dm table: reject devices without request fns
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-table.c
blobabd23aa34e4f7bede165b9611d73416fe37e017f
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
22 #define DM_MSG_PREFIX "table"
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
57 unsigned discards_supported:1;
60 * Indicates the rw permissions for the new logical
61 * device. This should be a combination of FMODE_READ
62 * and FMODE_WRITE.
64 fmode_t mode;
66 /* a list of devices used by this table */
67 struct list_head devices;
69 /* events get handed up using this callback */
70 void (*event_fn)(void *);
71 void *event_context;
73 struct dm_md_mempools *mempools;
75 struct list_head target_callbacks;
79 * Similar to ceiling(log_size(n))
81 static unsigned int int_log(unsigned int n, unsigned int base)
83 int result = 0;
85 while (n > 1) {
86 n = dm_div_up(n, base);
87 result++;
90 return result;
94 * Calculate the index of the child node of the n'th node k'th key.
96 static inline unsigned int get_child(unsigned int n, unsigned int k)
98 return (n * CHILDREN_PER_NODE) + k;
102 * Return the n'th node of level l from table t.
104 static inline sector_t *get_node(struct dm_table *t,
105 unsigned int l, unsigned int n)
107 return t->index[l] + (n * KEYS_PER_NODE);
111 * Return the highest key that you could lookup from the n'th
112 * node on level l of the btree.
114 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
116 for (; l < t->depth - 1; l++)
117 n = get_child(n, CHILDREN_PER_NODE - 1);
119 if (n >= t->counts[l])
120 return (sector_t) - 1;
122 return get_node(t, l, n)[KEYS_PER_NODE - 1];
126 * Fills in a level of the btree based on the highs of the level
127 * below it.
129 static int setup_btree_index(unsigned int l, struct dm_table *t)
131 unsigned int n, k;
132 sector_t *node;
134 for (n = 0U; n < t->counts[l]; n++) {
135 node = get_node(t, l, n);
137 for (k = 0U; k < KEYS_PER_NODE; k++)
138 node[k] = high(t, l + 1, get_child(n, k));
141 return 0;
144 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
146 unsigned long size;
147 void *addr;
150 * Check that we're not going to overflow.
152 if (nmemb > (ULONG_MAX / elem_size))
153 return NULL;
155 size = nmemb * elem_size;
156 addr = vmalloc(size);
157 if (addr)
158 memset(addr, 0, size);
160 return addr;
164 * highs, and targets are managed as dynamic arrays during a
165 * table load.
167 static int alloc_targets(struct dm_table *t, unsigned int num)
169 sector_t *n_highs;
170 struct dm_target *n_targets;
171 int n = t->num_targets;
174 * Allocate both the target array and offset array at once.
175 * Append an empty entry to catch sectors beyond the end of
176 * the device.
178 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
179 sizeof(sector_t));
180 if (!n_highs)
181 return -ENOMEM;
183 n_targets = (struct dm_target *) (n_highs + num);
185 if (n) {
186 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
187 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
190 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
191 vfree(t->highs);
193 t->num_allocated = num;
194 t->highs = n_highs;
195 t->targets = n_targets;
197 return 0;
200 int dm_table_create(struct dm_table **result, fmode_t mode,
201 unsigned num_targets, struct mapped_device *md)
203 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
205 if (!t)
206 return -ENOMEM;
208 INIT_LIST_HEAD(&t->devices);
209 INIT_LIST_HEAD(&t->target_callbacks);
210 atomic_set(&t->holders, 0);
211 t->discards_supported = 1;
213 if (!num_targets)
214 num_targets = KEYS_PER_NODE;
216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
218 if (alloc_targets(t, num_targets)) {
219 kfree(t);
220 t = NULL;
221 return -ENOMEM;
224 t->mode = mode;
225 t->md = md;
226 *result = t;
227 return 0;
230 static void free_devices(struct list_head *devices)
232 struct list_head *tmp, *next;
234 list_for_each_safe(tmp, next, devices) {
235 struct dm_dev_internal *dd =
236 list_entry(tmp, struct dm_dev_internal, list);
237 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
238 dd->dm_dev.name);
239 kfree(dd);
243 void dm_table_destroy(struct dm_table *t)
245 unsigned int i;
247 if (!t)
248 return;
250 while (atomic_read(&t->holders))
251 msleep(1);
252 smp_mb();
254 /* free the indexes */
255 if (t->depth >= 2)
256 vfree(t->index[t->depth - 2]);
258 /* free the targets */
259 for (i = 0; i < t->num_targets; i++) {
260 struct dm_target *tgt = t->targets + i;
262 if (tgt->type->dtr)
263 tgt->type->dtr(tgt);
265 dm_put_target_type(tgt->type);
268 vfree(t->highs);
270 /* free the device list */
271 if (t->devices.next != &t->devices)
272 free_devices(&t->devices);
274 dm_free_md_mempools(t->mempools);
276 kfree(t);
279 void dm_table_get(struct dm_table *t)
281 atomic_inc(&t->holders);
284 void dm_table_put(struct dm_table *t)
286 if (!t)
287 return;
289 smp_mb__before_atomic_dec();
290 atomic_dec(&t->holders);
294 * Checks to see if we need to extend highs or targets.
296 static inline int check_space(struct dm_table *t)
298 if (t->num_targets >= t->num_allocated)
299 return alloc_targets(t, t->num_allocated * 2);
301 return 0;
305 * See if we've already got a device in the list.
307 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
309 struct dm_dev_internal *dd;
311 list_for_each_entry (dd, l, list)
312 if (dd->dm_dev.bdev->bd_dev == dev)
313 return dd;
315 return NULL;
319 * Open a device so we can use it as a map destination.
321 static int open_dev(struct dm_dev_internal *d, dev_t dev,
322 struct mapped_device *md)
324 static char *_claim_ptr = "I belong to device-mapper";
325 struct block_device *bdev;
327 int r;
329 BUG_ON(d->dm_dev.bdev);
331 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
332 if (IS_ERR(bdev))
333 return PTR_ERR(bdev);
335 r = bd_link_disk_holder(bdev, dm_disk(md));
336 if (r) {
337 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
338 return r;
341 d->dm_dev.bdev = bdev;
342 return 0;
346 * Close a device that we've been using.
348 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
350 if (!d->dm_dev.bdev)
351 return;
353 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
354 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
355 d->dm_dev.bdev = NULL;
359 * If possible, this checks an area of a destination device is invalid.
361 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
362 sector_t start, sector_t len, void *data)
364 struct request_queue *q;
365 struct queue_limits *limits = data;
366 struct block_device *bdev = dev->bdev;
367 sector_t dev_size =
368 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
369 unsigned short logical_block_size_sectors =
370 limits->logical_block_size >> SECTOR_SHIFT;
371 char b[BDEVNAME_SIZE];
374 * Some devices exist without request functions,
375 * such as loop devices not yet bound to backing files.
376 * Forbid the use of such devices.
378 q = bdev_get_queue(bdev);
379 if (!q || !q->make_request_fn) {
380 DMWARN("%s: %s is not yet initialised: "
381 "start=%llu, len=%llu, dev_size=%llu",
382 dm_device_name(ti->table->md), bdevname(bdev, b),
383 (unsigned long long)start,
384 (unsigned long long)len,
385 (unsigned long long)dev_size);
386 return 1;
389 if (!dev_size)
390 return 0;
392 if ((start >= dev_size) || (start + len > dev_size)) {
393 DMWARN("%s: %s too small for target: "
394 "start=%llu, len=%llu, dev_size=%llu",
395 dm_device_name(ti->table->md), bdevname(bdev, b),
396 (unsigned long long)start,
397 (unsigned long long)len,
398 (unsigned long long)dev_size);
399 return 1;
402 if (logical_block_size_sectors <= 1)
403 return 0;
405 if (start & (logical_block_size_sectors - 1)) {
406 DMWARN("%s: start=%llu not aligned to h/w "
407 "logical block size %u of %s",
408 dm_device_name(ti->table->md),
409 (unsigned long long)start,
410 limits->logical_block_size, bdevname(bdev, b));
411 return 1;
414 if (len & (logical_block_size_sectors - 1)) {
415 DMWARN("%s: len=%llu not aligned to h/w "
416 "logical block size %u of %s",
417 dm_device_name(ti->table->md),
418 (unsigned long long)len,
419 limits->logical_block_size, bdevname(bdev, b));
420 return 1;
423 return 0;
427 * This upgrades the mode on an already open dm_dev, being
428 * careful to leave things as they were if we fail to reopen the
429 * device and not to touch the existing bdev field in case
430 * it is accessed concurrently inside dm_table_any_congested().
432 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
433 struct mapped_device *md)
435 int r;
436 struct dm_dev_internal dd_new, dd_old;
438 dd_new = dd_old = *dd;
440 dd_new.dm_dev.mode |= new_mode;
441 dd_new.dm_dev.bdev = NULL;
443 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
444 if (r)
445 return r;
447 dd->dm_dev.mode |= new_mode;
448 close_dev(&dd_old, md);
450 return 0;
454 * Add a device to the list, or just increment the usage count if
455 * it's already present.
457 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
458 const char *path, fmode_t mode, struct dm_dev **result)
460 int r;
461 dev_t uninitialized_var(dev);
462 struct dm_dev_internal *dd;
463 unsigned int major, minor;
465 BUG_ON(!t);
467 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
468 /* Extract the major/minor numbers */
469 dev = MKDEV(major, minor);
470 if (MAJOR(dev) != major || MINOR(dev) != minor)
471 return -EOVERFLOW;
472 } else {
473 /* convert the path to a device */
474 struct block_device *bdev = lookup_bdev(path);
476 if (IS_ERR(bdev))
477 return PTR_ERR(bdev);
478 dev = bdev->bd_dev;
479 bdput(bdev);
482 dd = find_device(&t->devices, dev);
483 if (!dd) {
484 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
485 if (!dd)
486 return -ENOMEM;
488 dd->dm_dev.mode = mode;
489 dd->dm_dev.bdev = NULL;
491 if ((r = open_dev(dd, dev, t->md))) {
492 kfree(dd);
493 return r;
496 format_dev_t(dd->dm_dev.name, dev);
498 atomic_set(&dd->count, 0);
499 list_add(&dd->list, &t->devices);
501 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
502 r = upgrade_mode(dd, mode, t->md);
503 if (r)
504 return r;
506 atomic_inc(&dd->count);
508 *result = &dd->dm_dev;
509 return 0;
512 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
513 sector_t start, sector_t len, void *data)
515 struct queue_limits *limits = data;
516 struct block_device *bdev = dev->bdev;
517 struct request_queue *q = bdev_get_queue(bdev);
518 char b[BDEVNAME_SIZE];
520 if (unlikely(!q)) {
521 DMWARN("%s: Cannot set limits for nonexistent device %s",
522 dm_device_name(ti->table->md), bdevname(bdev, b));
523 return 0;
526 if (bdev_stack_limits(limits, bdev, start) < 0)
527 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
528 "physical_block_size=%u, logical_block_size=%u, "
529 "alignment_offset=%u, start=%llu",
530 dm_device_name(ti->table->md), bdevname(bdev, b),
531 q->limits.physical_block_size,
532 q->limits.logical_block_size,
533 q->limits.alignment_offset,
534 (unsigned long long) start << SECTOR_SHIFT);
537 * Check if merge fn is supported.
538 * If not we'll force DM to use PAGE_SIZE or
539 * smaller I/O, just to be safe.
542 if (q->merge_bvec_fn && !ti->type->merge)
543 blk_limits_max_hw_sectors(limits,
544 (unsigned int) (PAGE_SIZE >> 9));
545 return 0;
547 EXPORT_SYMBOL_GPL(dm_set_device_limits);
549 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
550 struct dm_dev **result)
552 return __table_get_device(ti->table, ti, path, mode, result);
557 * Decrement a devices use count and remove it if necessary.
559 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
561 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
562 dm_dev);
564 if (atomic_dec_and_test(&dd->count)) {
565 close_dev(dd, ti->table->md);
566 list_del(&dd->list);
567 kfree(dd);
572 * Checks to see if the target joins onto the end of the table.
574 static int adjoin(struct dm_table *table, struct dm_target *ti)
576 struct dm_target *prev;
578 if (!table->num_targets)
579 return !ti->begin;
581 prev = &table->targets[table->num_targets - 1];
582 return (ti->begin == (prev->begin + prev->len));
586 * Used to dynamically allocate the arg array.
588 static char **realloc_argv(unsigned *array_size, char **old_argv)
590 char **argv;
591 unsigned new_size;
593 new_size = *array_size ? *array_size * 2 : 64;
594 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
595 if (argv) {
596 memcpy(argv, old_argv, *array_size * sizeof(*argv));
597 *array_size = new_size;
600 kfree(old_argv);
601 return argv;
605 * Destructively splits up the argument list to pass to ctr.
607 int dm_split_args(int *argc, char ***argvp, char *input)
609 char *start, *end = input, *out, **argv = NULL;
610 unsigned array_size = 0;
612 *argc = 0;
614 if (!input) {
615 *argvp = NULL;
616 return 0;
619 argv = realloc_argv(&array_size, argv);
620 if (!argv)
621 return -ENOMEM;
623 while (1) {
624 /* Skip whitespace */
625 start = skip_spaces(end);
627 if (!*start)
628 break; /* success, we hit the end */
630 /* 'out' is used to remove any back-quotes */
631 end = out = start;
632 while (*end) {
633 /* Everything apart from '\0' can be quoted */
634 if (*end == '\\' && *(end + 1)) {
635 *out++ = *(end + 1);
636 end += 2;
637 continue;
640 if (isspace(*end))
641 break; /* end of token */
643 *out++ = *end++;
646 /* have we already filled the array ? */
647 if ((*argc + 1) > array_size) {
648 argv = realloc_argv(&array_size, argv);
649 if (!argv)
650 return -ENOMEM;
653 /* we know this is whitespace */
654 if (*end)
655 end++;
657 /* terminate the string and put it in the array */
658 *out = '\0';
659 argv[*argc] = start;
660 (*argc)++;
663 *argvp = argv;
664 return 0;
668 * Impose necessary and sufficient conditions on a devices's table such
669 * that any incoming bio which respects its logical_block_size can be
670 * processed successfully. If it falls across the boundary between
671 * two or more targets, the size of each piece it gets split into must
672 * be compatible with the logical_block_size of the target processing it.
674 static int validate_hardware_logical_block_alignment(struct dm_table *table,
675 struct queue_limits *limits)
678 * This function uses arithmetic modulo the logical_block_size
679 * (in units of 512-byte sectors).
681 unsigned short device_logical_block_size_sects =
682 limits->logical_block_size >> SECTOR_SHIFT;
685 * Offset of the start of the next table entry, mod logical_block_size.
687 unsigned short next_target_start = 0;
690 * Given an aligned bio that extends beyond the end of a
691 * target, how many sectors must the next target handle?
693 unsigned short remaining = 0;
695 struct dm_target *uninitialized_var(ti);
696 struct queue_limits ti_limits;
697 unsigned i = 0;
700 * Check each entry in the table in turn.
702 while (i < dm_table_get_num_targets(table)) {
703 ti = dm_table_get_target(table, i++);
705 blk_set_default_limits(&ti_limits);
707 /* combine all target devices' limits */
708 if (ti->type->iterate_devices)
709 ti->type->iterate_devices(ti, dm_set_device_limits,
710 &ti_limits);
713 * If the remaining sectors fall entirely within this
714 * table entry are they compatible with its logical_block_size?
716 if (remaining < ti->len &&
717 remaining & ((ti_limits.logical_block_size >>
718 SECTOR_SHIFT) - 1))
719 break; /* Error */
721 next_target_start =
722 (unsigned short) ((next_target_start + ti->len) &
723 (device_logical_block_size_sects - 1));
724 remaining = next_target_start ?
725 device_logical_block_size_sects - next_target_start : 0;
728 if (remaining) {
729 DMWARN("%s: table line %u (start sect %llu len %llu) "
730 "not aligned to h/w logical block size %u",
731 dm_device_name(table->md), i,
732 (unsigned long long) ti->begin,
733 (unsigned long long) ti->len,
734 limits->logical_block_size);
735 return -EINVAL;
738 return 0;
741 int dm_table_add_target(struct dm_table *t, const char *type,
742 sector_t start, sector_t len, char *params)
744 int r = -EINVAL, argc;
745 char **argv;
746 struct dm_target *tgt;
748 if ((r = check_space(t)))
749 return r;
751 tgt = t->targets + t->num_targets;
752 memset(tgt, 0, sizeof(*tgt));
754 if (!len) {
755 DMERR("%s: zero-length target", dm_device_name(t->md));
756 return -EINVAL;
759 tgt->type = dm_get_target_type(type);
760 if (!tgt->type) {
761 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
762 type);
763 return -EINVAL;
766 tgt->table = t;
767 tgt->begin = start;
768 tgt->len = len;
769 tgt->error = "Unknown error";
772 * Does this target adjoin the previous one ?
774 if (!adjoin(t, tgt)) {
775 tgt->error = "Gap in table";
776 r = -EINVAL;
777 goto bad;
780 r = dm_split_args(&argc, &argv, params);
781 if (r) {
782 tgt->error = "couldn't split parameters (insufficient memory)";
783 goto bad;
786 r = tgt->type->ctr(tgt, argc, argv);
787 kfree(argv);
788 if (r)
789 goto bad;
791 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
793 if (!tgt->num_discard_requests)
794 t->discards_supported = 0;
796 return 0;
798 bad:
799 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
800 dm_put_target_type(tgt->type);
801 return r;
804 static int dm_table_set_type(struct dm_table *t)
806 unsigned i;
807 unsigned bio_based = 0, request_based = 0;
808 struct dm_target *tgt;
809 struct dm_dev_internal *dd;
810 struct list_head *devices;
812 for (i = 0; i < t->num_targets; i++) {
813 tgt = t->targets + i;
814 if (dm_target_request_based(tgt))
815 request_based = 1;
816 else
817 bio_based = 1;
819 if (bio_based && request_based) {
820 DMWARN("Inconsistent table: different target types"
821 " can't be mixed up");
822 return -EINVAL;
826 if (bio_based) {
827 /* We must use this table as bio-based */
828 t->type = DM_TYPE_BIO_BASED;
829 return 0;
832 BUG_ON(!request_based); /* No targets in this table */
834 /* Non-request-stackable devices can't be used for request-based dm */
835 devices = dm_table_get_devices(t);
836 list_for_each_entry(dd, devices, list) {
837 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
838 DMWARN("table load rejected: including"
839 " non-request-stackable devices");
840 return -EINVAL;
845 * Request-based dm supports only tables that have a single target now.
846 * To support multiple targets, request splitting support is needed,
847 * and that needs lots of changes in the block-layer.
848 * (e.g. request completion process for partial completion.)
850 if (t->num_targets > 1) {
851 DMWARN("Request-based dm doesn't support multiple targets yet");
852 return -EINVAL;
855 t->type = DM_TYPE_REQUEST_BASED;
857 return 0;
860 unsigned dm_table_get_type(struct dm_table *t)
862 return t->type;
865 bool dm_table_request_based(struct dm_table *t)
867 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
870 int dm_table_alloc_md_mempools(struct dm_table *t)
872 unsigned type = dm_table_get_type(t);
874 if (unlikely(type == DM_TYPE_NONE)) {
875 DMWARN("no table type is set, can't allocate mempools");
876 return -EINVAL;
879 t->mempools = dm_alloc_md_mempools(type);
880 if (!t->mempools)
881 return -ENOMEM;
883 return 0;
886 void dm_table_free_md_mempools(struct dm_table *t)
888 dm_free_md_mempools(t->mempools);
889 t->mempools = NULL;
892 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
894 return t->mempools;
897 static int setup_indexes(struct dm_table *t)
899 int i;
900 unsigned int total = 0;
901 sector_t *indexes;
903 /* allocate the space for *all* the indexes */
904 for (i = t->depth - 2; i >= 0; i--) {
905 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
906 total += t->counts[i];
909 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
910 if (!indexes)
911 return -ENOMEM;
913 /* set up internal nodes, bottom-up */
914 for (i = t->depth - 2; i >= 0; i--) {
915 t->index[i] = indexes;
916 indexes += (KEYS_PER_NODE * t->counts[i]);
917 setup_btree_index(i, t);
920 return 0;
924 * Builds the btree to index the map.
926 static int dm_table_build_index(struct dm_table *t)
928 int r = 0;
929 unsigned int leaf_nodes;
931 /* how many indexes will the btree have ? */
932 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
933 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
935 /* leaf layer has already been set up */
936 t->counts[t->depth - 1] = leaf_nodes;
937 t->index[t->depth - 1] = t->highs;
939 if (t->depth >= 2)
940 r = setup_indexes(t);
942 return r;
946 * Register the mapped device for blk_integrity support if
947 * the underlying devices support it.
949 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
951 struct list_head *devices = dm_table_get_devices(t);
952 struct dm_dev_internal *dd;
954 list_for_each_entry(dd, devices, list)
955 if (bdev_get_integrity(dd->dm_dev.bdev))
956 return blk_integrity_register(dm_disk(md), NULL);
958 return 0;
962 * Prepares the table for use by building the indices,
963 * setting the type, and allocating mempools.
965 int dm_table_complete(struct dm_table *t)
967 int r;
969 r = dm_table_set_type(t);
970 if (r) {
971 DMERR("unable to set table type");
972 return r;
975 r = dm_table_build_index(t);
976 if (r) {
977 DMERR("unable to build btrees");
978 return r;
981 r = dm_table_prealloc_integrity(t, t->md);
982 if (r) {
983 DMERR("could not register integrity profile.");
984 return r;
987 r = dm_table_alloc_md_mempools(t);
988 if (r)
989 DMERR("unable to allocate mempools");
991 return r;
994 static DEFINE_MUTEX(_event_lock);
995 void dm_table_event_callback(struct dm_table *t,
996 void (*fn)(void *), void *context)
998 mutex_lock(&_event_lock);
999 t->event_fn = fn;
1000 t->event_context = context;
1001 mutex_unlock(&_event_lock);
1004 void dm_table_event(struct dm_table *t)
1007 * You can no longer call dm_table_event() from interrupt
1008 * context, use a bottom half instead.
1010 BUG_ON(in_interrupt());
1012 mutex_lock(&_event_lock);
1013 if (t->event_fn)
1014 t->event_fn(t->event_context);
1015 mutex_unlock(&_event_lock);
1018 sector_t dm_table_get_size(struct dm_table *t)
1020 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1023 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1025 if (index >= t->num_targets)
1026 return NULL;
1028 return t->targets + index;
1032 * Search the btree for the correct target.
1034 * Caller should check returned pointer with dm_target_is_valid()
1035 * to trap I/O beyond end of device.
1037 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1039 unsigned int l, n = 0, k = 0;
1040 sector_t *node;
1042 for (l = 0; l < t->depth; l++) {
1043 n = get_child(n, k);
1044 node = get_node(t, l, n);
1046 for (k = 0; k < KEYS_PER_NODE; k++)
1047 if (node[k] >= sector)
1048 break;
1051 return &t->targets[(KEYS_PER_NODE * n) + k];
1055 * Establish the new table's queue_limits and validate them.
1057 int dm_calculate_queue_limits(struct dm_table *table,
1058 struct queue_limits *limits)
1060 struct dm_target *uninitialized_var(ti);
1061 struct queue_limits ti_limits;
1062 unsigned i = 0;
1064 blk_set_default_limits(limits);
1066 while (i < dm_table_get_num_targets(table)) {
1067 blk_set_default_limits(&ti_limits);
1069 ti = dm_table_get_target(table, i++);
1071 if (!ti->type->iterate_devices)
1072 goto combine_limits;
1075 * Combine queue limits of all the devices this target uses.
1077 ti->type->iterate_devices(ti, dm_set_device_limits,
1078 &ti_limits);
1080 /* Set I/O hints portion of queue limits */
1081 if (ti->type->io_hints)
1082 ti->type->io_hints(ti, &ti_limits);
1085 * Check each device area is consistent with the target's
1086 * overall queue limits.
1088 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1089 &ti_limits))
1090 return -EINVAL;
1092 combine_limits:
1094 * Merge this target's queue limits into the overall limits
1095 * for the table.
1097 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1098 DMWARN("%s: adding target device "
1099 "(start sect %llu len %llu) "
1100 "caused an alignment inconsistency",
1101 dm_device_name(table->md),
1102 (unsigned long long) ti->begin,
1103 (unsigned long long) ti->len);
1106 return validate_hardware_logical_block_alignment(table, limits);
1110 * Set the integrity profile for this device if all devices used have
1111 * matching profiles.
1113 static void dm_table_set_integrity(struct dm_table *t)
1115 struct list_head *devices = dm_table_get_devices(t);
1116 struct dm_dev_internal *prev = NULL, *dd = NULL;
1118 if (!blk_get_integrity(dm_disk(t->md)))
1119 return;
1121 list_for_each_entry(dd, devices, list) {
1122 if (prev &&
1123 blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1124 dd->dm_dev.bdev->bd_disk) < 0) {
1125 DMWARN("%s: integrity not set: %s and %s mismatch",
1126 dm_device_name(t->md),
1127 prev->dm_dev.bdev->bd_disk->disk_name,
1128 dd->dm_dev.bdev->bd_disk->disk_name);
1129 goto no_integrity;
1131 prev = dd;
1134 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1135 goto no_integrity;
1137 blk_integrity_register(dm_disk(t->md),
1138 bdev_get_integrity(prev->dm_dev.bdev));
1140 return;
1142 no_integrity:
1143 blk_integrity_register(dm_disk(t->md), NULL);
1145 return;
1148 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1149 struct queue_limits *limits)
1152 * Copy table's limits to the DM device's request_queue
1154 q->limits = *limits;
1156 if (!dm_table_supports_discards(t))
1157 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1158 else
1159 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1161 dm_table_set_integrity(t);
1164 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1165 * visible to other CPUs because, once the flag is set, incoming bios
1166 * are processed by request-based dm, which refers to the queue
1167 * settings.
1168 * Until the flag set, bios are passed to bio-based dm and queued to
1169 * md->deferred where queue settings are not needed yet.
1170 * Those bios are passed to request-based dm at the resume time.
1172 smp_mb();
1173 if (dm_table_request_based(t))
1174 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1177 unsigned int dm_table_get_num_targets(struct dm_table *t)
1179 return t->num_targets;
1182 struct list_head *dm_table_get_devices(struct dm_table *t)
1184 return &t->devices;
1187 fmode_t dm_table_get_mode(struct dm_table *t)
1189 return t->mode;
1192 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1194 int i = t->num_targets;
1195 struct dm_target *ti = t->targets;
1197 while (i--) {
1198 if (postsuspend) {
1199 if (ti->type->postsuspend)
1200 ti->type->postsuspend(ti);
1201 } else if (ti->type->presuspend)
1202 ti->type->presuspend(ti);
1204 ti++;
1208 void dm_table_presuspend_targets(struct dm_table *t)
1210 if (!t)
1211 return;
1213 suspend_targets(t, 0);
1216 void dm_table_postsuspend_targets(struct dm_table *t)
1218 if (!t)
1219 return;
1221 suspend_targets(t, 1);
1224 int dm_table_resume_targets(struct dm_table *t)
1226 int i, r = 0;
1228 for (i = 0; i < t->num_targets; i++) {
1229 struct dm_target *ti = t->targets + i;
1231 if (!ti->type->preresume)
1232 continue;
1234 r = ti->type->preresume(ti);
1235 if (r)
1236 return r;
1239 for (i = 0; i < t->num_targets; i++) {
1240 struct dm_target *ti = t->targets + i;
1242 if (ti->type->resume)
1243 ti->type->resume(ti);
1246 return 0;
1249 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1251 list_add(&cb->list, &t->target_callbacks);
1253 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1255 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1257 struct dm_dev_internal *dd;
1258 struct list_head *devices = dm_table_get_devices(t);
1259 struct dm_target_callbacks *cb;
1260 int r = 0;
1262 list_for_each_entry(dd, devices, list) {
1263 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1264 char b[BDEVNAME_SIZE];
1266 if (likely(q))
1267 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1268 else
1269 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1270 dm_device_name(t->md),
1271 bdevname(dd->dm_dev.bdev, b));
1274 list_for_each_entry(cb, &t->target_callbacks, list)
1275 if (cb->congested_fn)
1276 r |= cb->congested_fn(cb, bdi_bits);
1278 return r;
1281 int dm_table_any_busy_target(struct dm_table *t)
1283 unsigned i;
1284 struct dm_target *ti;
1286 for (i = 0; i < t->num_targets; i++) {
1287 ti = t->targets + i;
1288 if (ti->type->busy && ti->type->busy(ti))
1289 return 1;
1292 return 0;
1295 void dm_table_unplug_all(struct dm_table *t)
1297 struct dm_dev_internal *dd;
1298 struct list_head *devices = dm_table_get_devices(t);
1299 struct dm_target_callbacks *cb;
1301 list_for_each_entry(dd, devices, list) {
1302 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1303 char b[BDEVNAME_SIZE];
1305 if (likely(q))
1306 blk_unplug(q);
1307 else
1308 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1309 dm_device_name(t->md),
1310 bdevname(dd->dm_dev.bdev, b));
1313 list_for_each_entry(cb, &t->target_callbacks, list)
1314 if (cb->unplug_fn)
1315 cb->unplug_fn(cb);
1318 struct mapped_device *dm_table_get_md(struct dm_table *t)
1320 return t->md;
1323 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1324 sector_t start, sector_t len, void *data)
1326 struct request_queue *q = bdev_get_queue(dev->bdev);
1328 return q && blk_queue_discard(q);
1331 bool dm_table_supports_discards(struct dm_table *t)
1333 struct dm_target *ti;
1334 unsigned i = 0;
1336 if (!t->discards_supported)
1337 return 0;
1340 * Ensure that at least one underlying device supports discards.
1341 * t->devices includes internal dm devices such as mirror logs
1342 * so we need to use iterate_devices here, which targets
1343 * supporting discard must provide.
1345 while (i < dm_table_get_num_targets(t)) {
1346 ti = dm_table_get_target(t, i++);
1348 if (ti->type->iterate_devices &&
1349 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1350 return 1;
1353 return 0;
1356 EXPORT_SYMBOL(dm_vcalloc);
1357 EXPORT_SYMBOL(dm_get_device);
1358 EXPORT_SYMBOL(dm_put_device);
1359 EXPORT_SYMBOL(dm_table_event);
1360 EXPORT_SYMBOL(dm_table_get_size);
1361 EXPORT_SYMBOL(dm_table_get_mode);
1362 EXPORT_SYMBOL(dm_table_get_md);
1363 EXPORT_SYMBOL(dm_table_put);
1364 EXPORT_SYMBOL(dm_table_get);
1365 EXPORT_SYMBOL(dm_table_unplug_all);