317 * make dma_mark_clean() take a physical address if necessary.
319 dma_mark_clean(phys_to_virt(paddr), size);
322 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
323 size_t size, enum dma_data_direction dir,
324 struct dma_attrs *attrs)
326 xen_unmap_single(hwdev, dev_addr, size, dir);
328 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
331 * Make physical memory consistent for a single streaming mode DMA translation
332 * after a transfer.
334 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
335 * using the cpu, yet do not wish to teardown the dma mapping, you must
336 * call this function before doing so. At the next point you give the dma
337 * address back to the card, you must first perform a
338 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
340 static void
341 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
342 size_t size, enum dma_data_direction dir,
343 enum dma_sync_target target)
345 phys_addr_t paddr = xen_bus_to_phys(dev_addr);
347 BUG_ON(dir == DMA_NONE);
349 /* NOTE: We use dev_addr here, not paddr! */
350 if (is_xen_swiotlb_buffer(dev_addr)) {
351 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
352 target);
353 return;
356 if (dir != DMA_FROM_DEVICE)
357 return;
359 dma_mark_clean(phys_to_virt(paddr), size);
362 void
363 xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
364 size_t size, enum dma_data_direction dir)
366 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
368 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
370 void
371 xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
372 size_t size, enum dma_data_direction dir)
374 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
376 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
379 * Map a set of buffers described by scatterlist in streaming mode for DMA.
380 * This is the scatter-gather version of the above xen_swiotlb_map_page
381 * interface. Here the scatter gather list elements are each tagged with the
382 * appropriate dma address and length. They are obtained via
383 * sg_dma_{address,length}(SG).
385 * NOTE: An implementation may be able to use a smaller number of
386 * DMA address/length pairs than there are SG table elements.
387 * (for example via virtual mapping capabilities)
388 * The routine returns the number of addr/length pairs actually
389 * used, at most nents.
391 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
392 * same here.
395 xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
396 int nelems, enum dma_data_direction dir,
397 struct dma_attrs *attrs)
399 struct scatterlist *sg;
400 int i;
402 BUG_ON(dir == DMA_NONE);
404 for_each_sg(sgl, sg, nelems, i) {
405 phys_addr_t paddr = sg_phys(sg);
406 dma_addr_t dev_addr = xen_phys_to_bus(paddr);
408 if (swiotlb_force ||
409 !dma_capable(hwdev, dev_addr, sg->length) ||
410 range_straddles_page_boundary(paddr, sg->length)) {
411 void *map = swiotlb_tbl_map_single(hwdev,
412 start_dma_addr,
413 sg_phys(sg),
414 sg->length, dir);
415 if (!map) {
416 /* Don't panic here, we expect map_sg users
417 to do proper error handling. */
418 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
419 attrs);
420 sgl[0].dma_length = 0;
421 return DMA_ERROR_CODE;
423 sg->dma_address = xen_virt_to_bus(map);
424 } else
425 sg->dma_address = dev_addr;
426 sg->dma_length = sg->length;
428 return nelems;
430 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
433 xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
434 enum dma_data_direction dir)
436 return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
438 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
441 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
442 * concerning calls here are the same as for swiotlb_unmap_page() above.
444 void
445 xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
446 int nelems, enum dma_data_direction dir,
447 struct dma_attrs *attrs)
449 struct scatterlist *sg;
450 int i;
452 BUG_ON(dir == DMA_NONE);
454 for_each_sg(sgl, sg, nelems, i)
455 xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
458 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
460 void
461 xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
462 enum dma_data_direction dir)
464 return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
466 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
469 * Make physical memory consistent for a set of streaming mode DMA translations
470 * after a transfer.
472 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
473 * and usage.
475 static void
476 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
477 int nelems, enum dma_data_direction dir,
478 enum dma_sync_target target)
480 struct scatterlist *sg;
481 int i;
483 for_each_sg(sgl, sg, nelems, i)
484 xen_swiotlb_sync_single(hwdev, sg->dma_address,
485 sg->dma_length, dir, target);
488 void
489 xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
490 int nelems, enum dma_data_direction dir)
492 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
494 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
496 void
497 xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
498 int nelems, enum dma_data_direction dir)
500 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
502 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
505 xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
507 return !dma_addr;
509 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
512 * Return whether the given device DMA address mask can be supported
513 * properly. For example, if your device can only drive the low 24-bits
514 * during bus mastering, then you would pass 0x00ffffff as the mask to
515 * this function.
518 xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
520 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
522 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);