dm table: reject devices without request fns
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / extents.c
blobccce8a7e94edc9ca2d23b76e94bd45339869970d
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 static int ext4_ext_truncate_extend_restart(handle_t *handle,
48 struct inode *inode,
49 int needed)
51 int err;
53 if (!ext4_handle_valid(handle))
54 return 0;
55 if (handle->h_buffer_credits > needed)
56 return 0;
57 err = ext4_journal_extend(handle, needed);
58 if (err <= 0)
59 return err;
60 err = ext4_truncate_restart_trans(handle, inode, needed);
61 if (err == 0)
62 err = -EAGAIN;
64 return err;
68 * could return:
69 * - EROFS
70 * - ENOMEM
72 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
73 struct ext4_ext_path *path)
75 if (path->p_bh) {
76 /* path points to block */
77 return ext4_journal_get_write_access(handle, path->p_bh);
79 /* path points to leaf/index in inode body */
80 /* we use in-core data, no need to protect them */
81 return 0;
85 * could return:
86 * - EROFS
87 * - ENOMEM
88 * - EIO
90 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
91 struct ext4_ext_path *path)
93 int err;
94 if (path->p_bh) {
95 /* path points to block */
96 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
97 } else {
98 /* path points to leaf/index in inode body */
99 err = ext4_mark_inode_dirty(handle, inode);
101 return err;
104 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
105 struct ext4_ext_path *path,
106 ext4_lblk_t block)
108 struct ext4_inode_info *ei = EXT4_I(inode);
109 ext4_fsblk_t bg_start;
110 ext4_fsblk_t last_block;
111 ext4_grpblk_t colour;
112 ext4_group_t block_group;
113 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
114 int depth;
116 if (path) {
117 struct ext4_extent *ex;
118 depth = path->p_depth;
121 * Try to predict block placement assuming that we are
122 * filling in a file which will eventually be
123 * non-sparse --- i.e., in the case of libbfd writing
124 * an ELF object sections out-of-order but in a way
125 * the eventually results in a contiguous object or
126 * executable file, or some database extending a table
127 * space file. However, this is actually somewhat
128 * non-ideal if we are writing a sparse file such as
129 * qemu or KVM writing a raw image file that is going
130 * to stay fairly sparse, since it will end up
131 * fragmenting the file system's free space. Maybe we
132 * should have some hueristics or some way to allow
133 * userspace to pass a hint to file system,
134 * especiially if the latter case turns out to be
135 * common.
137 ex = path[depth].p_ext;
138 if (ex) {
139 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
140 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
142 if (block > ext_block)
143 return ext_pblk + (block - ext_block);
144 else
145 return ext_pblk - (ext_block - block);
148 /* it looks like index is empty;
149 * try to find starting block from index itself */
150 if (path[depth].p_bh)
151 return path[depth].p_bh->b_blocknr;
154 /* OK. use inode's group */
155 block_group = ei->i_block_group;
156 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
158 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
159 * block groups per flexgroup, reserve the first block
160 * group for directories and special files. Regular
161 * files will start at the second block group. This
162 * tends to speed up directory access and improves
163 * fsck times.
165 block_group &= ~(flex_size-1);
166 if (S_ISREG(inode->i_mode))
167 block_group++;
169 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
170 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
173 * If we are doing delayed allocation, we don't need take
174 * colour into account.
176 if (test_opt(inode->i_sb, DELALLOC))
177 return bg_start;
179 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
180 colour = (current->pid % 16) *
181 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
182 else
183 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
184 return bg_start + colour + block;
188 * Allocation for a meta data block
190 static ext4_fsblk_t
191 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
192 struct ext4_ext_path *path,
193 struct ext4_extent *ex, int *err)
195 ext4_fsblk_t goal, newblock;
197 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
198 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
199 return newblock;
202 static inline int ext4_ext_space_block(struct inode *inode, int check)
204 int size;
206 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
207 / sizeof(struct ext4_extent);
208 if (!check) {
209 #ifdef AGGRESSIVE_TEST
210 if (size > 6)
211 size = 6;
212 #endif
214 return size;
217 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
219 int size;
221 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
222 / sizeof(struct ext4_extent_idx);
223 if (!check) {
224 #ifdef AGGRESSIVE_TEST
225 if (size > 5)
226 size = 5;
227 #endif
229 return size;
232 static inline int ext4_ext_space_root(struct inode *inode, int check)
234 int size;
236 size = sizeof(EXT4_I(inode)->i_data);
237 size -= sizeof(struct ext4_extent_header);
238 size /= sizeof(struct ext4_extent);
239 if (!check) {
240 #ifdef AGGRESSIVE_TEST
241 if (size > 3)
242 size = 3;
243 #endif
245 return size;
248 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
250 int size;
252 size = sizeof(EXT4_I(inode)->i_data);
253 size -= sizeof(struct ext4_extent_header);
254 size /= sizeof(struct ext4_extent_idx);
255 if (!check) {
256 #ifdef AGGRESSIVE_TEST
257 if (size > 4)
258 size = 4;
259 #endif
261 return size;
265 * Calculate the number of metadata blocks needed
266 * to allocate @blocks
267 * Worse case is one block per extent
269 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
271 struct ext4_inode_info *ei = EXT4_I(inode);
272 int idxs, num = 0;
274 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
275 / sizeof(struct ext4_extent_idx));
278 * If the new delayed allocation block is contiguous with the
279 * previous da block, it can share index blocks with the
280 * previous block, so we only need to allocate a new index
281 * block every idxs leaf blocks. At ldxs**2 blocks, we need
282 * an additional index block, and at ldxs**3 blocks, yet
283 * another index blocks.
285 if (ei->i_da_metadata_calc_len &&
286 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
287 if ((ei->i_da_metadata_calc_len % idxs) == 0)
288 num++;
289 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
290 num++;
291 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
292 num++;
293 ei->i_da_metadata_calc_len = 0;
294 } else
295 ei->i_da_metadata_calc_len++;
296 ei->i_da_metadata_calc_last_lblock++;
297 return num;
301 * In the worst case we need a new set of index blocks at
302 * every level of the inode's extent tree.
304 ei->i_da_metadata_calc_len = 1;
305 ei->i_da_metadata_calc_last_lblock = lblock;
306 return ext_depth(inode) + 1;
309 static int
310 ext4_ext_max_entries(struct inode *inode, int depth)
312 int max;
314 if (depth == ext_depth(inode)) {
315 if (depth == 0)
316 max = ext4_ext_space_root(inode, 1);
317 else
318 max = ext4_ext_space_root_idx(inode, 1);
319 } else {
320 if (depth == 0)
321 max = ext4_ext_space_block(inode, 1);
322 else
323 max = ext4_ext_space_block_idx(inode, 1);
326 return max;
329 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
331 ext4_fsblk_t block = ext4_ext_pblock(ext);
332 int len = ext4_ext_get_actual_len(ext);
334 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
337 static int ext4_valid_extent_idx(struct inode *inode,
338 struct ext4_extent_idx *ext_idx)
340 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
342 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
345 static int ext4_valid_extent_entries(struct inode *inode,
346 struct ext4_extent_header *eh,
347 int depth)
349 struct ext4_extent *ext;
350 struct ext4_extent_idx *ext_idx;
351 unsigned short entries;
352 if (eh->eh_entries == 0)
353 return 1;
355 entries = le16_to_cpu(eh->eh_entries);
357 if (depth == 0) {
358 /* leaf entries */
359 ext = EXT_FIRST_EXTENT(eh);
360 while (entries) {
361 if (!ext4_valid_extent(inode, ext))
362 return 0;
363 ext++;
364 entries--;
366 } else {
367 ext_idx = EXT_FIRST_INDEX(eh);
368 while (entries) {
369 if (!ext4_valid_extent_idx(inode, ext_idx))
370 return 0;
371 ext_idx++;
372 entries--;
375 return 1;
378 static int __ext4_ext_check(const char *function, unsigned int line,
379 struct inode *inode, struct ext4_extent_header *eh,
380 int depth)
382 const char *error_msg;
383 int max = 0;
385 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
386 error_msg = "invalid magic";
387 goto corrupted;
389 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
390 error_msg = "unexpected eh_depth";
391 goto corrupted;
393 if (unlikely(eh->eh_max == 0)) {
394 error_msg = "invalid eh_max";
395 goto corrupted;
397 max = ext4_ext_max_entries(inode, depth);
398 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
399 error_msg = "too large eh_max";
400 goto corrupted;
402 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
403 error_msg = "invalid eh_entries";
404 goto corrupted;
406 if (!ext4_valid_extent_entries(inode, eh, depth)) {
407 error_msg = "invalid extent entries";
408 goto corrupted;
410 return 0;
412 corrupted:
413 ext4_error_inode(inode, function, line, 0,
414 "bad header/extent: %s - magic %x, "
415 "entries %u, max %u(%u), depth %u(%u)",
416 error_msg, le16_to_cpu(eh->eh_magic),
417 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
418 max, le16_to_cpu(eh->eh_depth), depth);
420 return -EIO;
423 #define ext4_ext_check(inode, eh, depth) \
424 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
426 int ext4_ext_check_inode(struct inode *inode)
428 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
431 #ifdef EXT_DEBUG
432 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
434 int k, l = path->p_depth;
436 ext_debug("path:");
437 for (k = 0; k <= l; k++, path++) {
438 if (path->p_idx) {
439 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
440 ext4_idx_pblock(path->p_idx));
441 } else if (path->p_ext) {
442 ext_debug(" %d:[%d]%d:%llu ",
443 le32_to_cpu(path->p_ext->ee_block),
444 ext4_ext_is_uninitialized(path->p_ext),
445 ext4_ext_get_actual_len(path->p_ext),
446 ext4_ext_pblock(path->p_ext));
447 } else
448 ext_debug(" []");
450 ext_debug("\n");
453 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
455 int depth = ext_depth(inode);
456 struct ext4_extent_header *eh;
457 struct ext4_extent *ex;
458 int i;
460 if (!path)
461 return;
463 eh = path[depth].p_hdr;
464 ex = EXT_FIRST_EXTENT(eh);
466 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
468 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
469 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
470 ext4_ext_is_uninitialized(ex),
471 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
473 ext_debug("\n");
475 #else
476 #define ext4_ext_show_path(inode, path)
477 #define ext4_ext_show_leaf(inode, path)
478 #endif
480 void ext4_ext_drop_refs(struct ext4_ext_path *path)
482 int depth = path->p_depth;
483 int i;
485 for (i = 0; i <= depth; i++, path++)
486 if (path->p_bh) {
487 brelse(path->p_bh);
488 path->p_bh = NULL;
493 * ext4_ext_binsearch_idx:
494 * binary search for the closest index of the given block
495 * the header must be checked before calling this
497 static void
498 ext4_ext_binsearch_idx(struct inode *inode,
499 struct ext4_ext_path *path, ext4_lblk_t block)
501 struct ext4_extent_header *eh = path->p_hdr;
502 struct ext4_extent_idx *r, *l, *m;
505 ext_debug("binsearch for %u(idx): ", block);
507 l = EXT_FIRST_INDEX(eh) + 1;
508 r = EXT_LAST_INDEX(eh);
509 while (l <= r) {
510 m = l + (r - l) / 2;
511 if (block < le32_to_cpu(m->ei_block))
512 r = m - 1;
513 else
514 l = m + 1;
515 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
516 m, le32_to_cpu(m->ei_block),
517 r, le32_to_cpu(r->ei_block));
520 path->p_idx = l - 1;
521 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
522 ext4_idx_pblock(path->p_idx));
524 #ifdef CHECK_BINSEARCH
526 struct ext4_extent_idx *chix, *ix;
527 int k;
529 chix = ix = EXT_FIRST_INDEX(eh);
530 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
531 if (k != 0 &&
532 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
533 printk(KERN_DEBUG "k=%d, ix=0x%p, "
534 "first=0x%p\n", k,
535 ix, EXT_FIRST_INDEX(eh));
536 printk(KERN_DEBUG "%u <= %u\n",
537 le32_to_cpu(ix->ei_block),
538 le32_to_cpu(ix[-1].ei_block));
540 BUG_ON(k && le32_to_cpu(ix->ei_block)
541 <= le32_to_cpu(ix[-1].ei_block));
542 if (block < le32_to_cpu(ix->ei_block))
543 break;
544 chix = ix;
546 BUG_ON(chix != path->p_idx);
548 #endif
553 * ext4_ext_binsearch:
554 * binary search for closest extent of the given block
555 * the header must be checked before calling this
557 static void
558 ext4_ext_binsearch(struct inode *inode,
559 struct ext4_ext_path *path, ext4_lblk_t block)
561 struct ext4_extent_header *eh = path->p_hdr;
562 struct ext4_extent *r, *l, *m;
564 if (eh->eh_entries == 0) {
566 * this leaf is empty:
567 * we get such a leaf in split/add case
569 return;
572 ext_debug("binsearch for %u: ", block);
574 l = EXT_FIRST_EXTENT(eh) + 1;
575 r = EXT_LAST_EXTENT(eh);
577 while (l <= r) {
578 m = l + (r - l) / 2;
579 if (block < le32_to_cpu(m->ee_block))
580 r = m - 1;
581 else
582 l = m + 1;
583 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
584 m, le32_to_cpu(m->ee_block),
585 r, le32_to_cpu(r->ee_block));
588 path->p_ext = l - 1;
589 ext_debug(" -> %d:%llu:[%d]%d ",
590 le32_to_cpu(path->p_ext->ee_block),
591 ext4_ext_pblock(path->p_ext),
592 ext4_ext_is_uninitialized(path->p_ext),
593 ext4_ext_get_actual_len(path->p_ext));
595 #ifdef CHECK_BINSEARCH
597 struct ext4_extent *chex, *ex;
598 int k;
600 chex = ex = EXT_FIRST_EXTENT(eh);
601 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
602 BUG_ON(k && le32_to_cpu(ex->ee_block)
603 <= le32_to_cpu(ex[-1].ee_block));
604 if (block < le32_to_cpu(ex->ee_block))
605 break;
606 chex = ex;
608 BUG_ON(chex != path->p_ext);
610 #endif
614 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
616 struct ext4_extent_header *eh;
618 eh = ext_inode_hdr(inode);
619 eh->eh_depth = 0;
620 eh->eh_entries = 0;
621 eh->eh_magic = EXT4_EXT_MAGIC;
622 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
623 ext4_mark_inode_dirty(handle, inode);
624 ext4_ext_invalidate_cache(inode);
625 return 0;
628 struct ext4_ext_path *
629 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
630 struct ext4_ext_path *path)
632 struct ext4_extent_header *eh;
633 struct buffer_head *bh;
634 short int depth, i, ppos = 0, alloc = 0;
636 eh = ext_inode_hdr(inode);
637 depth = ext_depth(inode);
639 /* account possible depth increase */
640 if (!path) {
641 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
642 GFP_NOFS);
643 if (!path)
644 return ERR_PTR(-ENOMEM);
645 alloc = 1;
647 path[0].p_hdr = eh;
648 path[0].p_bh = NULL;
650 i = depth;
651 /* walk through the tree */
652 while (i) {
653 int need_to_validate = 0;
655 ext_debug("depth %d: num %d, max %d\n",
656 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
658 ext4_ext_binsearch_idx(inode, path + ppos, block);
659 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
660 path[ppos].p_depth = i;
661 path[ppos].p_ext = NULL;
663 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
664 if (unlikely(!bh))
665 goto err;
666 if (!bh_uptodate_or_lock(bh)) {
667 if (bh_submit_read(bh) < 0) {
668 put_bh(bh);
669 goto err;
671 /* validate the extent entries */
672 need_to_validate = 1;
674 eh = ext_block_hdr(bh);
675 ppos++;
676 if (unlikely(ppos > depth)) {
677 put_bh(bh);
678 EXT4_ERROR_INODE(inode,
679 "ppos %d > depth %d", ppos, depth);
680 goto err;
682 path[ppos].p_bh = bh;
683 path[ppos].p_hdr = eh;
684 i--;
686 if (need_to_validate && ext4_ext_check(inode, eh, i))
687 goto err;
690 path[ppos].p_depth = i;
691 path[ppos].p_ext = NULL;
692 path[ppos].p_idx = NULL;
694 /* find extent */
695 ext4_ext_binsearch(inode, path + ppos, block);
696 /* if not an empty leaf */
697 if (path[ppos].p_ext)
698 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
700 ext4_ext_show_path(inode, path);
702 return path;
704 err:
705 ext4_ext_drop_refs(path);
706 if (alloc)
707 kfree(path);
708 return ERR_PTR(-EIO);
712 * ext4_ext_insert_index:
713 * insert new index [@logical;@ptr] into the block at @curp;
714 * check where to insert: before @curp or after @curp
716 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
717 struct ext4_ext_path *curp,
718 int logical, ext4_fsblk_t ptr)
720 struct ext4_extent_idx *ix;
721 int len, err;
723 err = ext4_ext_get_access(handle, inode, curp);
724 if (err)
725 return err;
727 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
728 EXT4_ERROR_INODE(inode,
729 "logical %d == ei_block %d!",
730 logical, le32_to_cpu(curp->p_idx->ei_block));
731 return -EIO;
733 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
734 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
735 /* insert after */
736 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
737 len = (len - 1) * sizeof(struct ext4_extent_idx);
738 len = len < 0 ? 0 : len;
739 ext_debug("insert new index %d after: %llu. "
740 "move %d from 0x%p to 0x%p\n",
741 logical, ptr, len,
742 (curp->p_idx + 1), (curp->p_idx + 2));
743 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
745 ix = curp->p_idx + 1;
746 } else {
747 /* insert before */
748 len = len * sizeof(struct ext4_extent_idx);
749 len = len < 0 ? 0 : len;
750 ext_debug("insert new index %d before: %llu. "
751 "move %d from 0x%p to 0x%p\n",
752 logical, ptr, len,
753 curp->p_idx, (curp->p_idx + 1));
754 memmove(curp->p_idx + 1, curp->p_idx, len);
755 ix = curp->p_idx;
758 ix->ei_block = cpu_to_le32(logical);
759 ext4_idx_store_pblock(ix, ptr);
760 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
762 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
763 > le16_to_cpu(curp->p_hdr->eh_max))) {
764 EXT4_ERROR_INODE(inode,
765 "logical %d == ei_block %d!",
766 logical, le32_to_cpu(curp->p_idx->ei_block));
767 return -EIO;
769 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
770 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
771 return -EIO;
774 err = ext4_ext_dirty(handle, inode, curp);
775 ext4_std_error(inode->i_sb, err);
777 return err;
781 * ext4_ext_split:
782 * inserts new subtree into the path, using free index entry
783 * at depth @at:
784 * - allocates all needed blocks (new leaf and all intermediate index blocks)
785 * - makes decision where to split
786 * - moves remaining extents and index entries (right to the split point)
787 * into the newly allocated blocks
788 * - initializes subtree
790 static int ext4_ext_split(handle_t *handle, struct inode *inode,
791 struct ext4_ext_path *path,
792 struct ext4_extent *newext, int at)
794 struct buffer_head *bh = NULL;
795 int depth = ext_depth(inode);
796 struct ext4_extent_header *neh;
797 struct ext4_extent_idx *fidx;
798 struct ext4_extent *ex;
799 int i = at, k, m, a;
800 ext4_fsblk_t newblock, oldblock;
801 __le32 border;
802 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
803 int err = 0;
805 /* make decision: where to split? */
806 /* FIXME: now decision is simplest: at current extent */
808 /* if current leaf will be split, then we should use
809 * border from split point */
810 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
811 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
812 return -EIO;
814 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
815 border = path[depth].p_ext[1].ee_block;
816 ext_debug("leaf will be split."
817 " next leaf starts at %d\n",
818 le32_to_cpu(border));
819 } else {
820 border = newext->ee_block;
821 ext_debug("leaf will be added."
822 " next leaf starts at %d\n",
823 le32_to_cpu(border));
827 * If error occurs, then we break processing
828 * and mark filesystem read-only. index won't
829 * be inserted and tree will be in consistent
830 * state. Next mount will repair buffers too.
834 * Get array to track all allocated blocks.
835 * We need this to handle errors and free blocks
836 * upon them.
838 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
839 if (!ablocks)
840 return -ENOMEM;
842 /* allocate all needed blocks */
843 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
844 for (a = 0; a < depth - at; a++) {
845 newblock = ext4_ext_new_meta_block(handle, inode, path,
846 newext, &err);
847 if (newblock == 0)
848 goto cleanup;
849 ablocks[a] = newblock;
852 /* initialize new leaf */
853 newblock = ablocks[--a];
854 if (unlikely(newblock == 0)) {
855 EXT4_ERROR_INODE(inode, "newblock == 0!");
856 err = -EIO;
857 goto cleanup;
859 bh = sb_getblk(inode->i_sb, newblock);
860 if (!bh) {
861 err = -EIO;
862 goto cleanup;
864 lock_buffer(bh);
866 err = ext4_journal_get_create_access(handle, bh);
867 if (err)
868 goto cleanup;
870 neh = ext_block_hdr(bh);
871 neh->eh_entries = 0;
872 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
873 neh->eh_magic = EXT4_EXT_MAGIC;
874 neh->eh_depth = 0;
875 ex = EXT_FIRST_EXTENT(neh);
877 /* move remainder of path[depth] to the new leaf */
878 if (unlikely(path[depth].p_hdr->eh_entries !=
879 path[depth].p_hdr->eh_max)) {
880 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
881 path[depth].p_hdr->eh_entries,
882 path[depth].p_hdr->eh_max);
883 err = -EIO;
884 goto cleanup;
886 /* start copy from next extent */
887 /* TODO: we could do it by single memmove */
888 m = 0;
889 path[depth].p_ext++;
890 while (path[depth].p_ext <=
891 EXT_MAX_EXTENT(path[depth].p_hdr)) {
892 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
893 le32_to_cpu(path[depth].p_ext->ee_block),
894 ext4_ext_pblock(path[depth].p_ext),
895 ext4_ext_is_uninitialized(path[depth].p_ext),
896 ext4_ext_get_actual_len(path[depth].p_ext),
897 newblock);
898 /*memmove(ex++, path[depth].p_ext++,
899 sizeof(struct ext4_extent));
900 neh->eh_entries++;*/
901 path[depth].p_ext++;
902 m++;
904 if (m) {
905 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
906 le16_add_cpu(&neh->eh_entries, m);
909 set_buffer_uptodate(bh);
910 unlock_buffer(bh);
912 err = ext4_handle_dirty_metadata(handle, inode, bh);
913 if (err)
914 goto cleanup;
915 brelse(bh);
916 bh = NULL;
918 /* correct old leaf */
919 if (m) {
920 err = ext4_ext_get_access(handle, inode, path + depth);
921 if (err)
922 goto cleanup;
923 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
924 err = ext4_ext_dirty(handle, inode, path + depth);
925 if (err)
926 goto cleanup;
930 /* create intermediate indexes */
931 k = depth - at - 1;
932 if (unlikely(k < 0)) {
933 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
934 err = -EIO;
935 goto cleanup;
937 if (k)
938 ext_debug("create %d intermediate indices\n", k);
939 /* insert new index into current index block */
940 /* current depth stored in i var */
941 i = depth - 1;
942 while (k--) {
943 oldblock = newblock;
944 newblock = ablocks[--a];
945 bh = sb_getblk(inode->i_sb, newblock);
946 if (!bh) {
947 err = -EIO;
948 goto cleanup;
950 lock_buffer(bh);
952 err = ext4_journal_get_create_access(handle, bh);
953 if (err)
954 goto cleanup;
956 neh = ext_block_hdr(bh);
957 neh->eh_entries = cpu_to_le16(1);
958 neh->eh_magic = EXT4_EXT_MAGIC;
959 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
960 neh->eh_depth = cpu_to_le16(depth - i);
961 fidx = EXT_FIRST_INDEX(neh);
962 fidx->ei_block = border;
963 ext4_idx_store_pblock(fidx, oldblock);
965 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
966 i, newblock, le32_to_cpu(border), oldblock);
967 /* copy indexes */
968 m = 0;
969 path[i].p_idx++;
971 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
972 EXT_MAX_INDEX(path[i].p_hdr));
973 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
974 EXT_LAST_INDEX(path[i].p_hdr))) {
975 EXT4_ERROR_INODE(inode,
976 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
977 le32_to_cpu(path[i].p_ext->ee_block));
978 err = -EIO;
979 goto cleanup;
981 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
982 ext_debug("%d: move %d:%llu in new index %llu\n", i,
983 le32_to_cpu(path[i].p_idx->ei_block),
984 ext4_idx_pblock(path[i].p_idx),
985 newblock);
986 /*memmove(++fidx, path[i].p_idx++,
987 sizeof(struct ext4_extent_idx));
988 neh->eh_entries++;
989 BUG_ON(neh->eh_entries > neh->eh_max);*/
990 path[i].p_idx++;
991 m++;
993 if (m) {
994 memmove(++fidx, path[i].p_idx - m,
995 sizeof(struct ext4_extent_idx) * m);
996 le16_add_cpu(&neh->eh_entries, m);
998 set_buffer_uptodate(bh);
999 unlock_buffer(bh);
1001 err = ext4_handle_dirty_metadata(handle, inode, bh);
1002 if (err)
1003 goto cleanup;
1004 brelse(bh);
1005 bh = NULL;
1007 /* correct old index */
1008 if (m) {
1009 err = ext4_ext_get_access(handle, inode, path + i);
1010 if (err)
1011 goto cleanup;
1012 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1013 err = ext4_ext_dirty(handle, inode, path + i);
1014 if (err)
1015 goto cleanup;
1018 i--;
1021 /* insert new index */
1022 err = ext4_ext_insert_index(handle, inode, path + at,
1023 le32_to_cpu(border), newblock);
1025 cleanup:
1026 if (bh) {
1027 if (buffer_locked(bh))
1028 unlock_buffer(bh);
1029 brelse(bh);
1032 if (err) {
1033 /* free all allocated blocks in error case */
1034 for (i = 0; i < depth; i++) {
1035 if (!ablocks[i])
1036 continue;
1037 ext4_free_blocks(handle, inode, 0, ablocks[i], 1,
1038 EXT4_FREE_BLOCKS_METADATA);
1041 kfree(ablocks);
1043 return err;
1047 * ext4_ext_grow_indepth:
1048 * implements tree growing procedure:
1049 * - allocates new block
1050 * - moves top-level data (index block or leaf) into the new block
1051 * - initializes new top-level, creating index that points to the
1052 * just created block
1054 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1055 struct ext4_ext_path *path,
1056 struct ext4_extent *newext)
1058 struct ext4_ext_path *curp = path;
1059 struct ext4_extent_header *neh;
1060 struct buffer_head *bh;
1061 ext4_fsblk_t newblock;
1062 int err = 0;
1064 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1065 if (newblock == 0)
1066 return err;
1068 bh = sb_getblk(inode->i_sb, newblock);
1069 if (!bh) {
1070 err = -EIO;
1071 ext4_std_error(inode->i_sb, err);
1072 return err;
1074 lock_buffer(bh);
1076 err = ext4_journal_get_create_access(handle, bh);
1077 if (err) {
1078 unlock_buffer(bh);
1079 goto out;
1082 /* move top-level index/leaf into new block */
1083 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1085 /* set size of new block */
1086 neh = ext_block_hdr(bh);
1087 /* old root could have indexes or leaves
1088 * so calculate e_max right way */
1089 if (ext_depth(inode))
1090 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1091 else
1092 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1093 neh->eh_magic = EXT4_EXT_MAGIC;
1094 set_buffer_uptodate(bh);
1095 unlock_buffer(bh);
1097 err = ext4_handle_dirty_metadata(handle, inode, bh);
1098 if (err)
1099 goto out;
1101 /* create index in new top-level index: num,max,pointer */
1102 err = ext4_ext_get_access(handle, inode, curp);
1103 if (err)
1104 goto out;
1106 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1107 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1108 curp->p_hdr->eh_entries = cpu_to_le16(1);
1109 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1111 if (path[0].p_hdr->eh_depth)
1112 curp->p_idx->ei_block =
1113 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1114 else
1115 curp->p_idx->ei_block =
1116 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1117 ext4_idx_store_pblock(curp->p_idx, newblock);
1119 neh = ext_inode_hdr(inode);
1120 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1121 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1122 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1123 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1125 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1126 err = ext4_ext_dirty(handle, inode, curp);
1127 out:
1128 brelse(bh);
1130 return err;
1134 * ext4_ext_create_new_leaf:
1135 * finds empty index and adds new leaf.
1136 * if no free index is found, then it requests in-depth growing.
1138 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1139 struct ext4_ext_path *path,
1140 struct ext4_extent *newext)
1142 struct ext4_ext_path *curp;
1143 int depth, i, err = 0;
1145 repeat:
1146 i = depth = ext_depth(inode);
1148 /* walk up to the tree and look for free index entry */
1149 curp = path + depth;
1150 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1151 i--;
1152 curp--;
1155 /* we use already allocated block for index block,
1156 * so subsequent data blocks should be contiguous */
1157 if (EXT_HAS_FREE_INDEX(curp)) {
1158 /* if we found index with free entry, then use that
1159 * entry: create all needed subtree and add new leaf */
1160 err = ext4_ext_split(handle, inode, path, newext, i);
1161 if (err)
1162 goto out;
1164 /* refill path */
1165 ext4_ext_drop_refs(path);
1166 path = ext4_ext_find_extent(inode,
1167 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1168 path);
1169 if (IS_ERR(path))
1170 err = PTR_ERR(path);
1171 } else {
1172 /* tree is full, time to grow in depth */
1173 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1174 if (err)
1175 goto out;
1177 /* refill path */
1178 ext4_ext_drop_refs(path);
1179 path = ext4_ext_find_extent(inode,
1180 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1181 path);
1182 if (IS_ERR(path)) {
1183 err = PTR_ERR(path);
1184 goto out;
1188 * only first (depth 0 -> 1) produces free space;
1189 * in all other cases we have to split the grown tree
1191 depth = ext_depth(inode);
1192 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1193 /* now we need to split */
1194 goto repeat;
1198 out:
1199 return err;
1203 * search the closest allocated block to the left for *logical
1204 * and returns it at @logical + it's physical address at @phys
1205 * if *logical is the smallest allocated block, the function
1206 * returns 0 at @phys
1207 * return value contains 0 (success) or error code
1209 static int ext4_ext_search_left(struct inode *inode,
1210 struct ext4_ext_path *path,
1211 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1213 struct ext4_extent_idx *ix;
1214 struct ext4_extent *ex;
1215 int depth, ee_len;
1217 if (unlikely(path == NULL)) {
1218 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1219 return -EIO;
1221 depth = path->p_depth;
1222 *phys = 0;
1224 if (depth == 0 && path->p_ext == NULL)
1225 return 0;
1227 /* usually extent in the path covers blocks smaller
1228 * then *logical, but it can be that extent is the
1229 * first one in the file */
1231 ex = path[depth].p_ext;
1232 ee_len = ext4_ext_get_actual_len(ex);
1233 if (*logical < le32_to_cpu(ex->ee_block)) {
1234 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1235 EXT4_ERROR_INODE(inode,
1236 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1237 *logical, le32_to_cpu(ex->ee_block));
1238 return -EIO;
1240 while (--depth >= 0) {
1241 ix = path[depth].p_idx;
1242 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1243 EXT4_ERROR_INODE(inode,
1244 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1245 ix != NULL ? ix->ei_block : 0,
1246 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1247 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1248 depth);
1249 return -EIO;
1252 return 0;
1255 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1256 EXT4_ERROR_INODE(inode,
1257 "logical %d < ee_block %d + ee_len %d!",
1258 *logical, le32_to_cpu(ex->ee_block), ee_len);
1259 return -EIO;
1262 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1263 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1264 return 0;
1268 * search the closest allocated block to the right for *logical
1269 * and returns it at @logical + it's physical address at @phys
1270 * if *logical is the smallest allocated block, the function
1271 * returns 0 at @phys
1272 * return value contains 0 (success) or error code
1274 static int ext4_ext_search_right(struct inode *inode,
1275 struct ext4_ext_path *path,
1276 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1278 struct buffer_head *bh = NULL;
1279 struct ext4_extent_header *eh;
1280 struct ext4_extent_idx *ix;
1281 struct ext4_extent *ex;
1282 ext4_fsblk_t block;
1283 int depth; /* Note, NOT eh_depth; depth from top of tree */
1284 int ee_len;
1286 if (unlikely(path == NULL)) {
1287 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1288 return -EIO;
1290 depth = path->p_depth;
1291 *phys = 0;
1293 if (depth == 0 && path->p_ext == NULL)
1294 return 0;
1296 /* usually extent in the path covers blocks smaller
1297 * then *logical, but it can be that extent is the
1298 * first one in the file */
1300 ex = path[depth].p_ext;
1301 ee_len = ext4_ext_get_actual_len(ex);
1302 if (*logical < le32_to_cpu(ex->ee_block)) {
1303 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1304 EXT4_ERROR_INODE(inode,
1305 "first_extent(path[%d].p_hdr) != ex",
1306 depth);
1307 return -EIO;
1309 while (--depth >= 0) {
1310 ix = path[depth].p_idx;
1311 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1312 EXT4_ERROR_INODE(inode,
1313 "ix != EXT_FIRST_INDEX *logical %d!",
1314 *logical);
1315 return -EIO;
1318 *logical = le32_to_cpu(ex->ee_block);
1319 *phys = ext4_ext_pblock(ex);
1320 return 0;
1323 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1324 EXT4_ERROR_INODE(inode,
1325 "logical %d < ee_block %d + ee_len %d!",
1326 *logical, le32_to_cpu(ex->ee_block), ee_len);
1327 return -EIO;
1330 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1331 /* next allocated block in this leaf */
1332 ex++;
1333 *logical = le32_to_cpu(ex->ee_block);
1334 *phys = ext4_ext_pblock(ex);
1335 return 0;
1338 /* go up and search for index to the right */
1339 while (--depth >= 0) {
1340 ix = path[depth].p_idx;
1341 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1342 goto got_index;
1345 /* we've gone up to the root and found no index to the right */
1346 return 0;
1348 got_index:
1349 /* we've found index to the right, let's
1350 * follow it and find the closest allocated
1351 * block to the right */
1352 ix++;
1353 block = ext4_idx_pblock(ix);
1354 while (++depth < path->p_depth) {
1355 bh = sb_bread(inode->i_sb, block);
1356 if (bh == NULL)
1357 return -EIO;
1358 eh = ext_block_hdr(bh);
1359 /* subtract from p_depth to get proper eh_depth */
1360 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1361 put_bh(bh);
1362 return -EIO;
1364 ix = EXT_FIRST_INDEX(eh);
1365 block = ext4_idx_pblock(ix);
1366 put_bh(bh);
1369 bh = sb_bread(inode->i_sb, block);
1370 if (bh == NULL)
1371 return -EIO;
1372 eh = ext_block_hdr(bh);
1373 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1374 put_bh(bh);
1375 return -EIO;
1377 ex = EXT_FIRST_EXTENT(eh);
1378 *logical = le32_to_cpu(ex->ee_block);
1379 *phys = ext4_ext_pblock(ex);
1380 put_bh(bh);
1381 return 0;
1385 * ext4_ext_next_allocated_block:
1386 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1387 * NOTE: it considers block number from index entry as
1388 * allocated block. Thus, index entries have to be consistent
1389 * with leaves.
1391 static ext4_lblk_t
1392 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1394 int depth;
1396 BUG_ON(path == NULL);
1397 depth = path->p_depth;
1399 if (depth == 0 && path->p_ext == NULL)
1400 return EXT_MAX_BLOCK;
1402 while (depth >= 0) {
1403 if (depth == path->p_depth) {
1404 /* leaf */
1405 if (path[depth].p_ext !=
1406 EXT_LAST_EXTENT(path[depth].p_hdr))
1407 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1408 } else {
1409 /* index */
1410 if (path[depth].p_idx !=
1411 EXT_LAST_INDEX(path[depth].p_hdr))
1412 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1414 depth--;
1417 return EXT_MAX_BLOCK;
1421 * ext4_ext_next_leaf_block:
1422 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1424 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1425 struct ext4_ext_path *path)
1427 int depth;
1429 BUG_ON(path == NULL);
1430 depth = path->p_depth;
1432 /* zero-tree has no leaf blocks at all */
1433 if (depth == 0)
1434 return EXT_MAX_BLOCK;
1436 /* go to index block */
1437 depth--;
1439 while (depth >= 0) {
1440 if (path[depth].p_idx !=
1441 EXT_LAST_INDEX(path[depth].p_hdr))
1442 return (ext4_lblk_t)
1443 le32_to_cpu(path[depth].p_idx[1].ei_block);
1444 depth--;
1447 return EXT_MAX_BLOCK;
1451 * ext4_ext_correct_indexes:
1452 * if leaf gets modified and modified extent is first in the leaf,
1453 * then we have to correct all indexes above.
1454 * TODO: do we need to correct tree in all cases?
1456 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1457 struct ext4_ext_path *path)
1459 struct ext4_extent_header *eh;
1460 int depth = ext_depth(inode);
1461 struct ext4_extent *ex;
1462 __le32 border;
1463 int k, err = 0;
1465 eh = path[depth].p_hdr;
1466 ex = path[depth].p_ext;
1468 if (unlikely(ex == NULL || eh == NULL)) {
1469 EXT4_ERROR_INODE(inode,
1470 "ex %p == NULL or eh %p == NULL", ex, eh);
1471 return -EIO;
1474 if (depth == 0) {
1475 /* there is no tree at all */
1476 return 0;
1479 if (ex != EXT_FIRST_EXTENT(eh)) {
1480 /* we correct tree if first leaf got modified only */
1481 return 0;
1485 * TODO: we need correction if border is smaller than current one
1487 k = depth - 1;
1488 border = path[depth].p_ext->ee_block;
1489 err = ext4_ext_get_access(handle, inode, path + k);
1490 if (err)
1491 return err;
1492 path[k].p_idx->ei_block = border;
1493 err = ext4_ext_dirty(handle, inode, path + k);
1494 if (err)
1495 return err;
1497 while (k--) {
1498 /* change all left-side indexes */
1499 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1500 break;
1501 err = ext4_ext_get_access(handle, inode, path + k);
1502 if (err)
1503 break;
1504 path[k].p_idx->ei_block = border;
1505 err = ext4_ext_dirty(handle, inode, path + k);
1506 if (err)
1507 break;
1510 return err;
1514 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1515 struct ext4_extent *ex2)
1517 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1520 * Make sure that either both extents are uninitialized, or
1521 * both are _not_.
1523 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1524 return 0;
1526 if (ext4_ext_is_uninitialized(ex1))
1527 max_len = EXT_UNINIT_MAX_LEN;
1528 else
1529 max_len = EXT_INIT_MAX_LEN;
1531 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1532 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1534 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1535 le32_to_cpu(ex2->ee_block))
1536 return 0;
1539 * To allow future support for preallocated extents to be added
1540 * as an RO_COMPAT feature, refuse to merge to extents if
1541 * this can result in the top bit of ee_len being set.
1543 if (ext1_ee_len + ext2_ee_len > max_len)
1544 return 0;
1545 #ifdef AGGRESSIVE_TEST
1546 if (ext1_ee_len >= 4)
1547 return 0;
1548 #endif
1550 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1551 return 1;
1552 return 0;
1556 * This function tries to merge the "ex" extent to the next extent in the tree.
1557 * It always tries to merge towards right. If you want to merge towards
1558 * left, pass "ex - 1" as argument instead of "ex".
1559 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1560 * 1 if they got merged.
1562 static int ext4_ext_try_to_merge(struct inode *inode,
1563 struct ext4_ext_path *path,
1564 struct ext4_extent *ex)
1566 struct ext4_extent_header *eh;
1567 unsigned int depth, len;
1568 int merge_done = 0;
1569 int uninitialized = 0;
1571 depth = ext_depth(inode);
1572 BUG_ON(path[depth].p_hdr == NULL);
1573 eh = path[depth].p_hdr;
1575 while (ex < EXT_LAST_EXTENT(eh)) {
1576 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1577 break;
1578 /* merge with next extent! */
1579 if (ext4_ext_is_uninitialized(ex))
1580 uninitialized = 1;
1581 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1582 + ext4_ext_get_actual_len(ex + 1));
1583 if (uninitialized)
1584 ext4_ext_mark_uninitialized(ex);
1586 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1587 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1588 * sizeof(struct ext4_extent);
1589 memmove(ex + 1, ex + 2, len);
1591 le16_add_cpu(&eh->eh_entries, -1);
1592 merge_done = 1;
1593 WARN_ON(eh->eh_entries == 0);
1594 if (!eh->eh_entries)
1595 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1598 return merge_done;
1602 * check if a portion of the "newext" extent overlaps with an
1603 * existing extent.
1605 * If there is an overlap discovered, it updates the length of the newext
1606 * such that there will be no overlap, and then returns 1.
1607 * If there is no overlap found, it returns 0.
1609 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1610 struct ext4_extent *newext,
1611 struct ext4_ext_path *path)
1613 ext4_lblk_t b1, b2;
1614 unsigned int depth, len1;
1615 unsigned int ret = 0;
1617 b1 = le32_to_cpu(newext->ee_block);
1618 len1 = ext4_ext_get_actual_len(newext);
1619 depth = ext_depth(inode);
1620 if (!path[depth].p_ext)
1621 goto out;
1622 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1625 * get the next allocated block if the extent in the path
1626 * is before the requested block(s)
1628 if (b2 < b1) {
1629 b2 = ext4_ext_next_allocated_block(path);
1630 if (b2 == EXT_MAX_BLOCK)
1631 goto out;
1634 /* check for wrap through zero on extent logical start block*/
1635 if (b1 + len1 < b1) {
1636 len1 = EXT_MAX_BLOCK - b1;
1637 newext->ee_len = cpu_to_le16(len1);
1638 ret = 1;
1641 /* check for overlap */
1642 if (b1 + len1 > b2) {
1643 newext->ee_len = cpu_to_le16(b2 - b1);
1644 ret = 1;
1646 out:
1647 return ret;
1651 * ext4_ext_insert_extent:
1652 * tries to merge requsted extent into the existing extent or
1653 * inserts requested extent as new one into the tree,
1654 * creating new leaf in the no-space case.
1656 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1657 struct ext4_ext_path *path,
1658 struct ext4_extent *newext, int flag)
1660 struct ext4_extent_header *eh;
1661 struct ext4_extent *ex, *fex;
1662 struct ext4_extent *nearex; /* nearest extent */
1663 struct ext4_ext_path *npath = NULL;
1664 int depth, len, err;
1665 ext4_lblk_t next;
1666 unsigned uninitialized = 0;
1668 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1669 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1670 return -EIO;
1672 depth = ext_depth(inode);
1673 ex = path[depth].p_ext;
1674 if (unlikely(path[depth].p_hdr == NULL)) {
1675 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1676 return -EIO;
1679 /* try to insert block into found extent and return */
1680 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1681 && ext4_can_extents_be_merged(inode, ex, newext)) {
1682 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1683 ext4_ext_is_uninitialized(newext),
1684 ext4_ext_get_actual_len(newext),
1685 le32_to_cpu(ex->ee_block),
1686 ext4_ext_is_uninitialized(ex),
1687 ext4_ext_get_actual_len(ex),
1688 ext4_ext_pblock(ex));
1689 err = ext4_ext_get_access(handle, inode, path + depth);
1690 if (err)
1691 return err;
1694 * ext4_can_extents_be_merged should have checked that either
1695 * both extents are uninitialized, or both aren't. Thus we
1696 * need to check only one of them here.
1698 if (ext4_ext_is_uninitialized(ex))
1699 uninitialized = 1;
1700 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1701 + ext4_ext_get_actual_len(newext));
1702 if (uninitialized)
1703 ext4_ext_mark_uninitialized(ex);
1704 eh = path[depth].p_hdr;
1705 nearex = ex;
1706 goto merge;
1709 repeat:
1710 depth = ext_depth(inode);
1711 eh = path[depth].p_hdr;
1712 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1713 goto has_space;
1715 /* probably next leaf has space for us? */
1716 fex = EXT_LAST_EXTENT(eh);
1717 next = ext4_ext_next_leaf_block(inode, path);
1718 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1719 && next != EXT_MAX_BLOCK) {
1720 ext_debug("next leaf block - %d\n", next);
1721 BUG_ON(npath != NULL);
1722 npath = ext4_ext_find_extent(inode, next, NULL);
1723 if (IS_ERR(npath))
1724 return PTR_ERR(npath);
1725 BUG_ON(npath->p_depth != path->p_depth);
1726 eh = npath[depth].p_hdr;
1727 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1728 ext_debug("next leaf isnt full(%d)\n",
1729 le16_to_cpu(eh->eh_entries));
1730 path = npath;
1731 goto repeat;
1733 ext_debug("next leaf has no free space(%d,%d)\n",
1734 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1738 * There is no free space in the found leaf.
1739 * We're gonna add a new leaf in the tree.
1741 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1742 if (err)
1743 goto cleanup;
1744 depth = ext_depth(inode);
1745 eh = path[depth].p_hdr;
1747 has_space:
1748 nearex = path[depth].p_ext;
1750 err = ext4_ext_get_access(handle, inode, path + depth);
1751 if (err)
1752 goto cleanup;
1754 if (!nearex) {
1755 /* there is no extent in this leaf, create first one */
1756 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1757 le32_to_cpu(newext->ee_block),
1758 ext4_ext_pblock(newext),
1759 ext4_ext_is_uninitialized(newext),
1760 ext4_ext_get_actual_len(newext));
1761 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1762 } else if (le32_to_cpu(newext->ee_block)
1763 > le32_to_cpu(nearex->ee_block)) {
1764 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1765 if (nearex != EXT_LAST_EXTENT(eh)) {
1766 len = EXT_MAX_EXTENT(eh) - nearex;
1767 len = (len - 1) * sizeof(struct ext4_extent);
1768 len = len < 0 ? 0 : len;
1769 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1770 "move %d from 0x%p to 0x%p\n",
1771 le32_to_cpu(newext->ee_block),
1772 ext4_ext_pblock(newext),
1773 ext4_ext_is_uninitialized(newext),
1774 ext4_ext_get_actual_len(newext),
1775 nearex, len, nearex + 1, nearex + 2);
1776 memmove(nearex + 2, nearex + 1, len);
1778 path[depth].p_ext = nearex + 1;
1779 } else {
1780 BUG_ON(newext->ee_block == nearex->ee_block);
1781 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1782 len = len < 0 ? 0 : len;
1783 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1784 "move %d from 0x%p to 0x%p\n",
1785 le32_to_cpu(newext->ee_block),
1786 ext4_ext_pblock(newext),
1787 ext4_ext_is_uninitialized(newext),
1788 ext4_ext_get_actual_len(newext),
1789 nearex, len, nearex + 1, nearex + 2);
1790 memmove(nearex + 1, nearex, len);
1791 path[depth].p_ext = nearex;
1794 le16_add_cpu(&eh->eh_entries, 1);
1795 nearex = path[depth].p_ext;
1796 nearex->ee_block = newext->ee_block;
1797 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1798 nearex->ee_len = newext->ee_len;
1800 merge:
1801 /* try to merge extents to the right */
1802 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1803 ext4_ext_try_to_merge(inode, path, nearex);
1805 /* try to merge extents to the left */
1807 /* time to correct all indexes above */
1808 err = ext4_ext_correct_indexes(handle, inode, path);
1809 if (err)
1810 goto cleanup;
1812 err = ext4_ext_dirty(handle, inode, path + depth);
1814 cleanup:
1815 if (npath) {
1816 ext4_ext_drop_refs(npath);
1817 kfree(npath);
1819 ext4_ext_invalidate_cache(inode);
1820 return err;
1823 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1824 ext4_lblk_t num, ext_prepare_callback func,
1825 void *cbdata)
1827 struct ext4_ext_path *path = NULL;
1828 struct ext4_ext_cache cbex;
1829 struct ext4_extent *ex;
1830 ext4_lblk_t next, start = 0, end = 0;
1831 ext4_lblk_t last = block + num;
1832 int depth, exists, err = 0;
1834 BUG_ON(func == NULL);
1835 BUG_ON(inode == NULL);
1837 while (block < last && block != EXT_MAX_BLOCK) {
1838 num = last - block;
1839 /* find extent for this block */
1840 down_read(&EXT4_I(inode)->i_data_sem);
1841 path = ext4_ext_find_extent(inode, block, path);
1842 up_read(&EXT4_I(inode)->i_data_sem);
1843 if (IS_ERR(path)) {
1844 err = PTR_ERR(path);
1845 path = NULL;
1846 break;
1849 depth = ext_depth(inode);
1850 if (unlikely(path[depth].p_hdr == NULL)) {
1851 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1852 err = -EIO;
1853 break;
1855 ex = path[depth].p_ext;
1856 next = ext4_ext_next_allocated_block(path);
1858 exists = 0;
1859 if (!ex) {
1860 /* there is no extent yet, so try to allocate
1861 * all requested space */
1862 start = block;
1863 end = block + num;
1864 } else if (le32_to_cpu(ex->ee_block) > block) {
1865 /* need to allocate space before found extent */
1866 start = block;
1867 end = le32_to_cpu(ex->ee_block);
1868 if (block + num < end)
1869 end = block + num;
1870 } else if (block >= le32_to_cpu(ex->ee_block)
1871 + ext4_ext_get_actual_len(ex)) {
1872 /* need to allocate space after found extent */
1873 start = block;
1874 end = block + num;
1875 if (end >= next)
1876 end = next;
1877 } else if (block >= le32_to_cpu(ex->ee_block)) {
1879 * some part of requested space is covered
1880 * by found extent
1882 start = block;
1883 end = le32_to_cpu(ex->ee_block)
1884 + ext4_ext_get_actual_len(ex);
1885 if (block + num < end)
1886 end = block + num;
1887 exists = 1;
1888 } else {
1889 BUG();
1891 BUG_ON(end <= start);
1893 if (!exists) {
1894 cbex.ec_block = start;
1895 cbex.ec_len = end - start;
1896 cbex.ec_start = 0;
1897 } else {
1898 cbex.ec_block = le32_to_cpu(ex->ee_block);
1899 cbex.ec_len = ext4_ext_get_actual_len(ex);
1900 cbex.ec_start = ext4_ext_pblock(ex);
1903 if (unlikely(cbex.ec_len == 0)) {
1904 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1905 err = -EIO;
1906 break;
1908 err = func(inode, path, &cbex, ex, cbdata);
1909 ext4_ext_drop_refs(path);
1911 if (err < 0)
1912 break;
1914 if (err == EXT_REPEAT)
1915 continue;
1916 else if (err == EXT_BREAK) {
1917 err = 0;
1918 break;
1921 if (ext_depth(inode) != depth) {
1922 /* depth was changed. we have to realloc path */
1923 kfree(path);
1924 path = NULL;
1927 block = cbex.ec_block + cbex.ec_len;
1930 if (path) {
1931 ext4_ext_drop_refs(path);
1932 kfree(path);
1935 return err;
1938 static void
1939 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1940 __u32 len, ext4_fsblk_t start)
1942 struct ext4_ext_cache *cex;
1943 BUG_ON(len == 0);
1944 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1945 cex = &EXT4_I(inode)->i_cached_extent;
1946 cex->ec_block = block;
1947 cex->ec_len = len;
1948 cex->ec_start = start;
1949 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1953 * ext4_ext_put_gap_in_cache:
1954 * calculate boundaries of the gap that the requested block fits into
1955 * and cache this gap
1957 static void
1958 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1959 ext4_lblk_t block)
1961 int depth = ext_depth(inode);
1962 unsigned long len;
1963 ext4_lblk_t lblock;
1964 struct ext4_extent *ex;
1966 ex = path[depth].p_ext;
1967 if (ex == NULL) {
1968 /* there is no extent yet, so gap is [0;-] */
1969 lblock = 0;
1970 len = EXT_MAX_BLOCK;
1971 ext_debug("cache gap(whole file):");
1972 } else if (block < le32_to_cpu(ex->ee_block)) {
1973 lblock = block;
1974 len = le32_to_cpu(ex->ee_block) - block;
1975 ext_debug("cache gap(before): %u [%u:%u]",
1976 block,
1977 le32_to_cpu(ex->ee_block),
1978 ext4_ext_get_actual_len(ex));
1979 } else if (block >= le32_to_cpu(ex->ee_block)
1980 + ext4_ext_get_actual_len(ex)) {
1981 ext4_lblk_t next;
1982 lblock = le32_to_cpu(ex->ee_block)
1983 + ext4_ext_get_actual_len(ex);
1985 next = ext4_ext_next_allocated_block(path);
1986 ext_debug("cache gap(after): [%u:%u] %u",
1987 le32_to_cpu(ex->ee_block),
1988 ext4_ext_get_actual_len(ex),
1989 block);
1990 BUG_ON(next == lblock);
1991 len = next - lblock;
1992 } else {
1993 lblock = len = 0;
1994 BUG();
1997 ext_debug(" -> %u:%lu\n", lblock, len);
1998 ext4_ext_put_in_cache(inode, lblock, len, 0);
2002 * Return 0 if cache is invalid; 1 if the cache is valid
2004 static int
2005 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2006 struct ext4_extent *ex)
2008 struct ext4_ext_cache *cex;
2009 int ret = 0;
2012 * We borrow i_block_reservation_lock to protect i_cached_extent
2014 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2015 cex = &EXT4_I(inode)->i_cached_extent;
2017 /* has cache valid data? */
2018 if (cex->ec_len == 0)
2019 goto errout;
2021 if (in_range(block, cex->ec_block, cex->ec_len)) {
2022 ex->ee_block = cpu_to_le32(cex->ec_block);
2023 ext4_ext_store_pblock(ex, cex->ec_start);
2024 ex->ee_len = cpu_to_le16(cex->ec_len);
2025 ext_debug("%u cached by %u:%u:%llu\n",
2026 block,
2027 cex->ec_block, cex->ec_len, cex->ec_start);
2028 ret = 1;
2030 errout:
2031 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2032 return ret;
2036 * ext4_ext_rm_idx:
2037 * removes index from the index block.
2038 * It's used in truncate case only, thus all requests are for
2039 * last index in the block only.
2041 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2042 struct ext4_ext_path *path)
2044 int err;
2045 ext4_fsblk_t leaf;
2047 /* free index block */
2048 path--;
2049 leaf = ext4_idx_pblock(path->p_idx);
2050 if (unlikely(path->p_hdr->eh_entries == 0)) {
2051 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2052 return -EIO;
2054 err = ext4_ext_get_access(handle, inode, path);
2055 if (err)
2056 return err;
2057 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2058 err = ext4_ext_dirty(handle, inode, path);
2059 if (err)
2060 return err;
2061 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2062 ext4_free_blocks(handle, inode, 0, leaf, 1,
2063 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2064 return err;
2068 * ext4_ext_calc_credits_for_single_extent:
2069 * This routine returns max. credits that needed to insert an extent
2070 * to the extent tree.
2071 * When pass the actual path, the caller should calculate credits
2072 * under i_data_sem.
2074 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2075 struct ext4_ext_path *path)
2077 if (path) {
2078 int depth = ext_depth(inode);
2079 int ret = 0;
2081 /* probably there is space in leaf? */
2082 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2083 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2086 * There are some space in the leaf tree, no
2087 * need to account for leaf block credit
2089 * bitmaps and block group descriptor blocks
2090 * and other metadat blocks still need to be
2091 * accounted.
2093 /* 1 bitmap, 1 block group descriptor */
2094 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2095 return ret;
2099 return ext4_chunk_trans_blocks(inode, nrblocks);
2103 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2105 * if nrblocks are fit in a single extent (chunk flag is 1), then
2106 * in the worse case, each tree level index/leaf need to be changed
2107 * if the tree split due to insert a new extent, then the old tree
2108 * index/leaf need to be updated too
2110 * If the nrblocks are discontiguous, they could cause
2111 * the whole tree split more than once, but this is really rare.
2113 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2115 int index;
2116 int depth = ext_depth(inode);
2118 if (chunk)
2119 index = depth * 2;
2120 else
2121 index = depth * 3;
2123 return index;
2126 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2127 struct ext4_extent *ex,
2128 ext4_lblk_t from, ext4_lblk_t to)
2130 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2131 int flags = EXT4_FREE_BLOCKS_FORGET;
2133 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2134 flags |= EXT4_FREE_BLOCKS_METADATA;
2135 #ifdef EXTENTS_STATS
2137 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2138 spin_lock(&sbi->s_ext_stats_lock);
2139 sbi->s_ext_blocks += ee_len;
2140 sbi->s_ext_extents++;
2141 if (ee_len < sbi->s_ext_min)
2142 sbi->s_ext_min = ee_len;
2143 if (ee_len > sbi->s_ext_max)
2144 sbi->s_ext_max = ee_len;
2145 if (ext_depth(inode) > sbi->s_depth_max)
2146 sbi->s_depth_max = ext_depth(inode);
2147 spin_unlock(&sbi->s_ext_stats_lock);
2149 #endif
2150 if (from >= le32_to_cpu(ex->ee_block)
2151 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2152 /* tail removal */
2153 ext4_lblk_t num;
2154 ext4_fsblk_t start;
2156 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2157 start = ext4_ext_pblock(ex) + ee_len - num;
2158 ext_debug("free last %u blocks starting %llu\n", num, start);
2159 ext4_free_blocks(handle, inode, 0, start, num, flags);
2160 } else if (from == le32_to_cpu(ex->ee_block)
2161 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2162 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2163 from, to, le32_to_cpu(ex->ee_block), ee_len);
2164 } else {
2165 printk(KERN_INFO "strange request: removal(2) "
2166 "%u-%u from %u:%u\n",
2167 from, to, le32_to_cpu(ex->ee_block), ee_len);
2169 return 0;
2172 static int
2173 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2174 struct ext4_ext_path *path, ext4_lblk_t start)
2176 int err = 0, correct_index = 0;
2177 int depth = ext_depth(inode), credits;
2178 struct ext4_extent_header *eh;
2179 ext4_lblk_t a, b, block;
2180 unsigned num;
2181 ext4_lblk_t ex_ee_block;
2182 unsigned short ex_ee_len;
2183 unsigned uninitialized = 0;
2184 struct ext4_extent *ex;
2186 /* the header must be checked already in ext4_ext_remove_space() */
2187 ext_debug("truncate since %u in leaf\n", start);
2188 if (!path[depth].p_hdr)
2189 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2190 eh = path[depth].p_hdr;
2191 if (unlikely(path[depth].p_hdr == NULL)) {
2192 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2193 return -EIO;
2195 /* find where to start removing */
2196 ex = EXT_LAST_EXTENT(eh);
2198 ex_ee_block = le32_to_cpu(ex->ee_block);
2199 ex_ee_len = ext4_ext_get_actual_len(ex);
2201 while (ex >= EXT_FIRST_EXTENT(eh) &&
2202 ex_ee_block + ex_ee_len > start) {
2204 if (ext4_ext_is_uninitialized(ex))
2205 uninitialized = 1;
2206 else
2207 uninitialized = 0;
2209 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2210 uninitialized, ex_ee_len);
2211 path[depth].p_ext = ex;
2213 a = ex_ee_block > start ? ex_ee_block : start;
2214 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2215 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2217 ext_debug(" border %u:%u\n", a, b);
2219 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2220 block = 0;
2221 num = 0;
2222 BUG();
2223 } else if (a != ex_ee_block) {
2224 /* remove tail of the extent */
2225 block = ex_ee_block;
2226 num = a - block;
2227 } else if (b != ex_ee_block + ex_ee_len - 1) {
2228 /* remove head of the extent */
2229 block = a;
2230 num = b - a;
2231 /* there is no "make a hole" API yet */
2232 BUG();
2233 } else {
2234 /* remove whole extent: excellent! */
2235 block = ex_ee_block;
2236 num = 0;
2237 BUG_ON(a != ex_ee_block);
2238 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2242 * 3 for leaf, sb, and inode plus 2 (bmap and group
2243 * descriptor) for each block group; assume two block
2244 * groups plus ex_ee_len/blocks_per_block_group for
2245 * the worst case
2247 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2248 if (ex == EXT_FIRST_EXTENT(eh)) {
2249 correct_index = 1;
2250 credits += (ext_depth(inode)) + 1;
2252 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2254 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2255 if (err)
2256 goto out;
2258 err = ext4_ext_get_access(handle, inode, path + depth);
2259 if (err)
2260 goto out;
2262 err = ext4_remove_blocks(handle, inode, ex, a, b);
2263 if (err)
2264 goto out;
2266 if (num == 0) {
2267 /* this extent is removed; mark slot entirely unused */
2268 ext4_ext_store_pblock(ex, 0);
2269 le16_add_cpu(&eh->eh_entries, -1);
2272 ex->ee_block = cpu_to_le32(block);
2273 ex->ee_len = cpu_to_le16(num);
2275 * Do not mark uninitialized if all the blocks in the
2276 * extent have been removed.
2278 if (uninitialized && num)
2279 ext4_ext_mark_uninitialized(ex);
2281 err = ext4_ext_dirty(handle, inode, path + depth);
2282 if (err)
2283 goto out;
2285 ext_debug("new extent: %u:%u:%llu\n", block, num,
2286 ext4_ext_pblock(ex));
2287 ex--;
2288 ex_ee_block = le32_to_cpu(ex->ee_block);
2289 ex_ee_len = ext4_ext_get_actual_len(ex);
2292 if (correct_index && eh->eh_entries)
2293 err = ext4_ext_correct_indexes(handle, inode, path);
2295 /* if this leaf is free, then we should
2296 * remove it from index block above */
2297 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2298 err = ext4_ext_rm_idx(handle, inode, path + depth);
2300 out:
2301 return err;
2305 * ext4_ext_more_to_rm:
2306 * returns 1 if current index has to be freed (even partial)
2308 static int
2309 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2311 BUG_ON(path->p_idx == NULL);
2313 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2314 return 0;
2317 * if truncate on deeper level happened, it wasn't partial,
2318 * so we have to consider current index for truncation
2320 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2321 return 0;
2322 return 1;
2325 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2327 struct super_block *sb = inode->i_sb;
2328 int depth = ext_depth(inode);
2329 struct ext4_ext_path *path;
2330 handle_t *handle;
2331 int i, err;
2333 ext_debug("truncate since %u\n", start);
2335 /* probably first extent we're gonna free will be last in block */
2336 handle = ext4_journal_start(inode, depth + 1);
2337 if (IS_ERR(handle))
2338 return PTR_ERR(handle);
2340 again:
2341 ext4_ext_invalidate_cache(inode);
2344 * We start scanning from right side, freeing all the blocks
2345 * after i_size and walking into the tree depth-wise.
2347 depth = ext_depth(inode);
2348 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2349 if (path == NULL) {
2350 ext4_journal_stop(handle);
2351 return -ENOMEM;
2353 path[0].p_depth = depth;
2354 path[0].p_hdr = ext_inode_hdr(inode);
2355 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2356 err = -EIO;
2357 goto out;
2359 i = err = 0;
2361 while (i >= 0 && err == 0) {
2362 if (i == depth) {
2363 /* this is leaf block */
2364 err = ext4_ext_rm_leaf(handle, inode, path, start);
2365 /* root level has p_bh == NULL, brelse() eats this */
2366 brelse(path[i].p_bh);
2367 path[i].p_bh = NULL;
2368 i--;
2369 continue;
2372 /* this is index block */
2373 if (!path[i].p_hdr) {
2374 ext_debug("initialize header\n");
2375 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2378 if (!path[i].p_idx) {
2379 /* this level hasn't been touched yet */
2380 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2381 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2382 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2383 path[i].p_hdr,
2384 le16_to_cpu(path[i].p_hdr->eh_entries));
2385 } else {
2386 /* we were already here, see at next index */
2387 path[i].p_idx--;
2390 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2391 i, EXT_FIRST_INDEX(path[i].p_hdr),
2392 path[i].p_idx);
2393 if (ext4_ext_more_to_rm(path + i)) {
2394 struct buffer_head *bh;
2395 /* go to the next level */
2396 ext_debug("move to level %d (block %llu)\n",
2397 i + 1, ext4_idx_pblock(path[i].p_idx));
2398 memset(path + i + 1, 0, sizeof(*path));
2399 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2400 if (!bh) {
2401 /* should we reset i_size? */
2402 err = -EIO;
2403 break;
2405 if (WARN_ON(i + 1 > depth)) {
2406 err = -EIO;
2407 break;
2409 if (ext4_ext_check(inode, ext_block_hdr(bh),
2410 depth - i - 1)) {
2411 err = -EIO;
2412 break;
2414 path[i + 1].p_bh = bh;
2416 /* save actual number of indexes since this
2417 * number is changed at the next iteration */
2418 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2419 i++;
2420 } else {
2421 /* we finished processing this index, go up */
2422 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2423 /* index is empty, remove it;
2424 * handle must be already prepared by the
2425 * truncatei_leaf() */
2426 err = ext4_ext_rm_idx(handle, inode, path + i);
2428 /* root level has p_bh == NULL, brelse() eats this */
2429 brelse(path[i].p_bh);
2430 path[i].p_bh = NULL;
2431 i--;
2432 ext_debug("return to level %d\n", i);
2436 /* TODO: flexible tree reduction should be here */
2437 if (path->p_hdr->eh_entries == 0) {
2439 * truncate to zero freed all the tree,
2440 * so we need to correct eh_depth
2442 err = ext4_ext_get_access(handle, inode, path);
2443 if (err == 0) {
2444 ext_inode_hdr(inode)->eh_depth = 0;
2445 ext_inode_hdr(inode)->eh_max =
2446 cpu_to_le16(ext4_ext_space_root(inode, 0));
2447 err = ext4_ext_dirty(handle, inode, path);
2450 out:
2451 ext4_ext_drop_refs(path);
2452 kfree(path);
2453 if (err == -EAGAIN)
2454 goto again;
2455 ext4_journal_stop(handle);
2457 return err;
2461 * called at mount time
2463 void ext4_ext_init(struct super_block *sb)
2466 * possible initialization would be here
2469 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2470 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2471 printk(KERN_INFO "EXT4-fs: file extents enabled");
2472 #ifdef AGGRESSIVE_TEST
2473 printk(", aggressive tests");
2474 #endif
2475 #ifdef CHECK_BINSEARCH
2476 printk(", check binsearch");
2477 #endif
2478 #ifdef EXTENTS_STATS
2479 printk(", stats");
2480 #endif
2481 printk("\n");
2482 #endif
2483 #ifdef EXTENTS_STATS
2484 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2485 EXT4_SB(sb)->s_ext_min = 1 << 30;
2486 EXT4_SB(sb)->s_ext_max = 0;
2487 #endif
2492 * called at umount time
2494 void ext4_ext_release(struct super_block *sb)
2496 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2497 return;
2499 #ifdef EXTENTS_STATS
2500 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2501 struct ext4_sb_info *sbi = EXT4_SB(sb);
2502 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2503 sbi->s_ext_blocks, sbi->s_ext_extents,
2504 sbi->s_ext_blocks / sbi->s_ext_extents);
2505 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2506 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2508 #endif
2511 /* FIXME!! we need to try to merge to left or right after zero-out */
2512 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2514 ext4_fsblk_t ee_pblock;
2515 unsigned int ee_len;
2516 int ret;
2518 ee_len = ext4_ext_get_actual_len(ex);
2519 ee_pblock = ext4_ext_pblock(ex);
2521 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2522 if (ret > 0)
2523 ret = 0;
2525 return ret;
2528 #define EXT4_EXT_ZERO_LEN 7
2530 * This function is called by ext4_ext_map_blocks() if someone tries to write
2531 * to an uninitialized extent. It may result in splitting the uninitialized
2532 * extent into multiple extents (upto three - one initialized and two
2533 * uninitialized).
2534 * There are three possibilities:
2535 * a> There is no split required: Entire extent should be initialized
2536 * b> Splits in two extents: Write is happening at either end of the extent
2537 * c> Splits in three extents: Somone is writing in middle of the extent
2539 static int ext4_ext_convert_to_initialized(handle_t *handle,
2540 struct inode *inode,
2541 struct ext4_map_blocks *map,
2542 struct ext4_ext_path *path)
2544 struct ext4_extent *ex, newex, orig_ex;
2545 struct ext4_extent *ex1 = NULL;
2546 struct ext4_extent *ex2 = NULL;
2547 struct ext4_extent *ex3 = NULL;
2548 struct ext4_extent_header *eh;
2549 ext4_lblk_t ee_block, eof_block;
2550 unsigned int allocated, ee_len, depth;
2551 ext4_fsblk_t newblock;
2552 int err = 0;
2553 int ret = 0;
2554 int may_zeroout;
2556 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2557 "block %llu, max_blocks %u\n", inode->i_ino,
2558 (unsigned long long)map->m_lblk, map->m_len);
2560 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2561 inode->i_sb->s_blocksize_bits;
2562 if (eof_block < map->m_lblk + map->m_len)
2563 eof_block = map->m_lblk + map->m_len;
2565 depth = ext_depth(inode);
2566 eh = path[depth].p_hdr;
2567 ex = path[depth].p_ext;
2568 ee_block = le32_to_cpu(ex->ee_block);
2569 ee_len = ext4_ext_get_actual_len(ex);
2570 allocated = ee_len - (map->m_lblk - ee_block);
2571 newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2573 ex2 = ex;
2574 orig_ex.ee_block = ex->ee_block;
2575 orig_ex.ee_len = cpu_to_le16(ee_len);
2576 ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2579 * It is safe to convert extent to initialized via explicit
2580 * zeroout only if extent is fully insde i_size or new_size.
2582 may_zeroout = ee_block + ee_len <= eof_block;
2584 err = ext4_ext_get_access(handle, inode, path + depth);
2585 if (err)
2586 goto out;
2587 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2588 if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2589 err = ext4_ext_zeroout(inode, &orig_ex);
2590 if (err)
2591 goto fix_extent_len;
2592 /* update the extent length and mark as initialized */
2593 ex->ee_block = orig_ex.ee_block;
2594 ex->ee_len = orig_ex.ee_len;
2595 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2596 ext4_ext_dirty(handle, inode, path + depth);
2597 /* zeroed the full extent */
2598 return allocated;
2601 /* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2602 if (map->m_lblk > ee_block) {
2603 ex1 = ex;
2604 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2605 ext4_ext_mark_uninitialized(ex1);
2606 ex2 = &newex;
2609 * for sanity, update the length of the ex2 extent before
2610 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2611 * overlap of blocks.
2613 if (!ex1 && allocated > map->m_len)
2614 ex2->ee_len = cpu_to_le16(map->m_len);
2615 /* ex3: to ee_block + ee_len : uninitialised */
2616 if (allocated > map->m_len) {
2617 unsigned int newdepth;
2618 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2619 if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2621 * map->m_lblk == ee_block is handled by the zerouout
2622 * at the beginning.
2623 * Mark first half uninitialized.
2624 * Mark second half initialized and zero out the
2625 * initialized extent
2627 ex->ee_block = orig_ex.ee_block;
2628 ex->ee_len = cpu_to_le16(ee_len - allocated);
2629 ext4_ext_mark_uninitialized(ex);
2630 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2631 ext4_ext_dirty(handle, inode, path + depth);
2633 ex3 = &newex;
2634 ex3->ee_block = cpu_to_le32(map->m_lblk);
2635 ext4_ext_store_pblock(ex3, newblock);
2636 ex3->ee_len = cpu_to_le16(allocated);
2637 err = ext4_ext_insert_extent(handle, inode, path,
2638 ex3, 0);
2639 if (err == -ENOSPC) {
2640 err = ext4_ext_zeroout(inode, &orig_ex);
2641 if (err)
2642 goto fix_extent_len;
2643 ex->ee_block = orig_ex.ee_block;
2644 ex->ee_len = orig_ex.ee_len;
2645 ext4_ext_store_pblock(ex,
2646 ext4_ext_pblock(&orig_ex));
2647 ext4_ext_dirty(handle, inode, path + depth);
2648 /* blocks available from map->m_lblk */
2649 return allocated;
2651 } else if (err)
2652 goto fix_extent_len;
2655 * We need to zero out the second half because
2656 * an fallocate request can update file size and
2657 * converting the second half to initialized extent
2658 * implies that we can leak some junk data to user
2659 * space.
2661 err = ext4_ext_zeroout(inode, ex3);
2662 if (err) {
2664 * We should actually mark the
2665 * second half as uninit and return error
2666 * Insert would have changed the extent
2668 depth = ext_depth(inode);
2669 ext4_ext_drop_refs(path);
2670 path = ext4_ext_find_extent(inode, map->m_lblk,
2671 path);
2672 if (IS_ERR(path)) {
2673 err = PTR_ERR(path);
2674 return err;
2676 /* get the second half extent details */
2677 ex = path[depth].p_ext;
2678 err = ext4_ext_get_access(handle, inode,
2679 path + depth);
2680 if (err)
2681 return err;
2682 ext4_ext_mark_uninitialized(ex);
2683 ext4_ext_dirty(handle, inode, path + depth);
2684 return err;
2687 /* zeroed the second half */
2688 return allocated;
2690 ex3 = &newex;
2691 ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2692 ext4_ext_store_pblock(ex3, newblock + map->m_len);
2693 ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2694 ext4_ext_mark_uninitialized(ex3);
2695 err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2696 if (err == -ENOSPC && may_zeroout) {
2697 err = ext4_ext_zeroout(inode, &orig_ex);
2698 if (err)
2699 goto fix_extent_len;
2700 /* update the extent length and mark as initialized */
2701 ex->ee_block = orig_ex.ee_block;
2702 ex->ee_len = orig_ex.ee_len;
2703 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2704 ext4_ext_dirty(handle, inode, path + depth);
2705 /* zeroed the full extent */
2706 /* blocks available from map->m_lblk */
2707 return allocated;
2709 } else if (err)
2710 goto fix_extent_len;
2712 * The depth, and hence eh & ex might change
2713 * as part of the insert above.
2715 newdepth = ext_depth(inode);
2717 * update the extent length after successful insert of the
2718 * split extent
2720 ee_len -= ext4_ext_get_actual_len(ex3);
2721 orig_ex.ee_len = cpu_to_le16(ee_len);
2722 may_zeroout = ee_block + ee_len <= eof_block;
2724 depth = newdepth;
2725 ext4_ext_drop_refs(path);
2726 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2727 if (IS_ERR(path)) {
2728 err = PTR_ERR(path);
2729 goto out;
2731 eh = path[depth].p_hdr;
2732 ex = path[depth].p_ext;
2733 if (ex2 != &newex)
2734 ex2 = ex;
2736 err = ext4_ext_get_access(handle, inode, path + depth);
2737 if (err)
2738 goto out;
2740 allocated = map->m_len;
2742 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2743 * to insert a extent in the middle zerout directly
2744 * otherwise give the extent a chance to merge to left
2746 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2747 map->m_lblk != ee_block && may_zeroout) {
2748 err = ext4_ext_zeroout(inode, &orig_ex);
2749 if (err)
2750 goto fix_extent_len;
2751 /* update the extent length and mark as initialized */
2752 ex->ee_block = orig_ex.ee_block;
2753 ex->ee_len = orig_ex.ee_len;
2754 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2755 ext4_ext_dirty(handle, inode, path + depth);
2756 /* zero out the first half */
2757 /* blocks available from map->m_lblk */
2758 return allocated;
2762 * If there was a change of depth as part of the
2763 * insertion of ex3 above, we need to update the length
2764 * of the ex1 extent again here
2766 if (ex1 && ex1 != ex) {
2767 ex1 = ex;
2768 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2769 ext4_ext_mark_uninitialized(ex1);
2770 ex2 = &newex;
2772 /* ex2: map->m_lblk to map->m_lblk + maxblocks-1 : initialised */
2773 ex2->ee_block = cpu_to_le32(map->m_lblk);
2774 ext4_ext_store_pblock(ex2, newblock);
2775 ex2->ee_len = cpu_to_le16(allocated);
2776 if (ex2 != ex)
2777 goto insert;
2779 * New (initialized) extent starts from the first block
2780 * in the current extent. i.e., ex2 == ex
2781 * We have to see if it can be merged with the extent
2782 * on the left.
2784 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2786 * To merge left, pass "ex2 - 1" to try_to_merge(),
2787 * since it merges towards right _only_.
2789 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2790 if (ret) {
2791 err = ext4_ext_correct_indexes(handle, inode, path);
2792 if (err)
2793 goto out;
2794 depth = ext_depth(inode);
2795 ex2--;
2799 * Try to Merge towards right. This might be required
2800 * only when the whole extent is being written to.
2801 * i.e. ex2 == ex and ex3 == NULL.
2803 if (!ex3) {
2804 ret = ext4_ext_try_to_merge(inode, path, ex2);
2805 if (ret) {
2806 err = ext4_ext_correct_indexes(handle, inode, path);
2807 if (err)
2808 goto out;
2811 /* Mark modified extent as dirty */
2812 err = ext4_ext_dirty(handle, inode, path + depth);
2813 goto out;
2814 insert:
2815 err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2816 if (err == -ENOSPC && may_zeroout) {
2817 err = ext4_ext_zeroout(inode, &orig_ex);
2818 if (err)
2819 goto fix_extent_len;
2820 /* update the extent length and mark as initialized */
2821 ex->ee_block = orig_ex.ee_block;
2822 ex->ee_len = orig_ex.ee_len;
2823 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2824 ext4_ext_dirty(handle, inode, path + depth);
2825 /* zero out the first half */
2826 return allocated;
2827 } else if (err)
2828 goto fix_extent_len;
2829 out:
2830 ext4_ext_show_leaf(inode, path);
2831 return err ? err : allocated;
2833 fix_extent_len:
2834 ex->ee_block = orig_ex.ee_block;
2835 ex->ee_len = orig_ex.ee_len;
2836 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2837 ext4_ext_mark_uninitialized(ex);
2838 ext4_ext_dirty(handle, inode, path + depth);
2839 return err;
2843 * This function is called by ext4_ext_map_blocks() from
2844 * ext4_get_blocks_dio_write() when DIO to write
2845 * to an uninitialized extent.
2847 * Writing to an uninitized extent may result in splitting the uninitialized
2848 * extent into multiple /initialized uninitialized extents (up to three)
2849 * There are three possibilities:
2850 * a> There is no split required: Entire extent should be uninitialized
2851 * b> Splits in two extents: Write is happening at either end of the extent
2852 * c> Splits in three extents: Somone is writing in middle of the extent
2854 * One of more index blocks maybe needed if the extent tree grow after
2855 * the uninitialized extent split. To prevent ENOSPC occur at the IO
2856 * complete, we need to split the uninitialized extent before DIO submit
2857 * the IO. The uninitialized extent called at this time will be split
2858 * into three uninitialized extent(at most). After IO complete, the part
2859 * being filled will be convert to initialized by the end_io callback function
2860 * via ext4_convert_unwritten_extents().
2862 * Returns the size of uninitialized extent to be written on success.
2864 static int ext4_split_unwritten_extents(handle_t *handle,
2865 struct inode *inode,
2866 struct ext4_map_blocks *map,
2867 struct ext4_ext_path *path,
2868 int flags)
2870 struct ext4_extent *ex, newex, orig_ex;
2871 struct ext4_extent *ex1 = NULL;
2872 struct ext4_extent *ex2 = NULL;
2873 struct ext4_extent *ex3 = NULL;
2874 ext4_lblk_t ee_block, eof_block;
2875 unsigned int allocated, ee_len, depth;
2876 ext4_fsblk_t newblock;
2877 int err = 0;
2878 int may_zeroout;
2880 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2881 "block %llu, max_blocks %u\n", inode->i_ino,
2882 (unsigned long long)map->m_lblk, map->m_len);
2884 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2885 inode->i_sb->s_blocksize_bits;
2886 if (eof_block < map->m_lblk + map->m_len)
2887 eof_block = map->m_lblk + map->m_len;
2889 depth = ext_depth(inode);
2890 ex = path[depth].p_ext;
2891 ee_block = le32_to_cpu(ex->ee_block);
2892 ee_len = ext4_ext_get_actual_len(ex);
2893 allocated = ee_len - (map->m_lblk - ee_block);
2894 newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2896 ex2 = ex;
2897 orig_ex.ee_block = ex->ee_block;
2898 orig_ex.ee_len = cpu_to_le16(ee_len);
2899 ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2902 * It is safe to convert extent to initialized via explicit
2903 * zeroout only if extent is fully insde i_size or new_size.
2905 may_zeroout = ee_block + ee_len <= eof_block;
2908 * If the uninitialized extent begins at the same logical
2909 * block where the write begins, and the write completely
2910 * covers the extent, then we don't need to split it.
2912 if ((map->m_lblk == ee_block) && (allocated <= map->m_len))
2913 return allocated;
2915 err = ext4_ext_get_access(handle, inode, path + depth);
2916 if (err)
2917 goto out;
2918 /* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2919 if (map->m_lblk > ee_block) {
2920 ex1 = ex;
2921 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2922 ext4_ext_mark_uninitialized(ex1);
2923 ex2 = &newex;
2926 * for sanity, update the length of the ex2 extent before
2927 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2928 * overlap of blocks.
2930 if (!ex1 && allocated > map->m_len)
2931 ex2->ee_len = cpu_to_le16(map->m_len);
2932 /* ex3: to ee_block + ee_len : uninitialised */
2933 if (allocated > map->m_len) {
2934 unsigned int newdepth;
2935 ex3 = &newex;
2936 ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2937 ext4_ext_store_pblock(ex3, newblock + map->m_len);
2938 ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2939 ext4_ext_mark_uninitialized(ex3);
2940 err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2941 if (err == -ENOSPC && may_zeroout) {
2942 err = ext4_ext_zeroout(inode, &orig_ex);
2943 if (err)
2944 goto fix_extent_len;
2945 /* update the extent length and mark as initialized */
2946 ex->ee_block = orig_ex.ee_block;
2947 ex->ee_len = orig_ex.ee_len;
2948 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2949 ext4_ext_dirty(handle, inode, path + depth);
2950 /* zeroed the full extent */
2951 /* blocks available from map->m_lblk */
2952 return allocated;
2954 } else if (err)
2955 goto fix_extent_len;
2957 * The depth, and hence eh & ex might change
2958 * as part of the insert above.
2960 newdepth = ext_depth(inode);
2962 * update the extent length after successful insert of the
2963 * split extent
2965 ee_len -= ext4_ext_get_actual_len(ex3);
2966 orig_ex.ee_len = cpu_to_le16(ee_len);
2967 may_zeroout = ee_block + ee_len <= eof_block;
2969 depth = newdepth;
2970 ext4_ext_drop_refs(path);
2971 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2972 if (IS_ERR(path)) {
2973 err = PTR_ERR(path);
2974 goto out;
2976 ex = path[depth].p_ext;
2977 if (ex2 != &newex)
2978 ex2 = ex;
2980 err = ext4_ext_get_access(handle, inode, path + depth);
2981 if (err)
2982 goto out;
2984 allocated = map->m_len;
2987 * If there was a change of depth as part of the
2988 * insertion of ex3 above, we need to update the length
2989 * of the ex1 extent again here
2991 if (ex1 && ex1 != ex) {
2992 ex1 = ex;
2993 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2994 ext4_ext_mark_uninitialized(ex1);
2995 ex2 = &newex;
2998 * ex2: map->m_lblk to map->m_lblk + map->m_len-1 : to be written
2999 * using direct I/O, uninitialised still.
3001 ex2->ee_block = cpu_to_le32(map->m_lblk);
3002 ext4_ext_store_pblock(ex2, newblock);
3003 ex2->ee_len = cpu_to_le16(allocated);
3004 ext4_ext_mark_uninitialized(ex2);
3005 if (ex2 != ex)
3006 goto insert;
3007 /* Mark modified extent as dirty */
3008 err = ext4_ext_dirty(handle, inode, path + depth);
3009 ext_debug("out here\n");
3010 goto out;
3011 insert:
3012 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3013 if (err == -ENOSPC && may_zeroout) {
3014 err = ext4_ext_zeroout(inode, &orig_ex);
3015 if (err)
3016 goto fix_extent_len;
3017 /* update the extent length and mark as initialized */
3018 ex->ee_block = orig_ex.ee_block;
3019 ex->ee_len = orig_ex.ee_len;
3020 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3021 ext4_ext_dirty(handle, inode, path + depth);
3022 /* zero out the first half */
3023 return allocated;
3024 } else if (err)
3025 goto fix_extent_len;
3026 out:
3027 ext4_ext_show_leaf(inode, path);
3028 return err ? err : allocated;
3030 fix_extent_len:
3031 ex->ee_block = orig_ex.ee_block;
3032 ex->ee_len = orig_ex.ee_len;
3033 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3034 ext4_ext_mark_uninitialized(ex);
3035 ext4_ext_dirty(handle, inode, path + depth);
3036 return err;
3038 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3039 struct inode *inode,
3040 struct ext4_ext_path *path)
3042 struct ext4_extent *ex;
3043 struct ext4_extent_header *eh;
3044 int depth;
3045 int err = 0;
3046 int ret = 0;
3048 depth = ext_depth(inode);
3049 eh = path[depth].p_hdr;
3050 ex = path[depth].p_ext;
3052 err = ext4_ext_get_access(handle, inode, path + depth);
3053 if (err)
3054 goto out;
3055 /* first mark the extent as initialized */
3056 ext4_ext_mark_initialized(ex);
3059 * We have to see if it can be merged with the extent
3060 * on the left.
3062 if (ex > EXT_FIRST_EXTENT(eh)) {
3064 * To merge left, pass "ex - 1" to try_to_merge(),
3065 * since it merges towards right _only_.
3067 ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3068 if (ret) {
3069 err = ext4_ext_correct_indexes(handle, inode, path);
3070 if (err)
3071 goto out;
3072 depth = ext_depth(inode);
3073 ex--;
3077 * Try to Merge towards right.
3079 ret = ext4_ext_try_to_merge(inode, path, ex);
3080 if (ret) {
3081 err = ext4_ext_correct_indexes(handle, inode, path);
3082 if (err)
3083 goto out;
3084 depth = ext_depth(inode);
3086 /* Mark modified extent as dirty */
3087 err = ext4_ext_dirty(handle, inode, path + depth);
3088 out:
3089 ext4_ext_show_leaf(inode, path);
3090 return err;
3093 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3094 sector_t block, int count)
3096 int i;
3097 for (i = 0; i < count; i++)
3098 unmap_underlying_metadata(bdev, block + i);
3102 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3104 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3105 ext4_lblk_t lblk,
3106 struct ext4_ext_path *path,
3107 unsigned int len)
3109 int i, depth;
3110 struct ext4_extent_header *eh;
3111 struct ext4_extent *ex, *last_ex;
3113 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3114 return 0;
3116 depth = ext_depth(inode);
3117 eh = path[depth].p_hdr;
3118 ex = path[depth].p_ext;
3120 if (unlikely(!eh->eh_entries)) {
3121 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3122 "EOFBLOCKS_FL set");
3123 return -EIO;
3125 last_ex = EXT_LAST_EXTENT(eh);
3127 * We should clear the EOFBLOCKS_FL flag if we are writing the
3128 * last block in the last extent in the file. We test this by
3129 * first checking to see if the caller to
3130 * ext4_ext_get_blocks() was interested in the last block (or
3131 * a block beyond the last block) in the current extent. If
3132 * this turns out to be false, we can bail out from this
3133 * function immediately.
3135 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3136 ext4_ext_get_actual_len(last_ex))
3137 return 0;
3139 * If the caller does appear to be planning to write at or
3140 * beyond the end of the current extent, we then test to see
3141 * if the current extent is the last extent in the file, by
3142 * checking to make sure it was reached via the rightmost node
3143 * at each level of the tree.
3145 for (i = depth-1; i >= 0; i--)
3146 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3147 return 0;
3148 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3149 return ext4_mark_inode_dirty(handle, inode);
3152 static int
3153 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3154 struct ext4_map_blocks *map,
3155 struct ext4_ext_path *path, int flags,
3156 unsigned int allocated, ext4_fsblk_t newblock)
3158 int ret = 0;
3159 int err = 0;
3160 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3162 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3163 "block %llu, max_blocks %u, flags %d, allocated %u",
3164 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3165 flags, allocated);
3166 ext4_ext_show_leaf(inode, path);
3168 /* get_block() before submit the IO, split the extent */
3169 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3170 ret = ext4_split_unwritten_extents(handle, inode, map,
3171 path, flags);
3173 * Flag the inode(non aio case) or end_io struct (aio case)
3174 * that this IO needs to convertion to written when IO is
3175 * completed
3177 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3178 io->flag = EXT4_IO_END_UNWRITTEN;
3179 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3180 } else
3181 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3182 if (ext4_should_dioread_nolock(inode))
3183 map->m_flags |= EXT4_MAP_UNINIT;
3184 goto out;
3186 /* IO end_io complete, convert the filled extent to written */
3187 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3188 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3189 path);
3190 if (ret >= 0) {
3191 ext4_update_inode_fsync_trans(handle, inode, 1);
3192 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3193 path, map->m_len);
3194 } else
3195 err = ret;
3196 goto out2;
3198 /* buffered IO case */
3200 * repeat fallocate creation request
3201 * we already have an unwritten extent
3203 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3204 goto map_out;
3206 /* buffered READ or buffered write_begin() lookup */
3207 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3209 * We have blocks reserved already. We
3210 * return allocated blocks so that delalloc
3211 * won't do block reservation for us. But
3212 * the buffer head will be unmapped so that
3213 * a read from the block returns 0s.
3215 map->m_flags |= EXT4_MAP_UNWRITTEN;
3216 goto out1;
3219 /* buffered write, writepage time, convert*/
3220 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3221 if (ret >= 0) {
3222 ext4_update_inode_fsync_trans(handle, inode, 1);
3223 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3224 map->m_len);
3225 if (err < 0)
3226 goto out2;
3229 out:
3230 if (ret <= 0) {
3231 err = ret;
3232 goto out2;
3233 } else
3234 allocated = ret;
3235 map->m_flags |= EXT4_MAP_NEW;
3237 * if we allocated more blocks than requested
3238 * we need to make sure we unmap the extra block
3239 * allocated. The actual needed block will get
3240 * unmapped later when we find the buffer_head marked
3241 * new.
3243 if (allocated > map->m_len) {
3244 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3245 newblock + map->m_len,
3246 allocated - map->m_len);
3247 allocated = map->m_len;
3251 * If we have done fallocate with the offset that is already
3252 * delayed allocated, we would have block reservation
3253 * and quota reservation done in the delayed write path.
3254 * But fallocate would have already updated quota and block
3255 * count for this offset. So cancel these reservation
3257 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3258 ext4_da_update_reserve_space(inode, allocated, 0);
3260 map_out:
3261 map->m_flags |= EXT4_MAP_MAPPED;
3262 out1:
3263 if (allocated > map->m_len)
3264 allocated = map->m_len;
3265 ext4_ext_show_leaf(inode, path);
3266 map->m_pblk = newblock;
3267 map->m_len = allocated;
3268 out2:
3269 if (path) {
3270 ext4_ext_drop_refs(path);
3271 kfree(path);
3273 return err ? err : allocated;
3277 * Block allocation/map/preallocation routine for extents based files
3280 * Need to be called with
3281 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3282 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3284 * return > 0, number of of blocks already mapped/allocated
3285 * if create == 0 and these are pre-allocated blocks
3286 * buffer head is unmapped
3287 * otherwise blocks are mapped
3289 * return = 0, if plain look up failed (blocks have not been allocated)
3290 * buffer head is unmapped
3292 * return < 0, error case.
3294 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3295 struct ext4_map_blocks *map, int flags)
3297 struct ext4_ext_path *path = NULL;
3298 struct ext4_extent_header *eh;
3299 struct ext4_extent newex, *ex;
3300 ext4_fsblk_t newblock;
3301 int err = 0, depth, ret;
3302 unsigned int allocated = 0;
3303 struct ext4_allocation_request ar;
3304 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3306 ext_debug("blocks %u/%u requested for inode %lu\n",
3307 map->m_lblk, map->m_len, inode->i_ino);
3309 /* check in cache */
3310 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3311 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3312 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3314 * block isn't allocated yet and
3315 * user doesn't want to allocate it
3317 goto out2;
3319 /* we should allocate requested block */
3320 } else {
3321 /* block is already allocated */
3322 newblock = map->m_lblk
3323 - le32_to_cpu(newex.ee_block)
3324 + ext4_ext_pblock(&newex);
3325 /* number of remaining blocks in the extent */
3326 allocated = ext4_ext_get_actual_len(&newex) -
3327 (map->m_lblk - le32_to_cpu(newex.ee_block));
3328 goto out;
3332 /* find extent for this block */
3333 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3334 if (IS_ERR(path)) {
3335 err = PTR_ERR(path);
3336 path = NULL;
3337 goto out2;
3340 depth = ext_depth(inode);
3343 * consistent leaf must not be empty;
3344 * this situation is possible, though, _during_ tree modification;
3345 * this is why assert can't be put in ext4_ext_find_extent()
3347 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3348 EXT4_ERROR_INODE(inode, "bad extent address "
3349 "lblock: %lu, depth: %d pblock %lld",
3350 (unsigned long) map->m_lblk, depth,
3351 path[depth].p_block);
3352 err = -EIO;
3353 goto out2;
3355 eh = path[depth].p_hdr;
3357 ex = path[depth].p_ext;
3358 if (ex) {
3359 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3360 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3361 unsigned short ee_len;
3364 * Uninitialized extents are treated as holes, except that
3365 * we split out initialized portions during a write.
3367 ee_len = ext4_ext_get_actual_len(ex);
3368 /* if found extent covers block, simply return it */
3369 if (in_range(map->m_lblk, ee_block, ee_len)) {
3370 newblock = map->m_lblk - ee_block + ee_start;
3371 /* number of remaining blocks in the extent */
3372 allocated = ee_len - (map->m_lblk - ee_block);
3373 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3374 ee_block, ee_len, newblock);
3376 /* Do not put uninitialized extent in the cache */
3377 if (!ext4_ext_is_uninitialized(ex)) {
3378 ext4_ext_put_in_cache(inode, ee_block,
3379 ee_len, ee_start);
3380 goto out;
3382 ret = ext4_ext_handle_uninitialized_extents(handle,
3383 inode, map, path, flags, allocated,
3384 newblock);
3385 return ret;
3390 * requested block isn't allocated yet;
3391 * we couldn't try to create block if create flag is zero
3393 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3395 * put just found gap into cache to speed up
3396 * subsequent requests
3398 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3399 goto out2;
3402 * Okay, we need to do block allocation.
3405 /* find neighbour allocated blocks */
3406 ar.lleft = map->m_lblk;
3407 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3408 if (err)
3409 goto out2;
3410 ar.lright = map->m_lblk;
3411 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3412 if (err)
3413 goto out2;
3416 * See if request is beyond maximum number of blocks we can have in
3417 * a single extent. For an initialized extent this limit is
3418 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3419 * EXT_UNINIT_MAX_LEN.
3421 if (map->m_len > EXT_INIT_MAX_LEN &&
3422 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3423 map->m_len = EXT_INIT_MAX_LEN;
3424 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3425 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3426 map->m_len = EXT_UNINIT_MAX_LEN;
3428 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3429 newex.ee_block = cpu_to_le32(map->m_lblk);
3430 newex.ee_len = cpu_to_le16(map->m_len);
3431 err = ext4_ext_check_overlap(inode, &newex, path);
3432 if (err)
3433 allocated = ext4_ext_get_actual_len(&newex);
3434 else
3435 allocated = map->m_len;
3437 /* allocate new block */
3438 ar.inode = inode;
3439 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3440 ar.logical = map->m_lblk;
3441 ar.len = allocated;
3442 if (S_ISREG(inode->i_mode))
3443 ar.flags = EXT4_MB_HINT_DATA;
3444 else
3445 /* disable in-core preallocation for non-regular files */
3446 ar.flags = 0;
3447 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3448 if (!newblock)
3449 goto out2;
3450 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3451 ar.goal, newblock, allocated);
3453 /* try to insert new extent into found leaf and return */
3454 ext4_ext_store_pblock(&newex, newblock);
3455 newex.ee_len = cpu_to_le16(ar.len);
3456 /* Mark uninitialized */
3457 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3458 ext4_ext_mark_uninitialized(&newex);
3460 * io_end structure was created for every IO write to an
3461 * uninitialized extent. To avoid unecessary conversion,
3462 * here we flag the IO that really needs the conversion.
3463 * For non asycn direct IO case, flag the inode state
3464 * that we need to perform convertion when IO is done.
3466 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3467 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3468 io->flag = EXT4_IO_END_UNWRITTEN;
3469 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3470 } else
3471 ext4_set_inode_state(inode,
3472 EXT4_STATE_DIO_UNWRITTEN);
3474 if (ext4_should_dioread_nolock(inode))
3475 map->m_flags |= EXT4_MAP_UNINIT;
3478 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3479 if (err)
3480 goto out2;
3482 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3483 if (err) {
3484 /* free data blocks we just allocated */
3485 /* not a good idea to call discard here directly,
3486 * but otherwise we'd need to call it every free() */
3487 ext4_discard_preallocations(inode);
3488 ext4_free_blocks(handle, inode, 0, ext4_ext_pblock(&newex),
3489 ext4_ext_get_actual_len(&newex), 0);
3490 goto out2;
3493 /* previous routine could use block we allocated */
3494 newblock = ext4_ext_pblock(&newex);
3495 allocated = ext4_ext_get_actual_len(&newex);
3496 if (allocated > map->m_len)
3497 allocated = map->m_len;
3498 map->m_flags |= EXT4_MAP_NEW;
3501 * Update reserved blocks/metadata blocks after successful
3502 * block allocation which had been deferred till now.
3504 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3505 ext4_da_update_reserve_space(inode, allocated, 1);
3508 * Cache the extent and update transaction to commit on fdatasync only
3509 * when it is _not_ an uninitialized extent.
3511 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3512 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3513 ext4_update_inode_fsync_trans(handle, inode, 1);
3514 } else
3515 ext4_update_inode_fsync_trans(handle, inode, 0);
3516 out:
3517 if (allocated > map->m_len)
3518 allocated = map->m_len;
3519 ext4_ext_show_leaf(inode, path);
3520 map->m_flags |= EXT4_MAP_MAPPED;
3521 map->m_pblk = newblock;
3522 map->m_len = allocated;
3523 out2:
3524 if (path) {
3525 ext4_ext_drop_refs(path);
3526 kfree(path);
3528 return err ? err : allocated;
3531 void ext4_ext_truncate(struct inode *inode)
3533 struct address_space *mapping = inode->i_mapping;
3534 struct super_block *sb = inode->i_sb;
3535 ext4_lblk_t last_block;
3536 handle_t *handle;
3537 int err = 0;
3540 * finish any pending end_io work so we won't run the risk of
3541 * converting any truncated blocks to initialized later
3543 ext4_flush_completed_IO(inode);
3546 * probably first extent we're gonna free will be last in block
3548 err = ext4_writepage_trans_blocks(inode);
3549 handle = ext4_journal_start(inode, err);
3550 if (IS_ERR(handle))
3551 return;
3553 if (inode->i_size & (sb->s_blocksize - 1))
3554 ext4_block_truncate_page(handle, mapping, inode->i_size);
3556 if (ext4_orphan_add(handle, inode))
3557 goto out_stop;
3559 down_write(&EXT4_I(inode)->i_data_sem);
3560 ext4_ext_invalidate_cache(inode);
3562 ext4_discard_preallocations(inode);
3565 * TODO: optimization is possible here.
3566 * Probably we need not scan at all,
3567 * because page truncation is enough.
3570 /* we have to know where to truncate from in crash case */
3571 EXT4_I(inode)->i_disksize = inode->i_size;
3572 ext4_mark_inode_dirty(handle, inode);
3574 last_block = (inode->i_size + sb->s_blocksize - 1)
3575 >> EXT4_BLOCK_SIZE_BITS(sb);
3576 err = ext4_ext_remove_space(inode, last_block);
3578 /* In a multi-transaction truncate, we only make the final
3579 * transaction synchronous.
3581 if (IS_SYNC(inode))
3582 ext4_handle_sync(handle);
3584 out_stop:
3585 up_write(&EXT4_I(inode)->i_data_sem);
3587 * If this was a simple ftruncate() and the file will remain alive,
3588 * then we need to clear up the orphan record which we created above.
3589 * However, if this was a real unlink then we were called by
3590 * ext4_delete_inode(), and we allow that function to clean up the
3591 * orphan info for us.
3593 if (inode->i_nlink)
3594 ext4_orphan_del(handle, inode);
3596 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3597 ext4_mark_inode_dirty(handle, inode);
3598 ext4_journal_stop(handle);
3601 static void ext4_falloc_update_inode(struct inode *inode,
3602 int mode, loff_t new_size, int update_ctime)
3604 struct timespec now;
3606 if (update_ctime) {
3607 now = current_fs_time(inode->i_sb);
3608 if (!timespec_equal(&inode->i_ctime, &now))
3609 inode->i_ctime = now;
3612 * Update only when preallocation was requested beyond
3613 * the file size.
3615 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3616 if (new_size > i_size_read(inode))
3617 i_size_write(inode, new_size);
3618 if (new_size > EXT4_I(inode)->i_disksize)
3619 ext4_update_i_disksize(inode, new_size);
3620 } else {
3622 * Mark that we allocate beyond EOF so the subsequent truncate
3623 * can proceed even if the new size is the same as i_size.
3625 if (new_size > i_size_read(inode))
3626 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3632 * preallocate space for a file. This implements ext4's fallocate file
3633 * operation, which gets called from sys_fallocate system call.
3634 * For block-mapped files, posix_fallocate should fall back to the method
3635 * of writing zeroes to the required new blocks (the same behavior which is
3636 * expected for file systems which do not support fallocate() system call).
3638 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3640 struct inode *inode = file->f_path.dentry->d_inode;
3641 handle_t *handle;
3642 loff_t new_size;
3643 unsigned int max_blocks;
3644 int ret = 0;
3645 int ret2 = 0;
3646 int retries = 0;
3647 struct ext4_map_blocks map;
3648 unsigned int credits, blkbits = inode->i_blkbits;
3650 /* We only support the FALLOC_FL_KEEP_SIZE mode */
3651 if (mode & ~FALLOC_FL_KEEP_SIZE)
3652 return -EOPNOTSUPP;
3655 * currently supporting (pre)allocate mode for extent-based
3656 * files _only_
3658 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3659 return -EOPNOTSUPP;
3661 map.m_lblk = offset >> blkbits;
3663 * We can't just convert len to max_blocks because
3664 * If blocksize = 4096 offset = 3072 and len = 2048
3666 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3667 - map.m_lblk;
3669 * credits to insert 1 extent into extent tree
3671 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3672 mutex_lock(&inode->i_mutex);
3673 ret = inode_newsize_ok(inode, (len + offset));
3674 if (ret) {
3675 mutex_unlock(&inode->i_mutex);
3676 return ret;
3678 retry:
3679 while (ret >= 0 && ret < max_blocks) {
3680 map.m_lblk = map.m_lblk + ret;
3681 map.m_len = max_blocks = max_blocks - ret;
3682 handle = ext4_journal_start(inode, credits);
3683 if (IS_ERR(handle)) {
3684 ret = PTR_ERR(handle);
3685 break;
3687 ret = ext4_map_blocks(handle, inode, &map,
3688 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3689 if (ret <= 0) {
3690 #ifdef EXT4FS_DEBUG
3691 WARN_ON(ret <= 0);
3692 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3693 "returned error inode#%lu, block=%u, "
3694 "max_blocks=%u", __func__,
3695 inode->i_ino, map.m_lblk, max_blocks);
3696 #endif
3697 ext4_mark_inode_dirty(handle, inode);
3698 ret2 = ext4_journal_stop(handle);
3699 break;
3701 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3702 blkbits) >> blkbits))
3703 new_size = offset + len;
3704 else
3705 new_size = (map.m_lblk + ret) << blkbits;
3707 ext4_falloc_update_inode(inode, mode, new_size,
3708 (map.m_flags & EXT4_MAP_NEW));
3709 ext4_mark_inode_dirty(handle, inode);
3710 ret2 = ext4_journal_stop(handle);
3711 if (ret2)
3712 break;
3714 if (ret == -ENOSPC &&
3715 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3716 ret = 0;
3717 goto retry;
3719 mutex_unlock(&inode->i_mutex);
3720 return ret > 0 ? ret2 : ret;
3724 * This function convert a range of blocks to written extents
3725 * The caller of this function will pass the start offset and the size.
3726 * all unwritten extents within this range will be converted to
3727 * written extents.
3729 * This function is called from the direct IO end io call back
3730 * function, to convert the fallocated extents after IO is completed.
3731 * Returns 0 on success.
3733 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3734 ssize_t len)
3736 handle_t *handle;
3737 unsigned int max_blocks;
3738 int ret = 0;
3739 int ret2 = 0;
3740 struct ext4_map_blocks map;
3741 unsigned int credits, blkbits = inode->i_blkbits;
3743 map.m_lblk = offset >> blkbits;
3745 * We can't just convert len to max_blocks because
3746 * If blocksize = 4096 offset = 3072 and len = 2048
3748 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3749 map.m_lblk);
3751 * credits to insert 1 extent into extent tree
3753 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3754 while (ret >= 0 && ret < max_blocks) {
3755 map.m_lblk += ret;
3756 map.m_len = (max_blocks -= ret);
3757 handle = ext4_journal_start(inode, credits);
3758 if (IS_ERR(handle)) {
3759 ret = PTR_ERR(handle);
3760 break;
3762 ret = ext4_map_blocks(handle, inode, &map,
3763 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3764 if (ret <= 0) {
3765 WARN_ON(ret <= 0);
3766 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3767 "returned error inode#%lu, block=%u, "
3768 "max_blocks=%u", __func__,
3769 inode->i_ino, map.m_lblk, map.m_len);
3771 ext4_mark_inode_dirty(handle, inode);
3772 ret2 = ext4_journal_stop(handle);
3773 if (ret <= 0 || ret2 )
3774 break;
3776 return ret > 0 ? ret2 : ret;
3779 * Callback function called for each extent to gather FIEMAP information.
3781 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3782 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3783 void *data)
3785 struct fiemap_extent_info *fieinfo = data;
3786 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3787 __u64 logical;
3788 __u64 physical;
3789 __u64 length;
3790 __u32 flags = 0;
3791 int error;
3793 logical = (__u64)newex->ec_block << blksize_bits;
3795 if (newex->ec_start == 0) {
3796 pgoff_t offset;
3797 struct page *page;
3798 struct buffer_head *bh = NULL;
3800 offset = logical >> PAGE_SHIFT;
3801 page = find_get_page(inode->i_mapping, offset);
3802 if (!page || !page_has_buffers(page))
3803 return EXT_CONTINUE;
3805 bh = page_buffers(page);
3807 if (!bh)
3808 return EXT_CONTINUE;
3810 if (buffer_delay(bh)) {
3811 flags |= FIEMAP_EXTENT_DELALLOC;
3812 page_cache_release(page);
3813 } else {
3814 page_cache_release(page);
3815 return EXT_CONTINUE;
3819 physical = (__u64)newex->ec_start << blksize_bits;
3820 length = (__u64)newex->ec_len << blksize_bits;
3822 if (ex && ext4_ext_is_uninitialized(ex))
3823 flags |= FIEMAP_EXTENT_UNWRITTEN;
3826 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3828 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3829 * this also indicates no more allocated blocks.
3831 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3833 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3834 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3835 loff_t size = i_size_read(inode);
3836 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3838 flags |= FIEMAP_EXTENT_LAST;
3839 if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3840 logical+length > size)
3841 length = (size - logical + bs - 1) & ~(bs-1);
3844 error = fiemap_fill_next_extent(fieinfo, logical, physical,
3845 length, flags);
3846 if (error < 0)
3847 return error;
3848 if (error == 1)
3849 return EXT_BREAK;
3851 return EXT_CONTINUE;
3854 /* fiemap flags we can handle specified here */
3855 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3857 static int ext4_xattr_fiemap(struct inode *inode,
3858 struct fiemap_extent_info *fieinfo)
3860 __u64 physical = 0;
3861 __u64 length;
3862 __u32 flags = FIEMAP_EXTENT_LAST;
3863 int blockbits = inode->i_sb->s_blocksize_bits;
3864 int error = 0;
3866 /* in-inode? */
3867 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3868 struct ext4_iloc iloc;
3869 int offset; /* offset of xattr in inode */
3871 error = ext4_get_inode_loc(inode, &iloc);
3872 if (error)
3873 return error;
3874 physical = iloc.bh->b_blocknr << blockbits;
3875 offset = EXT4_GOOD_OLD_INODE_SIZE +
3876 EXT4_I(inode)->i_extra_isize;
3877 physical += offset;
3878 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3879 flags |= FIEMAP_EXTENT_DATA_INLINE;
3880 brelse(iloc.bh);
3881 } else { /* external block */
3882 physical = EXT4_I(inode)->i_file_acl << blockbits;
3883 length = inode->i_sb->s_blocksize;
3886 if (physical)
3887 error = fiemap_fill_next_extent(fieinfo, 0, physical,
3888 length, flags);
3889 return (error < 0 ? error : 0);
3892 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3893 __u64 start, __u64 len)
3895 ext4_lblk_t start_blk;
3896 int error = 0;
3898 /* fallback to generic here if not in extents fmt */
3899 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3900 return generic_block_fiemap(inode, fieinfo, start, len,
3901 ext4_get_block);
3903 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3904 return -EBADR;
3906 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3907 error = ext4_xattr_fiemap(inode, fieinfo);
3908 } else {
3909 ext4_lblk_t len_blks;
3910 __u64 last_blk;
3912 start_blk = start >> inode->i_sb->s_blocksize_bits;
3913 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
3914 if (last_blk >= EXT_MAX_BLOCK)
3915 last_blk = EXT_MAX_BLOCK-1;
3916 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
3919 * Walk the extent tree gathering extent information.
3920 * ext4_ext_fiemap_cb will push extents back to user.
3922 error = ext4_ext_walk_space(inode, start_blk, len_blks,
3923 ext4_ext_fiemap_cb, fieinfo);
3926 return error;