powerpc/numa: Only use active VPHN count fields
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / numa.c
blobf25633d3d0086ebbb024e46ef93ab267a87db80a
1 /*
2 * pSeries NUMA support
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
26 #include <asm/prom.h>
27 #include <asm/system.h>
28 #include <asm/smp.h>
29 #include <asm/firmware.h>
30 #include <asm/paca.h>
31 #include <asm/hvcall.h>
33 static int numa_enabled = 1;
35 static char *cmdline __initdata;
37 static int numa_debug;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
40 int numa_cpu_lookup_table[NR_CPUS];
41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
42 struct pglist_data *node_data[MAX_NUMNODES];
44 EXPORT_SYMBOL(numa_cpu_lookup_table);
45 EXPORT_SYMBOL(node_to_cpumask_map);
46 EXPORT_SYMBOL(node_data);
48 static int min_common_depth;
49 static int n_mem_addr_cells, n_mem_size_cells;
50 static int form1_affinity;
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth;
54 static const unsigned int *distance_ref_points;
55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
61 * Note: node_to_cpumask() is not valid until after this is done.
63 static void __init setup_node_to_cpumask_map(void)
65 unsigned int node, num = 0;
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids == MAX_NUMNODES) {
69 for_each_node_mask(node, node_possible_map)
70 num = node;
71 nr_node_ids = num + 1;
74 /* allocate the map */
75 for (node = 0; node < nr_node_ids; node++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 unsigned int *nid)
85 unsigned long long mem;
86 char *p = cmdline;
87 static unsigned int fake_nid;
88 static unsigned long long curr_boundary;
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
94 if (fake_nid)
95 *nid = fake_nid;
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
101 if (!p)
102 return 0;
104 mem = memparse(p, &p);
105 if (!mem)
106 return 0;
108 if (mem < curr_boundary)
109 return 0;
111 curr_boundary = mem;
113 if ((end_pfn << PAGE_SHIFT) > mem) {
115 * Skip commas and spaces
117 while (*p == ',' || *p == ' ' || *p == '\t')
118 p++;
120 cmdline = p;
121 fake_nid++;
122 *nid = fake_nid;
123 dbg("created new fake_node with id %d\n", fake_nid);
124 return 1;
126 return 0;
130 * get_active_region_work_fn - A helper function for get_node_active_region
131 * Returns datax set to the start_pfn and end_pfn if they contain
132 * the initial value of datax->start_pfn between them
133 * @start_pfn: start page(inclusive) of region to check
134 * @end_pfn: end page(exclusive) of region to check
135 * @datax: comes in with ->start_pfn set to value to search for and
136 * goes out with active range if it contains it
137 * Returns 1 if search value is in range else 0
139 static int __init get_active_region_work_fn(unsigned long start_pfn,
140 unsigned long end_pfn, void *datax)
142 struct node_active_region *data;
143 data = (struct node_active_region *)datax;
145 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
146 data->start_pfn = start_pfn;
147 data->end_pfn = end_pfn;
148 return 1;
150 return 0;
155 * get_node_active_region - Return active region containing start_pfn
156 * Active range returned is empty if none found.
157 * @start_pfn: The page to return the region for.
158 * @node_ar: Returned set to the active region containing start_pfn
160 static void __init get_node_active_region(unsigned long start_pfn,
161 struct node_active_region *node_ar)
163 int nid = early_pfn_to_nid(start_pfn);
165 node_ar->nid = nid;
166 node_ar->start_pfn = start_pfn;
167 node_ar->end_pfn = start_pfn;
168 work_with_active_regions(nid, get_active_region_work_fn, node_ar);
171 static void map_cpu_to_node(int cpu, int node)
173 numa_cpu_lookup_table[cpu] = node;
175 dbg("adding cpu %d to node %d\n", cpu, node);
177 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
178 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
181 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
182 static void unmap_cpu_from_node(unsigned long cpu)
184 int node = numa_cpu_lookup_table[cpu];
186 dbg("removing cpu %lu from node %d\n", cpu, node);
188 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
189 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
190 } else {
191 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
192 cpu, node);
195 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
197 /* must hold reference to node during call */
198 static const int *of_get_associativity(struct device_node *dev)
200 return of_get_property(dev, "ibm,associativity", NULL);
204 * Returns the property linux,drconf-usable-memory if
205 * it exists (the property exists only in kexec/kdump kernels,
206 * added by kexec-tools)
208 static const u32 *of_get_usable_memory(struct device_node *memory)
210 const u32 *prop;
211 u32 len;
212 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
213 if (!prop || len < sizeof(unsigned int))
214 return 0;
215 return prop;
218 int __node_distance(int a, int b)
220 int i;
221 int distance = LOCAL_DISTANCE;
223 if (!form1_affinity)
224 return distance;
226 for (i = 0; i < distance_ref_points_depth; i++) {
227 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
228 break;
230 /* Double the distance for each NUMA level */
231 distance *= 2;
234 return distance;
237 static void initialize_distance_lookup_table(int nid,
238 const unsigned int *associativity)
240 int i;
242 if (!form1_affinity)
243 return;
245 for (i = 0; i < distance_ref_points_depth; i++) {
246 distance_lookup_table[nid][i] =
247 associativity[distance_ref_points[i]];
251 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
252 * info is found.
254 static int associativity_to_nid(const unsigned int *associativity)
256 int nid = -1;
258 if (min_common_depth == -1)
259 goto out;
261 if (associativity[0] >= min_common_depth)
262 nid = associativity[min_common_depth];
264 /* POWER4 LPAR uses 0xffff as invalid node */
265 if (nid == 0xffff || nid >= MAX_NUMNODES)
266 nid = -1;
268 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
269 initialize_distance_lookup_table(nid, associativity);
271 out:
272 return nid;
275 /* Returns the nid associated with the given device tree node,
276 * or -1 if not found.
278 static int of_node_to_nid_single(struct device_node *device)
280 int nid = -1;
281 const unsigned int *tmp;
283 tmp = of_get_associativity(device);
284 if (tmp)
285 nid = associativity_to_nid(tmp);
286 return nid;
289 /* Walk the device tree upwards, looking for an associativity id */
290 int of_node_to_nid(struct device_node *device)
292 struct device_node *tmp;
293 int nid = -1;
295 of_node_get(device);
296 while (device) {
297 nid = of_node_to_nid_single(device);
298 if (nid != -1)
299 break;
301 tmp = device;
302 device = of_get_parent(tmp);
303 of_node_put(tmp);
305 of_node_put(device);
307 return nid;
309 EXPORT_SYMBOL_GPL(of_node_to_nid);
311 static int __init find_min_common_depth(void)
313 int depth;
314 struct device_node *rtas_root;
315 struct device_node *chosen;
316 const char *vec5;
318 rtas_root = of_find_node_by_path("/rtas");
320 if (!rtas_root)
321 return -1;
324 * This property is a set of 32-bit integers, each representing
325 * an index into the ibm,associativity nodes.
327 * With form 0 affinity the first integer is for an SMP configuration
328 * (should be all 0's) and the second is for a normal NUMA
329 * configuration. We have only one level of NUMA.
331 * With form 1 affinity the first integer is the most significant
332 * NUMA boundary and the following are progressively less significant
333 * boundaries. There can be more than one level of NUMA.
335 distance_ref_points = of_get_property(rtas_root,
336 "ibm,associativity-reference-points",
337 &distance_ref_points_depth);
339 if (!distance_ref_points) {
340 dbg("NUMA: ibm,associativity-reference-points not found.\n");
341 goto err;
344 distance_ref_points_depth /= sizeof(int);
346 #define VEC5_AFFINITY_BYTE 5
347 #define VEC5_AFFINITY 0x80
348 chosen = of_find_node_by_path("/chosen");
349 if (chosen) {
350 vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
351 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
352 dbg("Using form 1 affinity\n");
353 form1_affinity = 1;
357 if (form1_affinity) {
358 depth = distance_ref_points[0];
359 } else {
360 if (distance_ref_points_depth < 2) {
361 printk(KERN_WARNING "NUMA: "
362 "short ibm,associativity-reference-points\n");
363 goto err;
366 depth = distance_ref_points[1];
370 * Warn and cap if the hardware supports more than
371 * MAX_DISTANCE_REF_POINTS domains.
373 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
374 printk(KERN_WARNING "NUMA: distance array capped at "
375 "%d entries\n", MAX_DISTANCE_REF_POINTS);
376 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
379 of_node_put(rtas_root);
380 return depth;
382 err:
383 of_node_put(rtas_root);
384 return -1;
387 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
389 struct device_node *memory = NULL;
391 memory = of_find_node_by_type(memory, "memory");
392 if (!memory)
393 panic("numa.c: No memory nodes found!");
395 *n_addr_cells = of_n_addr_cells(memory);
396 *n_size_cells = of_n_size_cells(memory);
397 of_node_put(memory);
400 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
402 unsigned long result = 0;
404 while (n--) {
405 result = (result << 32) | **buf;
406 (*buf)++;
408 return result;
411 struct of_drconf_cell {
412 u64 base_addr;
413 u32 drc_index;
414 u32 reserved;
415 u32 aa_index;
416 u32 flags;
419 #define DRCONF_MEM_ASSIGNED 0x00000008
420 #define DRCONF_MEM_AI_INVALID 0x00000040
421 #define DRCONF_MEM_RESERVED 0x00000080
424 * Read the next memblock list entry from the ibm,dynamic-memory property
425 * and return the information in the provided of_drconf_cell structure.
427 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
429 const u32 *cp;
431 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
433 cp = *cellp;
434 drmem->drc_index = cp[0];
435 drmem->reserved = cp[1];
436 drmem->aa_index = cp[2];
437 drmem->flags = cp[3];
439 *cellp = cp + 4;
443 * Retreive and validate the ibm,dynamic-memory property of the device tree.
445 * The layout of the ibm,dynamic-memory property is a number N of memblock
446 * list entries followed by N memblock list entries. Each memblock list entry
447 * contains information as layed out in the of_drconf_cell struct above.
449 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
451 const u32 *prop;
452 u32 len, entries;
454 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
455 if (!prop || len < sizeof(unsigned int))
456 return 0;
458 entries = *prop++;
460 /* Now that we know the number of entries, revalidate the size
461 * of the property read in to ensure we have everything
463 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
464 return 0;
466 *dm = prop;
467 return entries;
471 * Retreive and validate the ibm,lmb-size property for drconf memory
472 * from the device tree.
474 static u64 of_get_lmb_size(struct device_node *memory)
476 const u32 *prop;
477 u32 len;
479 prop = of_get_property(memory, "ibm,lmb-size", &len);
480 if (!prop || len < sizeof(unsigned int))
481 return 0;
483 return read_n_cells(n_mem_size_cells, &prop);
486 struct assoc_arrays {
487 u32 n_arrays;
488 u32 array_sz;
489 const u32 *arrays;
493 * Retreive and validate the list of associativity arrays for drconf
494 * memory from the ibm,associativity-lookup-arrays property of the
495 * device tree..
497 * The layout of the ibm,associativity-lookup-arrays property is a number N
498 * indicating the number of associativity arrays, followed by a number M
499 * indicating the size of each associativity array, followed by a list
500 * of N associativity arrays.
502 static int of_get_assoc_arrays(struct device_node *memory,
503 struct assoc_arrays *aa)
505 const u32 *prop;
506 u32 len;
508 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
509 if (!prop || len < 2 * sizeof(unsigned int))
510 return -1;
512 aa->n_arrays = *prop++;
513 aa->array_sz = *prop++;
515 /* Now that we know the number of arrrays and size of each array,
516 * revalidate the size of the property read in.
518 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
519 return -1;
521 aa->arrays = prop;
522 return 0;
526 * This is like of_node_to_nid_single() for memory represented in the
527 * ibm,dynamic-reconfiguration-memory node.
529 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
530 struct assoc_arrays *aa)
532 int default_nid = 0;
533 int nid = default_nid;
534 int index;
536 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
537 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
538 drmem->aa_index < aa->n_arrays) {
539 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
540 nid = aa->arrays[index];
542 if (nid == 0xffff || nid >= MAX_NUMNODES)
543 nid = default_nid;
546 return nid;
550 * Figure out to which domain a cpu belongs and stick it there.
551 * Return the id of the domain used.
553 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
555 int nid = 0;
556 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
558 if (!cpu) {
559 WARN_ON(1);
560 goto out;
563 nid = of_node_to_nid_single(cpu);
565 if (nid < 0 || !node_online(nid))
566 nid = first_online_node;
567 out:
568 map_cpu_to_node(lcpu, nid);
570 of_node_put(cpu);
572 return nid;
575 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
576 unsigned long action,
577 void *hcpu)
579 unsigned long lcpu = (unsigned long)hcpu;
580 int ret = NOTIFY_DONE;
582 switch (action) {
583 case CPU_UP_PREPARE:
584 case CPU_UP_PREPARE_FROZEN:
585 numa_setup_cpu(lcpu);
586 ret = NOTIFY_OK;
587 break;
588 #ifdef CONFIG_HOTPLUG_CPU
589 case CPU_DEAD:
590 case CPU_DEAD_FROZEN:
591 case CPU_UP_CANCELED:
592 case CPU_UP_CANCELED_FROZEN:
593 unmap_cpu_from_node(lcpu);
594 break;
595 ret = NOTIFY_OK;
596 #endif
598 return ret;
602 * Check and possibly modify a memory region to enforce the memory limit.
604 * Returns the size the region should have to enforce the memory limit.
605 * This will either be the original value of size, a truncated value,
606 * or zero. If the returned value of size is 0 the region should be
607 * discarded as it lies wholy above the memory limit.
609 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
610 unsigned long size)
613 * We use memblock_end_of_DRAM() in here instead of memory_limit because
614 * we've already adjusted it for the limit and it takes care of
615 * having memory holes below the limit. Also, in the case of
616 * iommu_is_off, memory_limit is not set but is implicitly enforced.
619 if (start + size <= memblock_end_of_DRAM())
620 return size;
622 if (start >= memblock_end_of_DRAM())
623 return 0;
625 return memblock_end_of_DRAM() - start;
629 * Reads the counter for a given entry in
630 * linux,drconf-usable-memory property
632 static inline int __init read_usm_ranges(const u32 **usm)
635 * For each lmb in ibm,dynamic-memory a corresponding
636 * entry in linux,drconf-usable-memory property contains
637 * a counter followed by that many (base, size) duple.
638 * read the counter from linux,drconf-usable-memory
640 return read_n_cells(n_mem_size_cells, usm);
644 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
645 * node. This assumes n_mem_{addr,size}_cells have been set.
647 static void __init parse_drconf_memory(struct device_node *memory)
649 const u32 *dm, *usm;
650 unsigned int n, rc, ranges, is_kexec_kdump = 0;
651 unsigned long lmb_size, base, size, sz;
652 int nid;
653 struct assoc_arrays aa;
655 n = of_get_drconf_memory(memory, &dm);
656 if (!n)
657 return;
659 lmb_size = of_get_lmb_size(memory);
660 if (!lmb_size)
661 return;
663 rc = of_get_assoc_arrays(memory, &aa);
664 if (rc)
665 return;
667 /* check if this is a kexec/kdump kernel */
668 usm = of_get_usable_memory(memory);
669 if (usm != NULL)
670 is_kexec_kdump = 1;
672 for (; n != 0; --n) {
673 struct of_drconf_cell drmem;
675 read_drconf_cell(&drmem, &dm);
677 /* skip this block if the reserved bit is set in flags (0x80)
678 or if the block is not assigned to this partition (0x8) */
679 if ((drmem.flags & DRCONF_MEM_RESERVED)
680 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
681 continue;
683 base = drmem.base_addr;
684 size = lmb_size;
685 ranges = 1;
687 if (is_kexec_kdump) {
688 ranges = read_usm_ranges(&usm);
689 if (!ranges) /* there are no (base, size) duple */
690 continue;
692 do {
693 if (is_kexec_kdump) {
694 base = read_n_cells(n_mem_addr_cells, &usm);
695 size = read_n_cells(n_mem_size_cells, &usm);
697 nid = of_drconf_to_nid_single(&drmem, &aa);
698 fake_numa_create_new_node(
699 ((base + size) >> PAGE_SHIFT),
700 &nid);
701 node_set_online(nid);
702 sz = numa_enforce_memory_limit(base, size);
703 if (sz)
704 add_active_range(nid, base >> PAGE_SHIFT,
705 (base >> PAGE_SHIFT)
706 + (sz >> PAGE_SHIFT));
707 } while (--ranges);
711 static int __init parse_numa_properties(void)
713 struct device_node *cpu = NULL;
714 struct device_node *memory = NULL;
715 int default_nid = 0;
716 unsigned long i;
718 if (numa_enabled == 0) {
719 printk(KERN_WARNING "NUMA disabled by user\n");
720 return -1;
723 min_common_depth = find_min_common_depth();
725 if (min_common_depth < 0)
726 return min_common_depth;
728 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
731 * Even though we connect cpus to numa domains later in SMP
732 * init, we need to know the node ids now. This is because
733 * each node to be onlined must have NODE_DATA etc backing it.
735 for_each_present_cpu(i) {
736 int nid;
738 cpu = of_get_cpu_node(i, NULL);
739 BUG_ON(!cpu);
740 nid = of_node_to_nid_single(cpu);
741 of_node_put(cpu);
744 * Don't fall back to default_nid yet -- we will plug
745 * cpus into nodes once the memory scan has discovered
746 * the topology.
748 if (nid < 0)
749 continue;
750 node_set_online(nid);
753 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
754 memory = NULL;
755 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
756 unsigned long start;
757 unsigned long size;
758 int nid;
759 int ranges;
760 const unsigned int *memcell_buf;
761 unsigned int len;
763 memcell_buf = of_get_property(memory,
764 "linux,usable-memory", &len);
765 if (!memcell_buf || len <= 0)
766 memcell_buf = of_get_property(memory, "reg", &len);
767 if (!memcell_buf || len <= 0)
768 continue;
770 /* ranges in cell */
771 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
772 new_range:
773 /* these are order-sensitive, and modify the buffer pointer */
774 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
775 size = read_n_cells(n_mem_size_cells, &memcell_buf);
778 * Assumption: either all memory nodes or none will
779 * have associativity properties. If none, then
780 * everything goes to default_nid.
782 nid = of_node_to_nid_single(memory);
783 if (nid < 0)
784 nid = default_nid;
786 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
787 node_set_online(nid);
789 if (!(size = numa_enforce_memory_limit(start, size))) {
790 if (--ranges)
791 goto new_range;
792 else
793 continue;
796 add_active_range(nid, start >> PAGE_SHIFT,
797 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
799 if (--ranges)
800 goto new_range;
804 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
805 * property in the ibm,dynamic-reconfiguration-memory node.
807 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
808 if (memory)
809 parse_drconf_memory(memory);
811 return 0;
814 static void __init setup_nonnuma(void)
816 unsigned long top_of_ram = memblock_end_of_DRAM();
817 unsigned long total_ram = memblock_phys_mem_size();
818 unsigned long start_pfn, end_pfn;
819 unsigned int nid = 0;
820 struct memblock_region *reg;
822 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
823 top_of_ram, total_ram);
824 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
825 (top_of_ram - total_ram) >> 20);
827 for_each_memblock(memory, reg) {
828 start_pfn = memblock_region_memory_base_pfn(reg);
829 end_pfn = memblock_region_memory_end_pfn(reg);
831 fake_numa_create_new_node(end_pfn, &nid);
832 add_active_range(nid, start_pfn, end_pfn);
833 node_set_online(nid);
837 void __init dump_numa_cpu_topology(void)
839 unsigned int node;
840 unsigned int cpu, count;
842 if (min_common_depth == -1 || !numa_enabled)
843 return;
845 for_each_online_node(node) {
846 printk(KERN_DEBUG "Node %d CPUs:", node);
848 count = 0;
850 * If we used a CPU iterator here we would miss printing
851 * the holes in the cpumap.
853 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
854 if (cpumask_test_cpu(cpu,
855 node_to_cpumask_map[node])) {
856 if (count == 0)
857 printk(" %u", cpu);
858 ++count;
859 } else {
860 if (count > 1)
861 printk("-%u", cpu - 1);
862 count = 0;
866 if (count > 1)
867 printk("-%u", nr_cpu_ids - 1);
868 printk("\n");
872 static void __init dump_numa_memory_topology(void)
874 unsigned int node;
875 unsigned int count;
877 if (min_common_depth == -1 || !numa_enabled)
878 return;
880 for_each_online_node(node) {
881 unsigned long i;
883 printk(KERN_DEBUG "Node %d Memory:", node);
885 count = 0;
887 for (i = 0; i < memblock_end_of_DRAM();
888 i += (1 << SECTION_SIZE_BITS)) {
889 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
890 if (count == 0)
891 printk(" 0x%lx", i);
892 ++count;
893 } else {
894 if (count > 0)
895 printk("-0x%lx", i);
896 count = 0;
900 if (count > 0)
901 printk("-0x%lx", i);
902 printk("\n");
907 * Allocate some memory, satisfying the memblock or bootmem allocator where
908 * required. nid is the preferred node and end is the physical address of
909 * the highest address in the node.
911 * Returns the virtual address of the memory.
913 static void __init *careful_zallocation(int nid, unsigned long size,
914 unsigned long align,
915 unsigned long end_pfn)
917 void *ret;
918 int new_nid;
919 unsigned long ret_paddr;
921 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
923 /* retry over all memory */
924 if (!ret_paddr)
925 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
927 if (!ret_paddr)
928 panic("numa.c: cannot allocate %lu bytes for node %d",
929 size, nid);
931 ret = __va(ret_paddr);
934 * We initialize the nodes in numeric order: 0, 1, 2...
935 * and hand over control from the MEMBLOCK allocator to the
936 * bootmem allocator. If this function is called for
937 * node 5, then we know that all nodes <5 are using the
938 * bootmem allocator instead of the MEMBLOCK allocator.
940 * So, check the nid from which this allocation came
941 * and double check to see if we need to use bootmem
942 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
943 * since it would be useless.
945 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
946 if (new_nid < nid) {
947 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
948 size, align, 0);
950 dbg("alloc_bootmem %p %lx\n", ret, size);
953 memset(ret, 0, size);
954 return ret;
957 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
958 .notifier_call = cpu_numa_callback,
959 .priority = 1 /* Must run before sched domains notifier. */
962 static void mark_reserved_regions_for_nid(int nid)
964 struct pglist_data *node = NODE_DATA(nid);
965 struct memblock_region *reg;
967 for_each_memblock(reserved, reg) {
968 unsigned long physbase = reg->base;
969 unsigned long size = reg->size;
970 unsigned long start_pfn = physbase >> PAGE_SHIFT;
971 unsigned long end_pfn = PFN_UP(physbase + size);
972 struct node_active_region node_ar;
973 unsigned long node_end_pfn = node->node_start_pfn +
974 node->node_spanned_pages;
977 * Check to make sure that this memblock.reserved area is
978 * within the bounds of the node that we care about.
979 * Checking the nid of the start and end points is not
980 * sufficient because the reserved area could span the
981 * entire node.
983 if (end_pfn <= node->node_start_pfn ||
984 start_pfn >= node_end_pfn)
985 continue;
987 get_node_active_region(start_pfn, &node_ar);
988 while (start_pfn < end_pfn &&
989 node_ar.start_pfn < node_ar.end_pfn) {
990 unsigned long reserve_size = size;
992 * if reserved region extends past active region
993 * then trim size to active region
995 if (end_pfn > node_ar.end_pfn)
996 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
997 - physbase;
999 * Only worry about *this* node, others may not
1000 * yet have valid NODE_DATA().
1002 if (node_ar.nid == nid) {
1003 dbg("reserve_bootmem %lx %lx nid=%d\n",
1004 physbase, reserve_size, node_ar.nid);
1005 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1006 physbase, reserve_size,
1007 BOOTMEM_DEFAULT);
1010 * if reserved region is contained in the active region
1011 * then done.
1013 if (end_pfn <= node_ar.end_pfn)
1014 break;
1017 * reserved region extends past the active region
1018 * get next active region that contains this
1019 * reserved region
1021 start_pfn = node_ar.end_pfn;
1022 physbase = start_pfn << PAGE_SHIFT;
1023 size = size - reserve_size;
1024 get_node_active_region(start_pfn, &node_ar);
1030 void __init do_init_bootmem(void)
1032 int nid;
1034 min_low_pfn = 0;
1035 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1036 max_pfn = max_low_pfn;
1038 if (parse_numa_properties())
1039 setup_nonnuma();
1040 else
1041 dump_numa_memory_topology();
1043 for_each_online_node(nid) {
1044 unsigned long start_pfn, end_pfn;
1045 void *bootmem_vaddr;
1046 unsigned long bootmap_pages;
1048 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1051 * Allocate the node structure node local if possible
1053 * Be careful moving this around, as it relies on all
1054 * previous nodes' bootmem to be initialized and have
1055 * all reserved areas marked.
1057 NODE_DATA(nid) = careful_zallocation(nid,
1058 sizeof(struct pglist_data),
1059 SMP_CACHE_BYTES, end_pfn);
1061 dbg("node %d\n", nid);
1062 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1064 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1065 NODE_DATA(nid)->node_start_pfn = start_pfn;
1066 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1068 if (NODE_DATA(nid)->node_spanned_pages == 0)
1069 continue;
1071 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1072 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1074 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1075 bootmem_vaddr = careful_zallocation(nid,
1076 bootmap_pages << PAGE_SHIFT,
1077 PAGE_SIZE, end_pfn);
1079 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1081 init_bootmem_node(NODE_DATA(nid),
1082 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1083 start_pfn, end_pfn);
1085 free_bootmem_with_active_regions(nid, end_pfn);
1087 * Be very careful about moving this around. Future
1088 * calls to careful_zallocation() depend on this getting
1089 * done correctly.
1091 mark_reserved_regions_for_nid(nid);
1092 sparse_memory_present_with_active_regions(nid);
1095 init_bootmem_done = 1;
1098 * Now bootmem is initialised we can create the node to cpumask
1099 * lookup tables and setup the cpu callback to populate them.
1101 setup_node_to_cpumask_map();
1103 register_cpu_notifier(&ppc64_numa_nb);
1104 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1105 (void *)(unsigned long)boot_cpuid);
1108 void __init paging_init(void)
1110 unsigned long max_zone_pfns[MAX_NR_ZONES];
1111 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1112 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1113 free_area_init_nodes(max_zone_pfns);
1116 static int __init early_numa(char *p)
1118 if (!p)
1119 return 0;
1121 if (strstr(p, "off"))
1122 numa_enabled = 0;
1124 if (strstr(p, "debug"))
1125 numa_debug = 1;
1127 p = strstr(p, "fake=");
1128 if (p)
1129 cmdline = p + strlen("fake=");
1131 return 0;
1133 early_param("numa", early_numa);
1135 #ifdef CONFIG_MEMORY_HOTPLUG
1137 * Find the node associated with a hot added memory section for
1138 * memory represented in the device tree by the property
1139 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1141 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1142 unsigned long scn_addr)
1144 const u32 *dm;
1145 unsigned int drconf_cell_cnt, rc;
1146 unsigned long lmb_size;
1147 struct assoc_arrays aa;
1148 int nid = -1;
1150 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1151 if (!drconf_cell_cnt)
1152 return -1;
1154 lmb_size = of_get_lmb_size(memory);
1155 if (!lmb_size)
1156 return -1;
1158 rc = of_get_assoc_arrays(memory, &aa);
1159 if (rc)
1160 return -1;
1162 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1163 struct of_drconf_cell drmem;
1165 read_drconf_cell(&drmem, &dm);
1167 /* skip this block if it is reserved or not assigned to
1168 * this partition */
1169 if ((drmem.flags & DRCONF_MEM_RESERVED)
1170 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1171 continue;
1173 if ((scn_addr < drmem.base_addr)
1174 || (scn_addr >= (drmem.base_addr + lmb_size)))
1175 continue;
1177 nid = of_drconf_to_nid_single(&drmem, &aa);
1178 break;
1181 return nid;
1185 * Find the node associated with a hot added memory section for memory
1186 * represented in the device tree as a node (i.e. memory@XXXX) for
1187 * each memblock.
1189 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1191 struct device_node *memory = NULL;
1192 int nid = -1;
1194 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1195 unsigned long start, size;
1196 int ranges;
1197 const unsigned int *memcell_buf;
1198 unsigned int len;
1200 memcell_buf = of_get_property(memory, "reg", &len);
1201 if (!memcell_buf || len <= 0)
1202 continue;
1204 /* ranges in cell */
1205 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1207 while (ranges--) {
1208 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1209 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1211 if ((scn_addr < start) || (scn_addr >= (start + size)))
1212 continue;
1214 nid = of_node_to_nid_single(memory);
1215 break;
1218 of_node_put(memory);
1219 if (nid >= 0)
1220 break;
1223 return nid;
1227 * Find the node associated with a hot added memory section. Section
1228 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1229 * sections are fully contained within a single MEMBLOCK.
1231 int hot_add_scn_to_nid(unsigned long scn_addr)
1233 struct device_node *memory = NULL;
1234 int nid, found = 0;
1236 if (!numa_enabled || (min_common_depth < 0))
1237 return first_online_node;
1239 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1240 if (memory) {
1241 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1242 of_node_put(memory);
1243 } else {
1244 nid = hot_add_node_scn_to_nid(scn_addr);
1247 if (nid < 0 || !node_online(nid))
1248 nid = first_online_node;
1250 if (NODE_DATA(nid)->node_spanned_pages)
1251 return nid;
1253 for_each_online_node(nid) {
1254 if (NODE_DATA(nid)->node_spanned_pages) {
1255 found = 1;
1256 break;
1260 BUG_ON(!found);
1261 return nid;
1264 static u64 hot_add_drconf_memory_max(void)
1266 struct device_node *memory = NULL;
1267 unsigned int drconf_cell_cnt = 0;
1268 u64 lmb_size = 0;
1269 const u32 *dm = 0;
1271 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1272 if (memory) {
1273 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1274 lmb_size = of_get_lmb_size(memory);
1275 of_node_put(memory);
1277 return lmb_size * drconf_cell_cnt;
1281 * memory_hotplug_max - return max address of memory that may be added
1283 * This is currently only used on systems that support drconfig memory
1284 * hotplug.
1286 u64 memory_hotplug_max(void)
1288 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1290 #endif /* CONFIG_MEMORY_HOTPLUG */
1292 /* Virtual Processor Home Node (VPHN) support */
1293 #ifdef CONFIG_PPC_SPLPAR
1294 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1295 static cpumask_t cpu_associativity_changes_mask;
1296 static int vphn_enabled;
1297 static void set_topology_timer(void);
1300 * Store the current values of the associativity change counters in the
1301 * hypervisor.
1303 static void setup_cpu_associativity_change_counters(void)
1305 int cpu;
1307 /* The VPHN feature supports a maximum of 8 reference points */
1308 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1310 for_each_possible_cpu(cpu) {
1311 int i;
1312 u8 *counts = vphn_cpu_change_counts[cpu];
1313 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1315 for (i = 0; i < distance_ref_points_depth; i++)
1316 counts[i] = hypervisor_counts[i];
1321 * The hypervisor maintains a set of 8 associativity change counters in
1322 * the VPA of each cpu that correspond to the associativity levels in the
1323 * ibm,associativity-reference-points property. When an associativity
1324 * level changes, the corresponding counter is incremented.
1326 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1327 * node associativity levels have changed.
1329 * Returns the number of cpus with unhandled associativity changes.
1331 static int update_cpu_associativity_changes_mask(void)
1333 int cpu, nr_cpus = 0;
1334 cpumask_t *changes = &cpu_associativity_changes_mask;
1336 cpumask_clear(changes);
1338 for_each_possible_cpu(cpu) {
1339 int i, changed = 0;
1340 u8 *counts = vphn_cpu_change_counts[cpu];
1341 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1343 for (i = 0; i < distance_ref_points_depth; i++) {
1344 if (hypervisor_counts[i] > counts[i]) {
1345 counts[i] = hypervisor_counts[i];
1346 changed = 1;
1349 if (changed) {
1350 cpumask_set_cpu(cpu, changes);
1351 nr_cpus++;
1355 return nr_cpus;
1358 /* 6 64-bit registers unpacked into 12 32-bit associativity values */
1359 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32))
1362 * Convert the associativity domain numbers returned from the hypervisor
1363 * to the sequence they would appear in the ibm,associativity property.
1365 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1367 int i, nr_assoc_doms = 0;
1368 const u16 *field = (const u16*) packed;
1370 #define VPHN_FIELD_UNUSED (0xffff)
1371 #define VPHN_FIELD_MSB (0x8000)
1372 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1374 for (i = 0; i < VPHN_ASSOC_BUFSIZE; i++) {
1375 if (*field == VPHN_FIELD_UNUSED) {
1376 /* All significant fields processed, and remaining
1377 * fields contain the reserved value of all 1's.
1378 * Just store them.
1380 unpacked[i] = *((u32*)field);
1381 field += 2;
1382 } else if (*field & VPHN_FIELD_MSB) {
1383 /* Data is in the lower 15 bits of this field */
1384 unpacked[i] = *field & VPHN_FIELD_MASK;
1385 field++;
1386 nr_assoc_doms++;
1387 } else {
1388 /* Data is in the lower 15 bits of this field
1389 * concatenated with the next 16 bit field
1391 unpacked[i] = *((u32*)field);
1392 field += 2;
1393 nr_assoc_doms++;
1397 return nr_assoc_doms;
1401 * Retrieve the new associativity information for a virtual processor's
1402 * home node.
1404 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1406 long rc;
1407 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1408 u64 flags = 1;
1409 int hwcpu = get_hard_smp_processor_id(cpu);
1411 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1412 vphn_unpack_associativity(retbuf, associativity);
1414 return rc;
1417 static long vphn_get_associativity(unsigned long cpu,
1418 unsigned int *associativity)
1420 long rc;
1422 rc = hcall_vphn(cpu, associativity);
1424 switch (rc) {
1425 case H_FUNCTION:
1426 printk(KERN_INFO
1427 "VPHN is not supported. Disabling polling...\n");
1428 stop_topology_update();
1429 break;
1430 case H_HARDWARE:
1431 printk(KERN_ERR
1432 "hcall_vphn() experienced a hardware fault "
1433 "preventing VPHN. Disabling polling...\n");
1434 stop_topology_update();
1437 return rc;
1441 * Update the node maps and sysfs entries for each cpu whose home node
1442 * has changed.
1444 int arch_update_cpu_topology(void)
1446 int cpu, nid, old_nid;
1447 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1448 struct sys_device *sysdev;
1450 for_each_cpu_mask(cpu, cpu_associativity_changes_mask) {
1451 vphn_get_associativity(cpu, associativity);
1452 nid = associativity_to_nid(associativity);
1454 if (nid < 0 || !node_online(nid))
1455 nid = first_online_node;
1457 old_nid = numa_cpu_lookup_table[cpu];
1459 /* Disable hotplug while we update the cpu
1460 * masks and sysfs.
1462 get_online_cpus();
1463 unregister_cpu_under_node(cpu, old_nid);
1464 unmap_cpu_from_node(cpu);
1465 map_cpu_to_node(cpu, nid);
1466 register_cpu_under_node(cpu, nid);
1467 put_online_cpus();
1469 sysdev = get_cpu_sysdev(cpu);
1470 if (sysdev)
1471 kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
1474 return 1;
1477 static void topology_work_fn(struct work_struct *work)
1479 rebuild_sched_domains();
1481 static DECLARE_WORK(topology_work, topology_work_fn);
1483 void topology_schedule_update(void)
1485 schedule_work(&topology_work);
1488 static void topology_timer_fn(unsigned long ignored)
1490 if (!vphn_enabled)
1491 return;
1492 if (update_cpu_associativity_changes_mask() > 0)
1493 topology_schedule_update();
1494 set_topology_timer();
1496 static struct timer_list topology_timer =
1497 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1499 static void set_topology_timer(void)
1501 topology_timer.data = 0;
1502 topology_timer.expires = jiffies + 60 * HZ;
1503 add_timer(&topology_timer);
1507 * Start polling for VPHN associativity changes.
1509 int start_topology_update(void)
1511 int rc = 0;
1513 if (firmware_has_feature(FW_FEATURE_VPHN)) {
1514 vphn_enabled = 1;
1515 setup_cpu_associativity_change_counters();
1516 init_timer_deferrable(&topology_timer);
1517 set_topology_timer();
1518 rc = 1;
1521 return rc;
1523 __initcall(start_topology_update);
1526 * Disable polling for VPHN associativity changes.
1528 int stop_topology_update(void)
1530 vphn_enabled = 0;
1531 return del_timer_sync(&topology_timer);
1533 #endif /* CONFIG_PPC_SPLPAR */