x86/uv: Fix uv_gpa_to_soc_phys_ram() shift
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / include / asm / uv / uv_hub.h
blob21f7385badb8f9eb4249aef142487e27b264b32d
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
9 */
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
27 * Addressing Terminology
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
34 * N - Number of bits in the node portion of a socket physical
35 * address.
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
49 * GPA - (global physical address) a socket physical address converted
50 * so that it can be used by the GRU as a global address. Socket
51 * physical addresses 1) need additional NASID (node) bits added
52 * to the high end of the address, and 2) unaliased if the
53 * partition does not have a physical address 0. In addition, on
54 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
57 * NumaLink Global Physical Address Format:
58 * +--------------------------------+---------------------+
59 * |00..000| GNODE | NodeOffset |
60 * +--------------------------------+---------------------+
61 * |<-------53 - M bits --->|<--------M bits ----->
63 * M - number of node offset bits (35 .. 40)
66 * Memory/UV-HUB Processor Socket Address Format:
67 * +----------------+---------------+---------------------+
68 * |00..000000000000| PNODE | NodeOffset |
69 * +----------------+---------------+---------------------+
70 * <--- N bits --->|<--------M bits ----->
72 * M - number of node offset bits (35 .. 40)
73 * N - number of PNODE bits (0 .. 10)
75 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 * The actual values are configuration dependent and are set at
77 * boot time. M & N values are set by the hardware/BIOS at boot.
80 * APICID format
81 * NOTE!!!!!! This is the current format of the APICID. However, code
82 * should assume that this will change in the future. Use functions
83 * in this file for all APICID bit manipulations and conversion.
85 * 1111110000000000
86 * 5432109876543210
87 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
88 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
89 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
90 * sssssssssss
92 * p = pnode bits
93 * l = socket number on board
94 * c = core
95 * h = hyperthread
96 * s = bits that are in the SOCKET_ID CSR
98 * Note: Processor may support fewer bits in the APICID register. The ACPI
99 * tables hold all 16 bits. Software needs to be aware of this.
101 * Unless otherwise specified, all references to APICID refer to
102 * the FULL value contained in ACPI tables, not the subset in the
103 * processor APICID register.
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117 #define UV_MAX_NUMALINK_BLADES 16384
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
123 #define UV_MAX_SSI_BLADES 256
126 * The largest possible NASID of a C or M brick (+ 2)
128 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
130 struct uv_scir_s {
131 struct timer_list timer;
132 unsigned long offset;
133 unsigned long last;
134 unsigned long idle_on;
135 unsigned long idle_off;
136 unsigned char state;
137 unsigned char enabled;
141 * The following defines attributes of the HUB chip. These attributes are
142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
143 * They are kept together in a struct to minimize cache misses.
145 struct uv_hub_info_s {
146 unsigned long global_mmr_base;
147 unsigned long gpa_mask;
148 unsigned int gnode_extra;
149 unsigned char hub_revision;
150 unsigned char apic_pnode_shift;
151 unsigned char m_shift;
152 unsigned char n_lshift;
153 unsigned long gnode_upper;
154 unsigned long lowmem_remap_top;
155 unsigned long lowmem_remap_base;
156 unsigned short pnode;
157 unsigned short pnode_mask;
158 unsigned short coherency_domain_number;
159 unsigned short numa_blade_id;
160 unsigned char blade_processor_id;
161 unsigned char m_val;
162 unsigned char n_val;
163 struct uv_scir_s scir;
166 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
167 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
168 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173 * This is a software convention - NOT the hardware revision numbers in
174 * the hub chip.
176 #define UV1_HUB_REVISION_BASE 1
177 #define UV2_HUB_REVISION_BASE 3
179 static inline int is_uv1_hub(void)
181 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
184 static inline int is_uv2_hub(void)
186 return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
189 static inline int is_uv2_1_hub(void)
191 return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE;
194 static inline int is_uv2_2_hub(void)
196 return uv_hub_info->hub_revision == UV2_HUB_REVISION_BASE + 1;
199 union uvh_apicid {
200 unsigned long v;
201 struct uvh_apicid_s {
202 unsigned long local_apic_mask : 24;
203 unsigned long local_apic_shift : 5;
204 unsigned long unused1 : 3;
205 unsigned long pnode_mask : 24;
206 unsigned long pnode_shift : 5;
207 unsigned long unused2 : 3;
208 } s;
212 * Local & Global MMR space macros.
213 * Note: macros are intended to be used ONLY by inline functions
214 * in this file - not by other kernel code.
215 * n - NASID (full 15-bit global nasid)
216 * g - GNODE (full 15-bit global nasid, right shifted 1)
217 * p - PNODE (local part of nsids, right shifted 1)
219 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
220 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
221 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
223 #define UV1_LOCAL_MMR_BASE 0xf4000000UL
224 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
225 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
226 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
228 #define UV2_LOCAL_MMR_BASE 0xfa000000UL
229 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
230 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
231 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
233 #define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE \
234 : UV2_LOCAL_MMR_BASE)
235 #define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE \
236 : UV2_GLOBAL_MMR32_BASE)
237 #define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
238 UV2_LOCAL_MMR_SIZE)
239 #define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
240 UV2_GLOBAL_MMR32_SIZE)
241 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
243 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
245 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
246 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
248 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
250 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
251 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
253 #define UVH_APICID 0x002D0E00L
254 #define UV_APIC_PNODE_SHIFT 6
256 #define UV_APICID_HIBIT_MASK 0xffff0000
258 /* Local Bus from cpu's perspective */
259 #define LOCAL_BUS_BASE 0x1c00000
260 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
263 * System Controller Interface Reg
265 * Note there are NO leds on a UV system. This register is only
266 * used by the system controller to monitor system-wide operation.
267 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
268 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
269 * a node.
271 * The window is located at top of ACPI MMR space
273 #define SCIR_WINDOW_COUNT 64
274 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
275 LOCAL_BUS_SIZE - \
276 SCIR_WINDOW_COUNT)
278 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
279 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
280 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
282 /* Loop through all installed blades */
283 #define for_each_possible_blade(bid) \
284 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
287 * Macros for converting between kernel virtual addresses, socket local physical
288 * addresses, and UV global physical addresses.
289 * Note: use the standard __pa() & __va() macros for converting
290 * between socket virtual and socket physical addresses.
293 /* socket phys RAM --> UV global physical address */
294 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
296 if (paddr < uv_hub_info->lowmem_remap_top)
297 paddr |= uv_hub_info->lowmem_remap_base;
298 paddr |= uv_hub_info->gnode_upper;
299 paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
300 ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
301 return paddr;
305 /* socket virtual --> UV global physical address */
306 static inline unsigned long uv_gpa(void *v)
308 return uv_soc_phys_ram_to_gpa(__pa(v));
311 /* Top two bits indicate the requested address is in MMR space. */
312 static inline int
313 uv_gpa_in_mmr_space(unsigned long gpa)
315 return (gpa >> 62) == 0x3UL;
318 /* UV global physical address --> socket phys RAM */
319 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
321 unsigned long paddr;
322 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
323 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
325 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
326 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
327 paddr = gpa & uv_hub_info->gpa_mask;
328 if (paddr >= remap_base && paddr < remap_base + remap_top)
329 paddr -= remap_base;
330 return paddr;
334 /* gpa -> pnode */
335 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
337 return gpa >> uv_hub_info->n_lshift;
340 /* gpa -> pnode */
341 static inline int uv_gpa_to_pnode(unsigned long gpa)
343 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
345 return uv_gpa_to_gnode(gpa) & n_mask;
348 /* gpa -> node offset*/
349 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
351 return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
354 /* pnode, offset --> socket virtual */
355 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
357 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
362 * Extract a PNODE from an APICID (full apicid, not processor subset)
364 static inline int uv_apicid_to_pnode(int apicid)
366 return (apicid >> uv_hub_info->apic_pnode_shift);
370 * Convert an apicid to the socket number on the blade
372 static inline int uv_apicid_to_socket(int apicid)
374 if (is_uv1_hub())
375 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
376 else
377 return 0;
381 * Access global MMRs using the low memory MMR32 space. This region supports
382 * faster MMR access but not all MMRs are accessible in this space.
384 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
386 return __va(UV_GLOBAL_MMR32_BASE |
387 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
390 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
392 writeq(val, uv_global_mmr32_address(pnode, offset));
395 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
397 return readq(uv_global_mmr32_address(pnode, offset));
401 * Access Global MMR space using the MMR space located at the top of physical
402 * memory.
404 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
406 return __va(UV_GLOBAL_MMR64_BASE |
407 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
410 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
412 writeq(val, uv_global_mmr64_address(pnode, offset));
415 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
417 return readq(uv_global_mmr64_address(pnode, offset));
421 * Global MMR space addresses when referenced by the GRU. (GRU does
422 * NOT use socket addressing).
424 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
426 return UV_GLOBAL_GRU_MMR_BASE | offset |
427 ((unsigned long)pnode << uv_hub_info->m_val);
430 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
432 writeb(val, uv_global_mmr64_address(pnode, offset));
435 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
437 return readb(uv_global_mmr64_address(pnode, offset));
441 * Access hub local MMRs. Faster than using global space but only local MMRs
442 * are accessible.
444 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
446 return __va(UV_LOCAL_MMR_BASE | offset);
449 static inline unsigned long uv_read_local_mmr(unsigned long offset)
451 return readq(uv_local_mmr_address(offset));
454 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
456 writeq(val, uv_local_mmr_address(offset));
459 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
461 return readb(uv_local_mmr_address(offset));
464 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
466 writeb(val, uv_local_mmr_address(offset));
470 * Structures and definitions for converting between cpu, node, pnode, and blade
471 * numbers.
473 struct uv_blade_info {
474 unsigned short nr_possible_cpus;
475 unsigned short nr_online_cpus;
476 unsigned short pnode;
477 short memory_nid;
478 spinlock_t nmi_lock;
479 unsigned long nmi_count;
481 extern struct uv_blade_info *uv_blade_info;
482 extern short *uv_node_to_blade;
483 extern short *uv_cpu_to_blade;
484 extern short uv_possible_blades;
486 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
487 static inline int uv_blade_processor_id(void)
489 return uv_hub_info->blade_processor_id;
492 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
493 static inline int uv_numa_blade_id(void)
495 return uv_hub_info->numa_blade_id;
498 /* Convert a cpu number to the the UV blade number */
499 static inline int uv_cpu_to_blade_id(int cpu)
501 return uv_cpu_to_blade[cpu];
504 /* Convert linux node number to the UV blade number */
505 static inline int uv_node_to_blade_id(int nid)
507 return uv_node_to_blade[nid];
510 /* Convert a blade id to the PNODE of the blade */
511 static inline int uv_blade_to_pnode(int bid)
513 return uv_blade_info[bid].pnode;
516 /* Nid of memory node on blade. -1 if no blade-local memory */
517 static inline int uv_blade_to_memory_nid(int bid)
519 return uv_blade_info[bid].memory_nid;
522 /* Determine the number of possible cpus on a blade */
523 static inline int uv_blade_nr_possible_cpus(int bid)
525 return uv_blade_info[bid].nr_possible_cpus;
528 /* Determine the number of online cpus on a blade */
529 static inline int uv_blade_nr_online_cpus(int bid)
531 return uv_blade_info[bid].nr_online_cpus;
534 /* Convert a cpu id to the PNODE of the blade containing the cpu */
535 static inline int uv_cpu_to_pnode(int cpu)
537 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
540 /* Convert a linux node number to the PNODE of the blade */
541 static inline int uv_node_to_pnode(int nid)
543 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
546 /* Maximum possible number of blades */
547 static inline int uv_num_possible_blades(void)
549 return uv_possible_blades;
552 /* Update SCIR state */
553 static inline void uv_set_scir_bits(unsigned char value)
555 if (uv_hub_info->scir.state != value) {
556 uv_hub_info->scir.state = value;
557 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
561 static inline unsigned long uv_scir_offset(int apicid)
563 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
566 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
568 if (uv_cpu_hub_info(cpu)->scir.state != value) {
569 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
570 uv_cpu_hub_info(cpu)->scir.offset, value);
571 uv_cpu_hub_info(cpu)->scir.state = value;
575 extern unsigned int uv_apicid_hibits;
576 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
578 apicid |= uv_apicid_hibits;
579 return (1UL << UVH_IPI_INT_SEND_SHFT) |
580 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
581 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
582 (vector << UVH_IPI_INT_VECTOR_SHFT);
585 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
587 unsigned long val;
588 unsigned long dmode = dest_Fixed;
590 if (vector == NMI_VECTOR)
591 dmode = dest_NMI;
593 val = uv_hub_ipi_value(apicid, vector, dmode);
594 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
598 * Get the minimum revision number of the hub chips within the partition.
599 * 1 - UV1 rev 1.0 initial silicon
600 * 2 - UV1 rev 2.0 production silicon
601 * 3 - UV2 rev 1.0 initial silicon
603 static inline int uv_get_min_hub_revision_id(void)
605 return uv_hub_info->hub_revision;
608 #endif /* CONFIG_X86_64 */
609 #endif /* _ASM_X86_UV_UV_HUB_H */