Linux 2.6.28.10
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mmap.c
blob15d7148eba4542455ef6f39e215643ea6b694b26
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@redhat.com>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlb.h>
34 #include <asm/mmu_context.h>
36 #include "internal.h"
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags) (0)
40 #endif
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len) (addr)
44 #endif
46 static void unmap_region(struct mm_struct *mm,
47 struct vm_area_struct *vma, struct vm_area_struct *prev,
48 unsigned long start, unsigned long end);
51 * WARNING: the debugging will use recursive algorithms so never enable this
52 * unless you know what you are doing.
54 #undef DEBUG_MM_RB
56 /* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware. The expected
58 * behavior is in parens:
60 * map_type prot
61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
63 * w: (no) no w: (no) no w: (yes) yes w: (no) no
64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (copy) copy w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 pgprot_t protection_map[16] = {
72 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 return __pgprot(pgprot_val(protection_map[vm_flags &
79 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80 pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 EXPORT_SYMBOL(vm_get_page_prot);
84 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
85 int sysctl_overcommit_ratio = 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
90 * Check that a process has enough memory to allocate a new virtual
91 * mapping. 0 means there is enough memory for the allocation to
92 * succeed and -ENOMEM implies there is not.
94 * We currently support three overcommit policies, which are set via the
95 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
97 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98 * Additional code 2002 Jul 20 by Robert Love.
100 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 * Note this is a helper function intended to be used by LSMs which
103 * wish to use this logic.
105 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 unsigned long free, allowed;
109 vm_acct_memory(pages);
112 * Sometimes we want to use more memory than we have
114 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
115 return 0;
117 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
118 unsigned long n;
120 free = global_page_state(NR_FILE_PAGES);
121 free += nr_swap_pages;
124 * Any slabs which are created with the
125 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126 * which are reclaimable, under pressure. The dentry
127 * cache and most inode caches should fall into this
129 free += global_page_state(NR_SLAB_RECLAIMABLE);
132 * Leave the last 3% for root
134 if (!cap_sys_admin)
135 free -= free / 32;
137 if (free > pages)
138 return 0;
141 * nr_free_pages() is very expensive on large systems,
142 * only call if we're about to fail.
144 n = nr_free_pages();
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (n <= totalreserve_pages)
150 goto error;
151 else
152 n -= totalreserve_pages;
155 * Leave the last 3% for root
157 if (!cap_sys_admin)
158 n -= n / 32;
159 free += n;
161 if (free > pages)
162 return 0;
164 goto error;
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
170 * Leave the last 3% for root
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
182 * cast `allowed' as a signed long because vm_committed_space
183 * sometimes has a negative value
185 if (atomic_long_read(&vm_committed_space) < (long)allowed)
186 return 0;
187 error:
188 vm_unacct_memory(pages);
190 return -ENOMEM;
194 * Requires inode->i_mapping->i_mmap_lock
196 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
197 struct file *file, struct address_space *mapping)
199 if (vma->vm_flags & VM_DENYWRITE)
200 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
201 if (vma->vm_flags & VM_SHARED)
202 mapping->i_mmap_writable--;
204 flush_dcache_mmap_lock(mapping);
205 if (unlikely(vma->vm_flags & VM_NONLINEAR))
206 list_del_init(&vma->shared.vm_set.list);
207 else
208 vma_prio_tree_remove(vma, &mapping->i_mmap);
209 flush_dcache_mmap_unlock(mapping);
213 * Unlink a file-based vm structure from its prio_tree, to hide
214 * vma from rmap and vmtruncate before freeing its page tables.
216 void unlink_file_vma(struct vm_area_struct *vma)
218 struct file *file = vma->vm_file;
220 if (file) {
221 struct address_space *mapping = file->f_mapping;
222 spin_lock(&mapping->i_mmap_lock);
223 __remove_shared_vm_struct(vma, file, mapping);
224 spin_unlock(&mapping->i_mmap_lock);
229 * Close a vm structure and free it, returning the next.
231 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
233 struct vm_area_struct *next = vma->vm_next;
235 might_sleep();
236 if (vma->vm_ops && vma->vm_ops->close)
237 vma->vm_ops->close(vma);
238 if (vma->vm_file) {
239 fput(vma->vm_file);
240 if (vma->vm_flags & VM_EXECUTABLE)
241 removed_exe_file_vma(vma->vm_mm);
243 mpol_put(vma_policy(vma));
244 kmem_cache_free(vm_area_cachep, vma);
245 return next;
248 SYSCALL_DEFINE1(brk, unsigned long, brk)
250 unsigned long rlim, retval;
251 unsigned long newbrk, oldbrk;
252 struct mm_struct *mm = current->mm;
253 unsigned long min_brk;
255 down_write(&mm->mmap_sem);
257 #ifdef CONFIG_COMPAT_BRK
258 min_brk = mm->end_code;
259 #else
260 min_brk = mm->start_brk;
261 #endif
262 if (brk < min_brk)
263 goto out;
266 * Check against rlimit here. If this check is done later after the test
267 * of oldbrk with newbrk then it can escape the test and let the data
268 * segment grow beyond its set limit the in case where the limit is
269 * not page aligned -Ram Gupta
271 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
272 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
273 (mm->end_data - mm->start_data) > rlim)
274 goto out;
276 newbrk = PAGE_ALIGN(brk);
277 oldbrk = PAGE_ALIGN(mm->brk);
278 if (oldbrk == newbrk)
279 goto set_brk;
281 /* Always allow shrinking brk. */
282 if (brk <= mm->brk) {
283 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
284 goto set_brk;
285 goto out;
288 /* Check against existing mmap mappings. */
289 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
290 goto out;
292 /* Ok, looks good - let it rip. */
293 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
294 goto out;
295 set_brk:
296 mm->brk = brk;
297 out:
298 retval = mm->brk;
299 up_write(&mm->mmap_sem);
300 return retval;
303 #ifdef DEBUG_MM_RB
304 static int browse_rb(struct rb_root *root)
306 int i = 0, j;
307 struct rb_node *nd, *pn = NULL;
308 unsigned long prev = 0, pend = 0;
310 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
311 struct vm_area_struct *vma;
312 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
313 if (vma->vm_start < prev)
314 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
315 if (vma->vm_start < pend)
316 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
317 if (vma->vm_start > vma->vm_end)
318 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
319 i++;
320 pn = nd;
321 prev = vma->vm_start;
322 pend = vma->vm_end;
324 j = 0;
325 for (nd = pn; nd; nd = rb_prev(nd)) {
326 j++;
328 if (i != j)
329 printk("backwards %d, forwards %d\n", j, i), i = 0;
330 return i;
333 void validate_mm(struct mm_struct *mm)
335 int bug = 0;
336 int i = 0;
337 struct vm_area_struct *tmp = mm->mmap;
338 while (tmp) {
339 tmp = tmp->vm_next;
340 i++;
342 if (i != mm->map_count)
343 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
344 i = browse_rb(&mm->mm_rb);
345 if (i != mm->map_count)
346 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
347 BUG_ON(bug);
349 #else
350 #define validate_mm(mm) do { } while (0)
351 #endif
353 static struct vm_area_struct *
354 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
355 struct vm_area_struct **pprev, struct rb_node ***rb_link,
356 struct rb_node ** rb_parent)
358 struct vm_area_struct * vma;
359 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
361 __rb_link = &mm->mm_rb.rb_node;
362 rb_prev = __rb_parent = NULL;
363 vma = NULL;
365 while (*__rb_link) {
366 struct vm_area_struct *vma_tmp;
368 __rb_parent = *__rb_link;
369 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
371 if (vma_tmp->vm_end > addr) {
372 vma = vma_tmp;
373 if (vma_tmp->vm_start <= addr)
374 break;
375 __rb_link = &__rb_parent->rb_left;
376 } else {
377 rb_prev = __rb_parent;
378 __rb_link = &__rb_parent->rb_right;
382 *pprev = NULL;
383 if (rb_prev)
384 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
385 *rb_link = __rb_link;
386 *rb_parent = __rb_parent;
387 return vma;
390 static inline void
391 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
392 struct vm_area_struct *prev, struct rb_node *rb_parent)
394 if (prev) {
395 vma->vm_next = prev->vm_next;
396 prev->vm_next = vma;
397 } else {
398 mm->mmap = vma;
399 if (rb_parent)
400 vma->vm_next = rb_entry(rb_parent,
401 struct vm_area_struct, vm_rb);
402 else
403 vma->vm_next = NULL;
407 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
408 struct rb_node **rb_link, struct rb_node *rb_parent)
410 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
411 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
414 static void __vma_link_file(struct vm_area_struct *vma)
416 struct file * file;
418 file = vma->vm_file;
419 if (file) {
420 struct address_space *mapping = file->f_mapping;
422 if (vma->vm_flags & VM_DENYWRITE)
423 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
424 if (vma->vm_flags & VM_SHARED)
425 mapping->i_mmap_writable++;
427 flush_dcache_mmap_lock(mapping);
428 if (unlikely(vma->vm_flags & VM_NONLINEAR))
429 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
430 else
431 vma_prio_tree_insert(vma, &mapping->i_mmap);
432 flush_dcache_mmap_unlock(mapping);
436 static void
437 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
438 struct vm_area_struct *prev, struct rb_node **rb_link,
439 struct rb_node *rb_parent)
441 __vma_link_list(mm, vma, prev, rb_parent);
442 __vma_link_rb(mm, vma, rb_link, rb_parent);
443 __anon_vma_link(vma);
446 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
447 struct vm_area_struct *prev, struct rb_node **rb_link,
448 struct rb_node *rb_parent)
450 struct address_space *mapping = NULL;
452 if (vma->vm_file)
453 mapping = vma->vm_file->f_mapping;
455 if (mapping) {
456 spin_lock(&mapping->i_mmap_lock);
457 vma->vm_truncate_count = mapping->truncate_count;
459 anon_vma_lock(vma);
461 __vma_link(mm, vma, prev, rb_link, rb_parent);
462 __vma_link_file(vma);
464 anon_vma_unlock(vma);
465 if (mapping)
466 spin_unlock(&mapping->i_mmap_lock);
468 mm->map_count++;
469 validate_mm(mm);
473 * Helper for vma_adjust in the split_vma insert case:
474 * insert vm structure into list and rbtree and anon_vma,
475 * but it has already been inserted into prio_tree earlier.
477 static void
478 __insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
480 struct vm_area_struct * __vma, * prev;
481 struct rb_node ** rb_link, * rb_parent;
483 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
484 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
485 __vma_link(mm, vma, prev, rb_link, rb_parent);
486 mm->map_count++;
489 static inline void
490 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
491 struct vm_area_struct *prev)
493 prev->vm_next = vma->vm_next;
494 rb_erase(&vma->vm_rb, &mm->mm_rb);
495 if (mm->mmap_cache == vma)
496 mm->mmap_cache = prev;
500 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
501 * is already present in an i_mmap tree without adjusting the tree.
502 * The following helper function should be used when such adjustments
503 * are necessary. The "insert" vma (if any) is to be inserted
504 * before we drop the necessary locks.
506 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
507 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
509 struct mm_struct *mm = vma->vm_mm;
510 struct vm_area_struct *next = vma->vm_next;
511 struct vm_area_struct *importer = NULL;
512 struct address_space *mapping = NULL;
513 struct prio_tree_root *root = NULL;
514 struct file *file = vma->vm_file;
515 struct anon_vma *anon_vma = NULL;
516 long adjust_next = 0;
517 int remove_next = 0;
519 if (next && !insert) {
520 if (end >= next->vm_end) {
522 * vma expands, overlapping all the next, and
523 * perhaps the one after too (mprotect case 6).
525 again: remove_next = 1 + (end > next->vm_end);
526 end = next->vm_end;
527 anon_vma = next->anon_vma;
528 importer = vma;
529 } else if (end > next->vm_start) {
531 * vma expands, overlapping part of the next:
532 * mprotect case 5 shifting the boundary up.
534 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
535 anon_vma = next->anon_vma;
536 importer = vma;
537 } else if (end < vma->vm_end) {
539 * vma shrinks, and !insert tells it's not
540 * split_vma inserting another: so it must be
541 * mprotect case 4 shifting the boundary down.
543 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
544 anon_vma = next->anon_vma;
545 importer = next;
549 if (file) {
550 mapping = file->f_mapping;
551 if (!(vma->vm_flags & VM_NONLINEAR))
552 root = &mapping->i_mmap;
553 spin_lock(&mapping->i_mmap_lock);
554 if (importer &&
555 vma->vm_truncate_count != next->vm_truncate_count) {
557 * unmap_mapping_range might be in progress:
558 * ensure that the expanding vma is rescanned.
560 importer->vm_truncate_count = 0;
562 if (insert) {
563 insert->vm_truncate_count = vma->vm_truncate_count;
565 * Put into prio_tree now, so instantiated pages
566 * are visible to arm/parisc __flush_dcache_page
567 * throughout; but we cannot insert into address
568 * space until vma start or end is updated.
570 __vma_link_file(insert);
575 * When changing only vma->vm_end, we don't really need
576 * anon_vma lock: but is that case worth optimizing out?
578 if (vma->anon_vma)
579 anon_vma = vma->anon_vma;
580 if (anon_vma) {
581 spin_lock(&anon_vma->lock);
583 * Easily overlooked: when mprotect shifts the boundary,
584 * make sure the expanding vma has anon_vma set if the
585 * shrinking vma had, to cover any anon pages imported.
587 if (importer && !importer->anon_vma) {
588 importer->anon_vma = anon_vma;
589 __anon_vma_link(importer);
593 if (root) {
594 flush_dcache_mmap_lock(mapping);
595 vma_prio_tree_remove(vma, root);
596 if (adjust_next)
597 vma_prio_tree_remove(next, root);
600 vma->vm_start = start;
601 vma->vm_end = end;
602 vma->vm_pgoff = pgoff;
603 if (adjust_next) {
604 next->vm_start += adjust_next << PAGE_SHIFT;
605 next->vm_pgoff += adjust_next;
608 if (root) {
609 if (adjust_next)
610 vma_prio_tree_insert(next, root);
611 vma_prio_tree_insert(vma, root);
612 flush_dcache_mmap_unlock(mapping);
615 if (remove_next) {
617 * vma_merge has merged next into vma, and needs
618 * us to remove next before dropping the locks.
620 __vma_unlink(mm, next, vma);
621 if (file)
622 __remove_shared_vm_struct(next, file, mapping);
623 if (next->anon_vma)
624 __anon_vma_merge(vma, next);
625 } else if (insert) {
627 * split_vma has split insert from vma, and needs
628 * us to insert it before dropping the locks
629 * (it may either follow vma or precede it).
631 __insert_vm_struct(mm, insert);
634 if (anon_vma)
635 spin_unlock(&anon_vma->lock);
636 if (mapping)
637 spin_unlock(&mapping->i_mmap_lock);
639 if (remove_next) {
640 if (file) {
641 fput(file);
642 if (next->vm_flags & VM_EXECUTABLE)
643 removed_exe_file_vma(mm);
645 mm->map_count--;
646 mpol_put(vma_policy(next));
647 kmem_cache_free(vm_area_cachep, next);
649 * In mprotect's case 6 (see comments on vma_merge),
650 * we must remove another next too. It would clutter
651 * up the code too much to do both in one go.
653 if (remove_next == 2) {
654 next = vma->vm_next;
655 goto again;
659 validate_mm(mm);
663 * If the vma has a ->close operation then the driver probably needs to release
664 * per-vma resources, so we don't attempt to merge those.
666 static inline int is_mergeable_vma(struct vm_area_struct *vma,
667 struct file *file, unsigned long vm_flags)
669 if (vma->vm_flags != vm_flags)
670 return 0;
671 if (vma->vm_file != file)
672 return 0;
673 if (vma->vm_ops && vma->vm_ops->close)
674 return 0;
675 return 1;
678 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
679 struct anon_vma *anon_vma2)
681 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
685 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
686 * in front of (at a lower virtual address and file offset than) the vma.
688 * We cannot merge two vmas if they have differently assigned (non-NULL)
689 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691 * We don't check here for the merged mmap wrapping around the end of pagecache
692 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
693 * wrap, nor mmaps which cover the final page at index -1UL.
695 static int
696 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
697 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 if (is_mergeable_vma(vma, file, vm_flags) &&
700 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
701 if (vma->vm_pgoff == vm_pgoff)
702 return 1;
704 return 0;
708 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709 * beyond (at a higher virtual address and file offset than) the vma.
711 * We cannot merge two vmas if they have differently assigned (non-NULL)
712 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714 static int
715 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
716 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
718 if (is_mergeable_vma(vma, file, vm_flags) &&
719 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
720 pgoff_t vm_pglen;
721 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
722 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
723 return 1;
725 return 0;
729 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
730 * whether that can be merged with its predecessor or its successor.
731 * Or both (it neatly fills a hole).
733 * In most cases - when called for mmap, brk or mremap - [addr,end) is
734 * certain not to be mapped by the time vma_merge is called; but when
735 * called for mprotect, it is certain to be already mapped (either at
736 * an offset within prev, or at the start of next), and the flags of
737 * this area are about to be changed to vm_flags - and the no-change
738 * case has already been eliminated.
740 * The following mprotect cases have to be considered, where AAAA is
741 * the area passed down from mprotect_fixup, never extending beyond one
742 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
744 * AAAA AAAA AAAA AAAA
745 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
746 * cannot merge might become might become might become
747 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
748 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
749 * mremap move: PPPPNNNNNNNN 8
750 * AAAA
751 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
752 * might become case 1 below case 2 below case 3 below
754 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
755 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
757 struct vm_area_struct *vma_merge(struct mm_struct *mm,
758 struct vm_area_struct *prev, unsigned long addr,
759 unsigned long end, unsigned long vm_flags,
760 struct anon_vma *anon_vma, struct file *file,
761 pgoff_t pgoff, struct mempolicy *policy)
763 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
764 struct vm_area_struct *area, *next;
767 * We later require that vma->vm_flags == vm_flags,
768 * so this tests vma->vm_flags & VM_SPECIAL, too.
770 if (vm_flags & VM_SPECIAL)
771 return NULL;
773 if (prev)
774 next = prev->vm_next;
775 else
776 next = mm->mmap;
777 area = next;
778 if (next && next->vm_end == end) /* cases 6, 7, 8 */
779 next = next->vm_next;
782 * Can it merge with the predecessor?
784 if (prev && prev->vm_end == addr &&
785 mpol_equal(vma_policy(prev), policy) &&
786 can_vma_merge_after(prev, vm_flags,
787 anon_vma, file, pgoff)) {
789 * OK, it can. Can we now merge in the successor as well?
791 if (next && end == next->vm_start &&
792 mpol_equal(policy, vma_policy(next)) &&
793 can_vma_merge_before(next, vm_flags,
794 anon_vma, file, pgoff+pglen) &&
795 is_mergeable_anon_vma(prev->anon_vma,
796 next->anon_vma)) {
797 /* cases 1, 6 */
798 vma_adjust(prev, prev->vm_start,
799 next->vm_end, prev->vm_pgoff, NULL);
800 } else /* cases 2, 5, 7 */
801 vma_adjust(prev, prev->vm_start,
802 end, prev->vm_pgoff, NULL);
803 return prev;
807 * Can this new request be merged in front of next?
809 if (next && end == next->vm_start &&
810 mpol_equal(policy, vma_policy(next)) &&
811 can_vma_merge_before(next, vm_flags,
812 anon_vma, file, pgoff+pglen)) {
813 if (prev && addr < prev->vm_end) /* case 4 */
814 vma_adjust(prev, prev->vm_start,
815 addr, prev->vm_pgoff, NULL);
816 else /* cases 3, 8 */
817 vma_adjust(area, addr, next->vm_end,
818 next->vm_pgoff - pglen, NULL);
819 return area;
822 return NULL;
826 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
827 * neighbouring vmas for a suitable anon_vma, before it goes off
828 * to allocate a new anon_vma. It checks because a repetitive
829 * sequence of mprotects and faults may otherwise lead to distinct
830 * anon_vmas being allocated, preventing vma merge in subsequent
831 * mprotect.
833 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
835 struct vm_area_struct *near;
836 unsigned long vm_flags;
838 near = vma->vm_next;
839 if (!near)
840 goto try_prev;
843 * Since only mprotect tries to remerge vmas, match flags
844 * which might be mprotected into each other later on.
845 * Neither mlock nor madvise tries to remerge at present,
846 * so leave their flags as obstructing a merge.
848 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
849 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
851 if (near->anon_vma && vma->vm_end == near->vm_start &&
852 mpol_equal(vma_policy(vma), vma_policy(near)) &&
853 can_vma_merge_before(near, vm_flags,
854 NULL, vma->vm_file, vma->vm_pgoff +
855 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
856 return near->anon_vma;
857 try_prev:
859 * It is potentially slow to have to call find_vma_prev here.
860 * But it's only on the first write fault on the vma, not
861 * every time, and we could devise a way to avoid it later
862 * (e.g. stash info in next's anon_vma_node when assigning
863 * an anon_vma, or when trying vma_merge). Another time.
865 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
866 if (!near)
867 goto none;
869 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
870 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
872 if (near->anon_vma && near->vm_end == vma->vm_start &&
873 mpol_equal(vma_policy(near), vma_policy(vma)) &&
874 can_vma_merge_after(near, vm_flags,
875 NULL, vma->vm_file, vma->vm_pgoff))
876 return near->anon_vma;
877 none:
879 * There's no absolute need to look only at touching neighbours:
880 * we could search further afield for "compatible" anon_vmas.
881 * But it would probably just be a waste of time searching,
882 * or lead to too many vmas hanging off the same anon_vma.
883 * We're trying to allow mprotect remerging later on,
884 * not trying to minimize memory used for anon_vmas.
886 return NULL;
889 #ifdef CONFIG_PROC_FS
890 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
891 struct file *file, long pages)
893 const unsigned long stack_flags
894 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
896 if (file) {
897 mm->shared_vm += pages;
898 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
899 mm->exec_vm += pages;
900 } else if (flags & stack_flags)
901 mm->stack_vm += pages;
902 if (flags & (VM_RESERVED|VM_IO))
903 mm->reserved_vm += pages;
905 #endif /* CONFIG_PROC_FS */
908 * The caller must hold down_write(current->mm->mmap_sem).
911 unsigned long do_mmap_pgoff(struct file * file, unsigned long addr,
912 unsigned long len, unsigned long prot,
913 unsigned long flags, unsigned long pgoff)
915 struct mm_struct * mm = current->mm;
916 struct inode *inode;
917 unsigned int vm_flags;
918 int error;
919 int accountable = 1;
920 unsigned long reqprot = prot;
923 * Does the application expect PROT_READ to imply PROT_EXEC?
925 * (the exception is when the underlying filesystem is noexec
926 * mounted, in which case we dont add PROT_EXEC.)
928 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
929 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
930 prot |= PROT_EXEC;
932 if (!len)
933 return -EINVAL;
935 if (!(flags & MAP_FIXED))
936 addr = round_hint_to_min(addr);
938 error = arch_mmap_check(addr, len, flags);
939 if (error)
940 return error;
942 /* Careful about overflows.. */
943 len = PAGE_ALIGN(len);
944 if (!len || len > TASK_SIZE)
945 return -ENOMEM;
947 /* offset overflow? */
948 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
949 return -EOVERFLOW;
951 /* Too many mappings? */
952 if (mm->map_count > sysctl_max_map_count)
953 return -ENOMEM;
955 /* Obtain the address to map to. we verify (or select) it and ensure
956 * that it represents a valid section of the address space.
958 addr = get_unmapped_area(file, addr, len, pgoff, flags);
959 if (addr & ~PAGE_MASK)
960 return addr;
962 /* Do simple checking here so the lower-level routines won't have
963 * to. we assume access permissions have been handled by the open
964 * of the memory object, so we don't do any here.
966 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
967 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
969 if (flags & MAP_LOCKED) {
970 if (!can_do_mlock())
971 return -EPERM;
972 vm_flags |= VM_LOCKED;
975 /* mlock MCL_FUTURE? */
976 if (vm_flags & VM_LOCKED) {
977 unsigned long locked, lock_limit;
978 locked = len >> PAGE_SHIFT;
979 locked += mm->locked_vm;
980 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
981 lock_limit >>= PAGE_SHIFT;
982 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
983 return -EAGAIN;
986 inode = file ? file->f_path.dentry->d_inode : NULL;
988 if (file) {
989 switch (flags & MAP_TYPE) {
990 case MAP_SHARED:
991 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
992 return -EACCES;
995 * Make sure we don't allow writing to an append-only
996 * file..
998 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
999 return -EACCES;
1002 * Make sure there are no mandatory locks on the file.
1004 if (locks_verify_locked(inode))
1005 return -EAGAIN;
1007 vm_flags |= VM_SHARED | VM_MAYSHARE;
1008 if (!(file->f_mode & FMODE_WRITE))
1009 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1011 /* fall through */
1012 case MAP_PRIVATE:
1013 if (!(file->f_mode & FMODE_READ))
1014 return -EACCES;
1015 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1016 if (vm_flags & VM_EXEC)
1017 return -EPERM;
1018 vm_flags &= ~VM_MAYEXEC;
1020 if (is_file_hugepages(file))
1021 accountable = 0;
1023 if (!file->f_op || !file->f_op->mmap)
1024 return -ENODEV;
1025 break;
1027 default:
1028 return -EINVAL;
1030 } else {
1031 switch (flags & MAP_TYPE) {
1032 case MAP_SHARED:
1034 * Ignore pgoff.
1036 pgoff = 0;
1037 vm_flags |= VM_SHARED | VM_MAYSHARE;
1038 break;
1039 case MAP_PRIVATE:
1041 * Set pgoff according to addr for anon_vma.
1043 pgoff = addr >> PAGE_SHIFT;
1044 break;
1045 default:
1046 return -EINVAL;
1050 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1051 if (error)
1052 return error;
1054 return mmap_region(file, addr, len, flags, vm_flags, pgoff,
1055 accountable);
1057 EXPORT_SYMBOL(do_mmap_pgoff);
1060 * Some shared mappigns will want the pages marked read-only
1061 * to track write events. If so, we'll downgrade vm_page_prot
1062 * to the private version (using protection_map[] without the
1063 * VM_SHARED bit).
1065 int vma_wants_writenotify(struct vm_area_struct *vma)
1067 unsigned int vm_flags = vma->vm_flags;
1069 /* If it was private or non-writable, the write bit is already clear */
1070 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1071 return 0;
1073 /* The backer wishes to know when pages are first written to? */
1074 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1075 return 1;
1077 /* The open routine did something to the protections already? */
1078 if (pgprot_val(vma->vm_page_prot) !=
1079 pgprot_val(vm_get_page_prot(vm_flags)))
1080 return 0;
1082 /* Specialty mapping? */
1083 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1084 return 0;
1086 /* Can the mapping track the dirty pages? */
1087 return vma->vm_file && vma->vm_file->f_mapping &&
1088 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1091 unsigned long mmap_region(struct file *file, unsigned long addr,
1092 unsigned long len, unsigned long flags,
1093 unsigned int vm_flags, unsigned long pgoff,
1094 int accountable)
1096 struct mm_struct *mm = current->mm;
1097 struct vm_area_struct *vma, *prev;
1098 struct vm_area_struct *merged_vma;
1099 int correct_wcount = 0;
1100 int error;
1101 struct rb_node **rb_link, *rb_parent;
1102 unsigned long charged = 0;
1103 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1105 /* Clear old maps */
1106 error = -ENOMEM;
1107 munmap_back:
1108 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1109 if (vma && vma->vm_start < addr + len) {
1110 if (do_munmap(mm, addr, len))
1111 return -ENOMEM;
1112 goto munmap_back;
1115 /* Check against address space limit. */
1116 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1117 return -ENOMEM;
1119 if (flags & MAP_NORESERVE)
1120 vm_flags |= VM_NORESERVE;
1122 if (accountable && (!(flags & MAP_NORESERVE) ||
1123 sysctl_overcommit_memory == OVERCOMMIT_NEVER)) {
1124 if (vm_flags & VM_SHARED) {
1125 /* Check memory availability in shmem_file_setup? */
1126 vm_flags |= VM_ACCOUNT;
1127 } else if (vm_flags & VM_WRITE) {
1129 * Private writable mapping: check memory availability
1131 charged = len >> PAGE_SHIFT;
1132 if (security_vm_enough_memory(charged))
1133 return -ENOMEM;
1134 vm_flags |= VM_ACCOUNT;
1139 * Can we just expand an old private anonymous mapping?
1140 * The VM_SHARED test is necessary because shmem_zero_setup
1141 * will create the file object for a shared anonymous map below.
1143 if (!file && !(vm_flags & VM_SHARED)) {
1144 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1145 NULL, NULL, pgoff, NULL);
1146 if (vma)
1147 goto out;
1151 * Determine the object being mapped and call the appropriate
1152 * specific mapper. the address has already been validated, but
1153 * not unmapped, but the maps are removed from the list.
1155 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1156 if (!vma) {
1157 error = -ENOMEM;
1158 goto unacct_error;
1161 vma->vm_mm = mm;
1162 vma->vm_start = addr;
1163 vma->vm_end = addr + len;
1164 vma->vm_flags = vm_flags;
1165 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1166 vma->vm_pgoff = pgoff;
1168 if (file) {
1169 error = -EINVAL;
1170 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1171 goto free_vma;
1172 if (vm_flags & VM_DENYWRITE) {
1173 error = deny_write_access(file);
1174 if (error)
1175 goto free_vma;
1176 correct_wcount = 1;
1178 vma->vm_file = file;
1179 get_file(file);
1180 error = file->f_op->mmap(file, vma);
1181 if (error)
1182 goto unmap_and_free_vma;
1183 if (vm_flags & VM_EXECUTABLE)
1184 added_exe_file_vma(mm);
1185 } else if (vm_flags & VM_SHARED) {
1186 error = shmem_zero_setup(vma);
1187 if (error)
1188 goto free_vma;
1191 /* We set VM_ACCOUNT in a shared mapping's vm_flags, to inform
1192 * shmem_zero_setup (perhaps called through /dev/zero's ->mmap)
1193 * that memory reservation must be checked; but that reservation
1194 * belongs to shared memory object, not to vma: so now clear it.
1196 if ((vm_flags & (VM_SHARED|VM_ACCOUNT)) == (VM_SHARED|VM_ACCOUNT))
1197 vma->vm_flags &= ~VM_ACCOUNT;
1199 /* Can addr have changed??
1201 * Answer: Yes, several device drivers can do it in their
1202 * f_op->mmap method. -DaveM
1204 addr = vma->vm_start;
1205 pgoff = vma->vm_pgoff;
1206 vm_flags = vma->vm_flags;
1208 if (vma_wants_writenotify(vma))
1209 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1211 merged_vma = NULL;
1212 if (file)
1213 merged_vma = vma_merge(mm, prev, addr, vma->vm_end,
1214 vma->vm_flags, NULL, file, pgoff, vma_policy(vma));
1215 if (merged_vma) {
1216 mpol_put(vma_policy(vma));
1217 kmem_cache_free(vm_area_cachep, vma);
1218 fput(file);
1219 if (vm_flags & VM_EXECUTABLE)
1220 removed_exe_file_vma(mm);
1221 vma = merged_vma;
1222 } else {
1223 vma_link(mm, vma, prev, rb_link, rb_parent);
1224 file = vma->vm_file;
1227 /* Once vma denies write, undo our temporary denial count */
1228 if (correct_wcount)
1229 atomic_inc(&inode->i_writecount);
1230 out:
1231 mm->total_vm += len >> PAGE_SHIFT;
1232 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1233 if (vm_flags & VM_LOCKED) {
1235 * makes pages present; downgrades, drops, reacquires mmap_sem
1237 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1238 if (nr_pages < 0)
1239 return nr_pages; /* vma gone! */
1240 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1241 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1242 make_pages_present(addr, addr + len);
1243 return addr;
1245 unmap_and_free_vma:
1246 if (correct_wcount)
1247 atomic_inc(&inode->i_writecount);
1248 vma->vm_file = NULL;
1249 fput(file);
1251 /* Undo any partial mapping done by a device driver. */
1252 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1253 charged = 0;
1254 free_vma:
1255 kmem_cache_free(vm_area_cachep, vma);
1256 unacct_error:
1257 if (charged)
1258 vm_unacct_memory(charged);
1259 return error;
1262 /* Get an address range which is currently unmapped.
1263 * For shmat() with addr=0.
1265 * Ugly calling convention alert:
1266 * Return value with the low bits set means error value,
1267 * ie
1268 * if (ret & ~PAGE_MASK)
1269 * error = ret;
1271 * This function "knows" that -ENOMEM has the bits set.
1273 #ifndef HAVE_ARCH_UNMAPPED_AREA
1274 unsigned long
1275 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1276 unsigned long len, unsigned long pgoff, unsigned long flags)
1278 struct mm_struct *mm = current->mm;
1279 struct vm_area_struct *vma;
1280 unsigned long start_addr;
1282 if (len > TASK_SIZE)
1283 return -ENOMEM;
1285 if (flags & MAP_FIXED)
1286 return addr;
1288 if (addr) {
1289 addr = PAGE_ALIGN(addr);
1290 vma = find_vma(mm, addr);
1291 if (TASK_SIZE - len >= addr &&
1292 (!vma || addr + len <= vma->vm_start))
1293 return addr;
1295 if (len > mm->cached_hole_size) {
1296 start_addr = addr = mm->free_area_cache;
1297 } else {
1298 start_addr = addr = TASK_UNMAPPED_BASE;
1299 mm->cached_hole_size = 0;
1302 full_search:
1303 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1304 /* At this point: (!vma || addr < vma->vm_end). */
1305 if (TASK_SIZE - len < addr) {
1307 * Start a new search - just in case we missed
1308 * some holes.
1310 if (start_addr != TASK_UNMAPPED_BASE) {
1311 addr = TASK_UNMAPPED_BASE;
1312 start_addr = addr;
1313 mm->cached_hole_size = 0;
1314 goto full_search;
1316 return -ENOMEM;
1318 if (!vma || addr + len <= vma->vm_start) {
1320 * Remember the place where we stopped the search:
1322 mm->free_area_cache = addr + len;
1323 return addr;
1325 if (addr + mm->cached_hole_size < vma->vm_start)
1326 mm->cached_hole_size = vma->vm_start - addr;
1327 addr = vma->vm_end;
1330 #endif
1332 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1335 * Is this a new hole at the lowest possible address?
1337 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1338 mm->free_area_cache = addr;
1339 mm->cached_hole_size = ~0UL;
1344 * This mmap-allocator allocates new areas top-down from below the
1345 * stack's low limit (the base):
1347 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1348 unsigned long
1349 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1350 const unsigned long len, const unsigned long pgoff,
1351 const unsigned long flags)
1353 struct vm_area_struct *vma;
1354 struct mm_struct *mm = current->mm;
1355 unsigned long addr = addr0;
1357 /* requested length too big for entire address space */
1358 if (len > TASK_SIZE)
1359 return -ENOMEM;
1361 if (flags & MAP_FIXED)
1362 return addr;
1364 /* requesting a specific address */
1365 if (addr) {
1366 addr = PAGE_ALIGN(addr);
1367 vma = find_vma(mm, addr);
1368 if (TASK_SIZE - len >= addr &&
1369 (!vma || addr + len <= vma->vm_start))
1370 return addr;
1373 /* check if free_area_cache is useful for us */
1374 if (len <= mm->cached_hole_size) {
1375 mm->cached_hole_size = 0;
1376 mm->free_area_cache = mm->mmap_base;
1379 /* either no address requested or can't fit in requested address hole */
1380 addr = mm->free_area_cache;
1382 /* make sure it can fit in the remaining address space */
1383 if (addr > len) {
1384 vma = find_vma(mm, addr-len);
1385 if (!vma || addr <= vma->vm_start)
1386 /* remember the address as a hint for next time */
1387 return (mm->free_area_cache = addr-len);
1390 if (mm->mmap_base < len)
1391 goto bottomup;
1393 addr = mm->mmap_base-len;
1395 do {
1397 * Lookup failure means no vma is above this address,
1398 * else if new region fits below vma->vm_start,
1399 * return with success:
1401 vma = find_vma(mm, addr);
1402 if (!vma || addr+len <= vma->vm_start)
1403 /* remember the address as a hint for next time */
1404 return (mm->free_area_cache = addr);
1406 /* remember the largest hole we saw so far */
1407 if (addr + mm->cached_hole_size < vma->vm_start)
1408 mm->cached_hole_size = vma->vm_start - addr;
1410 /* try just below the current vma->vm_start */
1411 addr = vma->vm_start-len;
1412 } while (len < vma->vm_start);
1414 bottomup:
1416 * A failed mmap() very likely causes application failure,
1417 * so fall back to the bottom-up function here. This scenario
1418 * can happen with large stack limits and large mmap()
1419 * allocations.
1421 mm->cached_hole_size = ~0UL;
1422 mm->free_area_cache = TASK_UNMAPPED_BASE;
1423 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1425 * Restore the topdown base:
1427 mm->free_area_cache = mm->mmap_base;
1428 mm->cached_hole_size = ~0UL;
1430 return addr;
1432 #endif
1434 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1437 * Is this a new hole at the highest possible address?
1439 if (addr > mm->free_area_cache)
1440 mm->free_area_cache = addr;
1442 /* dont allow allocations above current base */
1443 if (mm->free_area_cache > mm->mmap_base)
1444 mm->free_area_cache = mm->mmap_base;
1447 unsigned long
1448 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1449 unsigned long pgoff, unsigned long flags)
1451 unsigned long (*get_area)(struct file *, unsigned long,
1452 unsigned long, unsigned long, unsigned long);
1454 get_area = current->mm->get_unmapped_area;
1455 if (file && file->f_op && file->f_op->get_unmapped_area)
1456 get_area = file->f_op->get_unmapped_area;
1457 addr = get_area(file, addr, len, pgoff, flags);
1458 if (IS_ERR_VALUE(addr))
1459 return addr;
1461 if (addr > TASK_SIZE - len)
1462 return -ENOMEM;
1463 if (addr & ~PAGE_MASK)
1464 return -EINVAL;
1466 return arch_rebalance_pgtables(addr, len);
1469 EXPORT_SYMBOL(get_unmapped_area);
1471 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1472 struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr)
1474 struct vm_area_struct *vma = NULL;
1476 if (mm) {
1477 /* Check the cache first. */
1478 /* (Cache hit rate is typically around 35%.) */
1479 vma = mm->mmap_cache;
1480 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1481 struct rb_node * rb_node;
1483 rb_node = mm->mm_rb.rb_node;
1484 vma = NULL;
1486 while (rb_node) {
1487 struct vm_area_struct * vma_tmp;
1489 vma_tmp = rb_entry(rb_node,
1490 struct vm_area_struct, vm_rb);
1492 if (vma_tmp->vm_end > addr) {
1493 vma = vma_tmp;
1494 if (vma_tmp->vm_start <= addr)
1495 break;
1496 rb_node = rb_node->rb_left;
1497 } else
1498 rb_node = rb_node->rb_right;
1500 if (vma)
1501 mm->mmap_cache = vma;
1504 return vma;
1507 EXPORT_SYMBOL(find_vma);
1509 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1510 struct vm_area_struct *
1511 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1512 struct vm_area_struct **pprev)
1514 struct vm_area_struct *vma = NULL, *prev = NULL;
1515 struct rb_node * rb_node;
1516 if (!mm)
1517 goto out;
1519 /* Guard against addr being lower than the first VMA */
1520 vma = mm->mmap;
1522 /* Go through the RB tree quickly. */
1523 rb_node = mm->mm_rb.rb_node;
1525 while (rb_node) {
1526 struct vm_area_struct *vma_tmp;
1527 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1529 if (addr < vma_tmp->vm_end) {
1530 rb_node = rb_node->rb_left;
1531 } else {
1532 prev = vma_tmp;
1533 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1534 break;
1535 rb_node = rb_node->rb_right;
1539 out:
1540 *pprev = prev;
1541 return prev ? prev->vm_next : vma;
1545 * Verify that the stack growth is acceptable and
1546 * update accounting. This is shared with both the
1547 * grow-up and grow-down cases.
1549 static int acct_stack_growth(struct vm_area_struct * vma, unsigned long size, unsigned long grow)
1551 struct mm_struct *mm = vma->vm_mm;
1552 struct rlimit *rlim = current->signal->rlim;
1553 unsigned long new_start;
1555 /* address space limit tests */
1556 if (!may_expand_vm(mm, grow))
1557 return -ENOMEM;
1559 /* Stack limit test */
1560 if (size > rlim[RLIMIT_STACK].rlim_cur)
1561 return -ENOMEM;
1563 /* mlock limit tests */
1564 if (vma->vm_flags & VM_LOCKED) {
1565 unsigned long locked;
1566 unsigned long limit;
1567 locked = mm->locked_vm + grow;
1568 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1569 if (locked > limit && !capable(CAP_IPC_LOCK))
1570 return -ENOMEM;
1573 /* Check to ensure the stack will not grow into a hugetlb-only region */
1574 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1575 vma->vm_end - size;
1576 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1577 return -EFAULT;
1580 * Overcommit.. This must be the final test, as it will
1581 * update security statistics.
1583 if (security_vm_enough_memory_mm(mm, grow))
1584 return -ENOMEM;
1586 /* Ok, everything looks good - let it rip */
1587 mm->total_vm += grow;
1588 if (vma->vm_flags & VM_LOCKED)
1589 mm->locked_vm += grow;
1590 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1591 return 0;
1594 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1596 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1597 * vma is the last one with address > vma->vm_end. Have to extend vma.
1599 #ifndef CONFIG_IA64
1600 static
1601 #endif
1602 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1604 int error;
1606 if (!(vma->vm_flags & VM_GROWSUP))
1607 return -EFAULT;
1610 * We must make sure the anon_vma is allocated
1611 * so that the anon_vma locking is not a noop.
1613 if (unlikely(anon_vma_prepare(vma)))
1614 return -ENOMEM;
1615 anon_vma_lock(vma);
1618 * vma->vm_start/vm_end cannot change under us because the caller
1619 * is required to hold the mmap_sem in read mode. We need the
1620 * anon_vma lock to serialize against concurrent expand_stacks.
1621 * Also guard against wrapping around to address 0.
1623 if (address < PAGE_ALIGN(address+4))
1624 address = PAGE_ALIGN(address+4);
1625 else {
1626 anon_vma_unlock(vma);
1627 return -ENOMEM;
1629 error = 0;
1631 /* Somebody else might have raced and expanded it already */
1632 if (address > vma->vm_end) {
1633 unsigned long size, grow;
1635 size = address - vma->vm_start;
1636 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1638 error = acct_stack_growth(vma, size, grow);
1639 if (!error)
1640 vma->vm_end = address;
1642 anon_vma_unlock(vma);
1643 return error;
1645 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1648 * vma is the first one with address < vma->vm_start. Have to extend vma.
1650 static int expand_downwards(struct vm_area_struct *vma,
1651 unsigned long address)
1653 int error;
1656 * We must make sure the anon_vma is allocated
1657 * so that the anon_vma locking is not a noop.
1659 if (unlikely(anon_vma_prepare(vma)))
1660 return -ENOMEM;
1662 address &= PAGE_MASK;
1663 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1664 if (error)
1665 return error;
1667 anon_vma_lock(vma);
1670 * vma->vm_start/vm_end cannot change under us because the caller
1671 * is required to hold the mmap_sem in read mode. We need the
1672 * anon_vma lock to serialize against concurrent expand_stacks.
1675 /* Somebody else might have raced and expanded it already */
1676 if (address < vma->vm_start) {
1677 unsigned long size, grow;
1679 size = vma->vm_end - address;
1680 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1682 error = acct_stack_growth(vma, size, grow);
1683 if (!error) {
1684 vma->vm_start = address;
1685 vma->vm_pgoff -= grow;
1688 anon_vma_unlock(vma);
1689 return error;
1692 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1694 return expand_downwards(vma, address);
1697 #ifdef CONFIG_STACK_GROWSUP
1698 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1700 return expand_upwards(vma, address);
1703 struct vm_area_struct *
1704 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1706 struct vm_area_struct *vma, *prev;
1708 addr &= PAGE_MASK;
1709 vma = find_vma_prev(mm, addr, &prev);
1710 if (vma && (vma->vm_start <= addr))
1711 return vma;
1712 if (!prev || expand_stack(prev, addr))
1713 return NULL;
1714 if (prev->vm_flags & VM_LOCKED) {
1715 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1716 return NULL; /* vma gone! */
1718 return prev;
1720 #else
1721 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1723 return expand_downwards(vma, address);
1726 struct vm_area_struct *
1727 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1729 struct vm_area_struct * vma;
1730 unsigned long start;
1732 addr &= PAGE_MASK;
1733 vma = find_vma(mm,addr);
1734 if (!vma)
1735 return NULL;
1736 if (vma->vm_start <= addr)
1737 return vma;
1738 if (!(vma->vm_flags & VM_GROWSDOWN))
1739 return NULL;
1740 start = vma->vm_start;
1741 if (expand_stack(vma, addr))
1742 return NULL;
1743 if (vma->vm_flags & VM_LOCKED) {
1744 if (mlock_vma_pages_range(vma, addr, start) < 0)
1745 return NULL; /* vma gone! */
1747 return vma;
1749 #endif
1752 * Ok - we have the memory areas we should free on the vma list,
1753 * so release them, and do the vma updates.
1755 * Called with the mm semaphore held.
1757 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1759 /* Update high watermark before we lower total_vm */
1760 update_hiwater_vm(mm);
1761 do {
1762 long nrpages = vma_pages(vma);
1764 mm->total_vm -= nrpages;
1765 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1766 vma = remove_vma(vma);
1767 } while (vma);
1768 validate_mm(mm);
1772 * Get rid of page table information in the indicated region.
1774 * Called with the mm semaphore held.
1776 static void unmap_region(struct mm_struct *mm,
1777 struct vm_area_struct *vma, struct vm_area_struct *prev,
1778 unsigned long start, unsigned long end)
1780 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1781 struct mmu_gather *tlb;
1782 unsigned long nr_accounted = 0;
1784 lru_add_drain();
1785 tlb = tlb_gather_mmu(mm, 0);
1786 update_hiwater_rss(mm);
1787 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1788 vm_unacct_memory(nr_accounted);
1789 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1790 next? next->vm_start: 0);
1791 tlb_finish_mmu(tlb, start, end);
1795 * Create a list of vma's touched by the unmap, removing them from the mm's
1796 * vma list as we go..
1798 static void
1799 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1800 struct vm_area_struct *prev, unsigned long end)
1802 struct vm_area_struct **insertion_point;
1803 struct vm_area_struct *tail_vma = NULL;
1804 unsigned long addr;
1806 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1807 do {
1808 rb_erase(&vma->vm_rb, &mm->mm_rb);
1809 mm->map_count--;
1810 tail_vma = vma;
1811 vma = vma->vm_next;
1812 } while (vma && vma->vm_start < end);
1813 *insertion_point = vma;
1814 tail_vma->vm_next = NULL;
1815 if (mm->unmap_area == arch_unmap_area)
1816 addr = prev ? prev->vm_end : mm->mmap_base;
1817 else
1818 addr = vma ? vma->vm_start : mm->mmap_base;
1819 mm->unmap_area(mm, addr);
1820 mm->mmap_cache = NULL; /* Kill the cache. */
1824 * Split a vma into two pieces at address 'addr', a new vma is allocated
1825 * either for the first part or the tail.
1827 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1828 unsigned long addr, int new_below)
1830 struct mempolicy *pol;
1831 struct vm_area_struct *new;
1833 if (is_vm_hugetlb_page(vma) && (addr &
1834 ~(huge_page_mask(hstate_vma(vma)))))
1835 return -EINVAL;
1837 if (mm->map_count >= sysctl_max_map_count)
1838 return -ENOMEM;
1840 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1841 if (!new)
1842 return -ENOMEM;
1844 /* most fields are the same, copy all, and then fixup */
1845 *new = *vma;
1847 if (new_below)
1848 new->vm_end = addr;
1849 else {
1850 new->vm_start = addr;
1851 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1854 pol = mpol_dup(vma_policy(vma));
1855 if (IS_ERR(pol)) {
1856 kmem_cache_free(vm_area_cachep, new);
1857 return PTR_ERR(pol);
1859 vma_set_policy(new, pol);
1861 if (new->vm_file) {
1862 get_file(new->vm_file);
1863 if (vma->vm_flags & VM_EXECUTABLE)
1864 added_exe_file_vma(mm);
1867 if (new->vm_ops && new->vm_ops->open)
1868 new->vm_ops->open(new);
1870 if (new_below)
1871 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1872 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1873 else
1874 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1876 return 0;
1879 /* Munmap is split into 2 main parts -- this part which finds
1880 * what needs doing, and the areas themselves, which do the
1881 * work. This now handles partial unmappings.
1882 * Jeremy Fitzhardinge <jeremy@goop.org>
1884 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1886 unsigned long end;
1887 struct vm_area_struct *vma, *prev, *last;
1889 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1890 return -EINVAL;
1892 if ((len = PAGE_ALIGN(len)) == 0)
1893 return -EINVAL;
1895 /* Find the first overlapping VMA */
1896 vma = find_vma_prev(mm, start, &prev);
1897 if (!vma)
1898 return 0;
1899 /* we have start < vma->vm_end */
1901 /* if it doesn't overlap, we have nothing.. */
1902 end = start + len;
1903 if (vma->vm_start >= end)
1904 return 0;
1907 * If we need to split any vma, do it now to save pain later.
1909 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1910 * unmapped vm_area_struct will remain in use: so lower split_vma
1911 * places tmp vma above, and higher split_vma places tmp vma below.
1913 if (start > vma->vm_start) {
1914 int error = split_vma(mm, vma, start, 0);
1915 if (error)
1916 return error;
1917 prev = vma;
1920 /* Does it split the last one? */
1921 last = find_vma(mm, end);
1922 if (last && end > last->vm_start) {
1923 int error = split_vma(mm, last, end, 1);
1924 if (error)
1925 return error;
1927 vma = prev? prev->vm_next: mm->mmap;
1930 * unlock any mlock()ed ranges before detaching vmas
1932 if (mm->locked_vm) {
1933 struct vm_area_struct *tmp = vma;
1934 while (tmp && tmp->vm_start < end) {
1935 if (tmp->vm_flags & VM_LOCKED) {
1936 mm->locked_vm -= vma_pages(tmp);
1937 munlock_vma_pages_all(tmp);
1939 tmp = tmp->vm_next;
1944 * Remove the vma's, and unmap the actual pages
1946 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1947 unmap_region(mm, vma, prev, start, end);
1949 /* Fix up all other VM information */
1950 remove_vma_list(mm, vma);
1952 return 0;
1955 EXPORT_SYMBOL(do_munmap);
1957 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1959 int ret;
1960 struct mm_struct *mm = current->mm;
1962 profile_munmap(addr);
1964 down_write(&mm->mmap_sem);
1965 ret = do_munmap(mm, addr, len);
1966 up_write(&mm->mmap_sem);
1967 return ret;
1970 static inline void verify_mm_writelocked(struct mm_struct *mm)
1972 #ifdef CONFIG_DEBUG_VM
1973 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1974 WARN_ON(1);
1975 up_read(&mm->mmap_sem);
1977 #endif
1981 * this is really a simplified "do_mmap". it only handles
1982 * anonymous maps. eventually we may be able to do some
1983 * brk-specific accounting here.
1985 unsigned long do_brk(unsigned long addr, unsigned long len)
1987 struct mm_struct * mm = current->mm;
1988 struct vm_area_struct * vma, * prev;
1989 unsigned long flags;
1990 struct rb_node ** rb_link, * rb_parent;
1991 pgoff_t pgoff = addr >> PAGE_SHIFT;
1992 int error;
1994 len = PAGE_ALIGN(len);
1995 if (!len)
1996 return addr;
1998 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1999 return -EINVAL;
2001 if (is_hugepage_only_range(mm, addr, len))
2002 return -EINVAL;
2004 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2005 if (error)
2006 return error;
2008 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2010 error = arch_mmap_check(addr, len, flags);
2011 if (error)
2012 return error;
2015 * mlock MCL_FUTURE?
2017 if (mm->def_flags & VM_LOCKED) {
2018 unsigned long locked, lock_limit;
2019 locked = len >> PAGE_SHIFT;
2020 locked += mm->locked_vm;
2021 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2022 lock_limit >>= PAGE_SHIFT;
2023 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2024 return -EAGAIN;
2028 * mm->mmap_sem is required to protect against another thread
2029 * changing the mappings in case we sleep.
2031 verify_mm_writelocked(mm);
2034 * Clear old maps. this also does some error checking for us
2036 munmap_back:
2037 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2038 if (vma && vma->vm_start < addr + len) {
2039 if (do_munmap(mm, addr, len))
2040 return -ENOMEM;
2041 goto munmap_back;
2044 /* Check against address space limits *after* clearing old maps... */
2045 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2046 return -ENOMEM;
2048 if (mm->map_count > sysctl_max_map_count)
2049 return -ENOMEM;
2051 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2052 return -ENOMEM;
2054 /* Can we just expand an old private anonymous mapping? */
2055 vma = vma_merge(mm, prev, addr, addr + len, flags,
2056 NULL, NULL, pgoff, NULL);
2057 if (vma)
2058 goto out;
2061 * create a vma struct for an anonymous mapping
2063 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2064 if (!vma) {
2065 vm_unacct_memory(len >> PAGE_SHIFT);
2066 return -ENOMEM;
2069 vma->vm_mm = mm;
2070 vma->vm_start = addr;
2071 vma->vm_end = addr + len;
2072 vma->vm_pgoff = pgoff;
2073 vma->vm_flags = flags;
2074 vma->vm_page_prot = vm_get_page_prot(flags);
2075 vma_link(mm, vma, prev, rb_link, rb_parent);
2076 out:
2077 mm->total_vm += len >> PAGE_SHIFT;
2078 if (flags & VM_LOCKED) {
2079 if (!mlock_vma_pages_range(vma, addr, addr + len))
2080 mm->locked_vm += (len >> PAGE_SHIFT);
2082 return addr;
2085 EXPORT_SYMBOL(do_brk);
2087 /* Release all mmaps. */
2088 void exit_mmap(struct mm_struct *mm)
2090 struct mmu_gather *tlb;
2091 struct vm_area_struct *vma;
2092 unsigned long nr_accounted = 0;
2093 unsigned long end;
2095 /* mm's last user has gone, and its about to be pulled down */
2096 mmu_notifier_release(mm);
2098 if (mm->locked_vm) {
2099 vma = mm->mmap;
2100 while (vma) {
2101 if (vma->vm_flags & VM_LOCKED)
2102 munlock_vma_pages_all(vma);
2103 vma = vma->vm_next;
2107 arch_exit_mmap(mm);
2109 vma = mm->mmap;
2110 if (!vma) /* Can happen if dup_mmap() received an OOM */
2111 return;
2113 lru_add_drain();
2114 flush_cache_mm(mm);
2115 tlb = tlb_gather_mmu(mm, 1);
2116 /* Don't update_hiwater_rss(mm) here, do_exit already did */
2117 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2118 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2119 vm_unacct_memory(nr_accounted);
2120 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2121 tlb_finish_mmu(tlb, 0, end);
2124 * Walk the list again, actually closing and freeing it,
2125 * with preemption enabled, without holding any MM locks.
2127 while (vma)
2128 vma = remove_vma(vma);
2130 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2133 /* Insert vm structure into process list sorted by address
2134 * and into the inode's i_mmap tree. If vm_file is non-NULL
2135 * then i_mmap_lock is taken here.
2137 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2139 struct vm_area_struct * __vma, * prev;
2140 struct rb_node ** rb_link, * rb_parent;
2143 * The vm_pgoff of a purely anonymous vma should be irrelevant
2144 * until its first write fault, when page's anon_vma and index
2145 * are set. But now set the vm_pgoff it will almost certainly
2146 * end up with (unless mremap moves it elsewhere before that
2147 * first wfault), so /proc/pid/maps tells a consistent story.
2149 * By setting it to reflect the virtual start address of the
2150 * vma, merges and splits can happen in a seamless way, just
2151 * using the existing file pgoff checks and manipulations.
2152 * Similarly in do_mmap_pgoff and in do_brk.
2154 if (!vma->vm_file) {
2155 BUG_ON(vma->anon_vma);
2156 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2158 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2159 if (__vma && __vma->vm_start < vma->vm_end)
2160 return -ENOMEM;
2161 if ((vma->vm_flags & VM_ACCOUNT) &&
2162 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2163 return -ENOMEM;
2164 vma_link(mm, vma, prev, rb_link, rb_parent);
2165 return 0;
2169 * Copy the vma structure to a new location in the same mm,
2170 * prior to moving page table entries, to effect an mremap move.
2172 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2173 unsigned long addr, unsigned long len, pgoff_t pgoff)
2175 struct vm_area_struct *vma = *vmap;
2176 unsigned long vma_start = vma->vm_start;
2177 struct mm_struct *mm = vma->vm_mm;
2178 struct vm_area_struct *new_vma, *prev;
2179 struct rb_node **rb_link, *rb_parent;
2180 struct mempolicy *pol;
2183 * If anonymous vma has not yet been faulted, update new pgoff
2184 * to match new location, to increase its chance of merging.
2186 if (!vma->vm_file && !vma->anon_vma)
2187 pgoff = addr >> PAGE_SHIFT;
2189 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2190 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2191 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2192 if (new_vma) {
2194 * Source vma may have been merged into new_vma
2196 if (vma_start >= new_vma->vm_start &&
2197 vma_start < new_vma->vm_end)
2198 *vmap = new_vma;
2199 } else {
2200 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2201 if (new_vma) {
2202 *new_vma = *vma;
2203 pol = mpol_dup(vma_policy(vma));
2204 if (IS_ERR(pol)) {
2205 kmem_cache_free(vm_area_cachep, new_vma);
2206 return NULL;
2208 vma_set_policy(new_vma, pol);
2209 new_vma->vm_start = addr;
2210 new_vma->vm_end = addr + len;
2211 new_vma->vm_pgoff = pgoff;
2212 if (new_vma->vm_file) {
2213 get_file(new_vma->vm_file);
2214 if (vma->vm_flags & VM_EXECUTABLE)
2215 added_exe_file_vma(mm);
2217 if (new_vma->vm_ops && new_vma->vm_ops->open)
2218 new_vma->vm_ops->open(new_vma);
2219 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2222 return new_vma;
2226 * Return true if the calling process may expand its vm space by the passed
2227 * number of pages
2229 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2231 unsigned long cur = mm->total_vm; /* pages */
2232 unsigned long lim;
2234 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2236 if (cur + npages > lim)
2237 return 0;
2238 return 1;
2242 static int special_mapping_fault(struct vm_area_struct *vma,
2243 struct vm_fault *vmf)
2245 pgoff_t pgoff;
2246 struct page **pages;
2249 * special mappings have no vm_file, and in that case, the mm
2250 * uses vm_pgoff internally. So we have to subtract it from here.
2251 * We are allowed to do this because we are the mm; do not copy
2252 * this code into drivers!
2254 pgoff = vmf->pgoff - vma->vm_pgoff;
2256 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2257 pgoff--;
2259 if (*pages) {
2260 struct page *page = *pages;
2261 get_page(page);
2262 vmf->page = page;
2263 return 0;
2266 return VM_FAULT_SIGBUS;
2270 * Having a close hook prevents vma merging regardless of flags.
2272 static void special_mapping_close(struct vm_area_struct *vma)
2276 static struct vm_operations_struct special_mapping_vmops = {
2277 .close = special_mapping_close,
2278 .fault = special_mapping_fault,
2282 * Called with mm->mmap_sem held for writing.
2283 * Insert a new vma covering the given region, with the given flags.
2284 * Its pages are supplied by the given array of struct page *.
2285 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2286 * The region past the last page supplied will always produce SIGBUS.
2287 * The array pointer and the pages it points to are assumed to stay alive
2288 * for as long as this mapping might exist.
2290 int install_special_mapping(struct mm_struct *mm,
2291 unsigned long addr, unsigned long len,
2292 unsigned long vm_flags, struct page **pages)
2294 struct vm_area_struct *vma;
2296 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2297 if (unlikely(vma == NULL))
2298 return -ENOMEM;
2300 vma->vm_mm = mm;
2301 vma->vm_start = addr;
2302 vma->vm_end = addr + len;
2304 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2305 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2307 vma->vm_ops = &special_mapping_vmops;
2308 vma->vm_private_data = pages;
2310 if (unlikely(insert_vm_struct(mm, vma))) {
2311 kmem_cache_free(vm_area_cachep, vma);
2312 return -ENOMEM;
2315 mm->total_vm += len >> PAGE_SHIFT;
2317 return 0;
2320 static DEFINE_MUTEX(mm_all_locks_mutex);
2322 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2324 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2326 * The LSB of head.next can't change from under us
2327 * because we hold the mm_all_locks_mutex.
2329 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2331 * We can safely modify head.next after taking the
2332 * anon_vma->lock. If some other vma in this mm shares
2333 * the same anon_vma we won't take it again.
2335 * No need of atomic instructions here, head.next
2336 * can't change from under us thanks to the
2337 * anon_vma->lock.
2339 if (__test_and_set_bit(0, (unsigned long *)
2340 &anon_vma->head.next))
2341 BUG();
2345 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2347 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2349 * AS_MM_ALL_LOCKS can't change from under us because
2350 * we hold the mm_all_locks_mutex.
2352 * Operations on ->flags have to be atomic because
2353 * even if AS_MM_ALL_LOCKS is stable thanks to the
2354 * mm_all_locks_mutex, there may be other cpus
2355 * changing other bitflags in parallel to us.
2357 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2358 BUG();
2359 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2364 * This operation locks against the VM for all pte/vma/mm related
2365 * operations that could ever happen on a certain mm. This includes
2366 * vmtruncate, try_to_unmap, and all page faults.
2368 * The caller must take the mmap_sem in write mode before calling
2369 * mm_take_all_locks(). The caller isn't allowed to release the
2370 * mmap_sem until mm_drop_all_locks() returns.
2372 * mmap_sem in write mode is required in order to block all operations
2373 * that could modify pagetables and free pages without need of
2374 * altering the vma layout (for example populate_range() with
2375 * nonlinear vmas). It's also needed in write mode to avoid new
2376 * anon_vmas to be associated with existing vmas.
2378 * A single task can't take more than one mm_take_all_locks() in a row
2379 * or it would deadlock.
2381 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2382 * mapping->flags avoid to take the same lock twice, if more than one
2383 * vma in this mm is backed by the same anon_vma or address_space.
2385 * We can take all the locks in random order because the VM code
2386 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2387 * takes more than one of them in a row. Secondly we're protected
2388 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2390 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2391 * that may have to take thousand of locks.
2393 * mm_take_all_locks() can fail if it's interrupted by signals.
2395 int mm_take_all_locks(struct mm_struct *mm)
2397 struct vm_area_struct *vma;
2398 int ret = -EINTR;
2400 BUG_ON(down_read_trylock(&mm->mmap_sem));
2402 mutex_lock(&mm_all_locks_mutex);
2404 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2405 if (signal_pending(current))
2406 goto out_unlock;
2407 if (vma->vm_file && vma->vm_file->f_mapping)
2408 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2411 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2412 if (signal_pending(current))
2413 goto out_unlock;
2414 if (vma->anon_vma)
2415 vm_lock_anon_vma(mm, vma->anon_vma);
2418 ret = 0;
2420 out_unlock:
2421 if (ret)
2422 mm_drop_all_locks(mm);
2424 return ret;
2427 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2429 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2431 * The LSB of head.next can't change to 0 from under
2432 * us because we hold the mm_all_locks_mutex.
2434 * We must however clear the bitflag before unlocking
2435 * the vma so the users using the anon_vma->head will
2436 * never see our bitflag.
2438 * No need of atomic instructions here, head.next
2439 * can't change from under us until we release the
2440 * anon_vma->lock.
2442 if (!__test_and_clear_bit(0, (unsigned long *)
2443 &anon_vma->head.next))
2444 BUG();
2445 spin_unlock(&anon_vma->lock);
2449 static void vm_unlock_mapping(struct address_space *mapping)
2451 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2453 * AS_MM_ALL_LOCKS can't change to 0 from under us
2454 * because we hold the mm_all_locks_mutex.
2456 spin_unlock(&mapping->i_mmap_lock);
2457 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2458 &mapping->flags))
2459 BUG();
2464 * The mmap_sem cannot be released by the caller until
2465 * mm_drop_all_locks() returns.
2467 void mm_drop_all_locks(struct mm_struct *mm)
2469 struct vm_area_struct *vma;
2471 BUG_ON(down_read_trylock(&mm->mmap_sem));
2472 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2474 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2475 if (vma->anon_vma)
2476 vm_unlock_anon_vma(vma->anon_vma);
2477 if (vma->vm_file && vma->vm_file->f_mapping)
2478 vm_unlock_mapping(vma->vm_file->f_mapping);
2481 mutex_unlock(&mm_all_locks_mutex);