thinkpad-acpi: R52 brightness_mode has been confirmed
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
bloba4800c51d6c99c23a0eae9c53dc46a93b0cf808b
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * ->i_mutex
81 * ->i_alloc_sem (various)
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __remove_from_page_cache(struct page *page)
116 struct address_space *mapping = page->mapping;
118 mem_cgroup_uncharge_cache_page(page);
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 void remove_from_page_cache(struct page *page)
140 struct address_space *mapping = page->mapping;
142 BUG_ON(!PageLocked(page));
144 spin_lock_irq(&mapping->tree_lock);
145 __remove_from_page_cache(page);
146 spin_unlock_irq(&mapping->tree_lock);
149 static int sync_page(void *word)
151 struct address_space *mapping;
152 struct page *page;
154 page = container_of((unsigned long *)word, struct page, flags);
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
172 * ignore it for all cases but swap, where only page_private(page) is
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
175 * -- wli
177 smp_mb();
178 mapping = page_mapping(page);
179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 mapping->a_ops->sync_page(page);
181 io_schedule();
182 return 0;
185 static int sync_page_killable(void *word)
187 sync_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
195 * @end: offset in bytes where the range ends (inclusive)
196 * @sync_mode: enable synchronous operation
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202 * opposed to a regular memory cleansing writeback. The difference between
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 loff_t end, int sync_mode)
209 int ret;
210 struct writeback_control wbc = {
211 .sync_mode = sync_mode,
212 .nr_to_write = LONG_MAX,
213 .range_start = start,
214 .range_end = end,
217 if (!mapping_cap_writeback_dirty(mapping))
218 return 0;
220 ret = do_writepages(mapping, &wbc);
221 return ret;
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225 int sync_mode)
227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
230 int filemap_fdatawrite(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 EXPORT_SYMBOL(filemap_fdatawrite);
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237 loff_t end)
239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
250 int filemap_flush(struct address_space *mapping)
252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 EXPORT_SYMBOL(filemap_flush);
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
262 * Wait for writeback to complete against pages indexed by start->end
263 * inclusive
265 int wait_on_page_writeback_range(struct address_space *mapping,
266 pgoff_t start, pgoff_t end)
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
271 pgoff_t index;
273 if (end < start)
274 return 0;
276 pagevec_init(&pvec, 0);
277 index = start;
278 while ((index <= end) &&
279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 PAGECACHE_TAG_WRITEBACK,
281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 unsigned i;
284 for (i = 0; i < nr_pages; i++) {
285 struct page *page = pvec.pages[i];
287 /* until radix tree lookup accepts end_index */
288 if (page->index > end)
289 continue;
291 wait_on_page_writeback(page);
292 if (PageError(page))
293 ret = -EIO;
295 pagevec_release(&pvec);
296 cond_resched();
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 ret = -ENOSPC;
302 if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 ret = -EIO;
305 return ret;
309 * sync_page_range - write and wait on all pages in the passed range
310 * @inode: target inode
311 * @mapping: target address_space
312 * @pos: beginning offset in pages to write
313 * @count: number of bytes to write
315 * Write and wait upon all the pages in the passed range. This is a "data
316 * integrity" operation. It waits upon in-flight writeout before starting and
317 * waiting upon new writeout. If there was an IO error, return it.
319 * We need to re-take i_mutex during the generic_osync_inode list walk because
320 * it is otherwise livelockable.
322 int sync_page_range(struct inode *inode, struct address_space *mapping,
323 loff_t pos, loff_t count)
325 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
326 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
327 int ret;
329 if (!mapping_cap_writeback_dirty(mapping) || !count)
330 return 0;
331 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
332 if (ret == 0) {
333 mutex_lock(&inode->i_mutex);
334 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
335 mutex_unlock(&inode->i_mutex);
337 if (ret == 0)
338 ret = wait_on_page_writeback_range(mapping, start, end);
339 return ret;
341 EXPORT_SYMBOL(sync_page_range);
344 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
345 * @inode: target inode
346 * @mapping: target address_space
347 * @pos: beginning offset in pages to write
348 * @count: number of bytes to write
350 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
351 * as it forces O_SYNC writers to different parts of the same file
352 * to be serialised right until io completion.
354 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
355 loff_t pos, loff_t count)
357 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
358 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
359 int ret;
361 if (!mapping_cap_writeback_dirty(mapping) || !count)
362 return 0;
363 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
364 if (ret == 0)
365 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
366 if (ret == 0)
367 ret = wait_on_page_writeback_range(mapping, start, end);
368 return ret;
370 EXPORT_SYMBOL(sync_page_range_nolock);
373 * filemap_fdatawait - wait for all under-writeback pages to complete
374 * @mapping: address space structure to wait for
376 * Walk the list of under-writeback pages of the given address space
377 * and wait for all of them.
379 int filemap_fdatawait(struct address_space *mapping)
381 loff_t i_size = i_size_read(mapping->host);
383 if (i_size == 0)
384 return 0;
386 return wait_on_page_writeback_range(mapping, 0,
387 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 EXPORT_SYMBOL(filemap_fdatawait);
391 int filemap_write_and_wait(struct address_space *mapping)
393 int err = 0;
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
409 return err;
411 EXPORT_SYMBOL(filemap_write_and_wait);
414 * filemap_write_and_wait_range - write out & wait on a file range
415 * @mapping: the address_space for the pages
416 * @lstart: offset in bytes where the range starts
417 * @lend: offset in bytes where the range ends (inclusive)
419 * Write out and wait upon file offsets lstart->lend, inclusive.
421 * Note that `lend' is inclusive (describes the last byte to be written) so
422 * that this function can be used to write to the very end-of-file (end = -1).
424 int filemap_write_and_wait_range(struct address_space *mapping,
425 loff_t lstart, loff_t lend)
427 int err = 0;
429 if (mapping->nrpages) {
430 err = __filemap_fdatawrite_range(mapping, lstart, lend,
431 WB_SYNC_ALL);
432 /* See comment of filemap_write_and_wait() */
433 if (err != -EIO) {
434 int err2 = wait_on_page_writeback_range(mapping,
435 lstart >> PAGE_CACHE_SHIFT,
436 lend >> PAGE_CACHE_SHIFT);
437 if (!err)
438 err = err2;
441 return err;
445 * add_to_page_cache_locked - add a locked page to the pagecache
446 * @page: page to add
447 * @mapping: the page's address_space
448 * @offset: page index
449 * @gfp_mask: page allocation mode
451 * This function is used to add a page to the pagecache. It must be locked.
452 * This function does not add the page to the LRU. The caller must do that.
454 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
455 pgoff_t offset, gfp_t gfp_mask)
457 int error;
459 VM_BUG_ON(!PageLocked(page));
461 error = mem_cgroup_cache_charge(page, current->mm,
462 gfp_mask & ~__GFP_HIGHMEM);
463 if (error)
464 goto out;
466 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
467 if (error == 0) {
468 page_cache_get(page);
469 page->mapping = mapping;
470 page->index = offset;
472 spin_lock_irq(&mapping->tree_lock);
473 error = radix_tree_insert(&mapping->page_tree, offset, page);
474 if (likely(!error)) {
475 mapping->nrpages++;
476 __inc_zone_page_state(page, NR_FILE_PAGES);
477 } else {
478 page->mapping = NULL;
479 mem_cgroup_uncharge_cache_page(page);
480 page_cache_release(page);
483 spin_unlock_irq(&mapping->tree_lock);
484 radix_tree_preload_end();
485 } else
486 mem_cgroup_uncharge_cache_page(page);
487 out:
488 return error;
490 EXPORT_SYMBOL(add_to_page_cache_locked);
492 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
493 pgoff_t offset, gfp_t gfp_mask)
495 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
496 if (ret == 0)
497 lru_cache_add(page);
498 return ret;
501 #ifdef CONFIG_NUMA
502 struct page *__page_cache_alloc(gfp_t gfp)
504 if (cpuset_do_page_mem_spread()) {
505 int n = cpuset_mem_spread_node();
506 return alloc_pages_node(n, gfp, 0);
508 return alloc_pages(gfp, 0);
510 EXPORT_SYMBOL(__page_cache_alloc);
511 #endif
513 static int __sleep_on_page_lock(void *word)
515 io_schedule();
516 return 0;
520 * In order to wait for pages to become available there must be
521 * waitqueues associated with pages. By using a hash table of
522 * waitqueues where the bucket discipline is to maintain all
523 * waiters on the same queue and wake all when any of the pages
524 * become available, and for the woken contexts to check to be
525 * sure the appropriate page became available, this saves space
526 * at a cost of "thundering herd" phenomena during rare hash
527 * collisions.
529 static wait_queue_head_t *page_waitqueue(struct page *page)
531 const struct zone *zone = page_zone(page);
533 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
536 static inline void wake_up_page(struct page *page, int bit)
538 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
541 void wait_on_page_bit(struct page *page, int bit_nr)
543 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
545 if (test_bit(bit_nr, &page->flags))
546 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
547 TASK_UNINTERRUPTIBLE);
549 EXPORT_SYMBOL(wait_on_page_bit);
552 * unlock_page - unlock a locked page
553 * @page: the page
555 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
556 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
557 * mechananism between PageLocked pages and PageWriteback pages is shared.
558 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
560 * The first mb is necessary to safely close the critical section opened by the
561 * test_and_set_bit() to lock the page; the second mb is necessary to enforce
562 * ordering between the clear_bit and the read of the waitqueue (to avoid SMP
563 * races with a parallel wait_on_page_locked()).
565 void unlock_page(struct page *page)
567 smp_mb__before_clear_bit();
568 if (!test_and_clear_bit(PG_locked, &page->flags))
569 BUG();
570 smp_mb__after_clear_bit();
571 wake_up_page(page, PG_locked);
573 EXPORT_SYMBOL(unlock_page);
576 * end_page_writeback - end writeback against a page
577 * @page: the page
579 void end_page_writeback(struct page *page)
581 if (TestClearPageReclaim(page))
582 rotate_reclaimable_page(page);
584 if (!test_clear_page_writeback(page))
585 BUG();
587 smp_mb__after_clear_bit();
588 wake_up_page(page, PG_writeback);
590 EXPORT_SYMBOL(end_page_writeback);
593 * __lock_page - get a lock on the page, assuming we need to sleep to get it
594 * @page: the page to lock
596 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
597 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
598 * chances are that on the second loop, the block layer's plug list is empty,
599 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
601 void __lock_page(struct page *page)
603 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
605 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
606 TASK_UNINTERRUPTIBLE);
608 EXPORT_SYMBOL(__lock_page);
610 int __lock_page_killable(struct page *page)
612 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
614 return __wait_on_bit_lock(page_waitqueue(page), &wait,
615 sync_page_killable, TASK_KILLABLE);
619 * __lock_page_nosync - get a lock on the page, without calling sync_page()
620 * @page: the page to lock
622 * Variant of lock_page that does not require the caller to hold a reference
623 * on the page's mapping.
625 void __lock_page_nosync(struct page *page)
627 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
628 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
629 TASK_UNINTERRUPTIBLE);
633 * find_get_page - find and get a page reference
634 * @mapping: the address_space to search
635 * @offset: the page index
637 * Is there a pagecache struct page at the given (mapping, offset) tuple?
638 * If yes, increment its refcount and return it; if no, return NULL.
640 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
642 void **pagep;
643 struct page *page;
645 rcu_read_lock();
646 repeat:
647 page = NULL;
648 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
649 if (pagep) {
650 page = radix_tree_deref_slot(pagep);
651 if (unlikely(!page || page == RADIX_TREE_RETRY))
652 goto repeat;
654 if (!page_cache_get_speculative(page))
655 goto repeat;
658 * Has the page moved?
659 * This is part of the lockless pagecache protocol. See
660 * include/linux/pagemap.h for details.
662 if (unlikely(page != *pagep)) {
663 page_cache_release(page);
664 goto repeat;
667 rcu_read_unlock();
669 return page;
671 EXPORT_SYMBOL(find_get_page);
674 * find_lock_page - locate, pin and lock a pagecache page
675 * @mapping: the address_space to search
676 * @offset: the page index
678 * Locates the desired pagecache page, locks it, increments its reference
679 * count and returns its address.
681 * Returns zero if the page was not present. find_lock_page() may sleep.
683 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
685 struct page *page;
687 repeat:
688 page = find_get_page(mapping, offset);
689 if (page) {
690 lock_page(page);
691 /* Has the page been truncated? */
692 if (unlikely(page->mapping != mapping)) {
693 unlock_page(page);
694 page_cache_release(page);
695 goto repeat;
697 VM_BUG_ON(page->index != offset);
699 return page;
701 EXPORT_SYMBOL(find_lock_page);
704 * find_or_create_page - locate or add a pagecache page
705 * @mapping: the page's address_space
706 * @index: the page's index into the mapping
707 * @gfp_mask: page allocation mode
709 * Locates a page in the pagecache. If the page is not present, a new page
710 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
711 * LRU list. The returned page is locked and has its reference count
712 * incremented.
714 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
715 * allocation!
717 * find_or_create_page() returns the desired page's address, or zero on
718 * memory exhaustion.
720 struct page *find_or_create_page(struct address_space *mapping,
721 pgoff_t index, gfp_t gfp_mask)
723 struct page *page;
724 int err;
725 repeat:
726 page = find_lock_page(mapping, index);
727 if (!page) {
728 page = __page_cache_alloc(gfp_mask);
729 if (!page)
730 return NULL;
731 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
732 if (unlikely(err)) {
733 page_cache_release(page);
734 page = NULL;
735 if (err == -EEXIST)
736 goto repeat;
739 return page;
741 EXPORT_SYMBOL(find_or_create_page);
744 * find_get_pages - gang pagecache lookup
745 * @mapping: The address_space to search
746 * @start: The starting page index
747 * @nr_pages: The maximum number of pages
748 * @pages: Where the resulting pages are placed
750 * find_get_pages() will search for and return a group of up to
751 * @nr_pages pages in the mapping. The pages are placed at @pages.
752 * find_get_pages() takes a reference against the returned pages.
754 * The search returns a group of mapping-contiguous pages with ascending
755 * indexes. There may be holes in the indices due to not-present pages.
757 * find_get_pages() returns the number of pages which were found.
759 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
760 unsigned int nr_pages, struct page **pages)
762 unsigned int i;
763 unsigned int ret;
764 unsigned int nr_found;
766 rcu_read_lock();
767 restart:
768 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
769 (void ***)pages, start, nr_pages);
770 ret = 0;
771 for (i = 0; i < nr_found; i++) {
772 struct page *page;
773 repeat:
774 page = radix_tree_deref_slot((void **)pages[i]);
775 if (unlikely(!page))
776 continue;
778 * this can only trigger if nr_found == 1, making livelock
779 * a non issue.
781 if (unlikely(page == RADIX_TREE_RETRY))
782 goto restart;
784 if (!page_cache_get_speculative(page))
785 goto repeat;
787 /* Has the page moved? */
788 if (unlikely(page != *((void **)pages[i]))) {
789 page_cache_release(page);
790 goto repeat;
793 pages[ret] = page;
794 ret++;
796 rcu_read_unlock();
797 return ret;
801 * find_get_pages_contig - gang contiguous pagecache lookup
802 * @mapping: The address_space to search
803 * @index: The starting page index
804 * @nr_pages: The maximum number of pages
805 * @pages: Where the resulting pages are placed
807 * find_get_pages_contig() works exactly like find_get_pages(), except
808 * that the returned number of pages are guaranteed to be contiguous.
810 * find_get_pages_contig() returns the number of pages which were found.
812 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
813 unsigned int nr_pages, struct page **pages)
815 unsigned int i;
816 unsigned int ret;
817 unsigned int nr_found;
819 rcu_read_lock();
820 restart:
821 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
822 (void ***)pages, index, nr_pages);
823 ret = 0;
824 for (i = 0; i < nr_found; i++) {
825 struct page *page;
826 repeat:
827 page = radix_tree_deref_slot((void **)pages[i]);
828 if (unlikely(!page))
829 continue;
831 * this can only trigger if nr_found == 1, making livelock
832 * a non issue.
834 if (unlikely(page == RADIX_TREE_RETRY))
835 goto restart;
837 if (page->mapping == NULL || page->index != index)
838 break;
840 if (!page_cache_get_speculative(page))
841 goto repeat;
843 /* Has the page moved? */
844 if (unlikely(page != *((void **)pages[i]))) {
845 page_cache_release(page);
846 goto repeat;
849 pages[ret] = page;
850 ret++;
851 index++;
853 rcu_read_unlock();
854 return ret;
856 EXPORT_SYMBOL(find_get_pages_contig);
859 * find_get_pages_tag - find and return pages that match @tag
860 * @mapping: the address_space to search
861 * @index: the starting page index
862 * @tag: the tag index
863 * @nr_pages: the maximum number of pages
864 * @pages: where the resulting pages are placed
866 * Like find_get_pages, except we only return pages which are tagged with
867 * @tag. We update @index to index the next page for the traversal.
869 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
870 int tag, unsigned int nr_pages, struct page **pages)
872 unsigned int i;
873 unsigned int ret;
874 unsigned int nr_found;
876 rcu_read_lock();
877 restart:
878 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
879 (void ***)pages, *index, nr_pages, tag);
880 ret = 0;
881 for (i = 0; i < nr_found; i++) {
882 struct page *page;
883 repeat:
884 page = radix_tree_deref_slot((void **)pages[i]);
885 if (unlikely(!page))
886 continue;
888 * this can only trigger if nr_found == 1, making livelock
889 * a non issue.
891 if (unlikely(page == RADIX_TREE_RETRY))
892 goto restart;
894 if (!page_cache_get_speculative(page))
895 goto repeat;
897 /* Has the page moved? */
898 if (unlikely(page != *((void **)pages[i]))) {
899 page_cache_release(page);
900 goto repeat;
903 pages[ret] = page;
904 ret++;
906 rcu_read_unlock();
908 if (ret)
909 *index = pages[ret - 1]->index + 1;
911 return ret;
913 EXPORT_SYMBOL(find_get_pages_tag);
916 * grab_cache_page_nowait - returns locked page at given index in given cache
917 * @mapping: target address_space
918 * @index: the page index
920 * Same as grab_cache_page(), but do not wait if the page is unavailable.
921 * This is intended for speculative data generators, where the data can
922 * be regenerated if the page couldn't be grabbed. This routine should
923 * be safe to call while holding the lock for another page.
925 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
926 * and deadlock against the caller's locked page.
928 struct page *
929 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
931 struct page *page = find_get_page(mapping, index);
933 if (page) {
934 if (trylock_page(page))
935 return page;
936 page_cache_release(page);
937 return NULL;
939 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
940 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
941 page_cache_release(page);
942 page = NULL;
944 return page;
946 EXPORT_SYMBOL(grab_cache_page_nowait);
949 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
950 * a _large_ part of the i/o request. Imagine the worst scenario:
952 * ---R__________________________________________B__________
953 * ^ reading here ^ bad block(assume 4k)
955 * read(R) => miss => readahead(R...B) => media error => frustrating retries
956 * => failing the whole request => read(R) => read(R+1) =>
957 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
958 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
959 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
961 * It is going insane. Fix it by quickly scaling down the readahead size.
963 static void shrink_readahead_size_eio(struct file *filp,
964 struct file_ra_state *ra)
966 if (!ra->ra_pages)
967 return;
969 ra->ra_pages /= 4;
973 * do_generic_file_read - generic file read routine
974 * @filp: the file to read
975 * @ppos: current file position
976 * @desc: read_descriptor
977 * @actor: read method
979 * This is a generic file read routine, and uses the
980 * mapping->a_ops->readpage() function for the actual low-level stuff.
982 * This is really ugly. But the goto's actually try to clarify some
983 * of the logic when it comes to error handling etc.
985 static void do_generic_file_read(struct file *filp, loff_t *ppos,
986 read_descriptor_t *desc, read_actor_t actor)
988 struct address_space *mapping = filp->f_mapping;
989 struct inode *inode = mapping->host;
990 struct file_ra_state *ra = &filp->f_ra;
991 pgoff_t index;
992 pgoff_t last_index;
993 pgoff_t prev_index;
994 unsigned long offset; /* offset into pagecache page */
995 unsigned int prev_offset;
996 int error;
998 index = *ppos >> PAGE_CACHE_SHIFT;
999 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1000 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1001 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1002 offset = *ppos & ~PAGE_CACHE_MASK;
1004 for (;;) {
1005 struct page *page;
1006 pgoff_t end_index;
1007 loff_t isize;
1008 unsigned long nr, ret;
1010 cond_resched();
1011 find_page:
1012 page = find_get_page(mapping, index);
1013 if (!page) {
1014 page_cache_sync_readahead(mapping,
1015 ra, filp,
1016 index, last_index - index);
1017 page = find_get_page(mapping, index);
1018 if (unlikely(page == NULL))
1019 goto no_cached_page;
1021 if (PageReadahead(page)) {
1022 page_cache_async_readahead(mapping,
1023 ra, filp, page,
1024 index, last_index - index);
1026 if (!PageUptodate(page)) {
1027 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1028 !mapping->a_ops->is_partially_uptodate)
1029 goto page_not_up_to_date;
1030 if (!trylock_page(page))
1031 goto page_not_up_to_date;
1032 if (!mapping->a_ops->is_partially_uptodate(page,
1033 desc, offset))
1034 goto page_not_up_to_date_locked;
1035 unlock_page(page);
1037 page_ok:
1039 * i_size must be checked after we know the page is Uptodate.
1041 * Checking i_size after the check allows us to calculate
1042 * the correct value for "nr", which means the zero-filled
1043 * part of the page is not copied back to userspace (unless
1044 * another truncate extends the file - this is desired though).
1047 isize = i_size_read(inode);
1048 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1049 if (unlikely(!isize || index > end_index)) {
1050 page_cache_release(page);
1051 goto out;
1054 /* nr is the maximum number of bytes to copy from this page */
1055 nr = PAGE_CACHE_SIZE;
1056 if (index == end_index) {
1057 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1058 if (nr <= offset) {
1059 page_cache_release(page);
1060 goto out;
1063 nr = nr - offset;
1065 /* If users can be writing to this page using arbitrary
1066 * virtual addresses, take care about potential aliasing
1067 * before reading the page on the kernel side.
1069 if (mapping_writably_mapped(mapping))
1070 flush_dcache_page(page);
1073 * When a sequential read accesses a page several times,
1074 * only mark it as accessed the first time.
1076 if (prev_index != index || offset != prev_offset)
1077 mark_page_accessed(page);
1078 prev_index = index;
1081 * Ok, we have the page, and it's up-to-date, so
1082 * now we can copy it to user space...
1084 * The actor routine returns how many bytes were actually used..
1085 * NOTE! This may not be the same as how much of a user buffer
1086 * we filled up (we may be padding etc), so we can only update
1087 * "pos" here (the actor routine has to update the user buffer
1088 * pointers and the remaining count).
1090 ret = actor(desc, page, offset, nr);
1091 offset += ret;
1092 index += offset >> PAGE_CACHE_SHIFT;
1093 offset &= ~PAGE_CACHE_MASK;
1094 prev_offset = offset;
1096 page_cache_release(page);
1097 if (ret == nr && desc->count)
1098 continue;
1099 goto out;
1101 page_not_up_to_date:
1102 /* Get exclusive access to the page ... */
1103 if (lock_page_killable(page))
1104 goto readpage_eio;
1106 page_not_up_to_date_locked:
1107 /* Did it get truncated before we got the lock? */
1108 if (!page->mapping) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 continue;
1114 /* Did somebody else fill it already? */
1115 if (PageUptodate(page)) {
1116 unlock_page(page);
1117 goto page_ok;
1120 readpage:
1122 * A previous I/O error may have been due to temporary
1123 * failures, eg. multipath errors.
1124 * PG_error will be set again if readpage fails.
1126 ClearPageError(page);
1127 /* Start the actual read. The read will unlock the page. */
1128 error = mapping->a_ops->readpage(filp, page);
1130 if (unlikely(error)) {
1131 if (error == AOP_TRUNCATED_PAGE) {
1132 page_cache_release(page);
1133 goto find_page;
1135 goto readpage_error;
1138 if (!PageUptodate(page)) {
1139 if (lock_page_killable(page))
1140 goto readpage_eio;
1141 if (!PageUptodate(page)) {
1142 if (page->mapping == NULL) {
1144 * invalidate_inode_pages got it
1146 unlock_page(page);
1147 page_cache_release(page);
1148 goto find_page;
1150 unlock_page(page);
1151 shrink_readahead_size_eio(filp, ra);
1152 goto readpage_eio;
1154 unlock_page(page);
1157 goto page_ok;
1159 readpage_eio:
1160 error = -EIO;
1161 readpage_error:
1162 /* UHHUH! A synchronous read error occurred. Report it */
1163 desc->error = error;
1164 page_cache_release(page);
1165 goto out;
1167 no_cached_page:
1169 * Ok, it wasn't cached, so we need to create a new
1170 * page..
1172 page = page_cache_alloc_cold(mapping);
1173 if (!page) {
1174 desc->error = -ENOMEM;
1175 goto out;
1177 error = add_to_page_cache_lru(page, mapping,
1178 index, GFP_KERNEL);
1179 if (error) {
1180 page_cache_release(page);
1181 if (error == -EEXIST)
1182 goto find_page;
1183 desc->error = error;
1184 goto out;
1186 goto readpage;
1189 out:
1190 ra->prev_pos = prev_index;
1191 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1192 ra->prev_pos |= prev_offset;
1194 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1195 if (filp)
1196 file_accessed(filp);
1199 int file_read_actor(read_descriptor_t *desc, struct page *page,
1200 unsigned long offset, unsigned long size)
1202 char *kaddr;
1203 unsigned long left, count = desc->count;
1205 if (size > count)
1206 size = count;
1209 * Faults on the destination of a read are common, so do it before
1210 * taking the kmap.
1212 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1213 kaddr = kmap_atomic(page, KM_USER0);
1214 left = __copy_to_user_inatomic(desc->arg.buf,
1215 kaddr + offset, size);
1216 kunmap_atomic(kaddr, KM_USER0);
1217 if (left == 0)
1218 goto success;
1221 /* Do it the slow way */
1222 kaddr = kmap(page);
1223 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1224 kunmap(page);
1226 if (left) {
1227 size -= left;
1228 desc->error = -EFAULT;
1230 success:
1231 desc->count = count - size;
1232 desc->written += size;
1233 desc->arg.buf += size;
1234 return size;
1238 * Performs necessary checks before doing a write
1239 * @iov: io vector request
1240 * @nr_segs: number of segments in the iovec
1241 * @count: number of bytes to write
1242 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1244 * Adjust number of segments and amount of bytes to write (nr_segs should be
1245 * properly initialized first). Returns appropriate error code that caller
1246 * should return or zero in case that write should be allowed.
1248 int generic_segment_checks(const struct iovec *iov,
1249 unsigned long *nr_segs, size_t *count, int access_flags)
1251 unsigned long seg;
1252 size_t cnt = 0;
1253 for (seg = 0; seg < *nr_segs; seg++) {
1254 const struct iovec *iv = &iov[seg];
1257 * If any segment has a negative length, or the cumulative
1258 * length ever wraps negative then return -EINVAL.
1260 cnt += iv->iov_len;
1261 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1262 return -EINVAL;
1263 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1264 continue;
1265 if (seg == 0)
1266 return -EFAULT;
1267 *nr_segs = seg;
1268 cnt -= iv->iov_len; /* This segment is no good */
1269 break;
1271 *count = cnt;
1272 return 0;
1274 EXPORT_SYMBOL(generic_segment_checks);
1277 * generic_file_aio_read - generic filesystem read routine
1278 * @iocb: kernel I/O control block
1279 * @iov: io vector request
1280 * @nr_segs: number of segments in the iovec
1281 * @pos: current file position
1283 * This is the "read()" routine for all filesystems
1284 * that can use the page cache directly.
1286 ssize_t
1287 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1288 unsigned long nr_segs, loff_t pos)
1290 struct file *filp = iocb->ki_filp;
1291 ssize_t retval;
1292 unsigned long seg;
1293 size_t count;
1294 loff_t *ppos = &iocb->ki_pos;
1296 count = 0;
1297 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1298 if (retval)
1299 return retval;
1301 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1302 if (filp->f_flags & O_DIRECT) {
1303 loff_t size;
1304 struct address_space *mapping;
1305 struct inode *inode;
1307 mapping = filp->f_mapping;
1308 inode = mapping->host;
1309 if (!count)
1310 goto out; /* skip atime */
1311 size = i_size_read(inode);
1312 if (pos < size) {
1313 retval = filemap_write_and_wait_range(mapping, pos,
1314 pos + iov_length(iov, nr_segs) - 1);
1315 if (!retval) {
1316 retval = mapping->a_ops->direct_IO(READ, iocb,
1317 iov, pos, nr_segs);
1319 if (retval > 0)
1320 *ppos = pos + retval;
1321 if (retval) {
1322 file_accessed(filp);
1323 goto out;
1328 for (seg = 0; seg < nr_segs; seg++) {
1329 read_descriptor_t desc;
1331 desc.written = 0;
1332 desc.arg.buf = iov[seg].iov_base;
1333 desc.count = iov[seg].iov_len;
1334 if (desc.count == 0)
1335 continue;
1336 desc.error = 0;
1337 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1338 retval += desc.written;
1339 if (desc.error) {
1340 retval = retval ?: desc.error;
1341 break;
1343 if (desc.count > 0)
1344 break;
1346 out:
1347 return retval;
1349 EXPORT_SYMBOL(generic_file_aio_read);
1351 static ssize_t
1352 do_readahead(struct address_space *mapping, struct file *filp,
1353 pgoff_t index, unsigned long nr)
1355 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1356 return -EINVAL;
1358 force_page_cache_readahead(mapping, filp, index,
1359 max_sane_readahead(nr));
1360 return 0;
1363 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1365 ssize_t ret;
1366 struct file *file;
1368 ret = -EBADF;
1369 file = fget(fd);
1370 if (file) {
1371 if (file->f_mode & FMODE_READ) {
1372 struct address_space *mapping = file->f_mapping;
1373 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1374 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1375 unsigned long len = end - start + 1;
1376 ret = do_readahead(mapping, file, start, len);
1378 fput(file);
1380 return ret;
1382 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1383 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1385 return SYSC_readahead((int) fd, offset, (size_t) count);
1387 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1388 #endif
1390 #ifdef CONFIG_MMU
1392 * page_cache_read - adds requested page to the page cache if not already there
1393 * @file: file to read
1394 * @offset: page index
1396 * This adds the requested page to the page cache if it isn't already there,
1397 * and schedules an I/O to read in its contents from disk.
1399 static int page_cache_read(struct file *file, pgoff_t offset)
1401 struct address_space *mapping = file->f_mapping;
1402 struct page *page;
1403 int ret;
1405 do {
1406 page = page_cache_alloc_cold(mapping);
1407 if (!page)
1408 return -ENOMEM;
1410 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1411 if (ret == 0)
1412 ret = mapping->a_ops->readpage(file, page);
1413 else if (ret == -EEXIST)
1414 ret = 0; /* losing race to add is OK */
1416 page_cache_release(page);
1418 } while (ret == AOP_TRUNCATED_PAGE);
1420 return ret;
1423 #define MMAP_LOTSAMISS (100)
1426 * filemap_fault - read in file data for page fault handling
1427 * @vma: vma in which the fault was taken
1428 * @vmf: struct vm_fault containing details of the fault
1430 * filemap_fault() is invoked via the vma operations vector for a
1431 * mapped memory region to read in file data during a page fault.
1433 * The goto's are kind of ugly, but this streamlines the normal case of having
1434 * it in the page cache, and handles the special cases reasonably without
1435 * having a lot of duplicated code.
1437 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1439 int error;
1440 struct file *file = vma->vm_file;
1441 struct address_space *mapping = file->f_mapping;
1442 struct file_ra_state *ra = &file->f_ra;
1443 struct inode *inode = mapping->host;
1444 struct page *page;
1445 pgoff_t size;
1446 int did_readaround = 0;
1447 int ret = 0;
1449 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1450 if (vmf->pgoff >= size)
1451 return VM_FAULT_SIGBUS;
1453 /* If we don't want any read-ahead, don't bother */
1454 if (VM_RandomReadHint(vma))
1455 goto no_cached_page;
1458 * Do we have something in the page cache already?
1460 retry_find:
1461 page = find_lock_page(mapping, vmf->pgoff);
1463 * For sequential accesses, we use the generic readahead logic.
1465 if (VM_SequentialReadHint(vma)) {
1466 if (!page) {
1467 page_cache_sync_readahead(mapping, ra, file,
1468 vmf->pgoff, 1);
1469 page = find_lock_page(mapping, vmf->pgoff);
1470 if (!page)
1471 goto no_cached_page;
1473 if (PageReadahead(page)) {
1474 page_cache_async_readahead(mapping, ra, file, page,
1475 vmf->pgoff, 1);
1479 if (!page) {
1480 unsigned long ra_pages;
1482 ra->mmap_miss++;
1485 * Do we miss much more than hit in this file? If so,
1486 * stop bothering with read-ahead. It will only hurt.
1488 if (ra->mmap_miss > MMAP_LOTSAMISS)
1489 goto no_cached_page;
1492 * To keep the pgmajfault counter straight, we need to
1493 * check did_readaround, as this is an inner loop.
1495 if (!did_readaround) {
1496 ret = VM_FAULT_MAJOR;
1497 count_vm_event(PGMAJFAULT);
1499 did_readaround = 1;
1500 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1501 if (ra_pages) {
1502 pgoff_t start = 0;
1504 if (vmf->pgoff > ra_pages / 2)
1505 start = vmf->pgoff - ra_pages / 2;
1506 do_page_cache_readahead(mapping, file, start, ra_pages);
1508 page = find_lock_page(mapping, vmf->pgoff);
1509 if (!page)
1510 goto no_cached_page;
1513 if (!did_readaround)
1514 ra->mmap_miss--;
1517 * We have a locked page in the page cache, now we need to check
1518 * that it's up-to-date. If not, it is going to be due to an error.
1520 if (unlikely(!PageUptodate(page)))
1521 goto page_not_uptodate;
1523 /* Must recheck i_size under page lock */
1524 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1525 if (unlikely(vmf->pgoff >= size)) {
1526 unlock_page(page);
1527 page_cache_release(page);
1528 return VM_FAULT_SIGBUS;
1532 * Found the page and have a reference on it.
1534 mark_page_accessed(page);
1535 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1536 vmf->page = page;
1537 return ret | VM_FAULT_LOCKED;
1539 no_cached_page:
1541 * We're only likely to ever get here if MADV_RANDOM is in
1542 * effect.
1544 error = page_cache_read(file, vmf->pgoff);
1547 * The page we want has now been added to the page cache.
1548 * In the unlikely event that someone removed it in the
1549 * meantime, we'll just come back here and read it again.
1551 if (error >= 0)
1552 goto retry_find;
1555 * An error return from page_cache_read can result if the
1556 * system is low on memory, or a problem occurs while trying
1557 * to schedule I/O.
1559 if (error == -ENOMEM)
1560 return VM_FAULT_OOM;
1561 return VM_FAULT_SIGBUS;
1563 page_not_uptodate:
1564 /* IO error path */
1565 if (!did_readaround) {
1566 ret = VM_FAULT_MAJOR;
1567 count_vm_event(PGMAJFAULT);
1571 * Umm, take care of errors if the page isn't up-to-date.
1572 * Try to re-read it _once_. We do this synchronously,
1573 * because there really aren't any performance issues here
1574 * and we need to check for errors.
1576 ClearPageError(page);
1577 error = mapping->a_ops->readpage(file, page);
1578 if (!error) {
1579 wait_on_page_locked(page);
1580 if (!PageUptodate(page))
1581 error = -EIO;
1583 page_cache_release(page);
1585 if (!error || error == AOP_TRUNCATED_PAGE)
1586 goto retry_find;
1588 /* Things didn't work out. Return zero to tell the mm layer so. */
1589 shrink_readahead_size_eio(file, ra);
1590 return VM_FAULT_SIGBUS;
1592 EXPORT_SYMBOL(filemap_fault);
1594 struct vm_operations_struct generic_file_vm_ops = {
1595 .fault = filemap_fault,
1598 /* This is used for a general mmap of a disk file */
1600 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1602 struct address_space *mapping = file->f_mapping;
1604 if (!mapping->a_ops->readpage)
1605 return -ENOEXEC;
1606 file_accessed(file);
1607 vma->vm_ops = &generic_file_vm_ops;
1608 vma->vm_flags |= VM_CAN_NONLINEAR;
1609 return 0;
1613 * This is for filesystems which do not implement ->writepage.
1615 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1617 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1618 return -EINVAL;
1619 return generic_file_mmap(file, vma);
1621 #else
1622 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1624 return -ENOSYS;
1626 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1628 return -ENOSYS;
1630 #endif /* CONFIG_MMU */
1632 EXPORT_SYMBOL(generic_file_mmap);
1633 EXPORT_SYMBOL(generic_file_readonly_mmap);
1635 static struct page *__read_cache_page(struct address_space *mapping,
1636 pgoff_t index,
1637 int (*filler)(void *,struct page*),
1638 void *data)
1640 struct page *page;
1641 int err;
1642 repeat:
1643 page = find_get_page(mapping, index);
1644 if (!page) {
1645 page = page_cache_alloc_cold(mapping);
1646 if (!page)
1647 return ERR_PTR(-ENOMEM);
1648 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1649 if (unlikely(err)) {
1650 page_cache_release(page);
1651 if (err == -EEXIST)
1652 goto repeat;
1653 /* Presumably ENOMEM for radix tree node */
1654 return ERR_PTR(err);
1656 err = filler(data, page);
1657 if (err < 0) {
1658 page_cache_release(page);
1659 page = ERR_PTR(err);
1662 return page;
1666 * read_cache_page_async - read into page cache, fill it if needed
1667 * @mapping: the page's address_space
1668 * @index: the page index
1669 * @filler: function to perform the read
1670 * @data: destination for read data
1672 * Same as read_cache_page, but don't wait for page to become unlocked
1673 * after submitting it to the filler.
1675 * Read into the page cache. If a page already exists, and PageUptodate() is
1676 * not set, try to fill the page but don't wait for it to become unlocked.
1678 * If the page does not get brought uptodate, return -EIO.
1680 struct page *read_cache_page_async(struct address_space *mapping,
1681 pgoff_t index,
1682 int (*filler)(void *,struct page*),
1683 void *data)
1685 struct page *page;
1686 int err;
1688 retry:
1689 page = __read_cache_page(mapping, index, filler, data);
1690 if (IS_ERR(page))
1691 return page;
1692 if (PageUptodate(page))
1693 goto out;
1695 lock_page(page);
1696 if (!page->mapping) {
1697 unlock_page(page);
1698 page_cache_release(page);
1699 goto retry;
1701 if (PageUptodate(page)) {
1702 unlock_page(page);
1703 goto out;
1705 err = filler(data, page);
1706 if (err < 0) {
1707 page_cache_release(page);
1708 return ERR_PTR(err);
1710 out:
1711 mark_page_accessed(page);
1712 return page;
1714 EXPORT_SYMBOL(read_cache_page_async);
1717 * read_cache_page - read into page cache, fill it if needed
1718 * @mapping: the page's address_space
1719 * @index: the page index
1720 * @filler: function to perform the read
1721 * @data: destination for read data
1723 * Read into the page cache. If a page already exists, and PageUptodate() is
1724 * not set, try to fill the page then wait for it to become unlocked.
1726 * If the page does not get brought uptodate, return -EIO.
1728 struct page *read_cache_page(struct address_space *mapping,
1729 pgoff_t index,
1730 int (*filler)(void *,struct page*),
1731 void *data)
1733 struct page *page;
1735 page = read_cache_page_async(mapping, index, filler, data);
1736 if (IS_ERR(page))
1737 goto out;
1738 wait_on_page_locked(page);
1739 if (!PageUptodate(page)) {
1740 page_cache_release(page);
1741 page = ERR_PTR(-EIO);
1743 out:
1744 return page;
1746 EXPORT_SYMBOL(read_cache_page);
1749 * The logic we want is
1751 * if suid or (sgid and xgrp)
1752 * remove privs
1754 int should_remove_suid(struct dentry *dentry)
1756 mode_t mode = dentry->d_inode->i_mode;
1757 int kill = 0;
1759 /* suid always must be killed */
1760 if (unlikely(mode & S_ISUID))
1761 kill = ATTR_KILL_SUID;
1764 * sgid without any exec bits is just a mandatory locking mark; leave
1765 * it alone. If some exec bits are set, it's a real sgid; kill it.
1767 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1768 kill |= ATTR_KILL_SGID;
1770 if (unlikely(kill && !capable(CAP_FSETID)))
1771 return kill;
1773 return 0;
1775 EXPORT_SYMBOL(should_remove_suid);
1777 static int __remove_suid(struct dentry *dentry, int kill)
1779 struct iattr newattrs;
1781 newattrs.ia_valid = ATTR_FORCE | kill;
1782 return notify_change(dentry, &newattrs);
1785 int file_remove_suid(struct file *file)
1787 struct dentry *dentry = file->f_path.dentry;
1788 int killsuid = should_remove_suid(dentry);
1789 int killpriv = security_inode_need_killpriv(dentry);
1790 int error = 0;
1792 if (killpriv < 0)
1793 return killpriv;
1794 if (killpriv)
1795 error = security_inode_killpriv(dentry);
1796 if (!error && killsuid)
1797 error = __remove_suid(dentry, killsuid);
1799 return error;
1801 EXPORT_SYMBOL(file_remove_suid);
1803 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1804 const struct iovec *iov, size_t base, size_t bytes)
1806 size_t copied = 0, left = 0;
1808 while (bytes) {
1809 char __user *buf = iov->iov_base + base;
1810 int copy = min(bytes, iov->iov_len - base);
1812 base = 0;
1813 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1814 copied += copy;
1815 bytes -= copy;
1816 vaddr += copy;
1817 iov++;
1819 if (unlikely(left))
1820 break;
1822 return copied - left;
1826 * Copy as much as we can into the page and return the number of bytes which
1827 * were sucessfully copied. If a fault is encountered then return the number of
1828 * bytes which were copied.
1830 size_t iov_iter_copy_from_user_atomic(struct page *page,
1831 struct iov_iter *i, unsigned long offset, size_t bytes)
1833 char *kaddr;
1834 size_t copied;
1836 BUG_ON(!in_atomic());
1837 kaddr = kmap_atomic(page, KM_USER0);
1838 if (likely(i->nr_segs == 1)) {
1839 int left;
1840 char __user *buf = i->iov->iov_base + i->iov_offset;
1841 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1842 buf, bytes);
1843 copied = bytes - left;
1844 } else {
1845 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1846 i->iov, i->iov_offset, bytes);
1848 kunmap_atomic(kaddr, KM_USER0);
1850 return copied;
1852 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1855 * This has the same sideeffects and return value as
1856 * iov_iter_copy_from_user_atomic().
1857 * The difference is that it attempts to resolve faults.
1858 * Page must not be locked.
1860 size_t iov_iter_copy_from_user(struct page *page,
1861 struct iov_iter *i, unsigned long offset, size_t bytes)
1863 char *kaddr;
1864 size_t copied;
1866 kaddr = kmap(page);
1867 if (likely(i->nr_segs == 1)) {
1868 int left;
1869 char __user *buf = i->iov->iov_base + i->iov_offset;
1870 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1871 copied = bytes - left;
1872 } else {
1873 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1874 i->iov, i->iov_offset, bytes);
1876 kunmap(page);
1877 return copied;
1879 EXPORT_SYMBOL(iov_iter_copy_from_user);
1881 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1883 BUG_ON(i->count < bytes);
1885 if (likely(i->nr_segs == 1)) {
1886 i->iov_offset += bytes;
1887 i->count -= bytes;
1888 } else {
1889 const struct iovec *iov = i->iov;
1890 size_t base = i->iov_offset;
1893 * The !iov->iov_len check ensures we skip over unlikely
1894 * zero-length segments (without overruning the iovec).
1896 while (bytes || unlikely(i->count && !iov->iov_len)) {
1897 int copy;
1899 copy = min(bytes, iov->iov_len - base);
1900 BUG_ON(!i->count || i->count < copy);
1901 i->count -= copy;
1902 bytes -= copy;
1903 base += copy;
1904 if (iov->iov_len == base) {
1905 iov++;
1906 base = 0;
1909 i->iov = iov;
1910 i->iov_offset = base;
1913 EXPORT_SYMBOL(iov_iter_advance);
1916 * Fault in the first iovec of the given iov_iter, to a maximum length
1917 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1918 * accessed (ie. because it is an invalid address).
1920 * writev-intensive code may want this to prefault several iovecs -- that
1921 * would be possible (callers must not rely on the fact that _only_ the
1922 * first iovec will be faulted with the current implementation).
1924 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1926 char __user *buf = i->iov->iov_base + i->iov_offset;
1927 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1928 return fault_in_pages_readable(buf, bytes);
1930 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1933 * Return the count of just the current iov_iter segment.
1935 size_t iov_iter_single_seg_count(struct iov_iter *i)
1937 const struct iovec *iov = i->iov;
1938 if (i->nr_segs == 1)
1939 return i->count;
1940 else
1941 return min(i->count, iov->iov_len - i->iov_offset);
1943 EXPORT_SYMBOL(iov_iter_single_seg_count);
1946 * Performs necessary checks before doing a write
1948 * Can adjust writing position or amount of bytes to write.
1949 * Returns appropriate error code that caller should return or
1950 * zero in case that write should be allowed.
1952 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1954 struct inode *inode = file->f_mapping->host;
1955 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1957 if (unlikely(*pos < 0))
1958 return -EINVAL;
1960 if (!isblk) {
1961 /* FIXME: this is for backwards compatibility with 2.4 */
1962 if (file->f_flags & O_APPEND)
1963 *pos = i_size_read(inode);
1965 if (limit != RLIM_INFINITY) {
1966 if (*pos >= limit) {
1967 send_sig(SIGXFSZ, current, 0);
1968 return -EFBIG;
1970 if (*count > limit - (typeof(limit))*pos) {
1971 *count = limit - (typeof(limit))*pos;
1977 * LFS rule
1979 if (unlikely(*pos + *count > MAX_NON_LFS &&
1980 !(file->f_flags & O_LARGEFILE))) {
1981 if (*pos >= MAX_NON_LFS) {
1982 return -EFBIG;
1984 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1985 *count = MAX_NON_LFS - (unsigned long)*pos;
1990 * Are we about to exceed the fs block limit ?
1992 * If we have written data it becomes a short write. If we have
1993 * exceeded without writing data we send a signal and return EFBIG.
1994 * Linus frestrict idea will clean these up nicely..
1996 if (likely(!isblk)) {
1997 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1998 if (*count || *pos > inode->i_sb->s_maxbytes) {
1999 return -EFBIG;
2001 /* zero-length writes at ->s_maxbytes are OK */
2004 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2005 *count = inode->i_sb->s_maxbytes - *pos;
2006 } else {
2007 #ifdef CONFIG_BLOCK
2008 loff_t isize;
2009 if (bdev_read_only(I_BDEV(inode)))
2010 return -EPERM;
2011 isize = i_size_read(inode);
2012 if (*pos >= isize) {
2013 if (*count || *pos > isize)
2014 return -ENOSPC;
2017 if (*pos + *count > isize)
2018 *count = isize - *pos;
2019 #else
2020 return -EPERM;
2021 #endif
2023 return 0;
2025 EXPORT_SYMBOL(generic_write_checks);
2027 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2028 loff_t pos, unsigned len, unsigned flags,
2029 struct page **pagep, void **fsdata)
2031 const struct address_space_operations *aops = mapping->a_ops;
2033 if (aops->write_begin) {
2034 return aops->write_begin(file, mapping, pos, len, flags,
2035 pagep, fsdata);
2036 } else {
2037 int ret;
2038 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2039 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2040 struct inode *inode = mapping->host;
2041 struct page *page;
2042 again:
2043 page = grab_cache_page_write_begin(mapping, index, flags);
2044 *pagep = page;
2045 if (!page)
2046 return -ENOMEM;
2048 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
2050 * There is no way to resolve a short write situation
2051 * for a !Uptodate page (except by double copying in
2052 * the caller done by generic_perform_write_2copy).
2054 * Instead, we have to bring it uptodate here.
2056 ret = aops->readpage(file, page);
2057 page_cache_release(page);
2058 if (ret) {
2059 if (ret == AOP_TRUNCATED_PAGE)
2060 goto again;
2061 return ret;
2063 goto again;
2066 ret = aops->prepare_write(file, page, offset, offset+len);
2067 if (ret) {
2068 unlock_page(page);
2069 page_cache_release(page);
2070 if (pos + len > inode->i_size)
2071 vmtruncate(inode, inode->i_size);
2073 return ret;
2076 EXPORT_SYMBOL(pagecache_write_begin);
2078 int pagecache_write_end(struct file *file, struct address_space *mapping,
2079 loff_t pos, unsigned len, unsigned copied,
2080 struct page *page, void *fsdata)
2082 const struct address_space_operations *aops = mapping->a_ops;
2083 int ret;
2085 if (aops->write_end) {
2086 mark_page_accessed(page);
2087 ret = aops->write_end(file, mapping, pos, len, copied,
2088 page, fsdata);
2089 } else {
2090 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2091 struct inode *inode = mapping->host;
2093 flush_dcache_page(page);
2094 ret = aops->commit_write(file, page, offset, offset+len);
2095 unlock_page(page);
2096 mark_page_accessed(page);
2097 page_cache_release(page);
2099 if (ret < 0) {
2100 if (pos + len > inode->i_size)
2101 vmtruncate(inode, inode->i_size);
2102 } else if (ret > 0)
2103 ret = min_t(size_t, copied, ret);
2104 else
2105 ret = copied;
2108 return ret;
2110 EXPORT_SYMBOL(pagecache_write_end);
2112 ssize_t
2113 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2114 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2115 size_t count, size_t ocount)
2117 struct file *file = iocb->ki_filp;
2118 struct address_space *mapping = file->f_mapping;
2119 struct inode *inode = mapping->host;
2120 ssize_t written;
2121 size_t write_len;
2122 pgoff_t end;
2124 if (count != ocount)
2125 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2127 write_len = iov_length(iov, *nr_segs);
2128 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2130 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2131 if (written)
2132 goto out;
2135 * After a write we want buffered reads to be sure to go to disk to get
2136 * the new data. We invalidate clean cached page from the region we're
2137 * about to write. We do this *before* the write so that we can return
2138 * without clobbering -EIOCBQUEUED from ->direct_IO().
2140 if (mapping->nrpages) {
2141 written = invalidate_inode_pages2_range(mapping,
2142 pos >> PAGE_CACHE_SHIFT, end);
2144 * If a page can not be invalidated, return 0 to fall back
2145 * to buffered write.
2147 if (written) {
2148 if (written == -EBUSY)
2149 return 0;
2150 goto out;
2154 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2157 * Finally, try again to invalidate clean pages which might have been
2158 * cached by non-direct readahead, or faulted in by get_user_pages()
2159 * if the source of the write was an mmap'ed region of the file
2160 * we're writing. Either one is a pretty crazy thing to do,
2161 * so we don't support it 100%. If this invalidation
2162 * fails, tough, the write still worked...
2164 if (mapping->nrpages) {
2165 invalidate_inode_pages2_range(mapping,
2166 pos >> PAGE_CACHE_SHIFT, end);
2169 if (written > 0) {
2170 loff_t end = pos + written;
2171 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2172 i_size_write(inode, end);
2173 mark_inode_dirty(inode);
2175 *ppos = end;
2179 * Sync the fs metadata but not the minor inode changes and
2180 * of course not the data as we did direct DMA for the IO.
2181 * i_mutex is held, which protects generic_osync_inode() from
2182 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2184 out:
2185 if ((written >= 0 || written == -EIOCBQUEUED) &&
2186 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2187 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2188 if (err < 0)
2189 written = err;
2191 return written;
2193 EXPORT_SYMBOL(generic_file_direct_write);
2196 * Find or create a page at the given pagecache position. Return the locked
2197 * page. This function is specifically for buffered writes.
2199 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2200 pgoff_t index, unsigned flags)
2202 int status;
2203 struct page *page;
2204 gfp_t gfp_notmask = 0;
2205 if (flags & AOP_FLAG_NOFS)
2206 gfp_notmask = __GFP_FS;
2207 repeat:
2208 page = find_lock_page(mapping, index);
2209 if (likely(page))
2210 return page;
2212 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2213 if (!page)
2214 return NULL;
2215 status = add_to_page_cache_lru(page, mapping, index,
2216 GFP_KERNEL & ~gfp_notmask);
2217 if (unlikely(status)) {
2218 page_cache_release(page);
2219 if (status == -EEXIST)
2220 goto repeat;
2221 return NULL;
2223 return page;
2225 EXPORT_SYMBOL(grab_cache_page_write_begin);
2227 static ssize_t generic_perform_write_2copy(struct file *file,
2228 struct iov_iter *i, loff_t pos)
2230 struct address_space *mapping = file->f_mapping;
2231 const struct address_space_operations *a_ops = mapping->a_ops;
2232 struct inode *inode = mapping->host;
2233 long status = 0;
2234 ssize_t written = 0;
2236 do {
2237 struct page *src_page;
2238 struct page *page;
2239 pgoff_t index; /* Pagecache index for current page */
2240 unsigned long offset; /* Offset into pagecache page */
2241 unsigned long bytes; /* Bytes to write to page */
2242 size_t copied; /* Bytes copied from user */
2244 offset = (pos & (PAGE_CACHE_SIZE - 1));
2245 index = pos >> PAGE_CACHE_SHIFT;
2246 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2247 iov_iter_count(i));
2250 * a non-NULL src_page indicates that we're doing the
2251 * copy via get_user_pages and kmap.
2253 src_page = NULL;
2256 * Bring in the user page that we will copy from _first_.
2257 * Otherwise there's a nasty deadlock on copying from the
2258 * same page as we're writing to, without it being marked
2259 * up-to-date.
2261 * Not only is this an optimisation, but it is also required
2262 * to check that the address is actually valid, when atomic
2263 * usercopies are used, below.
2265 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2266 status = -EFAULT;
2267 break;
2270 page = grab_cache_page_write_begin(mapping, index, 0);
2271 if (!page) {
2272 status = -ENOMEM;
2273 break;
2277 * non-uptodate pages cannot cope with short copies, and we
2278 * cannot take a pagefault with the destination page locked.
2279 * So pin the source page to copy it.
2281 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2282 unlock_page(page);
2284 src_page = alloc_page(GFP_KERNEL);
2285 if (!src_page) {
2286 page_cache_release(page);
2287 status = -ENOMEM;
2288 break;
2292 * Cannot get_user_pages with a page locked for the
2293 * same reason as we can't take a page fault with a
2294 * page locked (as explained below).
2296 copied = iov_iter_copy_from_user(src_page, i,
2297 offset, bytes);
2298 if (unlikely(copied == 0)) {
2299 status = -EFAULT;
2300 page_cache_release(page);
2301 page_cache_release(src_page);
2302 break;
2304 bytes = copied;
2306 lock_page(page);
2308 * Can't handle the page going uptodate here, because
2309 * that means we would use non-atomic usercopies, which
2310 * zero out the tail of the page, which can cause
2311 * zeroes to become transiently visible. We could just
2312 * use a non-zeroing copy, but the APIs aren't too
2313 * consistent.
2315 if (unlikely(!page->mapping || PageUptodate(page))) {
2316 unlock_page(page);
2317 page_cache_release(page);
2318 page_cache_release(src_page);
2319 continue;
2323 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2324 if (unlikely(status))
2325 goto fs_write_aop_error;
2327 if (!src_page) {
2329 * Must not enter the pagefault handler here, because
2330 * we hold the page lock, so we might recursively
2331 * deadlock on the same lock, or get an ABBA deadlock
2332 * against a different lock, or against the mmap_sem
2333 * (which nests outside the page lock). So increment
2334 * preempt count, and use _atomic usercopies.
2336 * The page is uptodate so we are OK to encounter a
2337 * short copy: if unmodified parts of the page are
2338 * marked dirty and written out to disk, it doesn't
2339 * really matter.
2341 pagefault_disable();
2342 copied = iov_iter_copy_from_user_atomic(page, i,
2343 offset, bytes);
2344 pagefault_enable();
2345 } else {
2346 void *src, *dst;
2347 src = kmap_atomic(src_page, KM_USER0);
2348 dst = kmap_atomic(page, KM_USER1);
2349 memcpy(dst + offset, src + offset, bytes);
2350 kunmap_atomic(dst, KM_USER1);
2351 kunmap_atomic(src, KM_USER0);
2352 copied = bytes;
2354 flush_dcache_page(page);
2356 status = a_ops->commit_write(file, page, offset, offset+bytes);
2357 if (unlikely(status < 0))
2358 goto fs_write_aop_error;
2359 if (unlikely(status > 0)) /* filesystem did partial write */
2360 copied = min_t(size_t, copied, status);
2362 unlock_page(page);
2363 mark_page_accessed(page);
2364 page_cache_release(page);
2365 if (src_page)
2366 page_cache_release(src_page);
2368 iov_iter_advance(i, copied);
2369 pos += copied;
2370 written += copied;
2372 balance_dirty_pages_ratelimited(mapping);
2373 cond_resched();
2374 continue;
2376 fs_write_aop_error:
2377 unlock_page(page);
2378 page_cache_release(page);
2379 if (src_page)
2380 page_cache_release(src_page);
2383 * prepare_write() may have instantiated a few blocks
2384 * outside i_size. Trim these off again. Don't need
2385 * i_size_read because we hold i_mutex.
2387 if (pos + bytes > inode->i_size)
2388 vmtruncate(inode, inode->i_size);
2389 break;
2390 } while (iov_iter_count(i));
2392 return written ? written : status;
2395 static ssize_t generic_perform_write(struct file *file,
2396 struct iov_iter *i, loff_t pos)
2398 struct address_space *mapping = file->f_mapping;
2399 const struct address_space_operations *a_ops = mapping->a_ops;
2400 long status = 0;
2401 ssize_t written = 0;
2402 unsigned int flags = 0;
2405 * Copies from kernel address space cannot fail (NFSD is a big user).
2407 if (segment_eq(get_fs(), KERNEL_DS))
2408 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2410 do {
2411 struct page *page;
2412 pgoff_t index; /* Pagecache index for current page */
2413 unsigned long offset; /* Offset into pagecache page */
2414 unsigned long bytes; /* Bytes to write to page */
2415 size_t copied; /* Bytes copied from user */
2416 void *fsdata;
2418 offset = (pos & (PAGE_CACHE_SIZE - 1));
2419 index = pos >> PAGE_CACHE_SHIFT;
2420 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2421 iov_iter_count(i));
2423 again:
2426 * Bring in the user page that we will copy from _first_.
2427 * Otherwise there's a nasty deadlock on copying from the
2428 * same page as we're writing to, without it being marked
2429 * up-to-date.
2431 * Not only is this an optimisation, but it is also required
2432 * to check that the address is actually valid, when atomic
2433 * usercopies are used, below.
2435 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2436 status = -EFAULT;
2437 break;
2440 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2441 &page, &fsdata);
2442 if (unlikely(status))
2443 break;
2445 pagefault_disable();
2446 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2447 pagefault_enable();
2448 flush_dcache_page(page);
2450 mark_page_accessed(page);
2451 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2452 page, fsdata);
2453 if (unlikely(status < 0))
2454 break;
2455 copied = status;
2457 cond_resched();
2459 iov_iter_advance(i, copied);
2460 if (unlikely(copied == 0)) {
2462 * If we were unable to copy any data at all, we must
2463 * fall back to a single segment length write.
2465 * If we didn't fallback here, we could livelock
2466 * because not all segments in the iov can be copied at
2467 * once without a pagefault.
2469 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2470 iov_iter_single_seg_count(i));
2471 goto again;
2473 pos += copied;
2474 written += copied;
2476 balance_dirty_pages_ratelimited(mapping);
2478 } while (iov_iter_count(i));
2480 return written ? written : status;
2483 ssize_t
2484 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2485 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2486 size_t count, ssize_t written)
2488 struct file *file = iocb->ki_filp;
2489 struct address_space *mapping = file->f_mapping;
2490 const struct address_space_operations *a_ops = mapping->a_ops;
2491 struct inode *inode = mapping->host;
2492 ssize_t status;
2493 struct iov_iter i;
2495 iov_iter_init(&i, iov, nr_segs, count, written);
2496 if (a_ops->write_begin)
2497 status = generic_perform_write(file, &i, pos);
2498 else
2499 status = generic_perform_write_2copy(file, &i, pos);
2501 if (likely(status >= 0)) {
2502 written += status;
2503 *ppos = pos + status;
2506 * For now, when the user asks for O_SYNC, we'll actually give
2507 * O_DSYNC
2509 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2510 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2511 status = generic_osync_inode(inode, mapping,
2512 OSYNC_METADATA|OSYNC_DATA);
2517 * If we get here for O_DIRECT writes then we must have fallen through
2518 * to buffered writes (block instantiation inside i_size). So we sync
2519 * the file data here, to try to honour O_DIRECT expectations.
2521 if (unlikely(file->f_flags & O_DIRECT) && written)
2522 status = filemap_write_and_wait_range(mapping,
2523 pos, pos + written - 1);
2525 return written ? written : status;
2527 EXPORT_SYMBOL(generic_file_buffered_write);
2529 static ssize_t
2530 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2531 unsigned long nr_segs, loff_t *ppos)
2533 struct file *file = iocb->ki_filp;
2534 struct address_space * mapping = file->f_mapping;
2535 size_t ocount; /* original count */
2536 size_t count; /* after file limit checks */
2537 struct inode *inode = mapping->host;
2538 loff_t pos;
2539 ssize_t written;
2540 ssize_t err;
2542 ocount = 0;
2543 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2544 if (err)
2545 return err;
2547 count = ocount;
2548 pos = *ppos;
2550 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2552 /* We can write back this queue in page reclaim */
2553 current->backing_dev_info = mapping->backing_dev_info;
2554 written = 0;
2556 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2557 if (err)
2558 goto out;
2560 if (count == 0)
2561 goto out;
2563 err = file_remove_suid(file);
2564 if (err)
2565 goto out;
2567 file_update_time(file);
2569 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2570 if (unlikely(file->f_flags & O_DIRECT)) {
2571 loff_t endbyte;
2572 ssize_t written_buffered;
2574 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2575 ppos, count, ocount);
2576 if (written < 0 || written == count)
2577 goto out;
2579 * direct-io write to a hole: fall through to buffered I/O
2580 * for completing the rest of the request.
2582 pos += written;
2583 count -= written;
2584 written_buffered = generic_file_buffered_write(iocb, iov,
2585 nr_segs, pos, ppos, count,
2586 written);
2588 * If generic_file_buffered_write() retuned a synchronous error
2589 * then we want to return the number of bytes which were
2590 * direct-written, or the error code if that was zero. Note
2591 * that this differs from normal direct-io semantics, which
2592 * will return -EFOO even if some bytes were written.
2594 if (written_buffered < 0) {
2595 err = written_buffered;
2596 goto out;
2600 * We need to ensure that the page cache pages are written to
2601 * disk and invalidated to preserve the expected O_DIRECT
2602 * semantics.
2604 endbyte = pos + written_buffered - written - 1;
2605 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2606 SYNC_FILE_RANGE_WAIT_BEFORE|
2607 SYNC_FILE_RANGE_WRITE|
2608 SYNC_FILE_RANGE_WAIT_AFTER);
2609 if (err == 0) {
2610 written = written_buffered;
2611 invalidate_mapping_pages(mapping,
2612 pos >> PAGE_CACHE_SHIFT,
2613 endbyte >> PAGE_CACHE_SHIFT);
2614 } else {
2616 * We don't know how much we wrote, so just return
2617 * the number of bytes which were direct-written
2620 } else {
2621 written = generic_file_buffered_write(iocb, iov, nr_segs,
2622 pos, ppos, count, written);
2624 out:
2625 current->backing_dev_info = NULL;
2626 return written ? written : err;
2629 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2630 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2632 struct file *file = iocb->ki_filp;
2633 struct address_space *mapping = file->f_mapping;
2634 struct inode *inode = mapping->host;
2635 ssize_t ret;
2637 BUG_ON(iocb->ki_pos != pos);
2639 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2640 &iocb->ki_pos);
2642 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2643 ssize_t err;
2645 err = sync_page_range_nolock(inode, mapping, pos, ret);
2646 if (err < 0)
2647 ret = err;
2649 return ret;
2651 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2653 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2654 unsigned long nr_segs, loff_t pos)
2656 struct file *file = iocb->ki_filp;
2657 struct address_space *mapping = file->f_mapping;
2658 struct inode *inode = mapping->host;
2659 ssize_t ret;
2661 BUG_ON(iocb->ki_pos != pos);
2663 mutex_lock(&inode->i_mutex);
2664 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2665 &iocb->ki_pos);
2666 mutex_unlock(&inode->i_mutex);
2668 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2669 ssize_t err;
2671 err = sync_page_range(inode, mapping, pos, ret);
2672 if (err < 0)
2673 ret = err;
2675 return ret;
2677 EXPORT_SYMBOL(generic_file_aio_write);
2680 * try_to_release_page() - release old fs-specific metadata on a page
2682 * @page: the page which the kernel is trying to free
2683 * @gfp_mask: memory allocation flags (and I/O mode)
2685 * The address_space is to try to release any data against the page
2686 * (presumably at page->private). If the release was successful, return `1'.
2687 * Otherwise return zero.
2689 * The @gfp_mask argument specifies whether I/O may be performed to release
2690 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2693 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2695 struct address_space * const mapping = page->mapping;
2697 BUG_ON(!PageLocked(page));
2698 if (PageWriteback(page))
2699 return 0;
2701 if (mapping && mapping->a_ops->releasepage)
2702 return mapping->a_ops->releasepage(page, gfp_mask);
2703 return try_to_free_buffers(page);
2706 EXPORT_SYMBOL(try_to_release_page);