Merge branch 'imx-fixes' of git://git.pengutronix.de/git/imx/linux-2.6 into fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmscan.c
blob2880396f7953b03476db86957c66a3787b40cb8c
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
85 unsigned long hibernation_mode;
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
90 int may_writepage;
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
98 int order;
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
104 reclaim_mode_t reclaim_mode;
107 * The memory cgroup that hit its limit and as a result is the
108 * primary target of this reclaim invocation.
110 struct mem_cgroup *target_mem_cgroup;
113 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 * are scanned.
116 nodemask_t *nodemask;
119 struct mem_cgroup_zone {
120 struct mem_cgroup *mem_cgroup;
121 struct zone *zone;
124 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
126 #ifdef ARCH_HAS_PREFETCH
127 #define prefetch_prev_lru_page(_page, _base, _field) \
128 do { \
129 if ((_page)->lru.prev != _base) { \
130 struct page *prev; \
132 prev = lru_to_page(&(_page->lru)); \
133 prefetch(&prev->_field); \
135 } while (0)
136 #else
137 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138 #endif
140 #ifdef ARCH_HAS_PREFETCHW
141 #define prefetchw_prev_lru_page(_page, _base, _field) \
142 do { \
143 if ((_page)->lru.prev != _base) { \
144 struct page *prev; \
146 prev = lru_to_page(&(_page->lru)); \
147 prefetchw(&prev->_field); \
149 } while (0)
150 #else
151 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152 #endif
155 * From 0 .. 100. Higher means more swappy.
157 int vm_swappiness = 60;
158 long vm_total_pages; /* The total number of pages which the VM controls */
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
163 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 static bool global_reclaim(struct scan_control *sc)
166 return !sc->target_mem_cgroup;
169 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
171 return !mz->mem_cgroup;
173 #else
174 static bool global_reclaim(struct scan_control *sc)
176 return true;
179 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
181 return true;
183 #endif
185 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
187 if (!scanning_global_lru(mz))
188 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
190 return &mz->zone->reclaim_stat;
193 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194 enum lru_list lru)
196 if (!scanning_global_lru(mz))
197 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198 zone_to_nid(mz->zone),
199 zone_idx(mz->zone),
200 BIT(lru));
202 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
207 * Add a shrinker callback to be called from the vm
209 void register_shrinker(struct shrinker *shrinker)
211 atomic_long_set(&shrinker->nr_in_batch, 0);
212 down_write(&shrinker_rwsem);
213 list_add_tail(&shrinker->list, &shrinker_list);
214 up_write(&shrinker_rwsem);
216 EXPORT_SYMBOL(register_shrinker);
219 * Remove one
221 void unregister_shrinker(struct shrinker *shrinker)
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
227 EXPORT_SYMBOL(unregister_shrinker);
229 static inline int do_shrinker_shrink(struct shrinker *shrinker,
230 struct shrink_control *sc,
231 unsigned long nr_to_scan)
233 sc->nr_to_scan = nr_to_scan;
234 return (*shrinker->shrink)(shrinker, sc);
237 #define SHRINK_BATCH 128
239 * Call the shrink functions to age shrinkable caches
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object. With this in mind we age equal
243 * percentages of the lru and ageable caches. This should balance the seeks
244 * generated by these structures.
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt. It is used for balancing
253 * slab reclaim versus page reclaim.
255 * Returns the number of slab objects which we shrunk.
257 unsigned long shrink_slab(struct shrink_control *shrink,
258 unsigned long nr_pages_scanned,
259 unsigned long lru_pages)
261 struct shrinker *shrinker;
262 unsigned long ret = 0;
264 if (nr_pages_scanned == 0)
265 nr_pages_scanned = SWAP_CLUSTER_MAX;
267 if (!down_read_trylock(&shrinker_rwsem)) {
268 /* Assume we'll be able to shrink next time */
269 ret = 1;
270 goto out;
273 list_for_each_entry(shrinker, &shrinker_list, list) {
274 unsigned long long delta;
275 long total_scan;
276 long max_pass;
277 int shrink_ret = 0;
278 long nr;
279 long new_nr;
280 long batch_size = shrinker->batch ? shrinker->batch
281 : SHRINK_BATCH;
283 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284 if (max_pass <= 0)
285 continue;
288 * copy the current shrinker scan count into a local variable
289 * and zero it so that other concurrent shrinker invocations
290 * don't also do this scanning work.
292 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
294 total_scan = nr;
295 delta = (4 * nr_pages_scanned) / shrinker->seeks;
296 delta *= max_pass;
297 do_div(delta, lru_pages + 1);
298 total_scan += delta;
299 if (total_scan < 0) {
300 printk(KERN_ERR "shrink_slab: %pF negative objects to "
301 "delete nr=%ld\n",
302 shrinker->shrink, total_scan);
303 total_scan = max_pass;
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * max_pass. This is bad for sustaining a working set in
313 * memory.
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
318 if (delta < max_pass / 4)
319 total_scan = min(total_scan, max_pass / 2);
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
326 if (total_scan > max_pass * 2)
327 total_scan = max_pass * 2;
329 trace_mm_shrink_slab_start(shrinker, shrink, nr,
330 nr_pages_scanned, lru_pages,
331 max_pass, delta, total_scan);
333 while (total_scan >= batch_size) {
334 int nr_before;
336 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337 shrink_ret = do_shrinker_shrink(shrinker, shrink,
338 batch_size);
339 if (shrink_ret == -1)
340 break;
341 if (shrink_ret < nr_before)
342 ret += nr_before - shrink_ret;
343 count_vm_events(SLABS_SCANNED, batch_size);
344 total_scan -= batch_size;
346 cond_resched();
350 * move the unused scan count back into the shrinker in a
351 * manner that handles concurrent updates. If we exhausted the
352 * scan, there is no need to do an update.
354 if (total_scan > 0)
355 new_nr = atomic_long_add_return(total_scan,
356 &shrinker->nr_in_batch);
357 else
358 new_nr = atomic_long_read(&shrinker->nr_in_batch);
360 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
362 up_read(&shrinker_rwsem);
363 out:
364 cond_resched();
365 return ret;
368 static void set_reclaim_mode(int priority, struct scan_control *sc,
369 bool sync)
371 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
374 * Initially assume we are entering either lumpy reclaim or
375 * reclaim/compaction.Depending on the order, we will either set the
376 * sync mode or just reclaim order-0 pages later.
378 if (COMPACTION_BUILD)
379 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380 else
381 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
384 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385 * restricting when its set to either costly allocations or when
386 * under memory pressure
388 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389 sc->reclaim_mode |= syncmode;
390 else if (sc->order && priority < DEF_PRIORITY - 2)
391 sc->reclaim_mode |= syncmode;
392 else
393 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
396 static void reset_reclaim_mode(struct scan_control *sc)
398 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
401 static inline int is_page_cache_freeable(struct page *page)
404 * A freeable page cache page is referenced only by the caller
405 * that isolated the page, the page cache radix tree and
406 * optional buffer heads at page->private.
408 return page_count(page) - page_has_private(page) == 2;
411 static int may_write_to_queue(struct backing_dev_info *bdi,
412 struct scan_control *sc)
414 if (current->flags & PF_SWAPWRITE)
415 return 1;
416 if (!bdi_write_congested(bdi))
417 return 1;
418 if (bdi == current->backing_dev_info)
419 return 1;
421 /* lumpy reclaim for hugepage often need a lot of write */
422 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423 return 1;
424 return 0;
428 * We detected a synchronous write error writing a page out. Probably
429 * -ENOSPC. We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up. But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
439 static void handle_write_error(struct address_space *mapping,
440 struct page *page, int error)
442 lock_page(page);
443 if (page_mapping(page) == mapping)
444 mapping_set_error(mapping, error);
445 unlock_page(page);
448 /* possible outcome of pageout() */
449 typedef enum {
450 /* failed to write page out, page is locked */
451 PAGE_KEEP,
452 /* move page to the active list, page is locked */
453 PAGE_ACTIVATE,
454 /* page has been sent to the disk successfully, page is unlocked */
455 PAGE_SUCCESS,
456 /* page is clean and locked */
457 PAGE_CLEAN,
458 } pageout_t;
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
464 static pageout_t pageout(struct page *page, struct address_space *mapping,
465 struct scan_control *sc)
468 * If the page is dirty, only perform writeback if that write
469 * will be non-blocking. To prevent this allocation from being
470 * stalled by pagecache activity. But note that there may be
471 * stalls if we need to run get_block(). We could test
472 * PagePrivate for that.
474 * If this process is currently in __generic_file_aio_write() against
475 * this page's queue, we can perform writeback even if that
476 * will block.
478 * If the page is swapcache, write it back even if that would
479 * block, for some throttling. This happens by accident, because
480 * swap_backing_dev_info is bust: it doesn't reflect the
481 * congestion state of the swapdevs. Easy to fix, if needed.
483 if (!is_page_cache_freeable(page))
484 return PAGE_KEEP;
485 if (!mapping) {
487 * Some data journaling orphaned pages can have
488 * page->mapping == NULL while being dirty with clean buffers.
490 if (page_has_private(page)) {
491 if (try_to_free_buffers(page)) {
492 ClearPageDirty(page);
493 printk("%s: orphaned page\n", __func__);
494 return PAGE_CLEAN;
497 return PAGE_KEEP;
499 if (mapping->a_ops->writepage == NULL)
500 return PAGE_ACTIVATE;
501 if (!may_write_to_queue(mapping->backing_dev_info, sc))
502 return PAGE_KEEP;
504 if (clear_page_dirty_for_io(page)) {
505 int res;
506 struct writeback_control wbc = {
507 .sync_mode = WB_SYNC_NONE,
508 .nr_to_write = SWAP_CLUSTER_MAX,
509 .range_start = 0,
510 .range_end = LLONG_MAX,
511 .for_reclaim = 1,
514 SetPageReclaim(page);
515 res = mapping->a_ops->writepage(page, &wbc);
516 if (res < 0)
517 handle_write_error(mapping, page, res);
518 if (res == AOP_WRITEPAGE_ACTIVATE) {
519 ClearPageReclaim(page);
520 return PAGE_ACTIVATE;
523 if (!PageWriteback(page)) {
524 /* synchronous write or broken a_ops? */
525 ClearPageReclaim(page);
527 trace_mm_vmscan_writepage(page,
528 trace_reclaim_flags(page, sc->reclaim_mode));
529 inc_zone_page_state(page, NR_VMSCAN_WRITE);
530 return PAGE_SUCCESS;
533 return PAGE_CLEAN;
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
540 static int __remove_mapping(struct address_space *mapping, struct page *page)
542 BUG_ON(!PageLocked(page));
543 BUG_ON(mapping != page_mapping(page));
545 spin_lock_irq(&mapping->tree_lock);
547 * The non racy check for a busy page.
549 * Must be careful with the order of the tests. When someone has
550 * a ref to the page, it may be possible that they dirty it then
551 * drop the reference. So if PageDirty is tested before page_count
552 * here, then the following race may occur:
554 * get_user_pages(&page);
555 * [user mapping goes away]
556 * write_to(page);
557 * !PageDirty(page) [good]
558 * SetPageDirty(page);
559 * put_page(page);
560 * !page_count(page) [good, discard it]
562 * [oops, our write_to data is lost]
564 * Reversing the order of the tests ensures such a situation cannot
565 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566 * load is not satisfied before that of page->_count.
568 * Note that if SetPageDirty is always performed via set_page_dirty,
569 * and thus under tree_lock, then this ordering is not required.
571 if (!page_freeze_refs(page, 2))
572 goto cannot_free;
573 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574 if (unlikely(PageDirty(page))) {
575 page_unfreeze_refs(page, 2);
576 goto cannot_free;
579 if (PageSwapCache(page)) {
580 swp_entry_t swap = { .val = page_private(page) };
581 __delete_from_swap_cache(page);
582 spin_unlock_irq(&mapping->tree_lock);
583 swapcache_free(swap, page);
584 } else {
585 void (*freepage)(struct page *);
587 freepage = mapping->a_ops->freepage;
589 __delete_from_page_cache(page);
590 spin_unlock_irq(&mapping->tree_lock);
591 mem_cgroup_uncharge_cache_page(page);
593 if (freepage != NULL)
594 freepage(page);
597 return 1;
599 cannot_free:
600 spin_unlock_irq(&mapping->tree_lock);
601 return 0;
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
610 int remove_mapping(struct address_space *mapping, struct page *page)
612 if (__remove_mapping(mapping, page)) {
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
618 page_unfreeze_refs(page, 1);
619 return 1;
621 return 0;
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
631 * lru_lock must not be held, interrupts must be enabled.
633 void putback_lru_page(struct page *page)
635 int lru;
636 int active = !!TestClearPageActive(page);
637 int was_unevictable = PageUnevictable(page);
639 VM_BUG_ON(PageLRU(page));
641 redo:
642 ClearPageUnevictable(page);
644 if (page_evictable(page, NULL)) {
646 * For evictable pages, we can use the cache.
647 * In event of a race, worst case is we end up with an
648 * unevictable page on [in]active list.
649 * We know how to handle that.
651 lru = active + page_lru_base_type(page);
652 lru_cache_add_lru(page, lru);
653 } else {
655 * Put unevictable pages directly on zone's unevictable
656 * list.
658 lru = LRU_UNEVICTABLE;
659 add_page_to_unevictable_list(page);
661 * When racing with an mlock or AS_UNEVICTABLE clearing
662 * (page is unlocked) make sure that if the other thread
663 * does not observe our setting of PG_lru and fails
664 * isolation/check_move_unevictable_page,
665 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666 * the page back to the evictable list.
668 * The other side is TestClearPageMlocked() or shmem_lock().
670 smp_mb();
674 * page's status can change while we move it among lru. If an evictable
675 * page is on unevictable list, it never be freed. To avoid that,
676 * check after we added it to the list, again.
678 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679 if (!isolate_lru_page(page)) {
680 put_page(page);
681 goto redo;
683 /* This means someone else dropped this page from LRU
684 * So, it will be freed or putback to LRU again. There is
685 * nothing to do here.
689 if (was_unevictable && lru != LRU_UNEVICTABLE)
690 count_vm_event(UNEVICTABLE_PGRESCUED);
691 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692 count_vm_event(UNEVICTABLE_PGCULLED);
694 put_page(page); /* drop ref from isolate */
697 enum page_references {
698 PAGEREF_RECLAIM,
699 PAGEREF_RECLAIM_CLEAN,
700 PAGEREF_KEEP,
701 PAGEREF_ACTIVATE,
704 static enum page_references page_check_references(struct page *page,
705 struct mem_cgroup_zone *mz,
706 struct scan_control *sc)
708 int referenced_ptes, referenced_page;
709 unsigned long vm_flags;
711 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712 referenced_page = TestClearPageReferenced(page);
714 /* Lumpy reclaim - ignore references */
715 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716 return PAGEREF_RECLAIM;
719 * Mlock lost the isolation race with us. Let try_to_unmap()
720 * move the page to the unevictable list.
722 if (vm_flags & VM_LOCKED)
723 return PAGEREF_RECLAIM;
725 if (referenced_ptes) {
726 if (PageAnon(page))
727 return PAGEREF_ACTIVATE;
729 * All mapped pages start out with page table
730 * references from the instantiating fault, so we need
731 * to look twice if a mapped file page is used more
732 * than once.
734 * Mark it and spare it for another trip around the
735 * inactive list. Another page table reference will
736 * lead to its activation.
738 * Note: the mark is set for activated pages as well
739 * so that recently deactivated but used pages are
740 * quickly recovered.
742 SetPageReferenced(page);
744 if (referenced_page || referenced_ptes > 1)
745 return PAGEREF_ACTIVATE;
748 * Activate file-backed executable pages after first usage.
750 if (vm_flags & VM_EXEC)
751 return PAGEREF_ACTIVATE;
753 return PAGEREF_KEEP;
756 /* Reclaim if clean, defer dirty pages to writeback */
757 if (referenced_page && !PageSwapBacked(page))
758 return PAGEREF_RECLAIM_CLEAN;
760 return PAGEREF_RECLAIM;
764 * shrink_page_list() returns the number of reclaimed pages
766 static unsigned long shrink_page_list(struct list_head *page_list,
767 struct mem_cgroup_zone *mz,
768 struct scan_control *sc,
769 int priority,
770 unsigned long *ret_nr_dirty,
771 unsigned long *ret_nr_writeback)
773 LIST_HEAD(ret_pages);
774 LIST_HEAD(free_pages);
775 int pgactivate = 0;
776 unsigned long nr_dirty = 0;
777 unsigned long nr_congested = 0;
778 unsigned long nr_reclaimed = 0;
779 unsigned long nr_writeback = 0;
781 cond_resched();
783 while (!list_empty(page_list)) {
784 enum page_references references;
785 struct address_space *mapping;
786 struct page *page;
787 int may_enter_fs;
789 cond_resched();
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
794 if (!trylock_page(page))
795 goto keep;
797 VM_BUG_ON(PageActive(page));
798 VM_BUG_ON(page_zone(page) != mz->zone);
800 sc->nr_scanned++;
802 if (unlikely(!page_evictable(page, NULL)))
803 goto cull_mlocked;
805 if (!sc->may_unmap && page_mapped(page))
806 goto keep_locked;
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
815 if (PageWriteback(page)) {
816 nr_writeback++;
818 * Synchronous reclaim cannot queue pages for
819 * writeback due to the possibility of stack overflow
820 * but if it encounters a page under writeback, wait
821 * for the IO to complete.
823 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824 may_enter_fs)
825 wait_on_page_writeback(page);
826 else {
827 unlock_page(page);
828 goto keep_lumpy;
832 references = page_check_references(page, mz, sc);
833 switch (references) {
834 case PAGEREF_ACTIVATE:
835 goto activate_locked;
836 case PAGEREF_KEEP:
837 goto keep_locked;
838 case PAGEREF_RECLAIM:
839 case PAGEREF_RECLAIM_CLEAN:
840 ; /* try to reclaim the page below */
844 * Anonymous process memory has backing store?
845 * Try to allocate it some swap space here.
847 if (PageAnon(page) && !PageSwapCache(page)) {
848 if (!(sc->gfp_mask & __GFP_IO))
849 goto keep_locked;
850 if (!add_to_swap(page))
851 goto activate_locked;
852 may_enter_fs = 1;
855 mapping = page_mapping(page);
858 * The page is mapped into the page tables of one or more
859 * processes. Try to unmap it here.
861 if (page_mapped(page) && mapping) {
862 switch (try_to_unmap(page, TTU_UNMAP)) {
863 case SWAP_FAIL:
864 goto activate_locked;
865 case SWAP_AGAIN:
866 goto keep_locked;
867 case SWAP_MLOCK:
868 goto cull_mlocked;
869 case SWAP_SUCCESS:
870 ; /* try to free the page below */
874 if (PageDirty(page)) {
875 nr_dirty++;
878 * Only kswapd can writeback filesystem pages to
879 * avoid risk of stack overflow but do not writeback
880 * unless under significant pressure.
882 if (page_is_file_cache(page) &&
883 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
885 * Immediately reclaim when written back.
886 * Similar in principal to deactivate_page()
887 * except we already have the page isolated
888 * and know it's dirty
890 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891 SetPageReclaim(page);
893 goto keep_locked;
896 if (references == PAGEREF_RECLAIM_CLEAN)
897 goto keep_locked;
898 if (!may_enter_fs)
899 goto keep_locked;
900 if (!sc->may_writepage)
901 goto keep_locked;
903 /* Page is dirty, try to write it out here */
904 switch (pageout(page, mapping, sc)) {
905 case PAGE_KEEP:
906 nr_congested++;
907 goto keep_locked;
908 case PAGE_ACTIVATE:
909 goto activate_locked;
910 case PAGE_SUCCESS:
911 if (PageWriteback(page))
912 goto keep_lumpy;
913 if (PageDirty(page))
914 goto keep;
917 * A synchronous write - probably a ramdisk. Go
918 * ahead and try to reclaim the page.
920 if (!trylock_page(page))
921 goto keep;
922 if (PageDirty(page) || PageWriteback(page))
923 goto keep_locked;
924 mapping = page_mapping(page);
925 case PAGE_CLEAN:
926 ; /* try to free the page below */
931 * If the page has buffers, try to free the buffer mappings
932 * associated with this page. If we succeed we try to free
933 * the page as well.
935 * We do this even if the page is PageDirty().
936 * try_to_release_page() does not perform I/O, but it is
937 * possible for a page to have PageDirty set, but it is actually
938 * clean (all its buffers are clean). This happens if the
939 * buffers were written out directly, with submit_bh(). ext3
940 * will do this, as well as the blockdev mapping.
941 * try_to_release_page() will discover that cleanness and will
942 * drop the buffers and mark the page clean - it can be freed.
944 * Rarely, pages can have buffers and no ->mapping. These are
945 * the pages which were not successfully invalidated in
946 * truncate_complete_page(). We try to drop those buffers here
947 * and if that worked, and the page is no longer mapped into
948 * process address space (page_count == 1) it can be freed.
949 * Otherwise, leave the page on the LRU so it is swappable.
951 if (page_has_private(page)) {
952 if (!try_to_release_page(page, sc->gfp_mask))
953 goto activate_locked;
954 if (!mapping && page_count(page) == 1) {
955 unlock_page(page);
956 if (put_page_testzero(page))
957 goto free_it;
958 else {
960 * rare race with speculative reference.
961 * the speculative reference will free
962 * this page shortly, so we may
963 * increment nr_reclaimed here (and
964 * leave it off the LRU).
966 nr_reclaimed++;
967 continue;
972 if (!mapping || !__remove_mapping(mapping, page))
973 goto keep_locked;
976 * At this point, we have no other references and there is
977 * no way to pick any more up (removed from LRU, removed
978 * from pagecache). Can use non-atomic bitops now (and
979 * we obviously don't have to worry about waking up a process
980 * waiting on the page lock, because there are no references.
982 __clear_page_locked(page);
983 free_it:
984 nr_reclaimed++;
987 * Is there need to periodically free_page_list? It would
988 * appear not as the counts should be low
990 list_add(&page->lru, &free_pages);
991 continue;
993 cull_mlocked:
994 if (PageSwapCache(page))
995 try_to_free_swap(page);
996 unlock_page(page);
997 putback_lru_page(page);
998 reset_reclaim_mode(sc);
999 continue;
1001 activate_locked:
1002 /* Not a candidate for swapping, so reclaim swap space. */
1003 if (PageSwapCache(page) && vm_swap_full())
1004 try_to_free_swap(page);
1005 VM_BUG_ON(PageActive(page));
1006 SetPageActive(page);
1007 pgactivate++;
1008 keep_locked:
1009 unlock_page(page);
1010 keep:
1011 reset_reclaim_mode(sc);
1012 keep_lumpy:
1013 list_add(&page->lru, &ret_pages);
1014 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1018 * Tag a zone as congested if all the dirty pages encountered were
1019 * backed by a congested BDI. In this case, reclaimers should just
1020 * back off and wait for congestion to clear because further reclaim
1021 * will encounter the same problem
1023 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024 zone_set_flag(mz->zone, ZONE_CONGESTED);
1026 free_hot_cold_page_list(&free_pages, 1);
1028 list_splice(&ret_pages, page_list);
1029 count_vm_events(PGACTIVATE, pgactivate);
1030 *ret_nr_dirty += nr_dirty;
1031 *ret_nr_writeback += nr_writeback;
1032 return nr_reclaimed;
1036 * Attempt to remove the specified page from its LRU. Only take this page
1037 * if it is of the appropriate PageActive status. Pages which are being
1038 * freed elsewhere are also ignored.
1040 * page: page to consider
1041 * mode: one of the LRU isolation modes defined above
1043 * returns 0 on success, -ve errno on failure.
1045 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1047 bool all_lru_mode;
1048 int ret = -EINVAL;
1050 /* Only take pages on the LRU. */
1051 if (!PageLRU(page))
1052 return ret;
1054 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1058 * When checking the active state, we need to be sure we are
1059 * dealing with comparible boolean values. Take the logical not
1060 * of each.
1062 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063 return ret;
1065 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066 return ret;
1069 * When this function is being called for lumpy reclaim, we
1070 * initially look into all LRU pages, active, inactive and
1071 * unevictable; only give shrink_page_list evictable pages.
1073 if (PageUnevictable(page))
1074 return ret;
1076 ret = -EBUSY;
1079 * To minimise LRU disruption, the caller can indicate that it only
1080 * wants to isolate pages it will be able to operate on without
1081 * blocking - clean pages for the most part.
1083 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084 * is used by reclaim when it is cannot write to backing storage
1086 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087 * that it is possible to migrate without blocking
1089 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090 /* All the caller can do on PageWriteback is block */
1091 if (PageWriteback(page))
1092 return ret;
1094 if (PageDirty(page)) {
1095 struct address_space *mapping;
1097 /* ISOLATE_CLEAN means only clean pages */
1098 if (mode & ISOLATE_CLEAN)
1099 return ret;
1102 * Only pages without mappings or that have a
1103 * ->migratepage callback are possible to migrate
1104 * without blocking
1106 mapping = page_mapping(page);
1107 if (mapping && !mapping->a_ops->migratepage)
1108 return ret;
1112 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113 return ret;
1115 if (likely(get_page_unless_zero(page))) {
1117 * Be careful not to clear PageLRU until after we're
1118 * sure the page is not being freed elsewhere -- the
1119 * page release code relies on it.
1121 ClearPageLRU(page);
1122 ret = 0;
1125 return ret;
1129 * zone->lru_lock is heavily contended. Some of the functions that
1130 * shrink the lists perform better by taking out a batch of pages
1131 * and working on them outside the LRU lock.
1133 * For pagecache intensive workloads, this function is the hottest
1134 * spot in the kernel (apart from copy_*_user functions).
1136 * Appropriate locks must be held before calling this function.
1138 * @nr_to_scan: The number of pages to look through on the list.
1139 * @mz: The mem_cgroup_zone to pull pages from.
1140 * @dst: The temp list to put pages on to.
1141 * @nr_scanned: The number of pages that were scanned.
1142 * @order: The caller's attempted allocation order
1143 * @mode: One of the LRU isolation modes
1144 * @active: True [1] if isolating active pages
1145 * @file: True [1] if isolating file [!anon] pages
1147 * returns how many pages were moved onto *@dst.
1149 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1150 struct mem_cgroup_zone *mz, struct list_head *dst,
1151 unsigned long *nr_scanned, int order, isolate_mode_t mode,
1152 int active, int file)
1154 struct lruvec *lruvec;
1155 struct list_head *src;
1156 unsigned long nr_taken = 0;
1157 unsigned long nr_lumpy_taken = 0;
1158 unsigned long nr_lumpy_dirty = 0;
1159 unsigned long nr_lumpy_failed = 0;
1160 unsigned long scan;
1161 int lru = LRU_BASE;
1163 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1164 if (active)
1165 lru += LRU_ACTIVE;
1166 if (file)
1167 lru += LRU_FILE;
1168 src = &lruvec->lists[lru];
1170 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1171 struct page *page;
1172 unsigned long pfn;
1173 unsigned long end_pfn;
1174 unsigned long page_pfn;
1175 int zone_id;
1177 page = lru_to_page(src);
1178 prefetchw_prev_lru_page(page, src, flags);
1180 VM_BUG_ON(!PageLRU(page));
1182 switch (__isolate_lru_page(page, mode, file)) {
1183 case 0:
1184 mem_cgroup_lru_del(page);
1185 list_move(&page->lru, dst);
1186 nr_taken += hpage_nr_pages(page);
1187 break;
1189 case -EBUSY:
1190 /* else it is being freed elsewhere */
1191 list_move(&page->lru, src);
1192 continue;
1194 default:
1195 BUG();
1198 if (!order)
1199 continue;
1202 * Attempt to take all pages in the order aligned region
1203 * surrounding the tag page. Only take those pages of
1204 * the same active state as that tag page. We may safely
1205 * round the target page pfn down to the requested order
1206 * as the mem_map is guaranteed valid out to MAX_ORDER,
1207 * where that page is in a different zone we will detect
1208 * it from its zone id and abort this block scan.
1210 zone_id = page_zone_id(page);
1211 page_pfn = page_to_pfn(page);
1212 pfn = page_pfn & ~((1 << order) - 1);
1213 end_pfn = pfn + (1 << order);
1214 for (; pfn < end_pfn; pfn++) {
1215 struct page *cursor_page;
1217 /* The target page is in the block, ignore it. */
1218 if (unlikely(pfn == page_pfn))
1219 continue;
1221 /* Avoid holes within the zone. */
1222 if (unlikely(!pfn_valid_within(pfn)))
1223 break;
1225 cursor_page = pfn_to_page(pfn);
1227 /* Check that we have not crossed a zone boundary. */
1228 if (unlikely(page_zone_id(cursor_page) != zone_id))
1229 break;
1232 * If we don't have enough swap space, reclaiming of
1233 * anon page which don't already have a swap slot is
1234 * pointless.
1236 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1237 !PageSwapCache(cursor_page))
1238 break;
1240 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1241 unsigned int isolated_pages;
1243 mem_cgroup_lru_del(cursor_page);
1244 list_move(&cursor_page->lru, dst);
1245 isolated_pages = hpage_nr_pages(cursor_page);
1246 nr_taken += isolated_pages;
1247 nr_lumpy_taken += isolated_pages;
1248 if (PageDirty(cursor_page))
1249 nr_lumpy_dirty += isolated_pages;
1250 scan++;
1251 pfn += isolated_pages - 1;
1252 } else {
1254 * Check if the page is freed already.
1256 * We can't use page_count() as that
1257 * requires compound_head and we don't
1258 * have a pin on the page here. If a
1259 * page is tail, we may or may not
1260 * have isolated the head, so assume
1261 * it's not free, it'd be tricky to
1262 * track the head status without a
1263 * page pin.
1265 if (!PageTail(cursor_page) &&
1266 !atomic_read(&cursor_page->_count))
1267 continue;
1268 break;
1272 /* If we break out of the loop above, lumpy reclaim failed */
1273 if (pfn < end_pfn)
1274 nr_lumpy_failed++;
1277 *nr_scanned = scan;
1279 trace_mm_vmscan_lru_isolate(order,
1280 nr_to_scan, scan,
1281 nr_taken,
1282 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1283 mode, file);
1284 return nr_taken;
1288 * isolate_lru_page - tries to isolate a page from its LRU list
1289 * @page: page to isolate from its LRU list
1291 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1292 * vmstat statistic corresponding to whatever LRU list the page was on.
1294 * Returns 0 if the page was removed from an LRU list.
1295 * Returns -EBUSY if the page was not on an LRU list.
1297 * The returned page will have PageLRU() cleared. If it was found on
1298 * the active list, it will have PageActive set. If it was found on
1299 * the unevictable list, it will have the PageUnevictable bit set. That flag
1300 * may need to be cleared by the caller before letting the page go.
1302 * The vmstat statistic corresponding to the list on which the page was
1303 * found will be decremented.
1305 * Restrictions:
1306 * (1) Must be called with an elevated refcount on the page. This is a
1307 * fundamentnal difference from isolate_lru_pages (which is called
1308 * without a stable reference).
1309 * (2) the lru_lock must not be held.
1310 * (3) interrupts must be enabled.
1312 int isolate_lru_page(struct page *page)
1314 int ret = -EBUSY;
1316 VM_BUG_ON(!page_count(page));
1318 if (PageLRU(page)) {
1319 struct zone *zone = page_zone(page);
1321 spin_lock_irq(&zone->lru_lock);
1322 if (PageLRU(page)) {
1323 int lru = page_lru(page);
1324 ret = 0;
1325 get_page(page);
1326 ClearPageLRU(page);
1328 del_page_from_lru_list(zone, page, lru);
1330 spin_unlock_irq(&zone->lru_lock);
1332 return ret;
1336 * Are there way too many processes in the direct reclaim path already?
1338 static int too_many_isolated(struct zone *zone, int file,
1339 struct scan_control *sc)
1341 unsigned long inactive, isolated;
1343 if (current_is_kswapd())
1344 return 0;
1346 if (!global_reclaim(sc))
1347 return 0;
1349 if (file) {
1350 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1351 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1352 } else {
1353 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1354 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1357 return isolated > inactive;
1360 static noinline_for_stack void
1361 putback_inactive_pages(struct mem_cgroup_zone *mz,
1362 struct list_head *page_list)
1364 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1365 struct zone *zone = mz->zone;
1366 LIST_HEAD(pages_to_free);
1369 * Put back any unfreeable pages.
1371 while (!list_empty(page_list)) {
1372 struct page *page = lru_to_page(page_list);
1373 int lru;
1375 VM_BUG_ON(PageLRU(page));
1376 list_del(&page->lru);
1377 if (unlikely(!page_evictable(page, NULL))) {
1378 spin_unlock_irq(&zone->lru_lock);
1379 putback_lru_page(page);
1380 spin_lock_irq(&zone->lru_lock);
1381 continue;
1383 SetPageLRU(page);
1384 lru = page_lru(page);
1385 add_page_to_lru_list(zone, page, lru);
1386 if (is_active_lru(lru)) {
1387 int file = is_file_lru(lru);
1388 int numpages = hpage_nr_pages(page);
1389 reclaim_stat->recent_rotated[file] += numpages;
1391 if (put_page_testzero(page)) {
1392 __ClearPageLRU(page);
1393 __ClearPageActive(page);
1394 del_page_from_lru_list(zone, page, lru);
1396 if (unlikely(PageCompound(page))) {
1397 spin_unlock_irq(&zone->lru_lock);
1398 (*get_compound_page_dtor(page))(page);
1399 spin_lock_irq(&zone->lru_lock);
1400 } else
1401 list_add(&page->lru, &pages_to_free);
1406 * To save our caller's stack, now use input list for pages to free.
1408 list_splice(&pages_to_free, page_list);
1411 static noinline_for_stack void
1412 update_isolated_counts(struct mem_cgroup_zone *mz,
1413 struct list_head *page_list,
1414 unsigned long *nr_anon,
1415 unsigned long *nr_file)
1417 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1418 struct zone *zone = mz->zone;
1419 unsigned int count[NR_LRU_LISTS] = { 0, };
1420 unsigned long nr_active = 0;
1421 struct page *page;
1422 int lru;
1425 * Count pages and clear active flags
1427 list_for_each_entry(page, page_list, lru) {
1428 int numpages = hpage_nr_pages(page);
1429 lru = page_lru_base_type(page);
1430 if (PageActive(page)) {
1431 lru += LRU_ACTIVE;
1432 ClearPageActive(page);
1433 nr_active += numpages;
1435 count[lru] += numpages;
1438 __count_vm_events(PGDEACTIVATE, nr_active);
1440 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1441 -count[LRU_ACTIVE_FILE]);
1442 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1443 -count[LRU_INACTIVE_FILE]);
1444 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1445 -count[LRU_ACTIVE_ANON]);
1446 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1447 -count[LRU_INACTIVE_ANON]);
1449 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1450 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1452 reclaim_stat->recent_scanned[0] += *nr_anon;
1453 reclaim_stat->recent_scanned[1] += *nr_file;
1457 * Returns true if a direct reclaim should wait on pages under writeback.
1459 * If we are direct reclaiming for contiguous pages and we do not reclaim
1460 * everything in the list, try again and wait for writeback IO to complete.
1461 * This will stall high-order allocations noticeably. Only do that when really
1462 * need to free the pages under high memory pressure.
1464 static inline bool should_reclaim_stall(unsigned long nr_taken,
1465 unsigned long nr_freed,
1466 int priority,
1467 struct scan_control *sc)
1469 int lumpy_stall_priority;
1471 /* kswapd should not stall on sync IO */
1472 if (current_is_kswapd())
1473 return false;
1475 /* Only stall on lumpy reclaim */
1476 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1477 return false;
1479 /* If we have reclaimed everything on the isolated list, no stall */
1480 if (nr_freed == nr_taken)
1481 return false;
1484 * For high-order allocations, there are two stall thresholds.
1485 * High-cost allocations stall immediately where as lower
1486 * order allocations such as stacks require the scanning
1487 * priority to be much higher before stalling.
1489 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1490 lumpy_stall_priority = DEF_PRIORITY;
1491 else
1492 lumpy_stall_priority = DEF_PRIORITY / 3;
1494 return priority <= lumpy_stall_priority;
1498 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1499 * of reclaimed pages
1501 static noinline_for_stack unsigned long
1502 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1503 struct scan_control *sc, int priority, int file)
1505 LIST_HEAD(page_list);
1506 unsigned long nr_scanned;
1507 unsigned long nr_reclaimed = 0;
1508 unsigned long nr_taken;
1509 unsigned long nr_anon;
1510 unsigned long nr_file;
1511 unsigned long nr_dirty = 0;
1512 unsigned long nr_writeback = 0;
1513 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1514 struct zone *zone = mz->zone;
1516 while (unlikely(too_many_isolated(zone, file, sc))) {
1517 congestion_wait(BLK_RW_ASYNC, HZ/10);
1519 /* We are about to die and free our memory. Return now. */
1520 if (fatal_signal_pending(current))
1521 return SWAP_CLUSTER_MAX;
1524 set_reclaim_mode(priority, sc, false);
1525 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1526 reclaim_mode |= ISOLATE_ACTIVE;
1528 lru_add_drain();
1530 if (!sc->may_unmap)
1531 reclaim_mode |= ISOLATE_UNMAPPED;
1532 if (!sc->may_writepage)
1533 reclaim_mode |= ISOLATE_CLEAN;
1535 spin_lock_irq(&zone->lru_lock);
1537 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list,
1538 &nr_scanned, sc->order,
1539 reclaim_mode, 0, file);
1540 if (global_reclaim(sc)) {
1541 zone->pages_scanned += nr_scanned;
1542 if (current_is_kswapd())
1543 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1544 nr_scanned);
1545 else
1546 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1547 nr_scanned);
1550 if (nr_taken == 0) {
1551 spin_unlock_irq(&zone->lru_lock);
1552 return 0;
1555 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1557 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1558 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
1560 spin_unlock_irq(&zone->lru_lock);
1562 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1563 &nr_dirty, &nr_writeback);
1565 /* Check if we should syncronously wait for writeback */
1566 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1567 set_reclaim_mode(priority, sc, true);
1568 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1569 priority, &nr_dirty, &nr_writeback);
1572 spin_lock_irq(&zone->lru_lock);
1574 if (current_is_kswapd())
1575 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1576 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1578 putback_inactive_pages(mz, &page_list);
1580 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1581 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1583 spin_unlock_irq(&zone->lru_lock);
1585 free_hot_cold_page_list(&page_list, 1);
1588 * If reclaim is isolating dirty pages under writeback, it implies
1589 * that the long-lived page allocation rate is exceeding the page
1590 * laundering rate. Either the global limits are not being effective
1591 * at throttling processes due to the page distribution throughout
1592 * zones or there is heavy usage of a slow backing device. The
1593 * only option is to throttle from reclaim context which is not ideal
1594 * as there is no guarantee the dirtying process is throttled in the
1595 * same way balance_dirty_pages() manages.
1597 * This scales the number of dirty pages that must be under writeback
1598 * before throttling depending on priority. It is a simple backoff
1599 * function that has the most effect in the range DEF_PRIORITY to
1600 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1601 * in trouble and reclaim is considered to be in trouble.
1603 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1604 * DEF_PRIORITY-1 50% must be PageWriteback
1605 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1606 * ...
1607 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1608 * isolated page is PageWriteback
1610 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1611 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1613 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1614 zone_idx(zone),
1615 nr_scanned, nr_reclaimed,
1616 priority,
1617 trace_shrink_flags(file, sc->reclaim_mode));
1618 return nr_reclaimed;
1622 * This moves pages from the active list to the inactive list.
1624 * We move them the other way if the page is referenced by one or more
1625 * processes, from rmap.
1627 * If the pages are mostly unmapped, the processing is fast and it is
1628 * appropriate to hold zone->lru_lock across the whole operation. But if
1629 * the pages are mapped, the processing is slow (page_referenced()) so we
1630 * should drop zone->lru_lock around each page. It's impossible to balance
1631 * this, so instead we remove the pages from the LRU while processing them.
1632 * It is safe to rely on PG_active against the non-LRU pages in here because
1633 * nobody will play with that bit on a non-LRU page.
1635 * The downside is that we have to touch page->_count against each page.
1636 * But we had to alter page->flags anyway.
1639 static void move_active_pages_to_lru(struct zone *zone,
1640 struct list_head *list,
1641 struct list_head *pages_to_free,
1642 enum lru_list lru)
1644 unsigned long pgmoved = 0;
1645 struct page *page;
1647 if (buffer_heads_over_limit) {
1648 spin_unlock_irq(&zone->lru_lock);
1649 list_for_each_entry(page, list, lru) {
1650 if (page_has_private(page) && trylock_page(page)) {
1651 if (page_has_private(page))
1652 try_to_release_page(page, 0);
1653 unlock_page(page);
1656 spin_lock_irq(&zone->lru_lock);
1659 while (!list_empty(list)) {
1660 struct lruvec *lruvec;
1662 page = lru_to_page(list);
1664 VM_BUG_ON(PageLRU(page));
1665 SetPageLRU(page);
1667 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1668 list_move(&page->lru, &lruvec->lists[lru]);
1669 pgmoved += hpage_nr_pages(page);
1671 if (put_page_testzero(page)) {
1672 __ClearPageLRU(page);
1673 __ClearPageActive(page);
1674 del_page_from_lru_list(zone, page, lru);
1676 if (unlikely(PageCompound(page))) {
1677 spin_unlock_irq(&zone->lru_lock);
1678 (*get_compound_page_dtor(page))(page);
1679 spin_lock_irq(&zone->lru_lock);
1680 } else
1681 list_add(&page->lru, pages_to_free);
1684 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1685 if (!is_active_lru(lru))
1686 __count_vm_events(PGDEACTIVATE, pgmoved);
1689 static void shrink_active_list(unsigned long nr_to_scan,
1690 struct mem_cgroup_zone *mz,
1691 struct scan_control *sc,
1692 int priority, int file)
1694 unsigned long nr_taken;
1695 unsigned long nr_scanned;
1696 unsigned long vm_flags;
1697 LIST_HEAD(l_hold); /* The pages which were snipped off */
1698 LIST_HEAD(l_active);
1699 LIST_HEAD(l_inactive);
1700 struct page *page;
1701 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1702 unsigned long nr_rotated = 0;
1703 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1704 struct zone *zone = mz->zone;
1706 lru_add_drain();
1708 if (!sc->may_unmap)
1709 reclaim_mode |= ISOLATE_UNMAPPED;
1710 if (!sc->may_writepage)
1711 reclaim_mode |= ISOLATE_CLEAN;
1713 spin_lock_irq(&zone->lru_lock);
1715 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold,
1716 &nr_scanned, sc->order,
1717 reclaim_mode, 1, file);
1718 if (global_reclaim(sc))
1719 zone->pages_scanned += nr_scanned;
1721 reclaim_stat->recent_scanned[file] += nr_taken;
1723 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1724 if (file)
1725 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1726 else
1727 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1728 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1729 spin_unlock_irq(&zone->lru_lock);
1731 while (!list_empty(&l_hold)) {
1732 cond_resched();
1733 page = lru_to_page(&l_hold);
1734 list_del(&page->lru);
1736 if (unlikely(!page_evictable(page, NULL))) {
1737 putback_lru_page(page);
1738 continue;
1741 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1742 nr_rotated += hpage_nr_pages(page);
1744 * Identify referenced, file-backed active pages and
1745 * give them one more trip around the active list. So
1746 * that executable code get better chances to stay in
1747 * memory under moderate memory pressure. Anon pages
1748 * are not likely to be evicted by use-once streaming
1749 * IO, plus JVM can create lots of anon VM_EXEC pages,
1750 * so we ignore them here.
1752 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1753 list_add(&page->lru, &l_active);
1754 continue;
1758 ClearPageActive(page); /* we are de-activating */
1759 list_add(&page->lru, &l_inactive);
1763 * Move pages back to the lru list.
1765 spin_lock_irq(&zone->lru_lock);
1767 * Count referenced pages from currently used mappings as rotated,
1768 * even though only some of them are actually re-activated. This
1769 * helps balance scan pressure between file and anonymous pages in
1770 * get_scan_ratio.
1772 reclaim_stat->recent_rotated[file] += nr_rotated;
1774 move_active_pages_to_lru(zone, &l_active, &l_hold,
1775 LRU_ACTIVE + file * LRU_FILE);
1776 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1777 LRU_BASE + file * LRU_FILE);
1778 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1779 spin_unlock_irq(&zone->lru_lock);
1781 free_hot_cold_page_list(&l_hold, 1);
1784 #ifdef CONFIG_SWAP
1785 static int inactive_anon_is_low_global(struct zone *zone)
1787 unsigned long active, inactive;
1789 active = zone_page_state(zone, NR_ACTIVE_ANON);
1790 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1792 if (inactive * zone->inactive_ratio < active)
1793 return 1;
1795 return 0;
1799 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1800 * @zone: zone to check
1801 * @sc: scan control of this context
1803 * Returns true if the zone does not have enough inactive anon pages,
1804 * meaning some active anon pages need to be deactivated.
1806 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1809 * If we don't have swap space, anonymous page deactivation
1810 * is pointless.
1812 if (!total_swap_pages)
1813 return 0;
1815 if (!scanning_global_lru(mz))
1816 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1817 mz->zone);
1819 return inactive_anon_is_low_global(mz->zone);
1821 #else
1822 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1824 return 0;
1826 #endif
1828 static int inactive_file_is_low_global(struct zone *zone)
1830 unsigned long active, inactive;
1832 active = zone_page_state(zone, NR_ACTIVE_FILE);
1833 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1835 return (active > inactive);
1839 * inactive_file_is_low - check if file pages need to be deactivated
1840 * @mz: memory cgroup and zone to check
1842 * When the system is doing streaming IO, memory pressure here
1843 * ensures that active file pages get deactivated, until more
1844 * than half of the file pages are on the inactive list.
1846 * Once we get to that situation, protect the system's working
1847 * set from being evicted by disabling active file page aging.
1849 * This uses a different ratio than the anonymous pages, because
1850 * the page cache uses a use-once replacement algorithm.
1852 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1854 if (!scanning_global_lru(mz))
1855 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1856 mz->zone);
1858 return inactive_file_is_low_global(mz->zone);
1861 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1863 if (file)
1864 return inactive_file_is_low(mz);
1865 else
1866 return inactive_anon_is_low(mz);
1869 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1870 struct mem_cgroup_zone *mz,
1871 struct scan_control *sc, int priority)
1873 int file = is_file_lru(lru);
1875 if (is_active_lru(lru)) {
1876 if (inactive_list_is_low(mz, file))
1877 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1878 return 0;
1881 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1884 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1885 struct scan_control *sc)
1887 if (global_reclaim(sc))
1888 return vm_swappiness;
1889 return mem_cgroup_swappiness(mz->mem_cgroup);
1893 * Determine how aggressively the anon and file LRU lists should be
1894 * scanned. The relative value of each set of LRU lists is determined
1895 * by looking at the fraction of the pages scanned we did rotate back
1896 * onto the active list instead of evict.
1898 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1900 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1901 unsigned long *nr, int priority)
1903 unsigned long anon, file, free;
1904 unsigned long anon_prio, file_prio;
1905 unsigned long ap, fp;
1906 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1907 u64 fraction[2], denominator;
1908 enum lru_list lru;
1909 int noswap = 0;
1910 bool force_scan = false;
1913 * If the zone or memcg is small, nr[l] can be 0. This
1914 * results in no scanning on this priority and a potential
1915 * priority drop. Global direct reclaim can go to the next
1916 * zone and tends to have no problems. Global kswapd is for
1917 * zone balancing and it needs to scan a minimum amount. When
1918 * reclaiming for a memcg, a priority drop can cause high
1919 * latencies, so it's better to scan a minimum amount there as
1920 * well.
1922 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1923 force_scan = true;
1924 if (!global_reclaim(sc))
1925 force_scan = true;
1927 /* If we have no swap space, do not bother scanning anon pages. */
1928 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1929 noswap = 1;
1930 fraction[0] = 0;
1931 fraction[1] = 1;
1932 denominator = 1;
1933 goto out;
1936 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1937 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1938 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1939 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1941 if (global_reclaim(sc)) {
1942 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1943 /* If we have very few page cache pages,
1944 force-scan anon pages. */
1945 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1946 fraction[0] = 1;
1947 fraction[1] = 0;
1948 denominator = 1;
1949 goto out;
1954 * With swappiness at 100, anonymous and file have the same priority.
1955 * This scanning priority is essentially the inverse of IO cost.
1957 anon_prio = vmscan_swappiness(mz, sc);
1958 file_prio = 200 - vmscan_swappiness(mz, sc);
1961 * OK, so we have swap space and a fair amount of page cache
1962 * pages. We use the recently rotated / recently scanned
1963 * ratios to determine how valuable each cache is.
1965 * Because workloads change over time (and to avoid overflow)
1966 * we keep these statistics as a floating average, which ends
1967 * up weighing recent references more than old ones.
1969 * anon in [0], file in [1]
1971 spin_lock_irq(&mz->zone->lru_lock);
1972 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1973 reclaim_stat->recent_scanned[0] /= 2;
1974 reclaim_stat->recent_rotated[0] /= 2;
1977 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1978 reclaim_stat->recent_scanned[1] /= 2;
1979 reclaim_stat->recent_rotated[1] /= 2;
1983 * The amount of pressure on anon vs file pages is inversely
1984 * proportional to the fraction of recently scanned pages on
1985 * each list that were recently referenced and in active use.
1987 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1988 ap /= reclaim_stat->recent_rotated[0] + 1;
1990 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1991 fp /= reclaim_stat->recent_rotated[1] + 1;
1992 spin_unlock_irq(&mz->zone->lru_lock);
1994 fraction[0] = ap;
1995 fraction[1] = fp;
1996 denominator = ap + fp + 1;
1997 out:
1998 for_each_evictable_lru(lru) {
1999 int file = is_file_lru(lru);
2000 unsigned long scan;
2002 scan = zone_nr_lru_pages(mz, lru);
2003 if (priority || noswap) {
2004 scan >>= priority;
2005 if (!scan && force_scan)
2006 scan = SWAP_CLUSTER_MAX;
2007 scan = div64_u64(scan * fraction[file], denominator);
2009 nr[lru] = scan;
2014 * Reclaim/compaction depends on a number of pages being freed. To avoid
2015 * disruption to the system, a small number of order-0 pages continue to be
2016 * rotated and reclaimed in the normal fashion. However, by the time we get
2017 * back to the allocator and call try_to_compact_zone(), we ensure that
2018 * there are enough free pages for it to be likely successful
2020 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2021 unsigned long nr_reclaimed,
2022 unsigned long nr_scanned,
2023 struct scan_control *sc)
2025 unsigned long pages_for_compaction;
2026 unsigned long inactive_lru_pages;
2028 /* If not in reclaim/compaction mode, stop */
2029 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2030 return false;
2032 /* Consider stopping depending on scan and reclaim activity */
2033 if (sc->gfp_mask & __GFP_REPEAT) {
2035 * For __GFP_REPEAT allocations, stop reclaiming if the
2036 * full LRU list has been scanned and we are still failing
2037 * to reclaim pages. This full LRU scan is potentially
2038 * expensive but a __GFP_REPEAT caller really wants to succeed
2040 if (!nr_reclaimed && !nr_scanned)
2041 return false;
2042 } else {
2044 * For non-__GFP_REPEAT allocations which can presumably
2045 * fail without consequence, stop if we failed to reclaim
2046 * any pages from the last SWAP_CLUSTER_MAX number of
2047 * pages that were scanned. This will return to the
2048 * caller faster at the risk reclaim/compaction and
2049 * the resulting allocation attempt fails
2051 if (!nr_reclaimed)
2052 return false;
2056 * If we have not reclaimed enough pages for compaction and the
2057 * inactive lists are large enough, continue reclaiming
2059 pages_for_compaction = (2UL << sc->order);
2060 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2061 if (nr_swap_pages > 0)
2062 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2063 if (sc->nr_reclaimed < pages_for_compaction &&
2064 inactive_lru_pages > pages_for_compaction)
2065 return true;
2067 /* If compaction would go ahead or the allocation would succeed, stop */
2068 switch (compaction_suitable(mz->zone, sc->order)) {
2069 case COMPACT_PARTIAL:
2070 case COMPACT_CONTINUE:
2071 return false;
2072 default:
2073 return true;
2078 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2080 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2081 struct scan_control *sc)
2083 unsigned long nr[NR_LRU_LISTS];
2084 unsigned long nr_to_scan;
2085 enum lru_list lru;
2086 unsigned long nr_reclaimed, nr_scanned;
2087 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2088 struct blk_plug plug;
2090 restart:
2091 nr_reclaimed = 0;
2092 nr_scanned = sc->nr_scanned;
2093 get_scan_count(mz, sc, nr, priority);
2095 blk_start_plug(&plug);
2096 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2097 nr[LRU_INACTIVE_FILE]) {
2098 for_each_evictable_lru(lru) {
2099 if (nr[lru]) {
2100 nr_to_scan = min_t(unsigned long,
2101 nr[lru], SWAP_CLUSTER_MAX);
2102 nr[lru] -= nr_to_scan;
2104 nr_reclaimed += shrink_list(lru, nr_to_scan,
2105 mz, sc, priority);
2109 * On large memory systems, scan >> priority can become
2110 * really large. This is fine for the starting priority;
2111 * we want to put equal scanning pressure on each zone.
2112 * However, if the VM has a harder time of freeing pages,
2113 * with multiple processes reclaiming pages, the total
2114 * freeing target can get unreasonably large.
2116 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2117 break;
2119 blk_finish_plug(&plug);
2120 sc->nr_reclaimed += nr_reclaimed;
2123 * Even if we did not try to evict anon pages at all, we want to
2124 * rebalance the anon lru active/inactive ratio.
2126 if (inactive_anon_is_low(mz))
2127 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2129 /* reclaim/compaction might need reclaim to continue */
2130 if (should_continue_reclaim(mz, nr_reclaimed,
2131 sc->nr_scanned - nr_scanned, sc))
2132 goto restart;
2134 throttle_vm_writeout(sc->gfp_mask);
2137 static void shrink_zone(int priority, struct zone *zone,
2138 struct scan_control *sc)
2140 struct mem_cgroup *root = sc->target_mem_cgroup;
2141 struct mem_cgroup_reclaim_cookie reclaim = {
2142 .zone = zone,
2143 .priority = priority,
2145 struct mem_cgroup *memcg;
2147 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2148 do {
2149 struct mem_cgroup_zone mz = {
2150 .mem_cgroup = memcg,
2151 .zone = zone,
2154 shrink_mem_cgroup_zone(priority, &mz, sc);
2156 * Limit reclaim has historically picked one memcg and
2157 * scanned it with decreasing priority levels until
2158 * nr_to_reclaim had been reclaimed. This priority
2159 * cycle is thus over after a single memcg.
2161 * Direct reclaim and kswapd, on the other hand, have
2162 * to scan all memory cgroups to fulfill the overall
2163 * scan target for the zone.
2165 if (!global_reclaim(sc)) {
2166 mem_cgroup_iter_break(root, memcg);
2167 break;
2169 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2170 } while (memcg);
2173 /* Returns true if compaction should go ahead for a high-order request */
2174 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2176 unsigned long balance_gap, watermark;
2177 bool watermark_ok;
2179 /* Do not consider compaction for orders reclaim is meant to satisfy */
2180 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2181 return false;
2184 * Compaction takes time to run and there are potentially other
2185 * callers using the pages just freed. Continue reclaiming until
2186 * there is a buffer of free pages available to give compaction
2187 * a reasonable chance of completing and allocating the page
2189 balance_gap = min(low_wmark_pages(zone),
2190 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2191 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2192 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2193 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2196 * If compaction is deferred, reclaim up to a point where
2197 * compaction will have a chance of success when re-enabled
2199 if (compaction_deferred(zone))
2200 return watermark_ok;
2202 /* If compaction is not ready to start, keep reclaiming */
2203 if (!compaction_suitable(zone, sc->order))
2204 return false;
2206 return watermark_ok;
2210 * This is the direct reclaim path, for page-allocating processes. We only
2211 * try to reclaim pages from zones which will satisfy the caller's allocation
2212 * request.
2214 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2215 * Because:
2216 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2217 * allocation or
2218 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2219 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2220 * zone defense algorithm.
2222 * If a zone is deemed to be full of pinned pages then just give it a light
2223 * scan then give up on it.
2225 * This function returns true if a zone is being reclaimed for a costly
2226 * high-order allocation and compaction is ready to begin. This indicates to
2227 * the caller that it should consider retrying the allocation instead of
2228 * further reclaim.
2230 static bool shrink_zones(int priority, struct zonelist *zonelist,
2231 struct scan_control *sc)
2233 struct zoneref *z;
2234 struct zone *zone;
2235 unsigned long nr_soft_reclaimed;
2236 unsigned long nr_soft_scanned;
2237 bool aborted_reclaim = false;
2239 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2240 gfp_zone(sc->gfp_mask), sc->nodemask) {
2241 if (!populated_zone(zone))
2242 continue;
2244 * Take care memory controller reclaiming has small influence
2245 * to global LRU.
2247 if (global_reclaim(sc)) {
2248 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2249 continue;
2250 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2251 continue; /* Let kswapd poll it */
2252 if (COMPACTION_BUILD) {
2254 * If we already have plenty of memory free for
2255 * compaction in this zone, don't free any more.
2256 * Even though compaction is invoked for any
2257 * non-zero order, only frequent costly order
2258 * reclamation is disruptive enough to become a
2259 * noticable problem, like transparent huge page
2260 * allocations.
2262 if (compaction_ready(zone, sc)) {
2263 aborted_reclaim = true;
2264 continue;
2268 * This steals pages from memory cgroups over softlimit
2269 * and returns the number of reclaimed pages and
2270 * scanned pages. This works for global memory pressure
2271 * and balancing, not for a memcg's limit.
2273 nr_soft_scanned = 0;
2274 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2275 sc->order, sc->gfp_mask,
2276 &nr_soft_scanned);
2277 sc->nr_reclaimed += nr_soft_reclaimed;
2278 sc->nr_scanned += nr_soft_scanned;
2279 /* need some check for avoid more shrink_zone() */
2282 shrink_zone(priority, zone, sc);
2285 return aborted_reclaim;
2288 static bool zone_reclaimable(struct zone *zone)
2290 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2293 /* All zones in zonelist are unreclaimable? */
2294 static bool all_unreclaimable(struct zonelist *zonelist,
2295 struct scan_control *sc)
2297 struct zoneref *z;
2298 struct zone *zone;
2300 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2301 gfp_zone(sc->gfp_mask), sc->nodemask) {
2302 if (!populated_zone(zone))
2303 continue;
2304 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2305 continue;
2306 if (!zone->all_unreclaimable)
2307 return false;
2310 return true;
2314 * This is the main entry point to direct page reclaim.
2316 * If a full scan of the inactive list fails to free enough memory then we
2317 * are "out of memory" and something needs to be killed.
2319 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2320 * high - the zone may be full of dirty or under-writeback pages, which this
2321 * caller can't do much about. We kick the writeback threads and take explicit
2322 * naps in the hope that some of these pages can be written. But if the
2323 * allocating task holds filesystem locks which prevent writeout this might not
2324 * work, and the allocation attempt will fail.
2326 * returns: 0, if no pages reclaimed
2327 * else, the number of pages reclaimed
2329 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2330 struct scan_control *sc,
2331 struct shrink_control *shrink)
2333 int priority;
2334 unsigned long total_scanned = 0;
2335 struct reclaim_state *reclaim_state = current->reclaim_state;
2336 struct zoneref *z;
2337 struct zone *zone;
2338 unsigned long writeback_threshold;
2339 bool aborted_reclaim;
2341 get_mems_allowed();
2342 delayacct_freepages_start();
2344 if (global_reclaim(sc))
2345 count_vm_event(ALLOCSTALL);
2347 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2348 sc->nr_scanned = 0;
2349 if (!priority)
2350 disable_swap_token(sc->target_mem_cgroup);
2351 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2354 * Don't shrink slabs when reclaiming memory from
2355 * over limit cgroups
2357 if (global_reclaim(sc)) {
2358 unsigned long lru_pages = 0;
2359 for_each_zone_zonelist(zone, z, zonelist,
2360 gfp_zone(sc->gfp_mask)) {
2361 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2362 continue;
2364 lru_pages += zone_reclaimable_pages(zone);
2367 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2368 if (reclaim_state) {
2369 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2370 reclaim_state->reclaimed_slab = 0;
2373 total_scanned += sc->nr_scanned;
2374 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2375 goto out;
2378 * Try to write back as many pages as we just scanned. This
2379 * tends to cause slow streaming writers to write data to the
2380 * disk smoothly, at the dirtying rate, which is nice. But
2381 * that's undesirable in laptop mode, where we *want* lumpy
2382 * writeout. So in laptop mode, write out the whole world.
2384 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2385 if (total_scanned > writeback_threshold) {
2386 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2387 WB_REASON_TRY_TO_FREE_PAGES);
2388 sc->may_writepage = 1;
2391 /* Take a nap, wait for some writeback to complete */
2392 if (!sc->hibernation_mode && sc->nr_scanned &&
2393 priority < DEF_PRIORITY - 2) {
2394 struct zone *preferred_zone;
2396 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2397 &cpuset_current_mems_allowed,
2398 &preferred_zone);
2399 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2403 out:
2404 delayacct_freepages_end();
2405 put_mems_allowed();
2407 if (sc->nr_reclaimed)
2408 return sc->nr_reclaimed;
2411 * As hibernation is going on, kswapd is freezed so that it can't mark
2412 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2413 * check.
2415 if (oom_killer_disabled)
2416 return 0;
2418 /* Aborted reclaim to try compaction? don't OOM, then */
2419 if (aborted_reclaim)
2420 return 1;
2422 /* top priority shrink_zones still had more to do? don't OOM, then */
2423 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2424 return 1;
2426 return 0;
2429 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2430 gfp_t gfp_mask, nodemask_t *nodemask)
2432 unsigned long nr_reclaimed;
2433 struct scan_control sc = {
2434 .gfp_mask = gfp_mask,
2435 .may_writepage = !laptop_mode,
2436 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2437 .may_unmap = 1,
2438 .may_swap = 1,
2439 .order = order,
2440 .target_mem_cgroup = NULL,
2441 .nodemask = nodemask,
2443 struct shrink_control shrink = {
2444 .gfp_mask = sc.gfp_mask,
2447 trace_mm_vmscan_direct_reclaim_begin(order,
2448 sc.may_writepage,
2449 gfp_mask);
2451 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2453 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2455 return nr_reclaimed;
2458 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2460 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2461 gfp_t gfp_mask, bool noswap,
2462 struct zone *zone,
2463 unsigned long *nr_scanned)
2465 struct scan_control sc = {
2466 .nr_scanned = 0,
2467 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2468 .may_writepage = !laptop_mode,
2469 .may_unmap = 1,
2470 .may_swap = !noswap,
2471 .order = 0,
2472 .target_mem_cgroup = memcg,
2474 struct mem_cgroup_zone mz = {
2475 .mem_cgroup = memcg,
2476 .zone = zone,
2479 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2480 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2482 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2483 sc.may_writepage,
2484 sc.gfp_mask);
2487 * NOTE: Although we can get the priority field, using it
2488 * here is not a good idea, since it limits the pages we can scan.
2489 * if we don't reclaim here, the shrink_zone from balance_pgdat
2490 * will pick up pages from other mem cgroup's as well. We hack
2491 * the priority and make it zero.
2493 shrink_mem_cgroup_zone(0, &mz, &sc);
2495 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2497 *nr_scanned = sc.nr_scanned;
2498 return sc.nr_reclaimed;
2501 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2502 gfp_t gfp_mask,
2503 bool noswap)
2505 struct zonelist *zonelist;
2506 unsigned long nr_reclaimed;
2507 int nid;
2508 struct scan_control sc = {
2509 .may_writepage = !laptop_mode,
2510 .may_unmap = 1,
2511 .may_swap = !noswap,
2512 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2513 .order = 0,
2514 .target_mem_cgroup = memcg,
2515 .nodemask = NULL, /* we don't care the placement */
2516 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2517 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2519 struct shrink_control shrink = {
2520 .gfp_mask = sc.gfp_mask,
2524 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2525 * take care of from where we get pages. So the node where we start the
2526 * scan does not need to be the current node.
2528 nid = mem_cgroup_select_victim_node(memcg);
2530 zonelist = NODE_DATA(nid)->node_zonelists;
2532 trace_mm_vmscan_memcg_reclaim_begin(0,
2533 sc.may_writepage,
2534 sc.gfp_mask);
2536 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2538 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2540 return nr_reclaimed;
2542 #endif
2544 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2545 int priority)
2547 struct mem_cgroup *memcg;
2549 if (!total_swap_pages)
2550 return;
2552 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2553 do {
2554 struct mem_cgroup_zone mz = {
2555 .mem_cgroup = memcg,
2556 .zone = zone,
2559 if (inactive_anon_is_low(&mz))
2560 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2561 sc, priority, 0);
2563 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2564 } while (memcg);
2568 * pgdat_balanced is used when checking if a node is balanced for high-order
2569 * allocations. Only zones that meet watermarks and are in a zone allowed
2570 * by the callers classzone_idx are added to balanced_pages. The total of
2571 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2572 * for the node to be considered balanced. Forcing all zones to be balanced
2573 * for high orders can cause excessive reclaim when there are imbalanced zones.
2574 * The choice of 25% is due to
2575 * o a 16M DMA zone that is balanced will not balance a zone on any
2576 * reasonable sized machine
2577 * o On all other machines, the top zone must be at least a reasonable
2578 * percentage of the middle zones. For example, on 32-bit x86, highmem
2579 * would need to be at least 256M for it to be balance a whole node.
2580 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2581 * to balance a node on its own. These seemed like reasonable ratios.
2583 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2584 int classzone_idx)
2586 unsigned long present_pages = 0;
2587 int i;
2589 for (i = 0; i <= classzone_idx; i++)
2590 present_pages += pgdat->node_zones[i].present_pages;
2592 /* A special case here: if zone has no page, we think it's balanced */
2593 return balanced_pages >= (present_pages >> 2);
2596 /* is kswapd sleeping prematurely? */
2597 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2598 int classzone_idx)
2600 int i;
2601 unsigned long balanced = 0;
2602 bool all_zones_ok = true;
2604 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2605 if (remaining)
2606 return true;
2608 /* Check the watermark levels */
2609 for (i = 0; i <= classzone_idx; i++) {
2610 struct zone *zone = pgdat->node_zones + i;
2612 if (!populated_zone(zone))
2613 continue;
2616 * balance_pgdat() skips over all_unreclaimable after
2617 * DEF_PRIORITY. Effectively, it considers them balanced so
2618 * they must be considered balanced here as well if kswapd
2619 * is to sleep
2621 if (zone->all_unreclaimable) {
2622 balanced += zone->present_pages;
2623 continue;
2626 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2627 i, 0))
2628 all_zones_ok = false;
2629 else
2630 balanced += zone->present_pages;
2634 * For high-order requests, the balanced zones must contain at least
2635 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2636 * must be balanced
2638 if (order)
2639 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2640 else
2641 return !all_zones_ok;
2645 * For kswapd, balance_pgdat() will work across all this node's zones until
2646 * they are all at high_wmark_pages(zone).
2648 * Returns the final order kswapd was reclaiming at
2650 * There is special handling here for zones which are full of pinned pages.
2651 * This can happen if the pages are all mlocked, or if they are all used by
2652 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2653 * What we do is to detect the case where all pages in the zone have been
2654 * scanned twice and there has been zero successful reclaim. Mark the zone as
2655 * dead and from now on, only perform a short scan. Basically we're polling
2656 * the zone for when the problem goes away.
2658 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2659 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2660 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2661 * lower zones regardless of the number of free pages in the lower zones. This
2662 * interoperates with the page allocator fallback scheme to ensure that aging
2663 * of pages is balanced across the zones.
2665 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2666 int *classzone_idx)
2668 int all_zones_ok;
2669 unsigned long balanced;
2670 int priority;
2671 int i;
2672 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2673 unsigned long total_scanned;
2674 struct reclaim_state *reclaim_state = current->reclaim_state;
2675 unsigned long nr_soft_reclaimed;
2676 unsigned long nr_soft_scanned;
2677 struct scan_control sc = {
2678 .gfp_mask = GFP_KERNEL,
2679 .may_unmap = 1,
2680 .may_swap = 1,
2682 * kswapd doesn't want to be bailed out while reclaim. because
2683 * we want to put equal scanning pressure on each zone.
2685 .nr_to_reclaim = ULONG_MAX,
2686 .order = order,
2687 .target_mem_cgroup = NULL,
2689 struct shrink_control shrink = {
2690 .gfp_mask = sc.gfp_mask,
2692 loop_again:
2693 total_scanned = 0;
2694 sc.nr_reclaimed = 0;
2695 sc.may_writepage = !laptop_mode;
2696 count_vm_event(PAGEOUTRUN);
2698 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2699 unsigned long lru_pages = 0;
2700 int has_under_min_watermark_zone = 0;
2702 /* The swap token gets in the way of swapout... */
2703 if (!priority)
2704 disable_swap_token(NULL);
2706 all_zones_ok = 1;
2707 balanced = 0;
2710 * Scan in the highmem->dma direction for the highest
2711 * zone which needs scanning
2713 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2714 struct zone *zone = pgdat->node_zones + i;
2716 if (!populated_zone(zone))
2717 continue;
2719 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2720 continue;
2723 * Do some background aging of the anon list, to give
2724 * pages a chance to be referenced before reclaiming.
2726 age_active_anon(zone, &sc, priority);
2728 if (!zone_watermark_ok_safe(zone, order,
2729 high_wmark_pages(zone), 0, 0)) {
2730 end_zone = i;
2731 break;
2732 } else {
2733 /* If balanced, clear the congested flag */
2734 zone_clear_flag(zone, ZONE_CONGESTED);
2737 if (i < 0)
2738 goto out;
2740 for (i = 0; i <= end_zone; i++) {
2741 struct zone *zone = pgdat->node_zones + i;
2743 lru_pages += zone_reclaimable_pages(zone);
2747 * Now scan the zone in the dma->highmem direction, stopping
2748 * at the last zone which needs scanning.
2750 * We do this because the page allocator works in the opposite
2751 * direction. This prevents the page allocator from allocating
2752 * pages behind kswapd's direction of progress, which would
2753 * cause too much scanning of the lower zones.
2755 for (i = 0; i <= end_zone; i++) {
2756 struct zone *zone = pgdat->node_zones + i;
2757 int nr_slab;
2758 unsigned long balance_gap;
2760 if (!populated_zone(zone))
2761 continue;
2763 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2764 continue;
2766 sc.nr_scanned = 0;
2768 nr_soft_scanned = 0;
2770 * Call soft limit reclaim before calling shrink_zone.
2772 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2773 order, sc.gfp_mask,
2774 &nr_soft_scanned);
2775 sc.nr_reclaimed += nr_soft_reclaimed;
2776 total_scanned += nr_soft_scanned;
2779 * We put equal pressure on every zone, unless
2780 * one zone has way too many pages free
2781 * already. The "too many pages" is defined
2782 * as the high wmark plus a "gap" where the
2783 * gap is either the low watermark or 1%
2784 * of the zone, whichever is smaller.
2786 balance_gap = min(low_wmark_pages(zone),
2787 (zone->present_pages +
2788 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2789 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2790 if (!zone_watermark_ok_safe(zone, order,
2791 high_wmark_pages(zone) + balance_gap,
2792 end_zone, 0)) {
2793 shrink_zone(priority, zone, &sc);
2795 reclaim_state->reclaimed_slab = 0;
2796 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2797 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2798 total_scanned += sc.nr_scanned;
2800 if (nr_slab == 0 && !zone_reclaimable(zone))
2801 zone->all_unreclaimable = 1;
2805 * If we've done a decent amount of scanning and
2806 * the reclaim ratio is low, start doing writepage
2807 * even in laptop mode
2809 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2810 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2811 sc.may_writepage = 1;
2813 if (zone->all_unreclaimable) {
2814 if (end_zone && end_zone == i)
2815 end_zone--;
2816 continue;
2819 if (!zone_watermark_ok_safe(zone, order,
2820 high_wmark_pages(zone), end_zone, 0)) {
2821 all_zones_ok = 0;
2823 * We are still under min water mark. This
2824 * means that we have a GFP_ATOMIC allocation
2825 * failure risk. Hurry up!
2827 if (!zone_watermark_ok_safe(zone, order,
2828 min_wmark_pages(zone), end_zone, 0))
2829 has_under_min_watermark_zone = 1;
2830 } else {
2832 * If a zone reaches its high watermark,
2833 * consider it to be no longer congested. It's
2834 * possible there are dirty pages backed by
2835 * congested BDIs but as pressure is relieved,
2836 * spectulatively avoid congestion waits
2838 zone_clear_flag(zone, ZONE_CONGESTED);
2839 if (i <= *classzone_idx)
2840 balanced += zone->present_pages;
2844 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2845 break; /* kswapd: all done */
2847 * OK, kswapd is getting into trouble. Take a nap, then take
2848 * another pass across the zones.
2850 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2851 if (has_under_min_watermark_zone)
2852 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2853 else
2854 congestion_wait(BLK_RW_ASYNC, HZ/10);
2858 * We do this so kswapd doesn't build up large priorities for
2859 * example when it is freeing in parallel with allocators. It
2860 * matches the direct reclaim path behaviour in terms of impact
2861 * on zone->*_priority.
2863 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2864 break;
2866 out:
2869 * order-0: All zones must meet high watermark for a balanced node
2870 * high-order: Balanced zones must make up at least 25% of the node
2871 * for the node to be balanced
2873 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2874 cond_resched();
2876 try_to_freeze();
2879 * Fragmentation may mean that the system cannot be
2880 * rebalanced for high-order allocations in all zones.
2881 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2882 * it means the zones have been fully scanned and are still
2883 * not balanced. For high-order allocations, there is
2884 * little point trying all over again as kswapd may
2885 * infinite loop.
2887 * Instead, recheck all watermarks at order-0 as they
2888 * are the most important. If watermarks are ok, kswapd will go
2889 * back to sleep. High-order users can still perform direct
2890 * reclaim if they wish.
2892 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2893 order = sc.order = 0;
2895 goto loop_again;
2899 * If kswapd was reclaiming at a higher order, it has the option of
2900 * sleeping without all zones being balanced. Before it does, it must
2901 * ensure that the watermarks for order-0 on *all* zones are met and
2902 * that the congestion flags are cleared. The congestion flag must
2903 * be cleared as kswapd is the only mechanism that clears the flag
2904 * and it is potentially going to sleep here.
2906 if (order) {
2907 for (i = 0; i <= end_zone; i++) {
2908 struct zone *zone = pgdat->node_zones + i;
2910 if (!populated_zone(zone))
2911 continue;
2913 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2914 continue;
2916 /* Confirm the zone is balanced for order-0 */
2917 if (!zone_watermark_ok(zone, 0,
2918 high_wmark_pages(zone), 0, 0)) {
2919 order = sc.order = 0;
2920 goto loop_again;
2923 /* If balanced, clear the congested flag */
2924 zone_clear_flag(zone, ZONE_CONGESTED);
2925 if (i <= *classzone_idx)
2926 balanced += zone->present_pages;
2931 * Return the order we were reclaiming at so sleeping_prematurely()
2932 * makes a decision on the order we were last reclaiming at. However,
2933 * if another caller entered the allocator slow path while kswapd
2934 * was awake, order will remain at the higher level
2936 *classzone_idx = end_zone;
2937 return order;
2940 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2942 long remaining = 0;
2943 DEFINE_WAIT(wait);
2945 if (freezing(current) || kthread_should_stop())
2946 return;
2948 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2950 /* Try to sleep for a short interval */
2951 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2952 remaining = schedule_timeout(HZ/10);
2953 finish_wait(&pgdat->kswapd_wait, &wait);
2954 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2958 * After a short sleep, check if it was a premature sleep. If not, then
2959 * go fully to sleep until explicitly woken up.
2961 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2962 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2965 * vmstat counters are not perfectly accurate and the estimated
2966 * value for counters such as NR_FREE_PAGES can deviate from the
2967 * true value by nr_online_cpus * threshold. To avoid the zone
2968 * watermarks being breached while under pressure, we reduce the
2969 * per-cpu vmstat threshold while kswapd is awake and restore
2970 * them before going back to sleep.
2972 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2973 schedule();
2974 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2975 } else {
2976 if (remaining)
2977 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2978 else
2979 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2981 finish_wait(&pgdat->kswapd_wait, &wait);
2985 * The background pageout daemon, started as a kernel thread
2986 * from the init process.
2988 * This basically trickles out pages so that we have _some_
2989 * free memory available even if there is no other activity
2990 * that frees anything up. This is needed for things like routing
2991 * etc, where we otherwise might have all activity going on in
2992 * asynchronous contexts that cannot page things out.
2994 * If there are applications that are active memory-allocators
2995 * (most normal use), this basically shouldn't matter.
2997 static int kswapd(void *p)
2999 unsigned long order, new_order;
3000 unsigned balanced_order;
3001 int classzone_idx, new_classzone_idx;
3002 int balanced_classzone_idx;
3003 pg_data_t *pgdat = (pg_data_t*)p;
3004 struct task_struct *tsk = current;
3006 struct reclaim_state reclaim_state = {
3007 .reclaimed_slab = 0,
3009 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3011 lockdep_set_current_reclaim_state(GFP_KERNEL);
3013 if (!cpumask_empty(cpumask))
3014 set_cpus_allowed_ptr(tsk, cpumask);
3015 current->reclaim_state = &reclaim_state;
3018 * Tell the memory management that we're a "memory allocator",
3019 * and that if we need more memory we should get access to it
3020 * regardless (see "__alloc_pages()"). "kswapd" should
3021 * never get caught in the normal page freeing logic.
3023 * (Kswapd normally doesn't need memory anyway, but sometimes
3024 * you need a small amount of memory in order to be able to
3025 * page out something else, and this flag essentially protects
3026 * us from recursively trying to free more memory as we're
3027 * trying to free the first piece of memory in the first place).
3029 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3030 set_freezable();
3032 order = new_order = 0;
3033 balanced_order = 0;
3034 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3035 balanced_classzone_idx = classzone_idx;
3036 for ( ; ; ) {
3037 int ret;
3040 * If the last balance_pgdat was unsuccessful it's unlikely a
3041 * new request of a similar or harder type will succeed soon
3042 * so consider going to sleep on the basis we reclaimed at
3044 if (balanced_classzone_idx >= new_classzone_idx &&
3045 balanced_order == new_order) {
3046 new_order = pgdat->kswapd_max_order;
3047 new_classzone_idx = pgdat->classzone_idx;
3048 pgdat->kswapd_max_order = 0;
3049 pgdat->classzone_idx = pgdat->nr_zones - 1;
3052 if (order < new_order || classzone_idx > new_classzone_idx) {
3054 * Don't sleep if someone wants a larger 'order'
3055 * allocation or has tigher zone constraints
3057 order = new_order;
3058 classzone_idx = new_classzone_idx;
3059 } else {
3060 kswapd_try_to_sleep(pgdat, balanced_order,
3061 balanced_classzone_idx);
3062 order = pgdat->kswapd_max_order;
3063 classzone_idx = pgdat->classzone_idx;
3064 new_order = order;
3065 new_classzone_idx = classzone_idx;
3066 pgdat->kswapd_max_order = 0;
3067 pgdat->classzone_idx = pgdat->nr_zones - 1;
3070 ret = try_to_freeze();
3071 if (kthread_should_stop())
3072 break;
3075 * We can speed up thawing tasks if we don't call balance_pgdat
3076 * after returning from the refrigerator
3078 if (!ret) {
3079 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3080 balanced_classzone_idx = classzone_idx;
3081 balanced_order = balance_pgdat(pgdat, order,
3082 &balanced_classzone_idx);
3085 return 0;
3089 * A zone is low on free memory, so wake its kswapd task to service it.
3091 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3093 pg_data_t *pgdat;
3095 if (!populated_zone(zone))
3096 return;
3098 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3099 return;
3100 pgdat = zone->zone_pgdat;
3101 if (pgdat->kswapd_max_order < order) {
3102 pgdat->kswapd_max_order = order;
3103 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3105 if (!waitqueue_active(&pgdat->kswapd_wait))
3106 return;
3107 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3108 return;
3110 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3111 wake_up_interruptible(&pgdat->kswapd_wait);
3115 * The reclaimable count would be mostly accurate.
3116 * The less reclaimable pages may be
3117 * - mlocked pages, which will be moved to unevictable list when encountered
3118 * - mapped pages, which may require several travels to be reclaimed
3119 * - dirty pages, which is not "instantly" reclaimable
3121 unsigned long global_reclaimable_pages(void)
3123 int nr;
3125 nr = global_page_state(NR_ACTIVE_FILE) +
3126 global_page_state(NR_INACTIVE_FILE);
3128 if (nr_swap_pages > 0)
3129 nr += global_page_state(NR_ACTIVE_ANON) +
3130 global_page_state(NR_INACTIVE_ANON);
3132 return nr;
3135 unsigned long zone_reclaimable_pages(struct zone *zone)
3137 int nr;
3139 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3140 zone_page_state(zone, NR_INACTIVE_FILE);
3142 if (nr_swap_pages > 0)
3143 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3144 zone_page_state(zone, NR_INACTIVE_ANON);
3146 return nr;
3149 #ifdef CONFIG_HIBERNATION
3151 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3152 * freed pages.
3154 * Rather than trying to age LRUs the aim is to preserve the overall
3155 * LRU order by reclaiming preferentially
3156 * inactive > active > active referenced > active mapped
3158 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3160 struct reclaim_state reclaim_state;
3161 struct scan_control sc = {
3162 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3163 .may_swap = 1,
3164 .may_unmap = 1,
3165 .may_writepage = 1,
3166 .nr_to_reclaim = nr_to_reclaim,
3167 .hibernation_mode = 1,
3168 .order = 0,
3170 struct shrink_control shrink = {
3171 .gfp_mask = sc.gfp_mask,
3173 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3174 struct task_struct *p = current;
3175 unsigned long nr_reclaimed;
3177 p->flags |= PF_MEMALLOC;
3178 lockdep_set_current_reclaim_state(sc.gfp_mask);
3179 reclaim_state.reclaimed_slab = 0;
3180 p->reclaim_state = &reclaim_state;
3182 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3184 p->reclaim_state = NULL;
3185 lockdep_clear_current_reclaim_state();
3186 p->flags &= ~PF_MEMALLOC;
3188 return nr_reclaimed;
3190 #endif /* CONFIG_HIBERNATION */
3192 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3193 not required for correctness. So if the last cpu in a node goes
3194 away, we get changed to run anywhere: as the first one comes back,
3195 restore their cpu bindings. */
3196 static int __devinit cpu_callback(struct notifier_block *nfb,
3197 unsigned long action, void *hcpu)
3199 int nid;
3201 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3202 for_each_node_state(nid, N_HIGH_MEMORY) {
3203 pg_data_t *pgdat = NODE_DATA(nid);
3204 const struct cpumask *mask;
3206 mask = cpumask_of_node(pgdat->node_id);
3208 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3209 /* One of our CPUs online: restore mask */
3210 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3213 return NOTIFY_OK;
3217 * This kswapd start function will be called by init and node-hot-add.
3218 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3220 int kswapd_run(int nid)
3222 pg_data_t *pgdat = NODE_DATA(nid);
3223 int ret = 0;
3225 if (pgdat->kswapd)
3226 return 0;
3228 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3229 if (IS_ERR(pgdat->kswapd)) {
3230 /* failure at boot is fatal */
3231 BUG_ON(system_state == SYSTEM_BOOTING);
3232 printk("Failed to start kswapd on node %d\n",nid);
3233 ret = -1;
3235 return ret;
3239 * Called by memory hotplug when all memory in a node is offlined.
3241 void kswapd_stop(int nid)
3243 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3245 if (kswapd)
3246 kthread_stop(kswapd);
3249 static int __init kswapd_init(void)
3251 int nid;
3253 swap_setup();
3254 for_each_node_state(nid, N_HIGH_MEMORY)
3255 kswapd_run(nid);
3256 hotcpu_notifier(cpu_callback, 0);
3257 return 0;
3260 module_init(kswapd_init)
3262 #ifdef CONFIG_NUMA
3264 * Zone reclaim mode
3266 * If non-zero call zone_reclaim when the number of free pages falls below
3267 * the watermarks.
3269 int zone_reclaim_mode __read_mostly;
3271 #define RECLAIM_OFF 0
3272 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3273 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3274 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3277 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3278 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3279 * a zone.
3281 #define ZONE_RECLAIM_PRIORITY 4
3284 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3285 * occur.
3287 int sysctl_min_unmapped_ratio = 1;
3290 * If the number of slab pages in a zone grows beyond this percentage then
3291 * slab reclaim needs to occur.
3293 int sysctl_min_slab_ratio = 5;
3295 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3297 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3298 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3299 zone_page_state(zone, NR_ACTIVE_FILE);
3302 * It's possible for there to be more file mapped pages than
3303 * accounted for by the pages on the file LRU lists because
3304 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3306 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3309 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3310 static long zone_pagecache_reclaimable(struct zone *zone)
3312 long nr_pagecache_reclaimable;
3313 long delta = 0;
3316 * If RECLAIM_SWAP is set, then all file pages are considered
3317 * potentially reclaimable. Otherwise, we have to worry about
3318 * pages like swapcache and zone_unmapped_file_pages() provides
3319 * a better estimate
3321 if (zone_reclaim_mode & RECLAIM_SWAP)
3322 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3323 else
3324 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3326 /* If we can't clean pages, remove dirty pages from consideration */
3327 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3328 delta += zone_page_state(zone, NR_FILE_DIRTY);
3330 /* Watch for any possible underflows due to delta */
3331 if (unlikely(delta > nr_pagecache_reclaimable))
3332 delta = nr_pagecache_reclaimable;
3334 return nr_pagecache_reclaimable - delta;
3338 * Try to free up some pages from this zone through reclaim.
3340 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3342 /* Minimum pages needed in order to stay on node */
3343 const unsigned long nr_pages = 1 << order;
3344 struct task_struct *p = current;
3345 struct reclaim_state reclaim_state;
3346 int priority;
3347 struct scan_control sc = {
3348 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3349 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3350 .may_swap = 1,
3351 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3352 SWAP_CLUSTER_MAX),
3353 .gfp_mask = gfp_mask,
3354 .order = order,
3356 struct shrink_control shrink = {
3357 .gfp_mask = sc.gfp_mask,
3359 unsigned long nr_slab_pages0, nr_slab_pages1;
3361 cond_resched();
3363 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3364 * and we also need to be able to write out pages for RECLAIM_WRITE
3365 * and RECLAIM_SWAP.
3367 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3368 lockdep_set_current_reclaim_state(gfp_mask);
3369 reclaim_state.reclaimed_slab = 0;
3370 p->reclaim_state = &reclaim_state;
3372 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3374 * Free memory by calling shrink zone with increasing
3375 * priorities until we have enough memory freed.
3377 priority = ZONE_RECLAIM_PRIORITY;
3378 do {
3379 shrink_zone(priority, zone, &sc);
3380 priority--;
3381 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3384 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3385 if (nr_slab_pages0 > zone->min_slab_pages) {
3387 * shrink_slab() does not currently allow us to determine how
3388 * many pages were freed in this zone. So we take the current
3389 * number of slab pages and shake the slab until it is reduced
3390 * by the same nr_pages that we used for reclaiming unmapped
3391 * pages.
3393 * Note that shrink_slab will free memory on all zones and may
3394 * take a long time.
3396 for (;;) {
3397 unsigned long lru_pages = zone_reclaimable_pages(zone);
3399 /* No reclaimable slab or very low memory pressure */
3400 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3401 break;
3403 /* Freed enough memory */
3404 nr_slab_pages1 = zone_page_state(zone,
3405 NR_SLAB_RECLAIMABLE);
3406 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3407 break;
3411 * Update nr_reclaimed by the number of slab pages we
3412 * reclaimed from this zone.
3414 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3415 if (nr_slab_pages1 < nr_slab_pages0)
3416 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3419 p->reclaim_state = NULL;
3420 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3421 lockdep_clear_current_reclaim_state();
3422 return sc.nr_reclaimed >= nr_pages;
3425 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3427 int node_id;
3428 int ret;
3431 * Zone reclaim reclaims unmapped file backed pages and
3432 * slab pages if we are over the defined limits.
3434 * A small portion of unmapped file backed pages is needed for
3435 * file I/O otherwise pages read by file I/O will be immediately
3436 * thrown out if the zone is overallocated. So we do not reclaim
3437 * if less than a specified percentage of the zone is used by
3438 * unmapped file backed pages.
3440 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3441 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3442 return ZONE_RECLAIM_FULL;
3444 if (zone->all_unreclaimable)
3445 return ZONE_RECLAIM_FULL;
3448 * Do not scan if the allocation should not be delayed.
3450 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3451 return ZONE_RECLAIM_NOSCAN;
3454 * Only run zone reclaim on the local zone or on zones that do not
3455 * have associated processors. This will favor the local processor
3456 * over remote processors and spread off node memory allocations
3457 * as wide as possible.
3459 node_id = zone_to_nid(zone);
3460 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3461 return ZONE_RECLAIM_NOSCAN;
3463 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3464 return ZONE_RECLAIM_NOSCAN;
3466 ret = __zone_reclaim(zone, gfp_mask, order);
3467 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3469 if (!ret)
3470 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3472 return ret;
3474 #endif
3477 * page_evictable - test whether a page is evictable
3478 * @page: the page to test
3479 * @vma: the VMA in which the page is or will be mapped, may be NULL
3481 * Test whether page is evictable--i.e., should be placed on active/inactive
3482 * lists vs unevictable list. The vma argument is !NULL when called from the
3483 * fault path to determine how to instantate a new page.
3485 * Reasons page might not be evictable:
3486 * (1) page's mapping marked unevictable
3487 * (2) page is part of an mlocked VMA
3490 int page_evictable(struct page *page, struct vm_area_struct *vma)
3493 if (mapping_unevictable(page_mapping(page)))
3494 return 0;
3496 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3497 return 0;
3499 return 1;
3503 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3504 * @page: page to check evictability and move to appropriate lru list
3505 * @zone: zone page is in
3507 * Checks a page for evictability and moves the page to the appropriate
3508 * zone lru list.
3510 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3511 * have PageUnevictable set.
3513 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3515 struct lruvec *lruvec;
3517 VM_BUG_ON(PageActive(page));
3518 retry:
3519 ClearPageUnevictable(page);
3520 if (page_evictable(page, NULL)) {
3521 enum lru_list l = page_lru_base_type(page);
3523 __dec_zone_state(zone, NR_UNEVICTABLE);
3524 lruvec = mem_cgroup_lru_move_lists(zone, page,
3525 LRU_UNEVICTABLE, l);
3526 list_move(&page->lru, &lruvec->lists[l]);
3527 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3528 __count_vm_event(UNEVICTABLE_PGRESCUED);
3529 } else {
3531 * rotate unevictable list
3533 SetPageUnevictable(page);
3534 lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3535 LRU_UNEVICTABLE);
3536 list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3537 if (page_evictable(page, NULL))
3538 goto retry;
3543 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3544 * @mapping: struct address_space to scan for evictable pages
3546 * Scan all pages in mapping. Check unevictable pages for
3547 * evictability and move them to the appropriate zone lru list.
3549 void scan_mapping_unevictable_pages(struct address_space *mapping)
3551 pgoff_t next = 0;
3552 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3553 PAGE_CACHE_SHIFT;
3554 struct zone *zone;
3555 struct pagevec pvec;
3557 if (mapping->nrpages == 0)
3558 return;
3560 pagevec_init(&pvec, 0);
3561 while (next < end &&
3562 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3563 int i;
3564 int pg_scanned = 0;
3566 zone = NULL;
3568 for (i = 0; i < pagevec_count(&pvec); i++) {
3569 struct page *page = pvec.pages[i];
3570 pgoff_t page_index = page->index;
3571 struct zone *pagezone = page_zone(page);
3573 pg_scanned++;
3574 if (page_index > next)
3575 next = page_index;
3576 next++;
3578 if (pagezone != zone) {
3579 if (zone)
3580 spin_unlock_irq(&zone->lru_lock);
3581 zone = pagezone;
3582 spin_lock_irq(&zone->lru_lock);
3585 if (PageLRU(page) && PageUnevictable(page))
3586 check_move_unevictable_page(page, zone);
3588 if (zone)
3589 spin_unlock_irq(&zone->lru_lock);
3590 pagevec_release(&pvec);
3592 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3597 static void warn_scan_unevictable_pages(void)
3599 printk_once(KERN_WARNING
3600 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3601 "disabled for lack of a legitimate use case. If you have "
3602 "one, please send an email to linux-mm@kvack.org.\n",
3603 current->comm);
3607 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3608 * all nodes' unevictable lists for evictable pages
3610 unsigned long scan_unevictable_pages;
3612 int scan_unevictable_handler(struct ctl_table *table, int write,
3613 void __user *buffer,
3614 size_t *length, loff_t *ppos)
3616 warn_scan_unevictable_pages();
3617 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3618 scan_unevictable_pages = 0;
3619 return 0;
3622 #ifdef CONFIG_NUMA
3624 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3625 * a specified node's per zone unevictable lists for evictable pages.
3628 static ssize_t read_scan_unevictable_node(struct device *dev,
3629 struct device_attribute *attr,
3630 char *buf)
3632 warn_scan_unevictable_pages();
3633 return sprintf(buf, "0\n"); /* always zero; should fit... */
3636 static ssize_t write_scan_unevictable_node(struct device *dev,
3637 struct device_attribute *attr,
3638 const char *buf, size_t count)
3640 warn_scan_unevictable_pages();
3641 return 1;
3645 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3646 read_scan_unevictable_node,
3647 write_scan_unevictable_node);
3649 int scan_unevictable_register_node(struct node *node)
3651 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3654 void scan_unevictable_unregister_node(struct node *node)
3656 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3658 #endif