Linux 2.6.28.10
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blob6f62ef9d790ba994eaa062819222ed77b6a83fe5
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124 mem_cgroup_uncharge_cache_page(page);
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 void remove_from_page_cache(struct page *page)
141 struct address_space *mapping = page->mapping;
143 BUG_ON(!PageLocked(page));
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
150 static int sync_page(void *word)
152 struct address_space *mapping;
153 struct page *page;
155 page = container_of((unsigned long *)word, struct page, flags);
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
186 static int sync_page_killable(void *word)
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
221 ret = do_writepages(mapping, &wbc);
222 return ret;
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 int filemap_fdatawrite(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 EXPORT_SYMBOL(filemap_fdatawrite);
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
274 if (end < start)
275 return 0;
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
296 pagevec_release(&pvec);
297 cond_resched();
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
306 return ret;
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
342 EXPORT_SYMBOL(sync_page_range);
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
371 EXPORT_SYMBOL(sync_page_range_nolock);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
384 if (i_size == 0)
385 return 0;
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 EXPORT_SYMBOL(filemap_fdatawait);
392 int filemap_write_and_wait(struct address_space *mapping)
394 int err = 0;
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
410 return err;
412 EXPORT_SYMBOL(filemap_write_and_wait);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
428 int err = 0;
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
442 return err;
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t offset, gfp_t gfp_mask)
458 int error;
460 VM_BUG_ON(!PageLocked(page));
462 error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & ~__GFP_HIGHMEM);
464 if (error)
465 goto out;
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
473 spin_lock_irq(&mapping->tree_lock);
474 error = radix_tree_insert(&mapping->page_tree, offset, page);
475 if (likely(!error)) {
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else {
479 page->mapping = NULL;
480 mem_cgroup_uncharge_cache_page(page);
481 page_cache_release(page);
484 spin_unlock_irq(&mapping->tree_lock);
485 radix_tree_preload_end();
486 } else
487 mem_cgroup_uncharge_cache_page(page);
488 out:
489 return error;
491 EXPORT_SYMBOL(add_to_page_cache_locked);
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 pgoff_t offset, gfp_t gfp_mask)
496 int ret;
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
514 return ret;
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
522 return alloc_pages_node(n, gfp, 0);
524 return alloc_pages(gfp, 0);
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
529 static int __sleep_on_page_lock(void *word)
531 io_schedule();
532 return 0;
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
545 static wait_queue_head_t *page_waitqueue(struct page *page)
547 const struct zone *zone = page_zone(page);
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552 static inline void wake_up_page(struct page *page, int bit)
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
557 void wait_on_page_bit(struct page *page, int bit_nr)
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
565 EXPORT_SYMBOL(wait_on_page_bit);
568 * unlock_page - unlock a locked page
569 * @page: the page
571 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
572 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
573 * mechananism between PageLocked pages and PageWriteback pages is shared.
574 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
576 * The mb is necessary to enforce ordering between the clear_bit and the read
577 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
579 void unlock_page(struct page *page)
581 VM_BUG_ON(!PageLocked(page));
582 clear_bit_unlock(PG_locked, &page->flags);
583 smp_mb__after_clear_bit();
584 wake_up_page(page, PG_locked);
586 EXPORT_SYMBOL(unlock_page);
589 * end_page_writeback - end writeback against a page
590 * @page: the page
592 void end_page_writeback(struct page *page)
594 if (TestClearPageReclaim(page))
595 rotate_reclaimable_page(page);
597 if (!test_clear_page_writeback(page))
598 BUG();
600 smp_mb__after_clear_bit();
601 wake_up_page(page, PG_writeback);
603 EXPORT_SYMBOL(end_page_writeback);
606 * __lock_page - get a lock on the page, assuming we need to sleep to get it
607 * @page: the page to lock
609 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
610 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
611 * chances are that on the second loop, the block layer's plug list is empty,
612 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
614 void __lock_page(struct page *page)
616 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
618 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
619 TASK_UNINTERRUPTIBLE);
621 EXPORT_SYMBOL(__lock_page);
623 int __lock_page_killable(struct page *page)
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
627 return __wait_on_bit_lock(page_waitqueue(page), &wait,
628 sync_page_killable, TASK_KILLABLE);
632 * __lock_page_nosync - get a lock on the page, without calling sync_page()
633 * @page: the page to lock
635 * Variant of lock_page that does not require the caller to hold a reference
636 * on the page's mapping.
638 void __lock_page_nosync(struct page *page)
640 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
641 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
642 TASK_UNINTERRUPTIBLE);
646 * find_get_page - find and get a page reference
647 * @mapping: the address_space to search
648 * @offset: the page index
650 * Is there a pagecache struct page at the given (mapping, offset) tuple?
651 * If yes, increment its refcount and return it; if no, return NULL.
653 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
655 void **pagep;
656 struct page *page;
658 rcu_read_lock();
659 repeat:
660 page = NULL;
661 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
662 if (pagep) {
663 page = radix_tree_deref_slot(pagep);
664 if (unlikely(!page || page == RADIX_TREE_RETRY))
665 goto repeat;
667 if (!page_cache_get_speculative(page))
668 goto repeat;
671 * Has the page moved?
672 * This is part of the lockless pagecache protocol. See
673 * include/linux/pagemap.h for details.
675 if (unlikely(page != *pagep)) {
676 page_cache_release(page);
677 goto repeat;
680 rcu_read_unlock();
682 return page;
684 EXPORT_SYMBOL(find_get_page);
687 * find_lock_page - locate, pin and lock a pagecache page
688 * @mapping: the address_space to search
689 * @offset: the page index
691 * Locates the desired pagecache page, locks it, increments its reference
692 * count and returns its address.
694 * Returns zero if the page was not present. find_lock_page() may sleep.
696 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
698 struct page *page;
700 repeat:
701 page = find_get_page(mapping, offset);
702 if (page) {
703 lock_page(page);
704 /* Has the page been truncated? */
705 if (unlikely(page->mapping != mapping)) {
706 unlock_page(page);
707 page_cache_release(page);
708 goto repeat;
710 VM_BUG_ON(page->index != offset);
712 return page;
714 EXPORT_SYMBOL(find_lock_page);
717 * find_or_create_page - locate or add a pagecache page
718 * @mapping: the page's address_space
719 * @index: the page's index into the mapping
720 * @gfp_mask: page allocation mode
722 * Locates a page in the pagecache. If the page is not present, a new page
723 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
724 * LRU list. The returned page is locked and has its reference count
725 * incremented.
727 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
728 * allocation!
730 * find_or_create_page() returns the desired page's address, or zero on
731 * memory exhaustion.
733 struct page *find_or_create_page(struct address_space *mapping,
734 pgoff_t index, gfp_t gfp_mask)
736 struct page *page;
737 int err;
738 repeat:
739 page = find_lock_page(mapping, index);
740 if (!page) {
741 page = __page_cache_alloc(gfp_mask);
742 if (!page)
743 return NULL;
744 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
745 if (unlikely(err)) {
746 page_cache_release(page);
747 page = NULL;
748 if (err == -EEXIST)
749 goto repeat;
752 return page;
754 EXPORT_SYMBOL(find_or_create_page);
757 * find_get_pages - gang pagecache lookup
758 * @mapping: The address_space to search
759 * @start: The starting page index
760 * @nr_pages: The maximum number of pages
761 * @pages: Where the resulting pages are placed
763 * find_get_pages() will search for and return a group of up to
764 * @nr_pages pages in the mapping. The pages are placed at @pages.
765 * find_get_pages() takes a reference against the returned pages.
767 * The search returns a group of mapping-contiguous pages with ascending
768 * indexes. There may be holes in the indices due to not-present pages.
770 * find_get_pages() returns the number of pages which were found.
772 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
773 unsigned int nr_pages, struct page **pages)
775 unsigned int i;
776 unsigned int ret;
777 unsigned int nr_found;
779 rcu_read_lock();
780 restart:
781 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
782 (void ***)pages, start, nr_pages);
783 ret = 0;
784 for (i = 0; i < nr_found; i++) {
785 struct page *page;
786 repeat:
787 page = radix_tree_deref_slot((void **)pages[i]);
788 if (unlikely(!page))
789 continue;
791 * this can only trigger if nr_found == 1, making livelock
792 * a non issue.
794 if (unlikely(page == RADIX_TREE_RETRY))
795 goto restart;
797 if (!page_cache_get_speculative(page))
798 goto repeat;
800 /* Has the page moved? */
801 if (unlikely(page != *((void **)pages[i]))) {
802 page_cache_release(page);
803 goto repeat;
806 pages[ret] = page;
807 ret++;
809 rcu_read_unlock();
810 return ret;
814 * find_get_pages_contig - gang contiguous pagecache lookup
815 * @mapping: The address_space to search
816 * @index: The starting page index
817 * @nr_pages: The maximum number of pages
818 * @pages: Where the resulting pages are placed
820 * find_get_pages_contig() works exactly like find_get_pages(), except
821 * that the returned number of pages are guaranteed to be contiguous.
823 * find_get_pages_contig() returns the number of pages which were found.
825 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
826 unsigned int nr_pages, struct page **pages)
828 unsigned int i;
829 unsigned int ret;
830 unsigned int nr_found;
832 rcu_read_lock();
833 restart:
834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835 (void ***)pages, index, nr_pages);
836 ret = 0;
837 for (i = 0; i < nr_found; i++) {
838 struct page *page;
839 repeat:
840 page = radix_tree_deref_slot((void **)pages[i]);
841 if (unlikely(!page))
842 continue;
844 * this can only trigger if nr_found == 1, making livelock
845 * a non issue.
847 if (unlikely(page == RADIX_TREE_RETRY))
848 goto restart;
850 if (page->mapping == NULL || page->index != index)
851 break;
853 if (!page_cache_get_speculative(page))
854 goto repeat;
856 /* Has the page moved? */
857 if (unlikely(page != *((void **)pages[i]))) {
858 page_cache_release(page);
859 goto repeat;
862 pages[ret] = page;
863 ret++;
864 index++;
866 rcu_read_unlock();
867 return ret;
869 EXPORT_SYMBOL(find_get_pages_contig);
872 * find_get_pages_tag - find and return pages that match @tag
873 * @mapping: the address_space to search
874 * @index: the starting page index
875 * @tag: the tag index
876 * @nr_pages: the maximum number of pages
877 * @pages: where the resulting pages are placed
879 * Like find_get_pages, except we only return pages which are tagged with
880 * @tag. We update @index to index the next page for the traversal.
882 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
883 int tag, unsigned int nr_pages, struct page **pages)
885 unsigned int i;
886 unsigned int ret;
887 unsigned int nr_found;
889 rcu_read_lock();
890 restart:
891 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
892 (void ***)pages, *index, nr_pages, tag);
893 ret = 0;
894 for (i = 0; i < nr_found; i++) {
895 struct page *page;
896 repeat:
897 page = radix_tree_deref_slot((void **)pages[i]);
898 if (unlikely(!page))
899 continue;
901 * this can only trigger if nr_found == 1, making livelock
902 * a non issue.
904 if (unlikely(page == RADIX_TREE_RETRY))
905 goto restart;
907 if (!page_cache_get_speculative(page))
908 goto repeat;
910 /* Has the page moved? */
911 if (unlikely(page != *((void **)pages[i]))) {
912 page_cache_release(page);
913 goto repeat;
916 pages[ret] = page;
917 ret++;
919 rcu_read_unlock();
921 if (ret)
922 *index = pages[ret - 1]->index + 1;
924 return ret;
926 EXPORT_SYMBOL(find_get_pages_tag);
929 * grab_cache_page_nowait - returns locked page at given index in given cache
930 * @mapping: target address_space
931 * @index: the page index
933 * Same as grab_cache_page(), but do not wait if the page is unavailable.
934 * This is intended for speculative data generators, where the data can
935 * be regenerated if the page couldn't be grabbed. This routine should
936 * be safe to call while holding the lock for another page.
938 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
939 * and deadlock against the caller's locked page.
941 struct page *
942 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
944 struct page *page = find_get_page(mapping, index);
946 if (page) {
947 if (trylock_page(page))
948 return page;
949 page_cache_release(page);
950 return NULL;
952 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
953 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
954 page_cache_release(page);
955 page = NULL;
957 return page;
959 EXPORT_SYMBOL(grab_cache_page_nowait);
962 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
963 * a _large_ part of the i/o request. Imagine the worst scenario:
965 * ---R__________________________________________B__________
966 * ^ reading here ^ bad block(assume 4k)
968 * read(R) => miss => readahead(R...B) => media error => frustrating retries
969 * => failing the whole request => read(R) => read(R+1) =>
970 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
971 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
972 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
974 * It is going insane. Fix it by quickly scaling down the readahead size.
976 static void shrink_readahead_size_eio(struct file *filp,
977 struct file_ra_state *ra)
979 if (!ra->ra_pages)
980 return;
982 ra->ra_pages /= 4;
986 * do_generic_file_read - generic file read routine
987 * @filp: the file to read
988 * @ppos: current file position
989 * @desc: read_descriptor
990 * @actor: read method
992 * This is a generic file read routine, and uses the
993 * mapping->a_ops->readpage() function for the actual low-level stuff.
995 * This is really ugly. But the goto's actually try to clarify some
996 * of the logic when it comes to error handling etc.
998 static void do_generic_file_read(struct file *filp, loff_t *ppos,
999 read_descriptor_t *desc, read_actor_t actor)
1001 struct address_space *mapping = filp->f_mapping;
1002 struct inode *inode = mapping->host;
1003 struct file_ra_state *ra = &filp->f_ra;
1004 pgoff_t index;
1005 pgoff_t last_index;
1006 pgoff_t prev_index;
1007 unsigned long offset; /* offset into pagecache page */
1008 unsigned int prev_offset;
1009 int error;
1011 index = *ppos >> PAGE_CACHE_SHIFT;
1012 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1013 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1014 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1015 offset = *ppos & ~PAGE_CACHE_MASK;
1017 for (;;) {
1018 struct page *page;
1019 pgoff_t end_index;
1020 loff_t isize;
1021 unsigned long nr, ret;
1023 cond_resched();
1024 find_page:
1025 page = find_get_page(mapping, index);
1026 if (!page) {
1027 page_cache_sync_readahead(mapping,
1028 ra, filp,
1029 index, last_index - index);
1030 page = find_get_page(mapping, index);
1031 if (unlikely(page == NULL))
1032 goto no_cached_page;
1034 if (PageReadahead(page)) {
1035 page_cache_async_readahead(mapping,
1036 ra, filp, page,
1037 index, last_index - index);
1039 if (!PageUptodate(page)) {
1040 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1041 !mapping->a_ops->is_partially_uptodate)
1042 goto page_not_up_to_date;
1043 if (!trylock_page(page))
1044 goto page_not_up_to_date;
1045 if (!mapping->a_ops->is_partially_uptodate(page,
1046 desc, offset))
1047 goto page_not_up_to_date_locked;
1048 unlock_page(page);
1050 page_ok:
1052 * i_size must be checked after we know the page is Uptodate.
1054 * Checking i_size after the check allows us to calculate
1055 * the correct value for "nr", which means the zero-filled
1056 * part of the page is not copied back to userspace (unless
1057 * another truncate extends the file - this is desired though).
1060 isize = i_size_read(inode);
1061 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1062 if (unlikely(!isize || index > end_index)) {
1063 page_cache_release(page);
1064 goto out;
1067 /* nr is the maximum number of bytes to copy from this page */
1068 nr = PAGE_CACHE_SIZE;
1069 if (index == end_index) {
1070 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1071 if (nr <= offset) {
1072 page_cache_release(page);
1073 goto out;
1076 nr = nr - offset;
1078 /* If users can be writing to this page using arbitrary
1079 * virtual addresses, take care about potential aliasing
1080 * before reading the page on the kernel side.
1082 if (mapping_writably_mapped(mapping))
1083 flush_dcache_page(page);
1086 * When a sequential read accesses a page several times,
1087 * only mark it as accessed the first time.
1089 if (prev_index != index || offset != prev_offset)
1090 mark_page_accessed(page);
1091 prev_index = index;
1094 * Ok, we have the page, and it's up-to-date, so
1095 * now we can copy it to user space...
1097 * The actor routine returns how many bytes were actually used..
1098 * NOTE! This may not be the same as how much of a user buffer
1099 * we filled up (we may be padding etc), so we can only update
1100 * "pos" here (the actor routine has to update the user buffer
1101 * pointers and the remaining count).
1103 ret = actor(desc, page, offset, nr);
1104 offset += ret;
1105 index += offset >> PAGE_CACHE_SHIFT;
1106 offset &= ~PAGE_CACHE_MASK;
1107 prev_offset = offset;
1109 page_cache_release(page);
1110 if (ret == nr && desc->count)
1111 continue;
1112 goto out;
1114 page_not_up_to_date:
1115 /* Get exclusive access to the page ... */
1116 error = lock_page_killable(page);
1117 if (unlikely(error))
1118 goto readpage_error;
1120 page_not_up_to_date_locked:
1121 /* Did it get truncated before we got the lock? */
1122 if (!page->mapping) {
1123 unlock_page(page);
1124 page_cache_release(page);
1125 continue;
1128 /* Did somebody else fill it already? */
1129 if (PageUptodate(page)) {
1130 unlock_page(page);
1131 goto page_ok;
1134 readpage:
1135 /* Start the actual read. The read will unlock the page. */
1136 error = mapping->a_ops->readpage(filp, page);
1138 if (unlikely(error)) {
1139 if (error == AOP_TRUNCATED_PAGE) {
1140 page_cache_release(page);
1141 goto find_page;
1143 goto readpage_error;
1146 if (!PageUptodate(page)) {
1147 error = lock_page_killable(page);
1148 if (unlikely(error))
1149 goto readpage_error;
1150 if (!PageUptodate(page)) {
1151 if (page->mapping == NULL) {
1153 * invalidate_inode_pages got it
1155 unlock_page(page);
1156 page_cache_release(page);
1157 goto find_page;
1159 unlock_page(page);
1160 shrink_readahead_size_eio(filp, ra);
1161 error = -EIO;
1162 goto readpage_error;
1164 unlock_page(page);
1167 goto page_ok;
1169 readpage_error:
1170 /* UHHUH! A synchronous read error occurred. Report it */
1171 desc->error = error;
1172 page_cache_release(page);
1173 goto out;
1175 no_cached_page:
1177 * Ok, it wasn't cached, so we need to create a new
1178 * page..
1180 page = page_cache_alloc_cold(mapping);
1181 if (!page) {
1182 desc->error = -ENOMEM;
1183 goto out;
1185 error = add_to_page_cache_lru(page, mapping,
1186 index, GFP_KERNEL);
1187 if (error) {
1188 page_cache_release(page);
1189 if (error == -EEXIST)
1190 goto find_page;
1191 desc->error = error;
1192 goto out;
1194 goto readpage;
1197 out:
1198 ra->prev_pos = prev_index;
1199 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1200 ra->prev_pos |= prev_offset;
1202 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1203 file_accessed(filp);
1206 int file_read_actor(read_descriptor_t *desc, struct page *page,
1207 unsigned long offset, unsigned long size)
1209 char *kaddr;
1210 unsigned long left, count = desc->count;
1212 if (size > count)
1213 size = count;
1216 * Faults on the destination of a read are common, so do it before
1217 * taking the kmap.
1219 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1220 kaddr = kmap_atomic(page, KM_USER0);
1221 left = __copy_to_user_inatomic(desc->arg.buf,
1222 kaddr + offset, size);
1223 kunmap_atomic(kaddr, KM_USER0);
1224 if (left == 0)
1225 goto success;
1228 /* Do it the slow way */
1229 kaddr = kmap(page);
1230 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1231 kunmap(page);
1233 if (left) {
1234 size -= left;
1235 desc->error = -EFAULT;
1237 success:
1238 desc->count = count - size;
1239 desc->written += size;
1240 desc->arg.buf += size;
1241 return size;
1245 * Performs necessary checks before doing a write
1246 * @iov: io vector request
1247 * @nr_segs: number of segments in the iovec
1248 * @count: number of bytes to write
1249 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1251 * Adjust number of segments and amount of bytes to write (nr_segs should be
1252 * properly initialized first). Returns appropriate error code that caller
1253 * should return or zero in case that write should be allowed.
1255 int generic_segment_checks(const struct iovec *iov,
1256 unsigned long *nr_segs, size_t *count, int access_flags)
1258 unsigned long seg;
1259 size_t cnt = 0;
1260 for (seg = 0; seg < *nr_segs; seg++) {
1261 const struct iovec *iv = &iov[seg];
1264 * If any segment has a negative length, or the cumulative
1265 * length ever wraps negative then return -EINVAL.
1267 cnt += iv->iov_len;
1268 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1269 return -EINVAL;
1270 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1271 continue;
1272 if (seg == 0)
1273 return -EFAULT;
1274 *nr_segs = seg;
1275 cnt -= iv->iov_len; /* This segment is no good */
1276 break;
1278 *count = cnt;
1279 return 0;
1281 EXPORT_SYMBOL(generic_segment_checks);
1284 * generic_file_aio_read - generic filesystem read routine
1285 * @iocb: kernel I/O control block
1286 * @iov: io vector request
1287 * @nr_segs: number of segments in the iovec
1288 * @pos: current file position
1290 * This is the "read()" routine for all filesystems
1291 * that can use the page cache directly.
1293 ssize_t
1294 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1295 unsigned long nr_segs, loff_t pos)
1297 struct file *filp = iocb->ki_filp;
1298 ssize_t retval;
1299 unsigned long seg;
1300 size_t count;
1301 loff_t *ppos = &iocb->ki_pos;
1303 count = 0;
1304 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1305 if (retval)
1306 return retval;
1308 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1309 if (filp->f_flags & O_DIRECT) {
1310 loff_t size;
1311 struct address_space *mapping;
1312 struct inode *inode;
1314 mapping = filp->f_mapping;
1315 inode = mapping->host;
1316 if (!count)
1317 goto out; /* skip atime */
1318 size = i_size_read(inode);
1319 if (pos < size) {
1320 retval = filemap_write_and_wait_range(mapping, pos,
1321 pos + iov_length(iov, nr_segs) - 1);
1322 if (!retval) {
1323 retval = mapping->a_ops->direct_IO(READ, iocb,
1324 iov, pos, nr_segs);
1326 if (retval > 0)
1327 *ppos = pos + retval;
1328 if (retval) {
1329 file_accessed(filp);
1330 goto out;
1335 for (seg = 0; seg < nr_segs; seg++) {
1336 read_descriptor_t desc;
1338 desc.written = 0;
1339 desc.arg.buf = iov[seg].iov_base;
1340 desc.count = iov[seg].iov_len;
1341 if (desc.count == 0)
1342 continue;
1343 desc.error = 0;
1344 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1345 retval += desc.written;
1346 if (desc.error) {
1347 retval = retval ?: desc.error;
1348 break;
1350 if (desc.count > 0)
1351 break;
1353 out:
1354 return retval;
1356 EXPORT_SYMBOL(generic_file_aio_read);
1358 static ssize_t
1359 do_readahead(struct address_space *mapping, struct file *filp,
1360 pgoff_t index, unsigned long nr)
1362 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1363 return -EINVAL;
1365 force_page_cache_readahead(mapping, filp, index,
1366 max_sane_readahead(nr));
1367 return 0;
1370 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1372 ssize_t ret;
1373 struct file *file;
1375 ret = -EBADF;
1376 file = fget(fd);
1377 if (file) {
1378 if (file->f_mode & FMODE_READ) {
1379 struct address_space *mapping = file->f_mapping;
1380 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1381 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1382 unsigned long len = end - start + 1;
1383 ret = do_readahead(mapping, file, start, len);
1385 fput(file);
1387 return ret;
1389 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1390 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1392 return SYSC_readahead((int) fd, offset, (size_t) count);
1394 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1395 #endif
1397 #ifdef CONFIG_MMU
1399 * page_cache_read - adds requested page to the page cache if not already there
1400 * @file: file to read
1401 * @offset: page index
1403 * This adds the requested page to the page cache if it isn't already there,
1404 * and schedules an I/O to read in its contents from disk.
1406 static int page_cache_read(struct file *file, pgoff_t offset)
1408 struct address_space *mapping = file->f_mapping;
1409 struct page *page;
1410 int ret;
1412 do {
1413 page = page_cache_alloc_cold(mapping);
1414 if (!page)
1415 return -ENOMEM;
1417 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1418 if (ret == 0)
1419 ret = mapping->a_ops->readpage(file, page);
1420 else if (ret == -EEXIST)
1421 ret = 0; /* losing race to add is OK */
1423 page_cache_release(page);
1425 } while (ret == AOP_TRUNCATED_PAGE);
1427 return ret;
1430 #define MMAP_LOTSAMISS (100)
1433 * filemap_fault - read in file data for page fault handling
1434 * @vma: vma in which the fault was taken
1435 * @vmf: struct vm_fault containing details of the fault
1437 * filemap_fault() is invoked via the vma operations vector for a
1438 * mapped memory region to read in file data during a page fault.
1440 * The goto's are kind of ugly, but this streamlines the normal case of having
1441 * it in the page cache, and handles the special cases reasonably without
1442 * having a lot of duplicated code.
1444 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1446 int error;
1447 struct file *file = vma->vm_file;
1448 struct address_space *mapping = file->f_mapping;
1449 struct file_ra_state *ra = &file->f_ra;
1450 struct inode *inode = mapping->host;
1451 struct page *page;
1452 pgoff_t size;
1453 int did_readaround = 0;
1454 int ret = 0;
1456 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1457 if (vmf->pgoff >= size)
1458 return VM_FAULT_SIGBUS;
1460 /* If we don't want any read-ahead, don't bother */
1461 if (VM_RandomReadHint(vma))
1462 goto no_cached_page;
1465 * Do we have something in the page cache already?
1467 retry_find:
1468 page = find_lock_page(mapping, vmf->pgoff);
1470 * For sequential accesses, we use the generic readahead logic.
1472 if (VM_SequentialReadHint(vma)) {
1473 if (!page) {
1474 page_cache_sync_readahead(mapping, ra, file,
1475 vmf->pgoff, 1);
1476 page = find_lock_page(mapping, vmf->pgoff);
1477 if (!page)
1478 goto no_cached_page;
1480 if (PageReadahead(page)) {
1481 page_cache_async_readahead(mapping, ra, file, page,
1482 vmf->pgoff, 1);
1486 if (!page) {
1487 unsigned long ra_pages;
1489 ra->mmap_miss++;
1492 * Do we miss much more than hit in this file? If so,
1493 * stop bothering with read-ahead. It will only hurt.
1495 if (ra->mmap_miss > MMAP_LOTSAMISS)
1496 goto no_cached_page;
1499 * To keep the pgmajfault counter straight, we need to
1500 * check did_readaround, as this is an inner loop.
1502 if (!did_readaround) {
1503 ret = VM_FAULT_MAJOR;
1504 count_vm_event(PGMAJFAULT);
1506 did_readaround = 1;
1507 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1508 if (ra_pages) {
1509 pgoff_t start = 0;
1511 if (vmf->pgoff > ra_pages / 2)
1512 start = vmf->pgoff - ra_pages / 2;
1513 do_page_cache_readahead(mapping, file, start, ra_pages);
1515 page = find_lock_page(mapping, vmf->pgoff);
1516 if (!page)
1517 goto no_cached_page;
1520 if (!did_readaround)
1521 ra->mmap_miss--;
1524 * We have a locked page in the page cache, now we need to check
1525 * that it's up-to-date. If not, it is going to be due to an error.
1527 if (unlikely(!PageUptodate(page)))
1528 goto page_not_uptodate;
1530 /* Must recheck i_size under page lock */
1531 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1532 if (unlikely(vmf->pgoff >= size)) {
1533 unlock_page(page);
1534 page_cache_release(page);
1535 return VM_FAULT_SIGBUS;
1539 * Found the page and have a reference on it.
1541 mark_page_accessed(page);
1542 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1543 vmf->page = page;
1544 return ret | VM_FAULT_LOCKED;
1546 no_cached_page:
1548 * We're only likely to ever get here if MADV_RANDOM is in
1549 * effect.
1551 error = page_cache_read(file, vmf->pgoff);
1554 * The page we want has now been added to the page cache.
1555 * In the unlikely event that someone removed it in the
1556 * meantime, we'll just come back here and read it again.
1558 if (error >= 0)
1559 goto retry_find;
1562 * An error return from page_cache_read can result if the
1563 * system is low on memory, or a problem occurs while trying
1564 * to schedule I/O.
1566 if (error == -ENOMEM)
1567 return VM_FAULT_OOM;
1568 return VM_FAULT_SIGBUS;
1570 page_not_uptodate:
1571 /* IO error path */
1572 if (!did_readaround) {
1573 ret = VM_FAULT_MAJOR;
1574 count_vm_event(PGMAJFAULT);
1578 * Umm, take care of errors if the page isn't up-to-date.
1579 * Try to re-read it _once_. We do this synchronously,
1580 * because there really aren't any performance issues here
1581 * and we need to check for errors.
1583 ClearPageError(page);
1584 error = mapping->a_ops->readpage(file, page);
1585 if (!error) {
1586 wait_on_page_locked(page);
1587 if (!PageUptodate(page))
1588 error = -EIO;
1590 page_cache_release(page);
1592 if (!error || error == AOP_TRUNCATED_PAGE)
1593 goto retry_find;
1595 /* Things didn't work out. Return zero to tell the mm layer so. */
1596 shrink_readahead_size_eio(file, ra);
1597 return VM_FAULT_SIGBUS;
1599 EXPORT_SYMBOL(filemap_fault);
1601 struct vm_operations_struct generic_file_vm_ops = {
1602 .fault = filemap_fault,
1605 /* This is used for a general mmap of a disk file */
1607 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1609 struct address_space *mapping = file->f_mapping;
1611 if (!mapping->a_ops->readpage)
1612 return -ENOEXEC;
1613 file_accessed(file);
1614 vma->vm_ops = &generic_file_vm_ops;
1615 vma->vm_flags |= VM_CAN_NONLINEAR;
1616 return 0;
1620 * This is for filesystems which do not implement ->writepage.
1622 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1624 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1625 return -EINVAL;
1626 return generic_file_mmap(file, vma);
1628 #else
1629 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1631 return -ENOSYS;
1633 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1635 return -ENOSYS;
1637 #endif /* CONFIG_MMU */
1639 EXPORT_SYMBOL(generic_file_mmap);
1640 EXPORT_SYMBOL(generic_file_readonly_mmap);
1642 static struct page *__read_cache_page(struct address_space *mapping,
1643 pgoff_t index,
1644 int (*filler)(void *,struct page*),
1645 void *data)
1647 struct page *page;
1648 int err;
1649 repeat:
1650 page = find_get_page(mapping, index);
1651 if (!page) {
1652 page = page_cache_alloc_cold(mapping);
1653 if (!page)
1654 return ERR_PTR(-ENOMEM);
1655 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1656 if (unlikely(err)) {
1657 page_cache_release(page);
1658 if (err == -EEXIST)
1659 goto repeat;
1660 /* Presumably ENOMEM for radix tree node */
1661 return ERR_PTR(err);
1663 err = filler(data, page);
1664 if (err < 0) {
1665 page_cache_release(page);
1666 page = ERR_PTR(err);
1669 return page;
1673 * read_cache_page_async - read into page cache, fill it if needed
1674 * @mapping: the page's address_space
1675 * @index: the page index
1676 * @filler: function to perform the read
1677 * @data: destination for read data
1679 * Same as read_cache_page, but don't wait for page to become unlocked
1680 * after submitting it to the filler.
1682 * Read into the page cache. If a page already exists, and PageUptodate() is
1683 * not set, try to fill the page but don't wait for it to become unlocked.
1685 * If the page does not get brought uptodate, return -EIO.
1687 struct page *read_cache_page_async(struct address_space *mapping,
1688 pgoff_t index,
1689 int (*filler)(void *,struct page*),
1690 void *data)
1692 struct page *page;
1693 int err;
1695 retry:
1696 page = __read_cache_page(mapping, index, filler, data);
1697 if (IS_ERR(page))
1698 return page;
1699 if (PageUptodate(page))
1700 goto out;
1702 lock_page(page);
1703 if (!page->mapping) {
1704 unlock_page(page);
1705 page_cache_release(page);
1706 goto retry;
1708 if (PageUptodate(page)) {
1709 unlock_page(page);
1710 goto out;
1712 err = filler(data, page);
1713 if (err < 0) {
1714 page_cache_release(page);
1715 return ERR_PTR(err);
1717 out:
1718 mark_page_accessed(page);
1719 return page;
1721 EXPORT_SYMBOL(read_cache_page_async);
1724 * read_cache_page - read into page cache, fill it if needed
1725 * @mapping: the page's address_space
1726 * @index: the page index
1727 * @filler: function to perform the read
1728 * @data: destination for read data
1730 * Read into the page cache. If a page already exists, and PageUptodate() is
1731 * not set, try to fill the page then wait for it to become unlocked.
1733 * If the page does not get brought uptodate, return -EIO.
1735 struct page *read_cache_page(struct address_space *mapping,
1736 pgoff_t index,
1737 int (*filler)(void *,struct page*),
1738 void *data)
1740 struct page *page;
1742 page = read_cache_page_async(mapping, index, filler, data);
1743 if (IS_ERR(page))
1744 goto out;
1745 wait_on_page_locked(page);
1746 if (!PageUptodate(page)) {
1747 page_cache_release(page);
1748 page = ERR_PTR(-EIO);
1750 out:
1751 return page;
1753 EXPORT_SYMBOL(read_cache_page);
1756 * The logic we want is
1758 * if suid or (sgid and xgrp)
1759 * remove privs
1761 int should_remove_suid(struct dentry *dentry)
1763 mode_t mode = dentry->d_inode->i_mode;
1764 int kill = 0;
1766 /* suid always must be killed */
1767 if (unlikely(mode & S_ISUID))
1768 kill = ATTR_KILL_SUID;
1771 * sgid without any exec bits is just a mandatory locking mark; leave
1772 * it alone. If some exec bits are set, it's a real sgid; kill it.
1774 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1775 kill |= ATTR_KILL_SGID;
1777 if (unlikely(kill && !capable(CAP_FSETID)))
1778 return kill;
1780 return 0;
1782 EXPORT_SYMBOL(should_remove_suid);
1784 static int __remove_suid(struct dentry *dentry, int kill)
1786 struct iattr newattrs;
1788 newattrs.ia_valid = ATTR_FORCE | kill;
1789 return notify_change(dentry, &newattrs);
1792 int file_remove_suid(struct file *file)
1794 struct dentry *dentry = file->f_path.dentry;
1795 int killsuid = should_remove_suid(dentry);
1796 int killpriv = security_inode_need_killpriv(dentry);
1797 int error = 0;
1799 if (killpriv < 0)
1800 return killpriv;
1801 if (killpriv)
1802 error = security_inode_killpriv(dentry);
1803 if (!error && killsuid)
1804 error = __remove_suid(dentry, killsuid);
1806 return error;
1808 EXPORT_SYMBOL(file_remove_suid);
1810 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1811 const struct iovec *iov, size_t base, size_t bytes)
1813 size_t copied = 0, left = 0;
1815 while (bytes) {
1816 char __user *buf = iov->iov_base + base;
1817 int copy = min(bytes, iov->iov_len - base);
1819 base = 0;
1820 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1821 copied += copy;
1822 bytes -= copy;
1823 vaddr += copy;
1824 iov++;
1826 if (unlikely(left))
1827 break;
1829 return copied - left;
1833 * Copy as much as we can into the page and return the number of bytes which
1834 * were sucessfully copied. If a fault is encountered then return the number of
1835 * bytes which were copied.
1837 size_t iov_iter_copy_from_user_atomic(struct page *page,
1838 struct iov_iter *i, unsigned long offset, size_t bytes)
1840 char *kaddr;
1841 size_t copied;
1843 BUG_ON(!in_atomic());
1844 kaddr = kmap_atomic(page, KM_USER0);
1845 if (likely(i->nr_segs == 1)) {
1846 int left;
1847 char __user *buf = i->iov->iov_base + i->iov_offset;
1848 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1849 buf, bytes);
1850 copied = bytes - left;
1851 } else {
1852 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1853 i->iov, i->iov_offset, bytes);
1855 kunmap_atomic(kaddr, KM_USER0);
1857 return copied;
1859 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1862 * This has the same sideeffects and return value as
1863 * iov_iter_copy_from_user_atomic().
1864 * The difference is that it attempts to resolve faults.
1865 * Page must not be locked.
1867 size_t iov_iter_copy_from_user(struct page *page,
1868 struct iov_iter *i, unsigned long offset, size_t bytes)
1870 char *kaddr;
1871 size_t copied;
1873 kaddr = kmap(page);
1874 if (likely(i->nr_segs == 1)) {
1875 int left;
1876 char __user *buf = i->iov->iov_base + i->iov_offset;
1877 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1878 copied = bytes - left;
1879 } else {
1880 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1881 i->iov, i->iov_offset, bytes);
1883 kunmap(page);
1884 return copied;
1886 EXPORT_SYMBOL(iov_iter_copy_from_user);
1888 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1890 BUG_ON(i->count < bytes);
1892 if (likely(i->nr_segs == 1)) {
1893 i->iov_offset += bytes;
1894 i->count -= bytes;
1895 } else {
1896 const struct iovec *iov = i->iov;
1897 size_t base = i->iov_offset;
1900 * The !iov->iov_len check ensures we skip over unlikely
1901 * zero-length segments (without overruning the iovec).
1903 while (bytes || unlikely(i->count && !iov->iov_len)) {
1904 int copy;
1906 copy = min(bytes, iov->iov_len - base);
1907 BUG_ON(!i->count || i->count < copy);
1908 i->count -= copy;
1909 bytes -= copy;
1910 base += copy;
1911 if (iov->iov_len == base) {
1912 iov++;
1913 base = 0;
1916 i->iov = iov;
1917 i->iov_offset = base;
1920 EXPORT_SYMBOL(iov_iter_advance);
1923 * Fault in the first iovec of the given iov_iter, to a maximum length
1924 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1925 * accessed (ie. because it is an invalid address).
1927 * writev-intensive code may want this to prefault several iovecs -- that
1928 * would be possible (callers must not rely on the fact that _only_ the
1929 * first iovec will be faulted with the current implementation).
1931 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1933 char __user *buf = i->iov->iov_base + i->iov_offset;
1934 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1935 return fault_in_pages_readable(buf, bytes);
1937 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1940 * Return the count of just the current iov_iter segment.
1942 size_t iov_iter_single_seg_count(struct iov_iter *i)
1944 const struct iovec *iov = i->iov;
1945 if (i->nr_segs == 1)
1946 return i->count;
1947 else
1948 return min(i->count, iov->iov_len - i->iov_offset);
1950 EXPORT_SYMBOL(iov_iter_single_seg_count);
1953 * Performs necessary checks before doing a write
1955 * Can adjust writing position or amount of bytes to write.
1956 * Returns appropriate error code that caller should return or
1957 * zero in case that write should be allowed.
1959 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1961 struct inode *inode = file->f_mapping->host;
1962 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1964 if (unlikely(*pos < 0))
1965 return -EINVAL;
1967 if (!isblk) {
1968 /* FIXME: this is for backwards compatibility with 2.4 */
1969 if (file->f_flags & O_APPEND)
1970 *pos = i_size_read(inode);
1972 if (limit != RLIM_INFINITY) {
1973 if (*pos >= limit) {
1974 send_sig(SIGXFSZ, current, 0);
1975 return -EFBIG;
1977 if (*count > limit - (typeof(limit))*pos) {
1978 *count = limit - (typeof(limit))*pos;
1984 * LFS rule
1986 if (unlikely(*pos + *count > MAX_NON_LFS &&
1987 !(file->f_flags & O_LARGEFILE))) {
1988 if (*pos >= MAX_NON_LFS) {
1989 return -EFBIG;
1991 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1992 *count = MAX_NON_LFS - (unsigned long)*pos;
1997 * Are we about to exceed the fs block limit ?
1999 * If we have written data it becomes a short write. If we have
2000 * exceeded without writing data we send a signal and return EFBIG.
2001 * Linus frestrict idea will clean these up nicely..
2003 if (likely(!isblk)) {
2004 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2005 if (*count || *pos > inode->i_sb->s_maxbytes) {
2006 return -EFBIG;
2008 /* zero-length writes at ->s_maxbytes are OK */
2011 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2012 *count = inode->i_sb->s_maxbytes - *pos;
2013 } else {
2014 #ifdef CONFIG_BLOCK
2015 loff_t isize;
2016 if (bdev_read_only(I_BDEV(inode)))
2017 return -EPERM;
2018 isize = i_size_read(inode);
2019 if (*pos >= isize) {
2020 if (*count || *pos > isize)
2021 return -ENOSPC;
2024 if (*pos + *count > isize)
2025 *count = isize - *pos;
2026 #else
2027 return -EPERM;
2028 #endif
2030 return 0;
2032 EXPORT_SYMBOL(generic_write_checks);
2034 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2035 loff_t pos, unsigned len, unsigned flags,
2036 struct page **pagep, void **fsdata)
2038 const struct address_space_operations *aops = mapping->a_ops;
2040 return aops->write_begin(file, mapping, pos, len, flags,
2041 pagep, fsdata);
2043 EXPORT_SYMBOL(pagecache_write_begin);
2045 int pagecache_write_end(struct file *file, struct address_space *mapping,
2046 loff_t pos, unsigned len, unsigned copied,
2047 struct page *page, void *fsdata)
2049 const struct address_space_operations *aops = mapping->a_ops;
2051 mark_page_accessed(page);
2052 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2054 EXPORT_SYMBOL(pagecache_write_end);
2056 ssize_t
2057 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2058 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2059 size_t count, size_t ocount)
2061 struct file *file = iocb->ki_filp;
2062 struct address_space *mapping = file->f_mapping;
2063 struct inode *inode = mapping->host;
2064 ssize_t written;
2065 size_t write_len;
2066 pgoff_t end;
2068 if (count != ocount)
2069 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2071 write_len = iov_length(iov, *nr_segs);
2072 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2074 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2075 if (written)
2076 goto out;
2079 * After a write we want buffered reads to be sure to go to disk to get
2080 * the new data. We invalidate clean cached page from the region we're
2081 * about to write. We do this *before* the write so that we can return
2082 * without clobbering -EIOCBQUEUED from ->direct_IO().
2084 if (mapping->nrpages) {
2085 written = invalidate_inode_pages2_range(mapping,
2086 pos >> PAGE_CACHE_SHIFT, end);
2088 * If a page can not be invalidated, return 0 to fall back
2089 * to buffered write.
2091 if (written) {
2092 if (written == -EBUSY)
2093 return 0;
2094 goto out;
2098 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2101 * Finally, try again to invalidate clean pages which might have been
2102 * cached by non-direct readahead, or faulted in by get_user_pages()
2103 * if the source of the write was an mmap'ed region of the file
2104 * we're writing. Either one is a pretty crazy thing to do,
2105 * so we don't support it 100%. If this invalidation
2106 * fails, tough, the write still worked...
2108 if (mapping->nrpages) {
2109 invalidate_inode_pages2_range(mapping,
2110 pos >> PAGE_CACHE_SHIFT, end);
2113 if (written > 0) {
2114 loff_t end = pos + written;
2115 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2116 i_size_write(inode, end);
2117 mark_inode_dirty(inode);
2119 *ppos = end;
2123 * Sync the fs metadata but not the minor inode changes and
2124 * of course not the data as we did direct DMA for the IO.
2125 * i_mutex is held, which protects generic_osync_inode() from
2126 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2128 out:
2129 if ((written >= 0 || written == -EIOCBQUEUED) &&
2130 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2131 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2132 if (err < 0)
2133 written = err;
2135 return written;
2137 EXPORT_SYMBOL(generic_file_direct_write);
2140 * Find or create a page at the given pagecache position. Return the locked
2141 * page. This function is specifically for buffered writes.
2143 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2144 pgoff_t index, unsigned flags)
2146 int status;
2147 struct page *page;
2148 gfp_t gfp_notmask = 0;
2149 if (flags & AOP_FLAG_NOFS)
2150 gfp_notmask = __GFP_FS;
2151 repeat:
2152 page = find_lock_page(mapping, index);
2153 if (likely(page))
2154 return page;
2156 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2157 if (!page)
2158 return NULL;
2159 status = add_to_page_cache_lru(page, mapping, index,
2160 GFP_KERNEL & ~gfp_notmask);
2161 if (unlikely(status)) {
2162 page_cache_release(page);
2163 if (status == -EEXIST)
2164 goto repeat;
2165 return NULL;
2167 return page;
2169 EXPORT_SYMBOL(grab_cache_page_write_begin);
2171 static ssize_t generic_perform_write(struct file *file,
2172 struct iov_iter *i, loff_t pos)
2174 struct address_space *mapping = file->f_mapping;
2175 const struct address_space_operations *a_ops = mapping->a_ops;
2176 long status = 0;
2177 ssize_t written = 0;
2178 unsigned int flags = 0;
2181 * Copies from kernel address space cannot fail (NFSD is a big user).
2183 if (segment_eq(get_fs(), KERNEL_DS))
2184 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2186 do {
2187 struct page *page;
2188 pgoff_t index; /* Pagecache index for current page */
2189 unsigned long offset; /* Offset into pagecache page */
2190 unsigned long bytes; /* Bytes to write to page */
2191 size_t copied; /* Bytes copied from user */
2192 void *fsdata;
2194 offset = (pos & (PAGE_CACHE_SIZE - 1));
2195 index = pos >> PAGE_CACHE_SHIFT;
2196 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2197 iov_iter_count(i));
2199 again:
2202 * Bring in the user page that we will copy from _first_.
2203 * Otherwise there's a nasty deadlock on copying from the
2204 * same page as we're writing to, without it being marked
2205 * up-to-date.
2207 * Not only is this an optimisation, but it is also required
2208 * to check that the address is actually valid, when atomic
2209 * usercopies are used, below.
2211 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2212 status = -EFAULT;
2213 break;
2216 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2217 &page, &fsdata);
2218 if (unlikely(status))
2219 break;
2221 pagefault_disable();
2222 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2223 pagefault_enable();
2224 flush_dcache_page(page);
2226 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2227 page, fsdata);
2228 if (unlikely(status < 0))
2229 break;
2230 copied = status;
2232 cond_resched();
2234 iov_iter_advance(i, copied);
2235 if (unlikely(copied == 0)) {
2237 * If we were unable to copy any data at all, we must
2238 * fall back to a single segment length write.
2240 * If we didn't fallback here, we could livelock
2241 * because not all segments in the iov can be copied at
2242 * once without a pagefault.
2244 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2245 iov_iter_single_seg_count(i));
2246 goto again;
2248 pos += copied;
2249 written += copied;
2251 balance_dirty_pages_ratelimited(mapping);
2253 } while (iov_iter_count(i));
2255 return written ? written : status;
2258 ssize_t
2259 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2260 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2261 size_t count, ssize_t written)
2263 struct file *file = iocb->ki_filp;
2264 struct address_space *mapping = file->f_mapping;
2265 const struct address_space_operations *a_ops = mapping->a_ops;
2266 struct inode *inode = mapping->host;
2267 ssize_t status;
2268 struct iov_iter i;
2270 iov_iter_init(&i, iov, nr_segs, count, written);
2271 status = generic_perform_write(file, &i, pos);
2273 if (likely(status >= 0)) {
2274 written += status;
2275 *ppos = pos + status;
2278 * For now, when the user asks for O_SYNC, we'll actually give
2279 * O_DSYNC
2281 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2282 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2283 status = generic_osync_inode(inode, mapping,
2284 OSYNC_METADATA|OSYNC_DATA);
2289 * If we get here for O_DIRECT writes then we must have fallen through
2290 * to buffered writes (block instantiation inside i_size). So we sync
2291 * the file data here, to try to honour O_DIRECT expectations.
2293 if (unlikely(file->f_flags & O_DIRECT) && written)
2294 status = filemap_write_and_wait_range(mapping,
2295 pos, pos + written - 1);
2297 return written ? written : status;
2299 EXPORT_SYMBOL(generic_file_buffered_write);
2301 static ssize_t
2302 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2303 unsigned long nr_segs, loff_t *ppos)
2305 struct file *file = iocb->ki_filp;
2306 struct address_space * mapping = file->f_mapping;
2307 size_t ocount; /* original count */
2308 size_t count; /* after file limit checks */
2309 struct inode *inode = mapping->host;
2310 loff_t pos;
2311 ssize_t written;
2312 ssize_t err;
2314 ocount = 0;
2315 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2316 if (err)
2317 return err;
2319 count = ocount;
2320 pos = *ppos;
2322 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2324 /* We can write back this queue in page reclaim */
2325 current->backing_dev_info = mapping->backing_dev_info;
2326 written = 0;
2328 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2329 if (err)
2330 goto out;
2332 if (count == 0)
2333 goto out;
2335 err = file_remove_suid(file);
2336 if (err)
2337 goto out;
2339 file_update_time(file);
2341 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2342 if (unlikely(file->f_flags & O_DIRECT)) {
2343 loff_t endbyte;
2344 ssize_t written_buffered;
2346 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2347 ppos, count, ocount);
2348 if (written < 0 || written == count)
2349 goto out;
2351 * direct-io write to a hole: fall through to buffered I/O
2352 * for completing the rest of the request.
2354 pos += written;
2355 count -= written;
2356 written_buffered = generic_file_buffered_write(iocb, iov,
2357 nr_segs, pos, ppos, count,
2358 written);
2360 * If generic_file_buffered_write() retuned a synchronous error
2361 * then we want to return the number of bytes which were
2362 * direct-written, or the error code if that was zero. Note
2363 * that this differs from normal direct-io semantics, which
2364 * will return -EFOO even if some bytes were written.
2366 if (written_buffered < 0) {
2367 err = written_buffered;
2368 goto out;
2372 * We need to ensure that the page cache pages are written to
2373 * disk and invalidated to preserve the expected O_DIRECT
2374 * semantics.
2376 endbyte = pos + written_buffered - written - 1;
2377 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2378 SYNC_FILE_RANGE_WAIT_BEFORE|
2379 SYNC_FILE_RANGE_WRITE|
2380 SYNC_FILE_RANGE_WAIT_AFTER);
2381 if (err == 0) {
2382 written = written_buffered;
2383 invalidate_mapping_pages(mapping,
2384 pos >> PAGE_CACHE_SHIFT,
2385 endbyte >> PAGE_CACHE_SHIFT);
2386 } else {
2388 * We don't know how much we wrote, so just return
2389 * the number of bytes which were direct-written
2392 } else {
2393 written = generic_file_buffered_write(iocb, iov, nr_segs,
2394 pos, ppos, count, written);
2396 out:
2397 current->backing_dev_info = NULL;
2398 return written ? written : err;
2401 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2402 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2404 struct file *file = iocb->ki_filp;
2405 struct address_space *mapping = file->f_mapping;
2406 struct inode *inode = mapping->host;
2407 ssize_t ret;
2409 BUG_ON(iocb->ki_pos != pos);
2411 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2412 &iocb->ki_pos);
2414 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2415 ssize_t err;
2417 err = sync_page_range_nolock(inode, mapping, pos, ret);
2418 if (err < 0)
2419 ret = err;
2421 return ret;
2423 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2425 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2426 unsigned long nr_segs, loff_t pos)
2428 struct file *file = iocb->ki_filp;
2429 struct address_space *mapping = file->f_mapping;
2430 struct inode *inode = mapping->host;
2431 ssize_t ret;
2433 BUG_ON(iocb->ki_pos != pos);
2435 mutex_lock(&inode->i_mutex);
2436 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2437 &iocb->ki_pos);
2438 mutex_unlock(&inode->i_mutex);
2440 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2441 ssize_t err;
2443 err = sync_page_range(inode, mapping, pos, ret);
2444 if (err < 0)
2445 ret = err;
2447 return ret;
2449 EXPORT_SYMBOL(generic_file_aio_write);
2452 * try_to_release_page() - release old fs-specific metadata on a page
2454 * @page: the page which the kernel is trying to free
2455 * @gfp_mask: memory allocation flags (and I/O mode)
2457 * The address_space is to try to release any data against the page
2458 * (presumably at page->private). If the release was successful, return `1'.
2459 * Otherwise return zero.
2461 * The @gfp_mask argument specifies whether I/O may be performed to release
2462 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2465 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2467 struct address_space * const mapping = page->mapping;
2469 BUG_ON(!PageLocked(page));
2470 if (PageWriteback(page))
2471 return 0;
2473 if (mapping && mapping->a_ops->releasepage)
2474 return mapping->a_ops->releasepage(page, gfp_mask);
2475 return try_to_free_buffers(page);
2478 EXPORT_SYMBOL(try_to_release_page);