ext3: Fix dirtying of journalled buffers in data=journal mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext3 / inode.c
blob001eb0e2d48e2e051936e57eba6c3e173e19dff9
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
44 static int ext3_writepage_trans_blocks(struct inode *inode);
47 * Test whether an inode is a fast symlink.
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67 struct buffer_head *bh, ext3_fsblk_t blocknr)
69 int err;
71 might_sleep();
73 BUFFER_TRACE(bh, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
91 return 0;
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __func__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
110 static unsigned long blocks_for_truncate(struct inode *inode)
112 unsigned long needed;
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
127 if (needed > EXT3_MAX_TRANS_DATA)
128 needed = EXT3_MAX_TRANS_DATA;
130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
143 static handle_t *start_transaction(struct inode *inode)
145 handle_t *result;
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
156 * Try to extend this transaction for the purposes of truncation.
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
177 int ret;
179 jbd_debug(2, "restarting handle %p\n", handle);
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
186 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188 mutex_lock(&EXT3_I(inode)->truncate_mutex);
189 return ret;
193 * Called at the last iput() if i_nlink is zero.
195 void ext3_delete_inode (struct inode * inode)
197 handle_t *handle;
199 if (!is_bad_inode(inode))
200 dquot_initialize(inode);
202 truncate_inode_pages(&inode->i_data, 0);
204 if (is_bad_inode(inode))
205 goto no_delete;
207 handle = start_transaction(inode);
208 if (IS_ERR(handle)) {
210 * If we're going to skip the normal cleanup, we still need to
211 * make sure that the in-core orphan linked list is properly
212 * cleaned up.
214 ext3_orphan_del(NULL, inode);
215 goto no_delete;
218 if (IS_SYNC(inode))
219 handle->h_sync = 1;
220 inode->i_size = 0;
221 if (inode->i_blocks)
222 ext3_truncate(inode);
224 * Kill off the orphan record which ext3_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext3_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext3_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
231 ext3_orphan_del(handle, inode);
232 EXT3_I(inode)->i_dtime = get_seconds();
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
241 if (ext3_mark_inode_dirty(handle, inode))
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
245 ext3_free_inode(handle, inode);
246 ext3_journal_stop(handle);
247 return;
248 no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
252 typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256 } Indirect;
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
260 p->key = *(p->p = v);
261 p->bh = bh;
264 static int verify_chain(Indirect *from, Indirect *to)
266 while (from <= to && from->key == *from->p)
267 from++;
268 return (from > to);
272 * ext3_block_to_path - parse the block number into array of offsets
273 * @inode: inode in question (we are only interested in its superblock)
274 * @i_block: block number to be parsed
275 * @offsets: array to store the offsets in
276 * @boundary: set this non-zero if the referred-to block is likely to be
277 * followed (on disk) by an indirect block.
279 * To store the locations of file's data ext3 uses a data structure common
280 * for UNIX filesystems - tree of pointers anchored in the inode, with
281 * data blocks at leaves and indirect blocks in intermediate nodes.
282 * This function translates the block number into path in that tree -
283 * return value is the path length and @offsets[n] is the offset of
284 * pointer to (n+1)th node in the nth one. If @block is out of range
285 * (negative or too large) warning is printed and zero returned.
287 * Note: function doesn't find node addresses, so no IO is needed. All
288 * we need to know is the capacity of indirect blocks (taken from the
289 * inode->i_sb).
293 * Portability note: the last comparison (check that we fit into triple
294 * indirect block) is spelled differently, because otherwise on an
295 * architecture with 32-bit longs and 8Kb pages we might get into trouble
296 * if our filesystem had 8Kb blocks. We might use long long, but that would
297 * kill us on x86. Oh, well, at least the sign propagation does not matter -
298 * i_block would have to be negative in the very beginning, so we would not
299 * get there at all.
302 static int ext3_block_to_path(struct inode *inode,
303 long i_block, int offsets[4], int *boundary)
305 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
306 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
307 const long direct_blocks = EXT3_NDIR_BLOCKS,
308 indirect_blocks = ptrs,
309 double_blocks = (1 << (ptrs_bits * 2));
310 int n = 0;
311 int final = 0;
313 if (i_block < 0) {
314 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
315 } else if (i_block < direct_blocks) {
316 offsets[n++] = i_block;
317 final = direct_blocks;
318 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
319 offsets[n++] = EXT3_IND_BLOCK;
320 offsets[n++] = i_block;
321 final = ptrs;
322 } else if ((i_block -= indirect_blocks) < double_blocks) {
323 offsets[n++] = EXT3_DIND_BLOCK;
324 offsets[n++] = i_block >> ptrs_bits;
325 offsets[n++] = i_block & (ptrs - 1);
326 final = ptrs;
327 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
328 offsets[n++] = EXT3_TIND_BLOCK;
329 offsets[n++] = i_block >> (ptrs_bits * 2);
330 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
331 offsets[n++] = i_block & (ptrs - 1);
332 final = ptrs;
333 } else {
334 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
336 if (boundary)
337 *boundary = final - 1 - (i_block & (ptrs - 1));
338 return n;
342 * ext3_get_branch - read the chain of indirect blocks leading to data
343 * @inode: inode in question
344 * @depth: depth of the chain (1 - direct pointer, etc.)
345 * @offsets: offsets of pointers in inode/indirect blocks
346 * @chain: place to store the result
347 * @err: here we store the error value
349 * Function fills the array of triples <key, p, bh> and returns %NULL
350 * if everything went OK or the pointer to the last filled triple
351 * (incomplete one) otherwise. Upon the return chain[i].key contains
352 * the number of (i+1)-th block in the chain (as it is stored in memory,
353 * i.e. little-endian 32-bit), chain[i].p contains the address of that
354 * number (it points into struct inode for i==0 and into the bh->b_data
355 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
356 * block for i>0 and NULL for i==0. In other words, it holds the block
357 * numbers of the chain, addresses they were taken from (and where we can
358 * verify that chain did not change) and buffer_heads hosting these
359 * numbers.
361 * Function stops when it stumbles upon zero pointer (absent block)
362 * (pointer to last triple returned, *@err == 0)
363 * or when it gets an IO error reading an indirect block
364 * (ditto, *@err == -EIO)
365 * or when it notices that chain had been changed while it was reading
366 * (ditto, *@err == -EAGAIN)
367 * or when it reads all @depth-1 indirect blocks successfully and finds
368 * the whole chain, all way to the data (returns %NULL, *err == 0).
370 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
371 Indirect chain[4], int *err)
373 struct super_block *sb = inode->i_sb;
374 Indirect *p = chain;
375 struct buffer_head *bh;
377 *err = 0;
378 /* i_data is not going away, no lock needed */
379 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
380 if (!p->key)
381 goto no_block;
382 while (--depth) {
383 bh = sb_bread(sb, le32_to_cpu(p->key));
384 if (!bh)
385 goto failure;
386 /* Reader: pointers */
387 if (!verify_chain(chain, p))
388 goto changed;
389 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
390 /* Reader: end */
391 if (!p->key)
392 goto no_block;
394 return NULL;
396 changed:
397 brelse(bh);
398 *err = -EAGAIN;
399 goto no_block;
400 failure:
401 *err = -EIO;
402 no_block:
403 return p;
407 * ext3_find_near - find a place for allocation with sufficient locality
408 * @inode: owner
409 * @ind: descriptor of indirect block.
411 * This function returns the preferred place for block allocation.
412 * It is used when heuristic for sequential allocation fails.
413 * Rules are:
414 * + if there is a block to the left of our position - allocate near it.
415 * + if pointer will live in indirect block - allocate near that block.
416 * + if pointer will live in inode - allocate in the same
417 * cylinder group.
419 * In the latter case we colour the starting block by the callers PID to
420 * prevent it from clashing with concurrent allocations for a different inode
421 * in the same block group. The PID is used here so that functionally related
422 * files will be close-by on-disk.
424 * Caller must make sure that @ind is valid and will stay that way.
426 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
428 struct ext3_inode_info *ei = EXT3_I(inode);
429 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
430 __le32 *p;
431 ext3_fsblk_t bg_start;
432 ext3_grpblk_t colour;
434 /* Try to find previous block */
435 for (p = ind->p - 1; p >= start; p--) {
436 if (*p)
437 return le32_to_cpu(*p);
440 /* No such thing, so let's try location of indirect block */
441 if (ind->bh)
442 return ind->bh->b_blocknr;
445 * It is going to be referred to from the inode itself? OK, just put it
446 * into the same cylinder group then.
448 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
449 colour = (current->pid % 16) *
450 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
451 return bg_start + colour;
455 * ext3_find_goal - find a preferred place for allocation.
456 * @inode: owner
457 * @block: block we want
458 * @partial: pointer to the last triple within a chain
460 * Normally this function find the preferred place for block allocation,
461 * returns it.
464 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
465 Indirect *partial)
467 struct ext3_block_alloc_info *block_i;
469 block_i = EXT3_I(inode)->i_block_alloc_info;
472 * try the heuristic for sequential allocation,
473 * failing that at least try to get decent locality.
475 if (block_i && (block == block_i->last_alloc_logical_block + 1)
476 && (block_i->last_alloc_physical_block != 0)) {
477 return block_i->last_alloc_physical_block + 1;
480 return ext3_find_near(inode, partial);
484 * ext3_blks_to_allocate: Look up the block map and count the number
485 * of direct blocks need to be allocated for the given branch.
487 * @branch: chain of indirect blocks
488 * @k: number of blocks need for indirect blocks
489 * @blks: number of data blocks to be mapped.
490 * @blocks_to_boundary: the offset in the indirect block
492 * return the total number of blocks to be allocate, including the
493 * direct and indirect blocks.
495 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
496 int blocks_to_boundary)
498 unsigned long count = 0;
501 * Simple case, [t,d]Indirect block(s) has not allocated yet
502 * then it's clear blocks on that path have not allocated
504 if (k > 0) {
505 /* right now we don't handle cross boundary allocation */
506 if (blks < blocks_to_boundary + 1)
507 count += blks;
508 else
509 count += blocks_to_boundary + 1;
510 return count;
513 count++;
514 while (count < blks && count <= blocks_to_boundary &&
515 le32_to_cpu(*(branch[0].p + count)) == 0) {
516 count++;
518 return count;
522 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
523 * @indirect_blks: the number of blocks need to allocate for indirect
524 * blocks
526 * @new_blocks: on return it will store the new block numbers for
527 * the indirect blocks(if needed) and the first direct block,
528 * @blks: on return it will store the total number of allocated
529 * direct blocks
531 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
532 ext3_fsblk_t goal, int indirect_blks, int blks,
533 ext3_fsblk_t new_blocks[4], int *err)
535 int target, i;
536 unsigned long count = 0;
537 int index = 0;
538 ext3_fsblk_t current_block = 0;
539 int ret = 0;
542 * Here we try to allocate the requested multiple blocks at once,
543 * on a best-effort basis.
544 * To build a branch, we should allocate blocks for
545 * the indirect blocks(if not allocated yet), and at least
546 * the first direct block of this branch. That's the
547 * minimum number of blocks need to allocate(required)
549 target = blks + indirect_blks;
551 while (1) {
552 count = target;
553 /* allocating blocks for indirect blocks and direct blocks */
554 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
555 if (*err)
556 goto failed_out;
558 target -= count;
559 /* allocate blocks for indirect blocks */
560 while (index < indirect_blks && count) {
561 new_blocks[index++] = current_block++;
562 count--;
565 if (count > 0)
566 break;
569 /* save the new block number for the first direct block */
570 new_blocks[index] = current_block;
572 /* total number of blocks allocated for direct blocks */
573 ret = count;
574 *err = 0;
575 return ret;
576 failed_out:
577 for (i = 0; i <index; i++)
578 ext3_free_blocks(handle, inode, new_blocks[i], 1);
579 return ret;
583 * ext3_alloc_branch - allocate and set up a chain of blocks.
584 * @inode: owner
585 * @indirect_blks: number of allocated indirect blocks
586 * @blks: number of allocated direct blocks
587 * @offsets: offsets (in the blocks) to store the pointers to next.
588 * @branch: place to store the chain in.
590 * This function allocates blocks, zeroes out all but the last one,
591 * links them into chain and (if we are synchronous) writes them to disk.
592 * In other words, it prepares a branch that can be spliced onto the
593 * inode. It stores the information about that chain in the branch[], in
594 * the same format as ext3_get_branch() would do. We are calling it after
595 * we had read the existing part of chain and partial points to the last
596 * triple of that (one with zero ->key). Upon the exit we have the same
597 * picture as after the successful ext3_get_block(), except that in one
598 * place chain is disconnected - *branch->p is still zero (we did not
599 * set the last link), but branch->key contains the number that should
600 * be placed into *branch->p to fill that gap.
602 * If allocation fails we free all blocks we've allocated (and forget
603 * their buffer_heads) and return the error value the from failed
604 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
605 * as described above and return 0.
607 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
608 int indirect_blks, int *blks, ext3_fsblk_t goal,
609 int *offsets, Indirect *branch)
611 int blocksize = inode->i_sb->s_blocksize;
612 int i, n = 0;
613 int err = 0;
614 struct buffer_head *bh;
615 int num;
616 ext3_fsblk_t new_blocks[4];
617 ext3_fsblk_t current_block;
619 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
620 *blks, new_blocks, &err);
621 if (err)
622 return err;
624 branch[0].key = cpu_to_le32(new_blocks[0]);
626 * metadata blocks and data blocks are allocated.
628 for (n = 1; n <= indirect_blks; n++) {
630 * Get buffer_head for parent block, zero it out
631 * and set the pointer to new one, then send
632 * parent to disk.
634 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
635 branch[n].bh = bh;
636 lock_buffer(bh);
637 BUFFER_TRACE(bh, "call get_create_access");
638 err = ext3_journal_get_create_access(handle, bh);
639 if (err) {
640 unlock_buffer(bh);
641 brelse(bh);
642 goto failed;
645 memset(bh->b_data, 0, blocksize);
646 branch[n].p = (__le32 *) bh->b_data + offsets[n];
647 branch[n].key = cpu_to_le32(new_blocks[n]);
648 *branch[n].p = branch[n].key;
649 if ( n == indirect_blks) {
650 current_block = new_blocks[n];
652 * End of chain, update the last new metablock of
653 * the chain to point to the new allocated
654 * data blocks numbers
656 for (i=1; i < num; i++)
657 *(branch[n].p + i) = cpu_to_le32(++current_block);
659 BUFFER_TRACE(bh, "marking uptodate");
660 set_buffer_uptodate(bh);
661 unlock_buffer(bh);
663 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
664 err = ext3_journal_dirty_metadata(handle, bh);
665 if (err)
666 goto failed;
668 *blks = num;
669 return err;
670 failed:
671 /* Allocation failed, free what we already allocated */
672 for (i = 1; i <= n ; i++) {
673 BUFFER_TRACE(branch[i].bh, "call journal_forget");
674 ext3_journal_forget(handle, branch[i].bh);
676 for (i = 0; i <indirect_blks; i++)
677 ext3_free_blocks(handle, inode, new_blocks[i], 1);
679 ext3_free_blocks(handle, inode, new_blocks[i], num);
681 return err;
685 * ext3_splice_branch - splice the allocated branch onto inode.
686 * @inode: owner
687 * @block: (logical) number of block we are adding
688 * @chain: chain of indirect blocks (with a missing link - see
689 * ext3_alloc_branch)
690 * @where: location of missing link
691 * @num: number of indirect blocks we are adding
692 * @blks: number of direct blocks we are adding
694 * This function fills the missing link and does all housekeeping needed in
695 * inode (->i_blocks, etc.). In case of success we end up with the full
696 * chain to new block and return 0.
698 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
699 long block, Indirect *where, int num, int blks)
701 int i;
702 int err = 0;
703 struct ext3_block_alloc_info *block_i;
704 ext3_fsblk_t current_block;
705 struct ext3_inode_info *ei = EXT3_I(inode);
707 block_i = ei->i_block_alloc_info;
709 * If we're splicing into a [td]indirect block (as opposed to the
710 * inode) then we need to get write access to the [td]indirect block
711 * before the splice.
713 if (where->bh) {
714 BUFFER_TRACE(where->bh, "get_write_access");
715 err = ext3_journal_get_write_access(handle, where->bh);
716 if (err)
717 goto err_out;
719 /* That's it */
721 *where->p = where->key;
724 * Update the host buffer_head or inode to point to more just allocated
725 * direct blocks blocks
727 if (num == 0 && blks > 1) {
728 current_block = le32_to_cpu(where->key) + 1;
729 for (i = 1; i < blks; i++)
730 *(where->p + i ) = cpu_to_le32(current_block++);
734 * update the most recently allocated logical & physical block
735 * in i_block_alloc_info, to assist find the proper goal block for next
736 * allocation
738 if (block_i) {
739 block_i->last_alloc_logical_block = block + blks - 1;
740 block_i->last_alloc_physical_block =
741 le32_to_cpu(where[num].key) + blks - 1;
744 /* We are done with atomic stuff, now do the rest of housekeeping */
746 inode->i_ctime = CURRENT_TIME_SEC;
747 ext3_mark_inode_dirty(handle, inode);
748 /* ext3_mark_inode_dirty already updated i_sync_tid */
749 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
751 /* had we spliced it onto indirect block? */
752 if (where->bh) {
754 * If we spliced it onto an indirect block, we haven't
755 * altered the inode. Note however that if it is being spliced
756 * onto an indirect block at the very end of the file (the
757 * file is growing) then we *will* alter the inode to reflect
758 * the new i_size. But that is not done here - it is done in
759 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
761 jbd_debug(5, "splicing indirect only\n");
762 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
763 err = ext3_journal_dirty_metadata(handle, where->bh);
764 if (err)
765 goto err_out;
766 } else {
768 * OK, we spliced it into the inode itself on a direct block.
769 * Inode was dirtied above.
771 jbd_debug(5, "splicing direct\n");
773 return err;
775 err_out:
776 for (i = 1; i <= num; i++) {
777 BUFFER_TRACE(where[i].bh, "call journal_forget");
778 ext3_journal_forget(handle, where[i].bh);
779 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
781 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
783 return err;
787 * Allocation strategy is simple: if we have to allocate something, we will
788 * have to go the whole way to leaf. So let's do it before attaching anything
789 * to tree, set linkage between the newborn blocks, write them if sync is
790 * required, recheck the path, free and repeat if check fails, otherwise
791 * set the last missing link (that will protect us from any truncate-generated
792 * removals - all blocks on the path are immune now) and possibly force the
793 * write on the parent block.
794 * That has a nice additional property: no special recovery from the failed
795 * allocations is needed - we simply release blocks and do not touch anything
796 * reachable from inode.
798 * `handle' can be NULL if create == 0.
800 * The BKL may not be held on entry here. Be sure to take it early.
801 * return > 0, # of blocks mapped or allocated.
802 * return = 0, if plain lookup failed.
803 * return < 0, error case.
805 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
806 sector_t iblock, unsigned long maxblocks,
807 struct buffer_head *bh_result,
808 int create)
810 int err = -EIO;
811 int offsets[4];
812 Indirect chain[4];
813 Indirect *partial;
814 ext3_fsblk_t goal;
815 int indirect_blks;
816 int blocks_to_boundary = 0;
817 int depth;
818 struct ext3_inode_info *ei = EXT3_I(inode);
819 int count = 0;
820 ext3_fsblk_t first_block = 0;
823 J_ASSERT(handle != NULL || create == 0);
824 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
826 if (depth == 0)
827 goto out;
829 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
831 /* Simplest case - block found, no allocation needed */
832 if (!partial) {
833 first_block = le32_to_cpu(chain[depth - 1].key);
834 clear_buffer_new(bh_result);
835 count++;
836 /*map more blocks*/
837 while (count < maxblocks && count <= blocks_to_boundary) {
838 ext3_fsblk_t blk;
840 if (!verify_chain(chain, chain + depth - 1)) {
842 * Indirect block might be removed by
843 * truncate while we were reading it.
844 * Handling of that case: forget what we've
845 * got now. Flag the err as EAGAIN, so it
846 * will reread.
848 err = -EAGAIN;
849 count = 0;
850 break;
852 blk = le32_to_cpu(*(chain[depth-1].p + count));
854 if (blk == first_block + count)
855 count++;
856 else
857 break;
859 if (err != -EAGAIN)
860 goto got_it;
863 /* Next simple case - plain lookup or failed read of indirect block */
864 if (!create || err == -EIO)
865 goto cleanup;
867 mutex_lock(&ei->truncate_mutex);
870 * If the indirect block is missing while we are reading
871 * the chain(ext3_get_branch() returns -EAGAIN err), or
872 * if the chain has been changed after we grab the semaphore,
873 * (either because another process truncated this branch, or
874 * another get_block allocated this branch) re-grab the chain to see if
875 * the request block has been allocated or not.
877 * Since we already block the truncate/other get_block
878 * at this point, we will have the current copy of the chain when we
879 * splice the branch into the tree.
881 if (err == -EAGAIN || !verify_chain(chain, partial)) {
882 while (partial > chain) {
883 brelse(partial->bh);
884 partial--;
886 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
887 if (!partial) {
888 count++;
889 mutex_unlock(&ei->truncate_mutex);
890 if (err)
891 goto cleanup;
892 clear_buffer_new(bh_result);
893 goto got_it;
898 * Okay, we need to do block allocation. Lazily initialize the block
899 * allocation info here if necessary
901 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
902 ext3_init_block_alloc_info(inode);
904 goal = ext3_find_goal(inode, iblock, partial);
906 /* the number of blocks need to allocate for [d,t]indirect blocks */
907 indirect_blks = (chain + depth) - partial - 1;
910 * Next look up the indirect map to count the totoal number of
911 * direct blocks to allocate for this branch.
913 count = ext3_blks_to_allocate(partial, indirect_blks,
914 maxblocks, blocks_to_boundary);
916 * Block out ext3_truncate while we alter the tree
918 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
919 offsets + (partial - chain), partial);
922 * The ext3_splice_branch call will free and forget any buffers
923 * on the new chain if there is a failure, but that risks using
924 * up transaction credits, especially for bitmaps where the
925 * credits cannot be returned. Can we handle this somehow? We
926 * may need to return -EAGAIN upwards in the worst case. --sct
928 if (!err)
929 err = ext3_splice_branch(handle, inode, iblock,
930 partial, indirect_blks, count);
931 mutex_unlock(&ei->truncate_mutex);
932 if (err)
933 goto cleanup;
935 set_buffer_new(bh_result);
936 got_it:
937 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
938 if (count > blocks_to_boundary)
939 set_buffer_boundary(bh_result);
940 err = count;
941 /* Clean up and exit */
942 partial = chain + depth - 1; /* the whole chain */
943 cleanup:
944 while (partial > chain) {
945 BUFFER_TRACE(partial->bh, "call brelse");
946 brelse(partial->bh);
947 partial--;
949 BUFFER_TRACE(bh_result, "returned");
950 out:
951 return err;
954 /* Maximum number of blocks we map for direct IO at once. */
955 #define DIO_MAX_BLOCKS 4096
957 * Number of credits we need for writing DIO_MAX_BLOCKS:
958 * We need sb + group descriptor + bitmap + inode -> 4
959 * For B blocks with A block pointers per block we need:
960 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
961 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
963 #define DIO_CREDITS 25
965 static int ext3_get_block(struct inode *inode, sector_t iblock,
966 struct buffer_head *bh_result, int create)
968 handle_t *handle = ext3_journal_current_handle();
969 int ret = 0, started = 0;
970 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
972 if (create && !handle) { /* Direct IO write... */
973 if (max_blocks > DIO_MAX_BLOCKS)
974 max_blocks = DIO_MAX_BLOCKS;
975 handle = ext3_journal_start(inode, DIO_CREDITS +
976 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
977 if (IS_ERR(handle)) {
978 ret = PTR_ERR(handle);
979 goto out;
981 started = 1;
984 ret = ext3_get_blocks_handle(handle, inode, iblock,
985 max_blocks, bh_result, create);
986 if (ret > 0) {
987 bh_result->b_size = (ret << inode->i_blkbits);
988 ret = 0;
990 if (started)
991 ext3_journal_stop(handle);
992 out:
993 return ret;
996 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
997 u64 start, u64 len)
999 return generic_block_fiemap(inode, fieinfo, start, len,
1000 ext3_get_block);
1004 * `handle' can be NULL if create is zero
1006 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1007 long block, int create, int *errp)
1009 struct buffer_head dummy;
1010 int fatal = 0, err;
1012 J_ASSERT(handle != NULL || create == 0);
1014 dummy.b_state = 0;
1015 dummy.b_blocknr = -1000;
1016 buffer_trace_init(&dummy.b_history);
1017 err = ext3_get_blocks_handle(handle, inode, block, 1,
1018 &dummy, create);
1020 * ext3_get_blocks_handle() returns number of blocks
1021 * mapped. 0 in case of a HOLE.
1023 if (err > 0) {
1024 if (err > 1)
1025 WARN_ON(1);
1026 err = 0;
1028 *errp = err;
1029 if (!err && buffer_mapped(&dummy)) {
1030 struct buffer_head *bh;
1031 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1032 if (!bh) {
1033 *errp = -EIO;
1034 goto err;
1036 if (buffer_new(&dummy)) {
1037 J_ASSERT(create != 0);
1038 J_ASSERT(handle != NULL);
1041 * Now that we do not always journal data, we should
1042 * keep in mind whether this should always journal the
1043 * new buffer as metadata. For now, regular file
1044 * writes use ext3_get_block instead, so it's not a
1045 * problem.
1047 lock_buffer(bh);
1048 BUFFER_TRACE(bh, "call get_create_access");
1049 fatal = ext3_journal_get_create_access(handle, bh);
1050 if (!fatal && !buffer_uptodate(bh)) {
1051 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1052 set_buffer_uptodate(bh);
1054 unlock_buffer(bh);
1055 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1056 err = ext3_journal_dirty_metadata(handle, bh);
1057 if (!fatal)
1058 fatal = err;
1059 } else {
1060 BUFFER_TRACE(bh, "not a new buffer");
1062 if (fatal) {
1063 *errp = fatal;
1064 brelse(bh);
1065 bh = NULL;
1067 return bh;
1069 err:
1070 return NULL;
1073 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1074 int block, int create, int *err)
1076 struct buffer_head * bh;
1078 bh = ext3_getblk(handle, inode, block, create, err);
1079 if (!bh)
1080 return bh;
1081 if (buffer_uptodate(bh))
1082 return bh;
1083 ll_rw_block(READ_META, 1, &bh);
1084 wait_on_buffer(bh);
1085 if (buffer_uptodate(bh))
1086 return bh;
1087 put_bh(bh);
1088 *err = -EIO;
1089 return NULL;
1092 static int walk_page_buffers( handle_t *handle,
1093 struct buffer_head *head,
1094 unsigned from,
1095 unsigned to,
1096 int *partial,
1097 int (*fn)( handle_t *handle,
1098 struct buffer_head *bh))
1100 struct buffer_head *bh;
1101 unsigned block_start, block_end;
1102 unsigned blocksize = head->b_size;
1103 int err, ret = 0;
1104 struct buffer_head *next;
1106 for ( bh = head, block_start = 0;
1107 ret == 0 && (bh != head || !block_start);
1108 block_start = block_end, bh = next)
1110 next = bh->b_this_page;
1111 block_end = block_start + blocksize;
1112 if (block_end <= from || block_start >= to) {
1113 if (partial && !buffer_uptodate(bh))
1114 *partial = 1;
1115 continue;
1117 err = (*fn)(handle, bh);
1118 if (!ret)
1119 ret = err;
1121 return ret;
1125 * To preserve ordering, it is essential that the hole instantiation and
1126 * the data write be encapsulated in a single transaction. We cannot
1127 * close off a transaction and start a new one between the ext3_get_block()
1128 * and the commit_write(). So doing the journal_start at the start of
1129 * prepare_write() is the right place.
1131 * Also, this function can nest inside ext3_writepage() ->
1132 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1133 * has generated enough buffer credits to do the whole page. So we won't
1134 * block on the journal in that case, which is good, because the caller may
1135 * be PF_MEMALLOC.
1137 * By accident, ext3 can be reentered when a transaction is open via
1138 * quota file writes. If we were to commit the transaction while thus
1139 * reentered, there can be a deadlock - we would be holding a quota
1140 * lock, and the commit would never complete if another thread had a
1141 * transaction open and was blocking on the quota lock - a ranking
1142 * violation.
1144 * So what we do is to rely on the fact that journal_stop/journal_start
1145 * will _not_ run commit under these circumstances because handle->h_ref
1146 * is elevated. We'll still have enough credits for the tiny quotafile
1147 * write.
1149 static int do_journal_get_write_access(handle_t *handle,
1150 struct buffer_head *bh)
1152 int dirty = buffer_dirty(bh);
1153 int ret;
1155 if (!buffer_mapped(bh) || buffer_freed(bh))
1156 return 0;
1158 * __block_prepare_write() could have dirtied some buffers. Clean
1159 * the dirty bit as jbd2_journal_get_write_access() could complain
1160 * otherwise about fs integrity issues. Setting of the dirty bit
1161 * by __block_prepare_write() isn't a real problem here as we clear
1162 * the bit before releasing a page lock and thus writeback cannot
1163 * ever write the buffer.
1165 if (dirty)
1166 clear_buffer_dirty(bh);
1167 ret = ext3_journal_get_write_access(handle, bh);
1168 if (!ret && dirty)
1169 ret = ext3_journal_dirty_metadata(handle, bh);
1170 return ret;
1174 * Truncate blocks that were not used by write. We have to truncate the
1175 * pagecache as well so that corresponding buffers get properly unmapped.
1177 static void ext3_truncate_failed_write(struct inode *inode)
1179 truncate_inode_pages(inode->i_mapping, inode->i_size);
1180 ext3_truncate(inode);
1183 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1184 loff_t pos, unsigned len, unsigned flags,
1185 struct page **pagep, void **fsdata)
1187 struct inode *inode = mapping->host;
1188 int ret;
1189 handle_t *handle;
1190 int retries = 0;
1191 struct page *page;
1192 pgoff_t index;
1193 unsigned from, to;
1194 /* Reserve one block more for addition to orphan list in case
1195 * we allocate blocks but write fails for some reason */
1196 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1198 index = pos >> PAGE_CACHE_SHIFT;
1199 from = pos & (PAGE_CACHE_SIZE - 1);
1200 to = from + len;
1202 retry:
1203 page = grab_cache_page_write_begin(mapping, index, flags);
1204 if (!page)
1205 return -ENOMEM;
1206 *pagep = page;
1208 handle = ext3_journal_start(inode, needed_blocks);
1209 if (IS_ERR(handle)) {
1210 unlock_page(page);
1211 page_cache_release(page);
1212 ret = PTR_ERR(handle);
1213 goto out;
1215 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1216 ext3_get_block);
1217 if (ret)
1218 goto write_begin_failed;
1220 if (ext3_should_journal_data(inode)) {
1221 ret = walk_page_buffers(handle, page_buffers(page),
1222 from, to, NULL, do_journal_get_write_access);
1224 write_begin_failed:
1225 if (ret) {
1227 * block_write_begin may have instantiated a few blocks
1228 * outside i_size. Trim these off again. Don't need
1229 * i_size_read because we hold i_mutex.
1231 * Add inode to orphan list in case we crash before truncate
1232 * finishes. Do this only if ext3_can_truncate() agrees so
1233 * that orphan processing code is happy.
1235 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1236 ext3_orphan_add(handle, inode);
1237 ext3_journal_stop(handle);
1238 unlock_page(page);
1239 page_cache_release(page);
1240 if (pos + len > inode->i_size)
1241 ext3_truncate_failed_write(inode);
1243 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1244 goto retry;
1245 out:
1246 return ret;
1250 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1252 int err = journal_dirty_data(handle, bh);
1253 if (err)
1254 ext3_journal_abort_handle(__func__, __func__,
1255 bh, handle, err);
1256 return err;
1259 /* For ordered writepage and write_end functions */
1260 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1263 * Write could have mapped the buffer but it didn't copy the data in
1264 * yet. So avoid filing such buffer into a transaction.
1266 if (buffer_mapped(bh) && buffer_uptodate(bh))
1267 return ext3_journal_dirty_data(handle, bh);
1268 return 0;
1271 /* For write_end() in data=journal mode */
1272 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1274 if (!buffer_mapped(bh) || buffer_freed(bh))
1275 return 0;
1276 set_buffer_uptodate(bh);
1277 return ext3_journal_dirty_metadata(handle, bh);
1281 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1282 * for the whole page but later we failed to copy the data in. Update inode
1283 * size according to what we managed to copy. The rest is going to be
1284 * truncated in write_end function.
1286 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1288 /* What matters to us is i_disksize. We don't write i_size anywhere */
1289 if (pos + copied > inode->i_size)
1290 i_size_write(inode, pos + copied);
1291 if (pos + copied > EXT3_I(inode)->i_disksize) {
1292 EXT3_I(inode)->i_disksize = pos + copied;
1293 mark_inode_dirty(inode);
1298 * We need to pick up the new inode size which generic_commit_write gave us
1299 * `file' can be NULL - eg, when called from page_symlink().
1301 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1302 * buffers are managed internally.
1304 static int ext3_ordered_write_end(struct file *file,
1305 struct address_space *mapping,
1306 loff_t pos, unsigned len, unsigned copied,
1307 struct page *page, void *fsdata)
1309 handle_t *handle = ext3_journal_current_handle();
1310 struct inode *inode = file->f_mapping->host;
1311 unsigned from, to;
1312 int ret = 0, ret2;
1314 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1316 from = pos & (PAGE_CACHE_SIZE - 1);
1317 to = from + copied;
1318 ret = walk_page_buffers(handle, page_buffers(page),
1319 from, to, NULL, journal_dirty_data_fn);
1321 if (ret == 0)
1322 update_file_sizes(inode, pos, copied);
1324 * There may be allocated blocks outside of i_size because
1325 * we failed to copy some data. Prepare for truncate.
1327 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1328 ext3_orphan_add(handle, inode);
1329 ret2 = ext3_journal_stop(handle);
1330 if (!ret)
1331 ret = ret2;
1332 unlock_page(page);
1333 page_cache_release(page);
1335 if (pos + len > inode->i_size)
1336 ext3_truncate_failed_write(inode);
1337 return ret ? ret : copied;
1340 static int ext3_writeback_write_end(struct file *file,
1341 struct address_space *mapping,
1342 loff_t pos, unsigned len, unsigned copied,
1343 struct page *page, void *fsdata)
1345 handle_t *handle = ext3_journal_current_handle();
1346 struct inode *inode = file->f_mapping->host;
1347 int ret;
1349 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1350 update_file_sizes(inode, pos, copied);
1352 * There may be allocated blocks outside of i_size because
1353 * we failed to copy some data. Prepare for truncate.
1355 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1356 ext3_orphan_add(handle, inode);
1357 ret = ext3_journal_stop(handle);
1358 unlock_page(page);
1359 page_cache_release(page);
1361 if (pos + len > inode->i_size)
1362 ext3_truncate_failed_write(inode);
1363 return ret ? ret : copied;
1366 static int ext3_journalled_write_end(struct file *file,
1367 struct address_space *mapping,
1368 loff_t pos, unsigned len, unsigned copied,
1369 struct page *page, void *fsdata)
1371 handle_t *handle = ext3_journal_current_handle();
1372 struct inode *inode = mapping->host;
1373 int ret = 0, ret2;
1374 int partial = 0;
1375 unsigned from, to;
1377 from = pos & (PAGE_CACHE_SIZE - 1);
1378 to = from + len;
1380 if (copied < len) {
1381 if (!PageUptodate(page))
1382 copied = 0;
1383 page_zero_new_buffers(page, from + copied, to);
1384 to = from + copied;
1387 ret = walk_page_buffers(handle, page_buffers(page), from,
1388 to, &partial, write_end_fn);
1389 if (!partial)
1390 SetPageUptodate(page);
1392 if (pos + copied > inode->i_size)
1393 i_size_write(inode, pos + copied);
1395 * There may be allocated blocks outside of i_size because
1396 * we failed to copy some data. Prepare for truncate.
1398 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1399 ext3_orphan_add(handle, inode);
1400 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1401 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1402 EXT3_I(inode)->i_disksize = inode->i_size;
1403 ret2 = ext3_mark_inode_dirty(handle, inode);
1404 if (!ret)
1405 ret = ret2;
1408 ret2 = ext3_journal_stop(handle);
1409 if (!ret)
1410 ret = ret2;
1411 unlock_page(page);
1412 page_cache_release(page);
1414 if (pos + len > inode->i_size)
1415 ext3_truncate_failed_write(inode);
1416 return ret ? ret : copied;
1420 * bmap() is special. It gets used by applications such as lilo and by
1421 * the swapper to find the on-disk block of a specific piece of data.
1423 * Naturally, this is dangerous if the block concerned is still in the
1424 * journal. If somebody makes a swapfile on an ext3 data-journaling
1425 * filesystem and enables swap, then they may get a nasty shock when the
1426 * data getting swapped to that swapfile suddenly gets overwritten by
1427 * the original zero's written out previously to the journal and
1428 * awaiting writeback in the kernel's buffer cache.
1430 * So, if we see any bmap calls here on a modified, data-journaled file,
1431 * take extra steps to flush any blocks which might be in the cache.
1433 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1435 struct inode *inode = mapping->host;
1436 journal_t *journal;
1437 int err;
1439 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1441 * This is a REALLY heavyweight approach, but the use of
1442 * bmap on dirty files is expected to be extremely rare:
1443 * only if we run lilo or swapon on a freshly made file
1444 * do we expect this to happen.
1446 * (bmap requires CAP_SYS_RAWIO so this does not
1447 * represent an unprivileged user DOS attack --- we'd be
1448 * in trouble if mortal users could trigger this path at
1449 * will.)
1451 * NB. EXT3_STATE_JDATA is not set on files other than
1452 * regular files. If somebody wants to bmap a directory
1453 * or symlink and gets confused because the buffer
1454 * hasn't yet been flushed to disk, they deserve
1455 * everything they get.
1458 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1459 journal = EXT3_JOURNAL(inode);
1460 journal_lock_updates(journal);
1461 err = journal_flush(journal);
1462 journal_unlock_updates(journal);
1464 if (err)
1465 return 0;
1468 return generic_block_bmap(mapping,block,ext3_get_block);
1471 static int bget_one(handle_t *handle, struct buffer_head *bh)
1473 get_bh(bh);
1474 return 0;
1477 static int bput_one(handle_t *handle, struct buffer_head *bh)
1479 put_bh(bh);
1480 return 0;
1483 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1485 return !buffer_mapped(bh);
1489 * Note that we always start a transaction even if we're not journalling
1490 * data. This is to preserve ordering: any hole instantiation within
1491 * __block_write_full_page -> ext3_get_block() should be journalled
1492 * along with the data so we don't crash and then get metadata which
1493 * refers to old data.
1495 * In all journalling modes block_write_full_page() will start the I/O.
1497 * Problem:
1499 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1500 * ext3_writepage()
1502 * Similar for:
1504 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1506 * Same applies to ext3_get_block(). We will deadlock on various things like
1507 * lock_journal and i_truncate_mutex.
1509 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1510 * allocations fail.
1512 * 16May01: If we're reentered then journal_current_handle() will be
1513 * non-zero. We simply *return*.
1515 * 1 July 2001: @@@ FIXME:
1516 * In journalled data mode, a data buffer may be metadata against the
1517 * current transaction. But the same file is part of a shared mapping
1518 * and someone does a writepage() on it.
1520 * We will move the buffer onto the async_data list, but *after* it has
1521 * been dirtied. So there's a small window where we have dirty data on
1522 * BJ_Metadata.
1524 * Note that this only applies to the last partial page in the file. The
1525 * bit which block_write_full_page() uses prepare/commit for. (That's
1526 * broken code anyway: it's wrong for msync()).
1528 * It's a rare case: affects the final partial page, for journalled data
1529 * where the file is subject to bith write() and writepage() in the same
1530 * transction. To fix it we'll need a custom block_write_full_page().
1531 * We'll probably need that anyway for journalling writepage() output.
1533 * We don't honour synchronous mounts for writepage(). That would be
1534 * disastrous. Any write() or metadata operation will sync the fs for
1535 * us.
1537 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1538 * we don't need to open a transaction here.
1540 static int ext3_ordered_writepage(struct page *page,
1541 struct writeback_control *wbc)
1543 struct inode *inode = page->mapping->host;
1544 struct buffer_head *page_bufs;
1545 handle_t *handle = NULL;
1546 int ret = 0;
1547 int err;
1549 J_ASSERT(PageLocked(page));
1550 WARN_ON_ONCE(IS_RDONLY(inode));
1553 * We give up here if we're reentered, because it might be for a
1554 * different filesystem.
1556 if (ext3_journal_current_handle())
1557 goto out_fail;
1559 if (!page_has_buffers(page)) {
1560 create_empty_buffers(page, inode->i_sb->s_blocksize,
1561 (1 << BH_Dirty)|(1 << BH_Uptodate));
1562 page_bufs = page_buffers(page);
1563 } else {
1564 page_bufs = page_buffers(page);
1565 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1566 NULL, buffer_unmapped)) {
1567 /* Provide NULL get_block() to catch bugs if buffers
1568 * weren't really mapped */
1569 return block_write_full_page(page, NULL, wbc);
1572 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1574 if (IS_ERR(handle)) {
1575 ret = PTR_ERR(handle);
1576 goto out_fail;
1579 walk_page_buffers(handle, page_bufs, 0,
1580 PAGE_CACHE_SIZE, NULL, bget_one);
1582 ret = block_write_full_page(page, ext3_get_block, wbc);
1585 * The page can become unlocked at any point now, and
1586 * truncate can then come in and change things. So we
1587 * can't touch *page from now on. But *page_bufs is
1588 * safe due to elevated refcount.
1592 * And attach them to the current transaction. But only if
1593 * block_write_full_page() succeeded. Otherwise they are unmapped,
1594 * and generally junk.
1596 if (ret == 0) {
1597 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1598 NULL, journal_dirty_data_fn);
1599 if (!ret)
1600 ret = err;
1602 walk_page_buffers(handle, page_bufs, 0,
1603 PAGE_CACHE_SIZE, NULL, bput_one);
1604 err = ext3_journal_stop(handle);
1605 if (!ret)
1606 ret = err;
1607 return ret;
1609 out_fail:
1610 redirty_page_for_writepage(wbc, page);
1611 unlock_page(page);
1612 return ret;
1615 static int ext3_writeback_writepage(struct page *page,
1616 struct writeback_control *wbc)
1618 struct inode *inode = page->mapping->host;
1619 handle_t *handle = NULL;
1620 int ret = 0;
1621 int err;
1623 J_ASSERT(PageLocked(page));
1624 WARN_ON_ONCE(IS_RDONLY(inode));
1626 if (ext3_journal_current_handle())
1627 goto out_fail;
1629 if (page_has_buffers(page)) {
1630 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1631 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1632 /* Provide NULL get_block() to catch bugs if buffers
1633 * weren't really mapped */
1634 return block_write_full_page(page, NULL, wbc);
1638 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1639 if (IS_ERR(handle)) {
1640 ret = PTR_ERR(handle);
1641 goto out_fail;
1644 ret = block_write_full_page(page, ext3_get_block, wbc);
1646 err = ext3_journal_stop(handle);
1647 if (!ret)
1648 ret = err;
1649 return ret;
1651 out_fail:
1652 redirty_page_for_writepage(wbc, page);
1653 unlock_page(page);
1654 return ret;
1657 static int ext3_journalled_writepage(struct page *page,
1658 struct writeback_control *wbc)
1660 struct inode *inode = page->mapping->host;
1661 handle_t *handle = NULL;
1662 int ret = 0;
1663 int err;
1665 J_ASSERT(PageLocked(page));
1666 WARN_ON_ONCE(IS_RDONLY(inode));
1668 if (ext3_journal_current_handle())
1669 goto no_write;
1671 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1672 if (IS_ERR(handle)) {
1673 ret = PTR_ERR(handle);
1674 goto no_write;
1677 if (!page_has_buffers(page) || PageChecked(page)) {
1679 * It's mmapped pagecache. Add buffers and journal it. There
1680 * doesn't seem much point in redirtying the page here.
1682 ClearPageChecked(page);
1683 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1684 ext3_get_block);
1685 if (ret != 0) {
1686 ext3_journal_stop(handle);
1687 goto out_unlock;
1689 ret = walk_page_buffers(handle, page_buffers(page), 0,
1690 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1692 err = walk_page_buffers(handle, page_buffers(page), 0,
1693 PAGE_CACHE_SIZE, NULL, write_end_fn);
1694 if (ret == 0)
1695 ret = err;
1696 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1697 unlock_page(page);
1698 } else {
1700 * It may be a page full of checkpoint-mode buffers. We don't
1701 * really know unless we go poke around in the buffer_heads.
1702 * But block_write_full_page will do the right thing.
1704 ret = block_write_full_page(page, ext3_get_block, wbc);
1706 err = ext3_journal_stop(handle);
1707 if (!ret)
1708 ret = err;
1709 out:
1710 return ret;
1712 no_write:
1713 redirty_page_for_writepage(wbc, page);
1714 out_unlock:
1715 unlock_page(page);
1716 goto out;
1719 static int ext3_readpage(struct file *file, struct page *page)
1721 return mpage_readpage(page, ext3_get_block);
1724 static int
1725 ext3_readpages(struct file *file, struct address_space *mapping,
1726 struct list_head *pages, unsigned nr_pages)
1728 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1731 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1733 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1736 * If it's a full truncate we just forget about the pending dirtying
1738 if (offset == 0)
1739 ClearPageChecked(page);
1741 journal_invalidatepage(journal, page, offset);
1744 static int ext3_releasepage(struct page *page, gfp_t wait)
1746 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1748 WARN_ON(PageChecked(page));
1749 if (!page_has_buffers(page))
1750 return 0;
1751 return journal_try_to_free_buffers(journal, page, wait);
1755 * If the O_DIRECT write will extend the file then add this inode to the
1756 * orphan list. So recovery will truncate it back to the original size
1757 * if the machine crashes during the write.
1759 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1760 * crashes then stale disk data _may_ be exposed inside the file. But current
1761 * VFS code falls back into buffered path in that case so we are safe.
1763 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1764 const struct iovec *iov, loff_t offset,
1765 unsigned long nr_segs)
1767 struct file *file = iocb->ki_filp;
1768 struct inode *inode = file->f_mapping->host;
1769 struct ext3_inode_info *ei = EXT3_I(inode);
1770 handle_t *handle;
1771 ssize_t ret;
1772 int orphan = 0;
1773 size_t count = iov_length(iov, nr_segs);
1774 int retries = 0;
1776 if (rw == WRITE) {
1777 loff_t final_size = offset + count;
1779 if (final_size > inode->i_size) {
1780 /* Credits for sb + inode write */
1781 handle = ext3_journal_start(inode, 2);
1782 if (IS_ERR(handle)) {
1783 ret = PTR_ERR(handle);
1784 goto out;
1786 ret = ext3_orphan_add(handle, inode);
1787 if (ret) {
1788 ext3_journal_stop(handle);
1789 goto out;
1791 orphan = 1;
1792 ei->i_disksize = inode->i_size;
1793 ext3_journal_stop(handle);
1797 retry:
1798 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1799 offset, nr_segs,
1800 ext3_get_block, NULL);
1801 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1802 goto retry;
1804 if (orphan) {
1805 int err;
1807 /* Credits for sb + inode write */
1808 handle = ext3_journal_start(inode, 2);
1809 if (IS_ERR(handle)) {
1810 /* This is really bad luck. We've written the data
1811 * but cannot extend i_size. Truncate allocated blocks
1812 * and pretend the write failed... */
1813 ext3_truncate(inode);
1814 ret = PTR_ERR(handle);
1815 goto out;
1817 if (inode->i_nlink)
1818 ext3_orphan_del(handle, inode);
1819 if (ret > 0) {
1820 loff_t end = offset + ret;
1821 if (end > inode->i_size) {
1822 ei->i_disksize = end;
1823 i_size_write(inode, end);
1825 * We're going to return a positive `ret'
1826 * here due to non-zero-length I/O, so there's
1827 * no way of reporting error returns from
1828 * ext3_mark_inode_dirty() to userspace. So
1829 * ignore it.
1831 ext3_mark_inode_dirty(handle, inode);
1834 err = ext3_journal_stop(handle);
1835 if (ret == 0)
1836 ret = err;
1838 out:
1839 return ret;
1843 * Pages can be marked dirty completely asynchronously from ext3's journalling
1844 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1845 * much here because ->set_page_dirty is called under VFS locks. The page is
1846 * not necessarily locked.
1848 * We cannot just dirty the page and leave attached buffers clean, because the
1849 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1850 * or jbddirty because all the journalling code will explode.
1852 * So what we do is to mark the page "pending dirty" and next time writepage
1853 * is called, propagate that into the buffers appropriately.
1855 static int ext3_journalled_set_page_dirty(struct page *page)
1857 SetPageChecked(page);
1858 return __set_page_dirty_nobuffers(page);
1861 static const struct address_space_operations ext3_ordered_aops = {
1862 .readpage = ext3_readpage,
1863 .readpages = ext3_readpages,
1864 .writepage = ext3_ordered_writepage,
1865 .sync_page = block_sync_page,
1866 .write_begin = ext3_write_begin,
1867 .write_end = ext3_ordered_write_end,
1868 .bmap = ext3_bmap,
1869 .invalidatepage = ext3_invalidatepage,
1870 .releasepage = ext3_releasepage,
1871 .direct_IO = ext3_direct_IO,
1872 .migratepage = buffer_migrate_page,
1873 .is_partially_uptodate = block_is_partially_uptodate,
1874 .error_remove_page = generic_error_remove_page,
1877 static const struct address_space_operations ext3_writeback_aops = {
1878 .readpage = ext3_readpage,
1879 .readpages = ext3_readpages,
1880 .writepage = ext3_writeback_writepage,
1881 .sync_page = block_sync_page,
1882 .write_begin = ext3_write_begin,
1883 .write_end = ext3_writeback_write_end,
1884 .bmap = ext3_bmap,
1885 .invalidatepage = ext3_invalidatepage,
1886 .releasepage = ext3_releasepage,
1887 .direct_IO = ext3_direct_IO,
1888 .migratepage = buffer_migrate_page,
1889 .is_partially_uptodate = block_is_partially_uptodate,
1890 .error_remove_page = generic_error_remove_page,
1893 static const struct address_space_operations ext3_journalled_aops = {
1894 .readpage = ext3_readpage,
1895 .readpages = ext3_readpages,
1896 .writepage = ext3_journalled_writepage,
1897 .sync_page = block_sync_page,
1898 .write_begin = ext3_write_begin,
1899 .write_end = ext3_journalled_write_end,
1900 .set_page_dirty = ext3_journalled_set_page_dirty,
1901 .bmap = ext3_bmap,
1902 .invalidatepage = ext3_invalidatepage,
1903 .releasepage = ext3_releasepage,
1904 .is_partially_uptodate = block_is_partially_uptodate,
1905 .error_remove_page = generic_error_remove_page,
1908 void ext3_set_aops(struct inode *inode)
1910 if (ext3_should_order_data(inode))
1911 inode->i_mapping->a_ops = &ext3_ordered_aops;
1912 else if (ext3_should_writeback_data(inode))
1913 inode->i_mapping->a_ops = &ext3_writeback_aops;
1914 else
1915 inode->i_mapping->a_ops = &ext3_journalled_aops;
1919 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1920 * up to the end of the block which corresponds to `from'.
1921 * This required during truncate. We need to physically zero the tail end
1922 * of that block so it doesn't yield old data if the file is later grown.
1924 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1925 struct address_space *mapping, loff_t from)
1927 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1928 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1929 unsigned blocksize, iblock, length, pos;
1930 struct inode *inode = mapping->host;
1931 struct buffer_head *bh;
1932 int err = 0;
1934 blocksize = inode->i_sb->s_blocksize;
1935 length = blocksize - (offset & (blocksize - 1));
1936 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1938 if (!page_has_buffers(page))
1939 create_empty_buffers(page, blocksize, 0);
1941 /* Find the buffer that contains "offset" */
1942 bh = page_buffers(page);
1943 pos = blocksize;
1944 while (offset >= pos) {
1945 bh = bh->b_this_page;
1946 iblock++;
1947 pos += blocksize;
1950 err = 0;
1951 if (buffer_freed(bh)) {
1952 BUFFER_TRACE(bh, "freed: skip");
1953 goto unlock;
1956 if (!buffer_mapped(bh)) {
1957 BUFFER_TRACE(bh, "unmapped");
1958 ext3_get_block(inode, iblock, bh, 0);
1959 /* unmapped? It's a hole - nothing to do */
1960 if (!buffer_mapped(bh)) {
1961 BUFFER_TRACE(bh, "still unmapped");
1962 goto unlock;
1966 /* Ok, it's mapped. Make sure it's up-to-date */
1967 if (PageUptodate(page))
1968 set_buffer_uptodate(bh);
1970 if (!buffer_uptodate(bh)) {
1971 err = -EIO;
1972 ll_rw_block(READ, 1, &bh);
1973 wait_on_buffer(bh);
1974 /* Uhhuh. Read error. Complain and punt. */
1975 if (!buffer_uptodate(bh))
1976 goto unlock;
1979 if (ext3_should_journal_data(inode)) {
1980 BUFFER_TRACE(bh, "get write access");
1981 err = ext3_journal_get_write_access(handle, bh);
1982 if (err)
1983 goto unlock;
1986 zero_user(page, offset, length);
1987 BUFFER_TRACE(bh, "zeroed end of block");
1989 err = 0;
1990 if (ext3_should_journal_data(inode)) {
1991 err = ext3_journal_dirty_metadata(handle, bh);
1992 } else {
1993 if (ext3_should_order_data(inode))
1994 err = ext3_journal_dirty_data(handle, bh);
1995 mark_buffer_dirty(bh);
1998 unlock:
1999 unlock_page(page);
2000 page_cache_release(page);
2001 return err;
2005 * Probably it should be a library function... search for first non-zero word
2006 * or memcmp with zero_page, whatever is better for particular architecture.
2007 * Linus?
2009 static inline int all_zeroes(__le32 *p, __le32 *q)
2011 while (p < q)
2012 if (*p++)
2013 return 0;
2014 return 1;
2018 * ext3_find_shared - find the indirect blocks for partial truncation.
2019 * @inode: inode in question
2020 * @depth: depth of the affected branch
2021 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2022 * @chain: place to store the pointers to partial indirect blocks
2023 * @top: place to the (detached) top of branch
2025 * This is a helper function used by ext3_truncate().
2027 * When we do truncate() we may have to clean the ends of several
2028 * indirect blocks but leave the blocks themselves alive. Block is
2029 * partially truncated if some data below the new i_size is refered
2030 * from it (and it is on the path to the first completely truncated
2031 * data block, indeed). We have to free the top of that path along
2032 * with everything to the right of the path. Since no allocation
2033 * past the truncation point is possible until ext3_truncate()
2034 * finishes, we may safely do the latter, but top of branch may
2035 * require special attention - pageout below the truncation point
2036 * might try to populate it.
2038 * We atomically detach the top of branch from the tree, store the
2039 * block number of its root in *@top, pointers to buffer_heads of
2040 * partially truncated blocks - in @chain[].bh and pointers to
2041 * their last elements that should not be removed - in
2042 * @chain[].p. Return value is the pointer to last filled element
2043 * of @chain.
2045 * The work left to caller to do the actual freeing of subtrees:
2046 * a) free the subtree starting from *@top
2047 * b) free the subtrees whose roots are stored in
2048 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2049 * c) free the subtrees growing from the inode past the @chain[0].
2050 * (no partially truncated stuff there). */
2052 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2053 int offsets[4], Indirect chain[4], __le32 *top)
2055 Indirect *partial, *p;
2056 int k, err;
2058 *top = 0;
2059 /* Make k index the deepest non-null offset + 1 */
2060 for (k = depth; k > 1 && !offsets[k-1]; k--)
2062 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2063 /* Writer: pointers */
2064 if (!partial)
2065 partial = chain + k-1;
2067 * If the branch acquired continuation since we've looked at it -
2068 * fine, it should all survive and (new) top doesn't belong to us.
2070 if (!partial->key && *partial->p)
2071 /* Writer: end */
2072 goto no_top;
2073 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2076 * OK, we've found the last block that must survive. The rest of our
2077 * branch should be detached before unlocking. However, if that rest
2078 * of branch is all ours and does not grow immediately from the inode
2079 * it's easier to cheat and just decrement partial->p.
2081 if (p == chain + k - 1 && p > chain) {
2082 p->p--;
2083 } else {
2084 *top = *p->p;
2085 /* Nope, don't do this in ext3. Must leave the tree intact */
2086 #if 0
2087 *p->p = 0;
2088 #endif
2090 /* Writer: end */
2092 while(partial > p) {
2093 brelse(partial->bh);
2094 partial--;
2096 no_top:
2097 return partial;
2101 * Zero a number of block pointers in either an inode or an indirect block.
2102 * If we restart the transaction we must again get write access to the
2103 * indirect block for further modification.
2105 * We release `count' blocks on disk, but (last - first) may be greater
2106 * than `count' because there can be holes in there.
2108 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2109 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2110 unsigned long count, __le32 *first, __le32 *last)
2112 __le32 *p;
2113 if (try_to_extend_transaction(handle, inode)) {
2114 if (bh) {
2115 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2116 ext3_journal_dirty_metadata(handle, bh);
2118 ext3_mark_inode_dirty(handle, inode);
2119 truncate_restart_transaction(handle, inode);
2120 if (bh) {
2121 BUFFER_TRACE(bh, "retaking write access");
2122 ext3_journal_get_write_access(handle, bh);
2127 * Any buffers which are on the journal will be in memory. We find
2128 * them on the hash table so journal_revoke() will run journal_forget()
2129 * on them. We've already detached each block from the file, so
2130 * bforget() in journal_forget() should be safe.
2132 * AKPM: turn on bforget in journal_forget()!!!
2134 for (p = first; p < last; p++) {
2135 u32 nr = le32_to_cpu(*p);
2136 if (nr) {
2137 struct buffer_head *bh;
2139 *p = 0;
2140 bh = sb_find_get_block(inode->i_sb, nr);
2141 ext3_forget(handle, 0, inode, bh, nr);
2145 ext3_free_blocks(handle, inode, block_to_free, count);
2149 * ext3_free_data - free a list of data blocks
2150 * @handle: handle for this transaction
2151 * @inode: inode we are dealing with
2152 * @this_bh: indirect buffer_head which contains *@first and *@last
2153 * @first: array of block numbers
2154 * @last: points immediately past the end of array
2156 * We are freeing all blocks refered from that array (numbers are stored as
2157 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2159 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2160 * blocks are contiguous then releasing them at one time will only affect one
2161 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2162 * actually use a lot of journal space.
2164 * @this_bh will be %NULL if @first and @last point into the inode's direct
2165 * block pointers.
2167 static void ext3_free_data(handle_t *handle, struct inode *inode,
2168 struct buffer_head *this_bh,
2169 __le32 *first, __le32 *last)
2171 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2172 unsigned long count = 0; /* Number of blocks in the run */
2173 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2174 corresponding to
2175 block_to_free */
2176 ext3_fsblk_t nr; /* Current block # */
2177 __le32 *p; /* Pointer into inode/ind
2178 for current block */
2179 int err;
2181 if (this_bh) { /* For indirect block */
2182 BUFFER_TRACE(this_bh, "get_write_access");
2183 err = ext3_journal_get_write_access(handle, this_bh);
2184 /* Important: if we can't update the indirect pointers
2185 * to the blocks, we can't free them. */
2186 if (err)
2187 return;
2190 for (p = first; p < last; p++) {
2191 nr = le32_to_cpu(*p);
2192 if (nr) {
2193 /* accumulate blocks to free if they're contiguous */
2194 if (count == 0) {
2195 block_to_free = nr;
2196 block_to_free_p = p;
2197 count = 1;
2198 } else if (nr == block_to_free + count) {
2199 count++;
2200 } else {
2201 ext3_clear_blocks(handle, inode, this_bh,
2202 block_to_free,
2203 count, block_to_free_p, p);
2204 block_to_free = nr;
2205 block_to_free_p = p;
2206 count = 1;
2211 if (count > 0)
2212 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2213 count, block_to_free_p, p);
2215 if (this_bh) {
2216 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2219 * The buffer head should have an attached journal head at this
2220 * point. However, if the data is corrupted and an indirect
2221 * block pointed to itself, it would have been detached when
2222 * the block was cleared. Check for this instead of OOPSing.
2224 if (bh2jh(this_bh))
2225 ext3_journal_dirty_metadata(handle, this_bh);
2226 else
2227 ext3_error(inode->i_sb, "ext3_free_data",
2228 "circular indirect block detected, "
2229 "inode=%lu, block=%llu",
2230 inode->i_ino,
2231 (unsigned long long)this_bh->b_blocknr);
2236 * ext3_free_branches - free an array of branches
2237 * @handle: JBD handle for this transaction
2238 * @inode: inode we are dealing with
2239 * @parent_bh: the buffer_head which contains *@first and *@last
2240 * @first: array of block numbers
2241 * @last: pointer immediately past the end of array
2242 * @depth: depth of the branches to free
2244 * We are freeing all blocks refered from these branches (numbers are
2245 * stored as little-endian 32-bit) and updating @inode->i_blocks
2246 * appropriately.
2248 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2249 struct buffer_head *parent_bh,
2250 __le32 *first, __le32 *last, int depth)
2252 ext3_fsblk_t nr;
2253 __le32 *p;
2255 if (is_handle_aborted(handle))
2256 return;
2258 if (depth--) {
2259 struct buffer_head *bh;
2260 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2261 p = last;
2262 while (--p >= first) {
2263 nr = le32_to_cpu(*p);
2264 if (!nr)
2265 continue; /* A hole */
2267 /* Go read the buffer for the next level down */
2268 bh = sb_bread(inode->i_sb, nr);
2271 * A read failure? Report error and clear slot
2272 * (should be rare).
2274 if (!bh) {
2275 ext3_error(inode->i_sb, "ext3_free_branches",
2276 "Read failure, inode=%lu, block="E3FSBLK,
2277 inode->i_ino, nr);
2278 continue;
2281 /* This zaps the entire block. Bottom up. */
2282 BUFFER_TRACE(bh, "free child branches");
2283 ext3_free_branches(handle, inode, bh,
2284 (__le32*)bh->b_data,
2285 (__le32*)bh->b_data + addr_per_block,
2286 depth);
2289 * Everything below this this pointer has been
2290 * released. Now let this top-of-subtree go.
2292 * We want the freeing of this indirect block to be
2293 * atomic in the journal with the updating of the
2294 * bitmap block which owns it. So make some room in
2295 * the journal.
2297 * We zero the parent pointer *after* freeing its
2298 * pointee in the bitmaps, so if extend_transaction()
2299 * for some reason fails to put the bitmap changes and
2300 * the release into the same transaction, recovery
2301 * will merely complain about releasing a free block,
2302 * rather than leaking blocks.
2304 if (is_handle_aborted(handle))
2305 return;
2306 if (try_to_extend_transaction(handle, inode)) {
2307 ext3_mark_inode_dirty(handle, inode);
2308 truncate_restart_transaction(handle, inode);
2312 * We've probably journalled the indirect block several
2313 * times during the truncate. But it's no longer
2314 * needed and we now drop it from the transaction via
2315 * journal_revoke().
2317 * That's easy if it's exclusively part of this
2318 * transaction. But if it's part of the committing
2319 * transaction then journal_forget() will simply
2320 * brelse() it. That means that if the underlying
2321 * block is reallocated in ext3_get_block(),
2322 * unmap_underlying_metadata() will find this block
2323 * and will try to get rid of it. damn, damn. Thus
2324 * we don't allow a block to be reallocated until
2325 * a transaction freeing it has fully committed.
2327 * We also have to make sure journal replay after a
2328 * crash does not overwrite non-journaled data blocks
2329 * with old metadata when the block got reallocated for
2330 * data. Thus we have to store a revoke record for a
2331 * block in the same transaction in which we free the
2332 * block.
2334 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2336 ext3_free_blocks(handle, inode, nr, 1);
2338 if (parent_bh) {
2340 * The block which we have just freed is
2341 * pointed to by an indirect block: journal it
2343 BUFFER_TRACE(parent_bh, "get_write_access");
2344 if (!ext3_journal_get_write_access(handle,
2345 parent_bh)){
2346 *p = 0;
2347 BUFFER_TRACE(parent_bh,
2348 "call ext3_journal_dirty_metadata");
2349 ext3_journal_dirty_metadata(handle,
2350 parent_bh);
2354 } else {
2355 /* We have reached the bottom of the tree. */
2356 BUFFER_TRACE(parent_bh, "free data blocks");
2357 ext3_free_data(handle, inode, parent_bh, first, last);
2361 int ext3_can_truncate(struct inode *inode)
2363 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2364 return 0;
2365 if (S_ISREG(inode->i_mode))
2366 return 1;
2367 if (S_ISDIR(inode->i_mode))
2368 return 1;
2369 if (S_ISLNK(inode->i_mode))
2370 return !ext3_inode_is_fast_symlink(inode);
2371 return 0;
2375 * ext3_truncate()
2377 * We block out ext3_get_block() block instantiations across the entire
2378 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2379 * simultaneously on behalf of the same inode.
2381 * As we work through the truncate and commmit bits of it to the journal there
2382 * is one core, guiding principle: the file's tree must always be consistent on
2383 * disk. We must be able to restart the truncate after a crash.
2385 * The file's tree may be transiently inconsistent in memory (although it
2386 * probably isn't), but whenever we close off and commit a journal transaction,
2387 * the contents of (the filesystem + the journal) must be consistent and
2388 * restartable. It's pretty simple, really: bottom up, right to left (although
2389 * left-to-right works OK too).
2391 * Note that at recovery time, journal replay occurs *before* the restart of
2392 * truncate against the orphan inode list.
2394 * The committed inode has the new, desired i_size (which is the same as
2395 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2396 * that this inode's truncate did not complete and it will again call
2397 * ext3_truncate() to have another go. So there will be instantiated blocks
2398 * to the right of the truncation point in a crashed ext3 filesystem. But
2399 * that's fine - as long as they are linked from the inode, the post-crash
2400 * ext3_truncate() run will find them and release them.
2402 void ext3_truncate(struct inode *inode)
2404 handle_t *handle;
2405 struct ext3_inode_info *ei = EXT3_I(inode);
2406 __le32 *i_data = ei->i_data;
2407 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2408 struct address_space *mapping = inode->i_mapping;
2409 int offsets[4];
2410 Indirect chain[4];
2411 Indirect *partial;
2412 __le32 nr = 0;
2413 int n;
2414 long last_block;
2415 unsigned blocksize = inode->i_sb->s_blocksize;
2416 struct page *page;
2418 if (!ext3_can_truncate(inode))
2419 goto out_notrans;
2421 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2422 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2425 * We have to lock the EOF page here, because lock_page() nests
2426 * outside journal_start().
2428 if ((inode->i_size & (blocksize - 1)) == 0) {
2429 /* Block boundary? Nothing to do */
2430 page = NULL;
2431 } else {
2432 page = grab_cache_page(mapping,
2433 inode->i_size >> PAGE_CACHE_SHIFT);
2434 if (!page)
2435 goto out_notrans;
2438 handle = start_transaction(inode);
2439 if (IS_ERR(handle)) {
2440 if (page) {
2441 clear_highpage(page);
2442 flush_dcache_page(page);
2443 unlock_page(page);
2444 page_cache_release(page);
2446 goto out_notrans;
2449 last_block = (inode->i_size + blocksize-1)
2450 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2452 if (page)
2453 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2455 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2456 if (n == 0)
2457 goto out_stop; /* error */
2460 * OK. This truncate is going to happen. We add the inode to the
2461 * orphan list, so that if this truncate spans multiple transactions,
2462 * and we crash, we will resume the truncate when the filesystem
2463 * recovers. It also marks the inode dirty, to catch the new size.
2465 * Implication: the file must always be in a sane, consistent
2466 * truncatable state while each transaction commits.
2468 if (ext3_orphan_add(handle, inode))
2469 goto out_stop;
2472 * The orphan list entry will now protect us from any crash which
2473 * occurs before the truncate completes, so it is now safe to propagate
2474 * the new, shorter inode size (held for now in i_size) into the
2475 * on-disk inode. We do this via i_disksize, which is the value which
2476 * ext3 *really* writes onto the disk inode.
2478 ei->i_disksize = inode->i_size;
2481 * From here we block out all ext3_get_block() callers who want to
2482 * modify the block allocation tree.
2484 mutex_lock(&ei->truncate_mutex);
2486 if (n == 1) { /* direct blocks */
2487 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2488 i_data + EXT3_NDIR_BLOCKS);
2489 goto do_indirects;
2492 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2493 /* Kill the top of shared branch (not detached) */
2494 if (nr) {
2495 if (partial == chain) {
2496 /* Shared branch grows from the inode */
2497 ext3_free_branches(handle, inode, NULL,
2498 &nr, &nr+1, (chain+n-1) - partial);
2499 *partial->p = 0;
2501 * We mark the inode dirty prior to restart,
2502 * and prior to stop. No need for it here.
2504 } else {
2505 /* Shared branch grows from an indirect block */
2506 BUFFER_TRACE(partial->bh, "get_write_access");
2507 ext3_free_branches(handle, inode, partial->bh,
2508 partial->p,
2509 partial->p+1, (chain+n-1) - partial);
2512 /* Clear the ends of indirect blocks on the shared branch */
2513 while (partial > chain) {
2514 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2515 (__le32*)partial->bh->b_data+addr_per_block,
2516 (chain+n-1) - partial);
2517 BUFFER_TRACE(partial->bh, "call brelse");
2518 brelse (partial->bh);
2519 partial--;
2521 do_indirects:
2522 /* Kill the remaining (whole) subtrees */
2523 switch (offsets[0]) {
2524 default:
2525 nr = i_data[EXT3_IND_BLOCK];
2526 if (nr) {
2527 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2528 i_data[EXT3_IND_BLOCK] = 0;
2530 case EXT3_IND_BLOCK:
2531 nr = i_data[EXT3_DIND_BLOCK];
2532 if (nr) {
2533 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2534 i_data[EXT3_DIND_BLOCK] = 0;
2536 case EXT3_DIND_BLOCK:
2537 nr = i_data[EXT3_TIND_BLOCK];
2538 if (nr) {
2539 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2540 i_data[EXT3_TIND_BLOCK] = 0;
2542 case EXT3_TIND_BLOCK:
2546 ext3_discard_reservation(inode);
2548 mutex_unlock(&ei->truncate_mutex);
2549 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2550 ext3_mark_inode_dirty(handle, inode);
2553 * In a multi-transaction truncate, we only make the final transaction
2554 * synchronous
2556 if (IS_SYNC(inode))
2557 handle->h_sync = 1;
2558 out_stop:
2560 * If this was a simple ftruncate(), and the file will remain alive
2561 * then we need to clear up the orphan record which we created above.
2562 * However, if this was a real unlink then we were called by
2563 * ext3_delete_inode(), and we allow that function to clean up the
2564 * orphan info for us.
2566 if (inode->i_nlink)
2567 ext3_orphan_del(handle, inode);
2569 ext3_journal_stop(handle);
2570 return;
2571 out_notrans:
2573 * Delete the inode from orphan list so that it doesn't stay there
2574 * forever and trigger assertion on umount.
2576 if (inode->i_nlink)
2577 ext3_orphan_del(NULL, inode);
2580 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2581 unsigned long ino, struct ext3_iloc *iloc)
2583 unsigned long block_group;
2584 unsigned long offset;
2585 ext3_fsblk_t block;
2586 struct ext3_group_desc *gdp;
2588 if (!ext3_valid_inum(sb, ino)) {
2590 * This error is already checked for in namei.c unless we are
2591 * looking at an NFS filehandle, in which case no error
2592 * report is needed
2594 return 0;
2597 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2598 gdp = ext3_get_group_desc(sb, block_group, NULL);
2599 if (!gdp)
2600 return 0;
2602 * Figure out the offset within the block group inode table
2604 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2605 EXT3_INODE_SIZE(sb);
2606 block = le32_to_cpu(gdp->bg_inode_table) +
2607 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2609 iloc->block_group = block_group;
2610 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2611 return block;
2615 * ext3_get_inode_loc returns with an extra refcount against the inode's
2616 * underlying buffer_head on success. If 'in_mem' is true, we have all
2617 * data in memory that is needed to recreate the on-disk version of this
2618 * inode.
2620 static int __ext3_get_inode_loc(struct inode *inode,
2621 struct ext3_iloc *iloc, int in_mem)
2623 ext3_fsblk_t block;
2624 struct buffer_head *bh;
2626 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2627 if (!block)
2628 return -EIO;
2630 bh = sb_getblk(inode->i_sb, block);
2631 if (!bh) {
2632 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2633 "unable to read inode block - "
2634 "inode=%lu, block="E3FSBLK,
2635 inode->i_ino, block);
2636 return -EIO;
2638 if (!buffer_uptodate(bh)) {
2639 lock_buffer(bh);
2642 * If the buffer has the write error flag, we have failed
2643 * to write out another inode in the same block. In this
2644 * case, we don't have to read the block because we may
2645 * read the old inode data successfully.
2647 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2648 set_buffer_uptodate(bh);
2650 if (buffer_uptodate(bh)) {
2651 /* someone brought it uptodate while we waited */
2652 unlock_buffer(bh);
2653 goto has_buffer;
2657 * If we have all information of the inode in memory and this
2658 * is the only valid inode in the block, we need not read the
2659 * block.
2661 if (in_mem) {
2662 struct buffer_head *bitmap_bh;
2663 struct ext3_group_desc *desc;
2664 int inodes_per_buffer;
2665 int inode_offset, i;
2666 int block_group;
2667 int start;
2669 block_group = (inode->i_ino - 1) /
2670 EXT3_INODES_PER_GROUP(inode->i_sb);
2671 inodes_per_buffer = bh->b_size /
2672 EXT3_INODE_SIZE(inode->i_sb);
2673 inode_offset = ((inode->i_ino - 1) %
2674 EXT3_INODES_PER_GROUP(inode->i_sb));
2675 start = inode_offset & ~(inodes_per_buffer - 1);
2677 /* Is the inode bitmap in cache? */
2678 desc = ext3_get_group_desc(inode->i_sb,
2679 block_group, NULL);
2680 if (!desc)
2681 goto make_io;
2683 bitmap_bh = sb_getblk(inode->i_sb,
2684 le32_to_cpu(desc->bg_inode_bitmap));
2685 if (!bitmap_bh)
2686 goto make_io;
2689 * If the inode bitmap isn't in cache then the
2690 * optimisation may end up performing two reads instead
2691 * of one, so skip it.
2693 if (!buffer_uptodate(bitmap_bh)) {
2694 brelse(bitmap_bh);
2695 goto make_io;
2697 for (i = start; i < start + inodes_per_buffer; i++) {
2698 if (i == inode_offset)
2699 continue;
2700 if (ext3_test_bit(i, bitmap_bh->b_data))
2701 break;
2703 brelse(bitmap_bh);
2704 if (i == start + inodes_per_buffer) {
2705 /* all other inodes are free, so skip I/O */
2706 memset(bh->b_data, 0, bh->b_size);
2707 set_buffer_uptodate(bh);
2708 unlock_buffer(bh);
2709 goto has_buffer;
2713 make_io:
2715 * There are other valid inodes in the buffer, this inode
2716 * has in-inode xattrs, or we don't have this inode in memory.
2717 * Read the block from disk.
2719 get_bh(bh);
2720 bh->b_end_io = end_buffer_read_sync;
2721 submit_bh(READ_META, bh);
2722 wait_on_buffer(bh);
2723 if (!buffer_uptodate(bh)) {
2724 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2725 "unable to read inode block - "
2726 "inode=%lu, block="E3FSBLK,
2727 inode->i_ino, block);
2728 brelse(bh);
2729 return -EIO;
2732 has_buffer:
2733 iloc->bh = bh;
2734 return 0;
2737 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2739 /* We have all inode data except xattrs in memory here. */
2740 return __ext3_get_inode_loc(inode, iloc,
2741 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2744 void ext3_set_inode_flags(struct inode *inode)
2746 unsigned int flags = EXT3_I(inode)->i_flags;
2748 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2749 if (flags & EXT3_SYNC_FL)
2750 inode->i_flags |= S_SYNC;
2751 if (flags & EXT3_APPEND_FL)
2752 inode->i_flags |= S_APPEND;
2753 if (flags & EXT3_IMMUTABLE_FL)
2754 inode->i_flags |= S_IMMUTABLE;
2755 if (flags & EXT3_NOATIME_FL)
2756 inode->i_flags |= S_NOATIME;
2757 if (flags & EXT3_DIRSYNC_FL)
2758 inode->i_flags |= S_DIRSYNC;
2761 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2762 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2764 unsigned int flags = ei->vfs_inode.i_flags;
2766 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2767 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2768 if (flags & S_SYNC)
2769 ei->i_flags |= EXT3_SYNC_FL;
2770 if (flags & S_APPEND)
2771 ei->i_flags |= EXT3_APPEND_FL;
2772 if (flags & S_IMMUTABLE)
2773 ei->i_flags |= EXT3_IMMUTABLE_FL;
2774 if (flags & S_NOATIME)
2775 ei->i_flags |= EXT3_NOATIME_FL;
2776 if (flags & S_DIRSYNC)
2777 ei->i_flags |= EXT3_DIRSYNC_FL;
2780 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2782 struct ext3_iloc iloc;
2783 struct ext3_inode *raw_inode;
2784 struct ext3_inode_info *ei;
2785 struct buffer_head *bh;
2786 struct inode *inode;
2787 journal_t *journal = EXT3_SB(sb)->s_journal;
2788 transaction_t *transaction;
2789 long ret;
2790 int block;
2792 inode = iget_locked(sb, ino);
2793 if (!inode)
2794 return ERR_PTR(-ENOMEM);
2795 if (!(inode->i_state & I_NEW))
2796 return inode;
2798 ei = EXT3_I(inode);
2799 ei->i_block_alloc_info = NULL;
2801 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2802 if (ret < 0)
2803 goto bad_inode;
2804 bh = iloc.bh;
2805 raw_inode = ext3_raw_inode(&iloc);
2806 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2807 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2808 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2809 if(!(test_opt (inode->i_sb, NO_UID32))) {
2810 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2811 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2813 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2814 inode->i_size = le32_to_cpu(raw_inode->i_size);
2815 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2816 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2817 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2818 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2820 ei->i_state_flags = 0;
2821 ei->i_dir_start_lookup = 0;
2822 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2823 /* We now have enough fields to check if the inode was active or not.
2824 * This is needed because nfsd might try to access dead inodes
2825 * the test is that same one that e2fsck uses
2826 * NeilBrown 1999oct15
2828 if (inode->i_nlink == 0) {
2829 if (inode->i_mode == 0 ||
2830 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2831 /* this inode is deleted */
2832 brelse (bh);
2833 ret = -ESTALE;
2834 goto bad_inode;
2836 /* The only unlinked inodes we let through here have
2837 * valid i_mode and are being read by the orphan
2838 * recovery code: that's fine, we're about to complete
2839 * the process of deleting those. */
2841 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2842 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2843 #ifdef EXT3_FRAGMENTS
2844 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2845 ei->i_frag_no = raw_inode->i_frag;
2846 ei->i_frag_size = raw_inode->i_fsize;
2847 #endif
2848 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2849 if (!S_ISREG(inode->i_mode)) {
2850 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2851 } else {
2852 inode->i_size |=
2853 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2855 ei->i_disksize = inode->i_size;
2856 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2857 ei->i_block_group = iloc.block_group;
2859 * NOTE! The in-memory inode i_data array is in little-endian order
2860 * even on big-endian machines: we do NOT byteswap the block numbers!
2862 for (block = 0; block < EXT3_N_BLOCKS; block++)
2863 ei->i_data[block] = raw_inode->i_block[block];
2864 INIT_LIST_HEAD(&ei->i_orphan);
2867 * Set transaction id's of transactions that have to be committed
2868 * to finish f[data]sync. We set them to currently running transaction
2869 * as we cannot be sure that the inode or some of its metadata isn't
2870 * part of the transaction - the inode could have been reclaimed and
2871 * now it is reread from disk.
2873 if (journal) {
2874 tid_t tid;
2876 spin_lock(&journal->j_state_lock);
2877 if (journal->j_running_transaction)
2878 transaction = journal->j_running_transaction;
2879 else
2880 transaction = journal->j_committing_transaction;
2881 if (transaction)
2882 tid = transaction->t_tid;
2883 else
2884 tid = journal->j_commit_sequence;
2885 spin_unlock(&journal->j_state_lock);
2886 atomic_set(&ei->i_sync_tid, tid);
2887 atomic_set(&ei->i_datasync_tid, tid);
2890 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2891 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2893 * When mke2fs creates big inodes it does not zero out
2894 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2895 * so ignore those first few inodes.
2897 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2898 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2899 EXT3_INODE_SIZE(inode->i_sb)) {
2900 brelse (bh);
2901 ret = -EIO;
2902 goto bad_inode;
2904 if (ei->i_extra_isize == 0) {
2905 /* The extra space is currently unused. Use it. */
2906 ei->i_extra_isize = sizeof(struct ext3_inode) -
2907 EXT3_GOOD_OLD_INODE_SIZE;
2908 } else {
2909 __le32 *magic = (void *)raw_inode +
2910 EXT3_GOOD_OLD_INODE_SIZE +
2911 ei->i_extra_isize;
2912 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2913 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2915 } else
2916 ei->i_extra_isize = 0;
2918 if (S_ISREG(inode->i_mode)) {
2919 inode->i_op = &ext3_file_inode_operations;
2920 inode->i_fop = &ext3_file_operations;
2921 ext3_set_aops(inode);
2922 } else if (S_ISDIR(inode->i_mode)) {
2923 inode->i_op = &ext3_dir_inode_operations;
2924 inode->i_fop = &ext3_dir_operations;
2925 } else if (S_ISLNK(inode->i_mode)) {
2926 if (ext3_inode_is_fast_symlink(inode)) {
2927 inode->i_op = &ext3_fast_symlink_inode_operations;
2928 nd_terminate_link(ei->i_data, inode->i_size,
2929 sizeof(ei->i_data) - 1);
2930 } else {
2931 inode->i_op = &ext3_symlink_inode_operations;
2932 ext3_set_aops(inode);
2934 } else {
2935 inode->i_op = &ext3_special_inode_operations;
2936 if (raw_inode->i_block[0])
2937 init_special_inode(inode, inode->i_mode,
2938 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2939 else
2940 init_special_inode(inode, inode->i_mode,
2941 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2943 brelse (iloc.bh);
2944 ext3_set_inode_flags(inode);
2945 unlock_new_inode(inode);
2946 return inode;
2948 bad_inode:
2949 iget_failed(inode);
2950 return ERR_PTR(ret);
2954 * Post the struct inode info into an on-disk inode location in the
2955 * buffer-cache. This gobbles the caller's reference to the
2956 * buffer_head in the inode location struct.
2958 * The caller must have write access to iloc->bh.
2960 static int ext3_do_update_inode(handle_t *handle,
2961 struct inode *inode,
2962 struct ext3_iloc *iloc)
2964 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2965 struct ext3_inode_info *ei = EXT3_I(inode);
2966 struct buffer_head *bh = iloc->bh;
2967 int err = 0, rc, block;
2969 again:
2970 /* we can't allow multiple procs in here at once, its a bit racey */
2971 lock_buffer(bh);
2973 /* For fields not not tracking in the in-memory inode,
2974 * initialise them to zero for new inodes. */
2975 if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
2976 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2978 ext3_get_inode_flags(ei);
2979 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2980 if(!(test_opt(inode->i_sb, NO_UID32))) {
2981 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2982 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2984 * Fix up interoperability with old kernels. Otherwise, old inodes get
2985 * re-used with the upper 16 bits of the uid/gid intact
2987 if(!ei->i_dtime) {
2988 raw_inode->i_uid_high =
2989 cpu_to_le16(high_16_bits(inode->i_uid));
2990 raw_inode->i_gid_high =
2991 cpu_to_le16(high_16_bits(inode->i_gid));
2992 } else {
2993 raw_inode->i_uid_high = 0;
2994 raw_inode->i_gid_high = 0;
2996 } else {
2997 raw_inode->i_uid_low =
2998 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2999 raw_inode->i_gid_low =
3000 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3001 raw_inode->i_uid_high = 0;
3002 raw_inode->i_gid_high = 0;
3004 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3005 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3006 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3007 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3008 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3009 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3010 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3011 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3012 #ifdef EXT3_FRAGMENTS
3013 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3014 raw_inode->i_frag = ei->i_frag_no;
3015 raw_inode->i_fsize = ei->i_frag_size;
3016 #endif
3017 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3018 if (!S_ISREG(inode->i_mode)) {
3019 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3020 } else {
3021 raw_inode->i_size_high =
3022 cpu_to_le32(ei->i_disksize >> 32);
3023 if (ei->i_disksize > 0x7fffffffULL) {
3024 struct super_block *sb = inode->i_sb;
3025 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3026 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3027 EXT3_SB(sb)->s_es->s_rev_level ==
3028 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3029 /* If this is the first large file
3030 * created, add a flag to the superblock.
3032 unlock_buffer(bh);
3033 err = ext3_journal_get_write_access(handle,
3034 EXT3_SB(sb)->s_sbh);
3035 if (err)
3036 goto out_brelse;
3038 ext3_update_dynamic_rev(sb);
3039 EXT3_SET_RO_COMPAT_FEATURE(sb,
3040 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3041 handle->h_sync = 1;
3042 err = ext3_journal_dirty_metadata(handle,
3043 EXT3_SB(sb)->s_sbh);
3044 /* get our lock and start over */
3045 goto again;
3049 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3050 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3051 if (old_valid_dev(inode->i_rdev)) {
3052 raw_inode->i_block[0] =
3053 cpu_to_le32(old_encode_dev(inode->i_rdev));
3054 raw_inode->i_block[1] = 0;
3055 } else {
3056 raw_inode->i_block[0] = 0;
3057 raw_inode->i_block[1] =
3058 cpu_to_le32(new_encode_dev(inode->i_rdev));
3059 raw_inode->i_block[2] = 0;
3061 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3062 raw_inode->i_block[block] = ei->i_data[block];
3064 if (ei->i_extra_isize)
3065 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3067 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3068 unlock_buffer(bh);
3069 rc = ext3_journal_dirty_metadata(handle, bh);
3070 if (!err)
3071 err = rc;
3072 ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3074 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3075 out_brelse:
3076 brelse (bh);
3077 ext3_std_error(inode->i_sb, err);
3078 return err;
3082 * ext3_write_inode()
3084 * We are called from a few places:
3086 * - Within generic_file_write() for O_SYNC files.
3087 * Here, there will be no transaction running. We wait for any running
3088 * trasnaction to commit.
3090 * - Within sys_sync(), kupdate and such.
3091 * We wait on commit, if tol to.
3093 * - Within prune_icache() (PF_MEMALLOC == true)
3094 * Here we simply return. We can't afford to block kswapd on the
3095 * journal commit.
3097 * In all cases it is actually safe for us to return without doing anything,
3098 * because the inode has been copied into a raw inode buffer in
3099 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3100 * knfsd.
3102 * Note that we are absolutely dependent upon all inode dirtiers doing the
3103 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3104 * which we are interested.
3106 * It would be a bug for them to not do this. The code:
3108 * mark_inode_dirty(inode)
3109 * stuff();
3110 * inode->i_size = expr;
3112 * is in error because a kswapd-driven write_inode() could occur while
3113 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3114 * will no longer be on the superblock's dirty inode list.
3116 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3118 if (current->flags & PF_MEMALLOC)
3119 return 0;
3121 if (ext3_journal_current_handle()) {
3122 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3123 dump_stack();
3124 return -EIO;
3127 if (wbc->sync_mode != WB_SYNC_ALL)
3128 return 0;
3130 return ext3_force_commit(inode->i_sb);
3134 * ext3_setattr()
3136 * Called from notify_change.
3138 * We want to trap VFS attempts to truncate the file as soon as
3139 * possible. In particular, we want to make sure that when the VFS
3140 * shrinks i_size, we put the inode on the orphan list and modify
3141 * i_disksize immediately, so that during the subsequent flushing of
3142 * dirty pages and freeing of disk blocks, we can guarantee that any
3143 * commit will leave the blocks being flushed in an unused state on
3144 * disk. (On recovery, the inode will get truncated and the blocks will
3145 * be freed, so we have a strong guarantee that no future commit will
3146 * leave these blocks visible to the user.)
3148 * Called with inode->sem down.
3150 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3152 struct inode *inode = dentry->d_inode;
3153 int error, rc = 0;
3154 const unsigned int ia_valid = attr->ia_valid;
3156 error = inode_change_ok(inode, attr);
3157 if (error)
3158 return error;
3160 if (is_quota_modification(inode, attr))
3161 dquot_initialize(inode);
3162 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3163 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3164 handle_t *handle;
3166 /* (user+group)*(old+new) structure, inode write (sb,
3167 * inode block, ? - but truncate inode update has it) */
3168 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3169 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3170 if (IS_ERR(handle)) {
3171 error = PTR_ERR(handle);
3172 goto err_out;
3174 error = dquot_transfer(inode, attr);
3175 if (error) {
3176 ext3_journal_stop(handle);
3177 return error;
3179 /* Update corresponding info in inode so that everything is in
3180 * one transaction */
3181 if (attr->ia_valid & ATTR_UID)
3182 inode->i_uid = attr->ia_uid;
3183 if (attr->ia_valid & ATTR_GID)
3184 inode->i_gid = attr->ia_gid;
3185 error = ext3_mark_inode_dirty(handle, inode);
3186 ext3_journal_stop(handle);
3189 if (S_ISREG(inode->i_mode) &&
3190 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3191 handle_t *handle;
3193 handle = ext3_journal_start(inode, 3);
3194 if (IS_ERR(handle)) {
3195 error = PTR_ERR(handle);
3196 goto err_out;
3199 error = ext3_orphan_add(handle, inode);
3200 EXT3_I(inode)->i_disksize = attr->ia_size;
3201 rc = ext3_mark_inode_dirty(handle, inode);
3202 if (!error)
3203 error = rc;
3204 ext3_journal_stop(handle);
3207 rc = inode_setattr(inode, attr);
3209 if (!rc && (ia_valid & ATTR_MODE))
3210 rc = ext3_acl_chmod(inode);
3212 err_out:
3213 ext3_std_error(inode->i_sb, error);
3214 if (!error)
3215 error = rc;
3216 return error;
3221 * How many blocks doth make a writepage()?
3223 * With N blocks per page, it may be:
3224 * N data blocks
3225 * 2 indirect block
3226 * 2 dindirect
3227 * 1 tindirect
3228 * N+5 bitmap blocks (from the above)
3229 * N+5 group descriptor summary blocks
3230 * 1 inode block
3231 * 1 superblock.
3232 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3234 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3236 * With ordered or writeback data it's the same, less the N data blocks.
3238 * If the inode's direct blocks can hold an integral number of pages then a
3239 * page cannot straddle two indirect blocks, and we can only touch one indirect
3240 * and dindirect block, and the "5" above becomes "3".
3242 * This still overestimates under most circumstances. If we were to pass the
3243 * start and end offsets in here as well we could do block_to_path() on each
3244 * block and work out the exact number of indirects which are touched. Pah.
3247 static int ext3_writepage_trans_blocks(struct inode *inode)
3249 int bpp = ext3_journal_blocks_per_page(inode);
3250 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3251 int ret;
3253 if (ext3_should_journal_data(inode))
3254 ret = 3 * (bpp + indirects) + 2;
3255 else
3256 ret = 2 * (bpp + indirects) + 2;
3258 #ifdef CONFIG_QUOTA
3259 /* We know that structure was already allocated during dquot_initialize so
3260 * we will be updating only the data blocks + inodes */
3261 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3262 #endif
3264 return ret;
3268 * The caller must have previously called ext3_reserve_inode_write().
3269 * Give this, we know that the caller already has write access to iloc->bh.
3271 int ext3_mark_iloc_dirty(handle_t *handle,
3272 struct inode *inode, struct ext3_iloc *iloc)
3274 int err = 0;
3276 /* the do_update_inode consumes one bh->b_count */
3277 get_bh(iloc->bh);
3279 /* ext3_do_update_inode() does journal_dirty_metadata */
3280 err = ext3_do_update_inode(handle, inode, iloc);
3281 put_bh(iloc->bh);
3282 return err;
3286 * On success, We end up with an outstanding reference count against
3287 * iloc->bh. This _must_ be cleaned up later.
3291 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3292 struct ext3_iloc *iloc)
3294 int err = 0;
3295 if (handle) {
3296 err = ext3_get_inode_loc(inode, iloc);
3297 if (!err) {
3298 BUFFER_TRACE(iloc->bh, "get_write_access");
3299 err = ext3_journal_get_write_access(handle, iloc->bh);
3300 if (err) {
3301 brelse(iloc->bh);
3302 iloc->bh = NULL;
3306 ext3_std_error(inode->i_sb, err);
3307 return err;
3311 * What we do here is to mark the in-core inode as clean with respect to inode
3312 * dirtiness (it may still be data-dirty).
3313 * This means that the in-core inode may be reaped by prune_icache
3314 * without having to perform any I/O. This is a very good thing,
3315 * because *any* task may call prune_icache - even ones which
3316 * have a transaction open against a different journal.
3318 * Is this cheating? Not really. Sure, we haven't written the
3319 * inode out, but prune_icache isn't a user-visible syncing function.
3320 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3321 * we start and wait on commits.
3323 * Is this efficient/effective? Well, we're being nice to the system
3324 * by cleaning up our inodes proactively so they can be reaped
3325 * without I/O. But we are potentially leaving up to five seconds'
3326 * worth of inodes floating about which prune_icache wants us to
3327 * write out. One way to fix that would be to get prune_icache()
3328 * to do a write_super() to free up some memory. It has the desired
3329 * effect.
3331 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3333 struct ext3_iloc iloc;
3334 int err;
3336 might_sleep();
3337 err = ext3_reserve_inode_write(handle, inode, &iloc);
3338 if (!err)
3339 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3340 return err;
3344 * ext3_dirty_inode() is called from __mark_inode_dirty()
3346 * We're really interested in the case where a file is being extended.
3347 * i_size has been changed by generic_commit_write() and we thus need
3348 * to include the updated inode in the current transaction.
3350 * Also, dquot_alloc_space() will always dirty the inode when blocks
3351 * are allocated to the file.
3353 * If the inode is marked synchronous, we don't honour that here - doing
3354 * so would cause a commit on atime updates, which we don't bother doing.
3355 * We handle synchronous inodes at the highest possible level.
3357 void ext3_dirty_inode(struct inode *inode)
3359 handle_t *current_handle = ext3_journal_current_handle();
3360 handle_t *handle;
3362 handle = ext3_journal_start(inode, 2);
3363 if (IS_ERR(handle))
3364 goto out;
3365 if (current_handle &&
3366 current_handle->h_transaction != handle->h_transaction) {
3367 /* This task has a transaction open against a different fs */
3368 printk(KERN_EMERG "%s: transactions do not match!\n",
3369 __func__);
3370 } else {
3371 jbd_debug(5, "marking dirty. outer handle=%p\n",
3372 current_handle);
3373 ext3_mark_inode_dirty(handle, inode);
3375 ext3_journal_stop(handle);
3376 out:
3377 return;
3380 #if 0
3382 * Bind an inode's backing buffer_head into this transaction, to prevent
3383 * it from being flushed to disk early. Unlike
3384 * ext3_reserve_inode_write, this leaves behind no bh reference and
3385 * returns no iloc structure, so the caller needs to repeat the iloc
3386 * lookup to mark the inode dirty later.
3388 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3390 struct ext3_iloc iloc;
3392 int err = 0;
3393 if (handle) {
3394 err = ext3_get_inode_loc(inode, &iloc);
3395 if (!err) {
3396 BUFFER_TRACE(iloc.bh, "get_write_access");
3397 err = journal_get_write_access(handle, iloc.bh);
3398 if (!err)
3399 err = ext3_journal_dirty_metadata(handle,
3400 iloc.bh);
3401 brelse(iloc.bh);
3404 ext3_std_error(inode->i_sb, err);
3405 return err;
3407 #endif
3409 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3411 journal_t *journal;
3412 handle_t *handle;
3413 int err;
3416 * We have to be very careful here: changing a data block's
3417 * journaling status dynamically is dangerous. If we write a
3418 * data block to the journal, change the status and then delete
3419 * that block, we risk forgetting to revoke the old log record
3420 * from the journal and so a subsequent replay can corrupt data.
3421 * So, first we make sure that the journal is empty and that
3422 * nobody is changing anything.
3425 journal = EXT3_JOURNAL(inode);
3426 if (is_journal_aborted(journal))
3427 return -EROFS;
3429 journal_lock_updates(journal);
3430 journal_flush(journal);
3433 * OK, there are no updates running now, and all cached data is
3434 * synced to disk. We are now in a completely consistent state
3435 * which doesn't have anything in the journal, and we know that
3436 * no filesystem updates are running, so it is safe to modify
3437 * the inode's in-core data-journaling state flag now.
3440 if (val)
3441 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3442 else
3443 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3444 ext3_set_aops(inode);
3446 journal_unlock_updates(journal);
3448 /* Finally we can mark the inode as dirty. */
3450 handle = ext3_journal_start(inode, 1);
3451 if (IS_ERR(handle))
3452 return PTR_ERR(handle);
3454 err = ext3_mark_inode_dirty(handle, inode);
3455 handle->h_sync = 1;
3456 ext3_journal_stop(handle);
3457 ext3_std_error(inode->i_sb, err);
3459 return err;