Btrfs: Cache free inode numbers in memory
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / transaction.c
blobaef6c81e71011a3549301bc80bf4fd36e685044f
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
32 #define BTRFS_ROOT_TRANS_TAG 0
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 static noinline void switch_commit_root(struct btrfs_root *root)
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
50 * either allocate a new transaction or hop into the existing one
52 static noinline int join_transaction(struct btrfs_root *root)
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 if (!cur_trans)
60 return -ENOMEM;
61 root->fs_info->generation++;
62 atomic_set(&cur_trans->num_writers, 1);
63 cur_trans->num_joined = 0;
64 cur_trans->transid = root->fs_info->generation;
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
68 cur_trans->blocked = 0;
69 atomic_set(&cur_trans->use_count, 1);
70 cur_trans->commit_done = 0;
71 cur_trans->start_time = get_seconds();
73 cur_trans->delayed_refs.root = RB_ROOT;
74 cur_trans->delayed_refs.num_entries = 0;
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
77 cur_trans->delayed_refs.flushing = 0;
78 cur_trans->delayed_refs.run_delayed_start = 0;
79 spin_lock_init(&cur_trans->delayed_refs.lock);
81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 extent_io_tree_init(&cur_trans->dirty_pages,
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
89 } else {
90 atomic_inc(&cur_trans->num_writers);
91 cur_trans->num_joined++;
94 return 0;
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
106 if (root->ref_cows && root->last_trans < trans->transid) {
107 WARN_ON(root == root->fs_info->extent_root);
108 WARN_ON(root->commit_root != root->node);
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
116 return 0;
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
122 if (!root->ref_cows)
123 return 0;
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
133 return 0;
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
140 static void wait_current_trans(struct btrfs_root *root)
142 struct btrfs_transaction *cur_trans;
144 cur_trans = root->fs_info->running_transaction;
145 if (cur_trans && cur_trans->blocked) {
146 DEFINE_WAIT(wait);
147 atomic_inc(&cur_trans->use_count);
148 while (1) {
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
151 if (!cur_trans->blocked)
152 break;
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
157 finish_wait(&root->fs_info->transaction_wait, &wait);
158 put_transaction(cur_trans);
162 enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
166 TRANS_JOIN_NOLOCK,
169 static int may_wait_transaction(struct btrfs_root *root, int type)
171 if (!root->fs_info->log_root_recovering &&
172 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173 type == TRANS_USERSPACE))
174 return 1;
175 return 0;
178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
179 u64 num_items, int type)
181 struct btrfs_trans_handle *h;
182 struct btrfs_transaction *cur_trans;
183 int retries = 0;
184 int ret;
186 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
187 return ERR_PTR(-EROFS);
188 again:
189 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
190 if (!h)
191 return ERR_PTR(-ENOMEM);
193 if (type != TRANS_JOIN_NOLOCK)
194 mutex_lock(&root->fs_info->trans_mutex);
195 if (may_wait_transaction(root, type))
196 wait_current_trans(root);
198 ret = join_transaction(root);
199 if (ret < 0) {
200 kmem_cache_free(btrfs_trans_handle_cachep, h);
201 if (type != TRANS_JOIN_NOLOCK)
202 mutex_unlock(&root->fs_info->trans_mutex);
203 return ERR_PTR(ret);
206 cur_trans = root->fs_info->running_transaction;
207 atomic_inc(&cur_trans->use_count);
208 if (type != TRANS_JOIN_NOLOCK)
209 mutex_unlock(&root->fs_info->trans_mutex);
211 h->transid = cur_trans->transid;
212 h->transaction = cur_trans;
213 h->blocks_used = 0;
214 h->block_group = 0;
215 h->bytes_reserved = 0;
216 h->delayed_ref_updates = 0;
217 h->block_rsv = NULL;
219 smp_mb();
220 if (cur_trans->blocked && may_wait_transaction(root, type)) {
221 btrfs_commit_transaction(h, root);
222 goto again;
225 if (num_items > 0) {
226 ret = btrfs_trans_reserve_metadata(h, root, num_items);
227 if (ret == -EAGAIN && !retries) {
228 retries++;
229 btrfs_commit_transaction(h, root);
230 goto again;
231 } else if (ret == -EAGAIN) {
233 * We have already retried and got EAGAIN, so really we
234 * don't have space, so set ret to -ENOSPC.
236 ret = -ENOSPC;
239 if (ret < 0) {
240 btrfs_end_transaction(h, root);
241 return ERR_PTR(ret);
245 if (type != TRANS_JOIN_NOLOCK)
246 mutex_lock(&root->fs_info->trans_mutex);
247 record_root_in_trans(h, root);
248 if (type != TRANS_JOIN_NOLOCK)
249 mutex_unlock(&root->fs_info->trans_mutex);
251 if (!current->journal_info && type != TRANS_USERSPACE)
252 current->journal_info = h;
253 return h;
256 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
257 int num_items)
259 return start_transaction(root, num_items, TRANS_START);
261 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
262 int num_blocks)
264 return start_transaction(root, 0, TRANS_JOIN);
267 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
268 int num_blocks)
270 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
273 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
274 int num_blocks)
276 return start_transaction(r, 0, TRANS_USERSPACE);
279 /* wait for a transaction commit to be fully complete */
280 static noinline int wait_for_commit(struct btrfs_root *root,
281 struct btrfs_transaction *commit)
283 DEFINE_WAIT(wait);
284 mutex_lock(&root->fs_info->trans_mutex);
285 while (!commit->commit_done) {
286 prepare_to_wait(&commit->commit_wait, &wait,
287 TASK_UNINTERRUPTIBLE);
288 if (commit->commit_done)
289 break;
290 mutex_unlock(&root->fs_info->trans_mutex);
291 schedule();
292 mutex_lock(&root->fs_info->trans_mutex);
294 mutex_unlock(&root->fs_info->trans_mutex);
295 finish_wait(&commit->commit_wait, &wait);
296 return 0;
299 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
301 struct btrfs_transaction *cur_trans = NULL, *t;
302 int ret;
304 mutex_lock(&root->fs_info->trans_mutex);
306 ret = 0;
307 if (transid) {
308 if (transid <= root->fs_info->last_trans_committed)
309 goto out_unlock;
311 /* find specified transaction */
312 list_for_each_entry(t, &root->fs_info->trans_list, list) {
313 if (t->transid == transid) {
314 cur_trans = t;
315 break;
317 if (t->transid > transid)
318 break;
320 ret = -EINVAL;
321 if (!cur_trans)
322 goto out_unlock; /* bad transid */
323 } else {
324 /* find newest transaction that is committing | committed */
325 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
326 list) {
327 if (t->in_commit) {
328 if (t->commit_done)
329 goto out_unlock;
330 cur_trans = t;
331 break;
334 if (!cur_trans)
335 goto out_unlock; /* nothing committing|committed */
338 atomic_inc(&cur_trans->use_count);
339 mutex_unlock(&root->fs_info->trans_mutex);
341 wait_for_commit(root, cur_trans);
343 mutex_lock(&root->fs_info->trans_mutex);
344 put_transaction(cur_trans);
345 ret = 0;
346 out_unlock:
347 mutex_unlock(&root->fs_info->trans_mutex);
348 return ret;
351 #if 0
353 * rate limit against the drop_snapshot code. This helps to slow down new
354 * operations if the drop_snapshot code isn't able to keep up.
356 static void throttle_on_drops(struct btrfs_root *root)
358 struct btrfs_fs_info *info = root->fs_info;
359 int harder_count = 0;
361 harder:
362 if (atomic_read(&info->throttles)) {
363 DEFINE_WAIT(wait);
364 int thr;
365 thr = atomic_read(&info->throttle_gen);
367 do {
368 prepare_to_wait(&info->transaction_throttle,
369 &wait, TASK_UNINTERRUPTIBLE);
370 if (!atomic_read(&info->throttles)) {
371 finish_wait(&info->transaction_throttle, &wait);
372 break;
374 schedule();
375 finish_wait(&info->transaction_throttle, &wait);
376 } while (thr == atomic_read(&info->throttle_gen));
377 harder_count++;
379 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
380 harder_count < 2)
381 goto harder;
383 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
384 harder_count < 10)
385 goto harder;
387 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
388 harder_count < 20)
389 goto harder;
392 #endif
394 void btrfs_throttle(struct btrfs_root *root)
396 mutex_lock(&root->fs_info->trans_mutex);
397 if (!root->fs_info->open_ioctl_trans)
398 wait_current_trans(root);
399 mutex_unlock(&root->fs_info->trans_mutex);
402 static int should_end_transaction(struct btrfs_trans_handle *trans,
403 struct btrfs_root *root)
405 int ret;
406 ret = btrfs_block_rsv_check(trans, root,
407 &root->fs_info->global_block_rsv, 0, 5);
408 return ret ? 1 : 0;
411 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
412 struct btrfs_root *root)
414 struct btrfs_transaction *cur_trans = trans->transaction;
415 int updates;
417 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
418 return 1;
420 updates = trans->delayed_ref_updates;
421 trans->delayed_ref_updates = 0;
422 if (updates)
423 btrfs_run_delayed_refs(trans, root, updates);
425 return should_end_transaction(trans, root);
428 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
429 struct btrfs_root *root, int throttle, int lock)
431 struct btrfs_transaction *cur_trans = trans->transaction;
432 struct btrfs_fs_info *info = root->fs_info;
433 int count = 0;
435 while (count < 4) {
436 unsigned long cur = trans->delayed_ref_updates;
437 trans->delayed_ref_updates = 0;
438 if (cur &&
439 trans->transaction->delayed_refs.num_heads_ready > 64) {
440 trans->delayed_ref_updates = 0;
443 * do a full flush if the transaction is trying
444 * to close
446 if (trans->transaction->delayed_refs.flushing)
447 cur = 0;
448 btrfs_run_delayed_refs(trans, root, cur);
449 } else {
450 break;
452 count++;
455 btrfs_trans_release_metadata(trans, root);
457 if (lock && !root->fs_info->open_ioctl_trans &&
458 should_end_transaction(trans, root))
459 trans->transaction->blocked = 1;
461 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
462 if (throttle)
463 return btrfs_commit_transaction(trans, root);
464 else
465 wake_up_process(info->transaction_kthread);
468 WARN_ON(cur_trans != info->running_transaction);
469 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
470 atomic_dec(&cur_trans->num_writers);
472 smp_mb();
473 if (waitqueue_active(&cur_trans->writer_wait))
474 wake_up(&cur_trans->writer_wait);
475 put_transaction(cur_trans);
477 if (current->journal_info == trans)
478 current->journal_info = NULL;
479 memset(trans, 0, sizeof(*trans));
480 kmem_cache_free(btrfs_trans_handle_cachep, trans);
482 if (throttle)
483 btrfs_run_delayed_iputs(root);
485 return 0;
488 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
489 struct btrfs_root *root)
491 return __btrfs_end_transaction(trans, root, 0, 1);
494 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
495 struct btrfs_root *root)
497 return __btrfs_end_transaction(trans, root, 1, 1);
500 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
501 struct btrfs_root *root)
503 return __btrfs_end_transaction(trans, root, 0, 0);
507 * when btree blocks are allocated, they have some corresponding bits set for
508 * them in one of two extent_io trees. This is used to make sure all of
509 * those extents are sent to disk but does not wait on them
511 int btrfs_write_marked_extents(struct btrfs_root *root,
512 struct extent_io_tree *dirty_pages, int mark)
514 int ret;
515 int err = 0;
516 int werr = 0;
517 struct page *page;
518 struct inode *btree_inode = root->fs_info->btree_inode;
519 u64 start = 0;
520 u64 end;
521 unsigned long index;
523 while (1) {
524 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
525 mark);
526 if (ret)
527 break;
528 while (start <= end) {
529 cond_resched();
531 index = start >> PAGE_CACHE_SHIFT;
532 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
533 page = find_get_page(btree_inode->i_mapping, index);
534 if (!page)
535 continue;
537 btree_lock_page_hook(page);
538 if (!page->mapping) {
539 unlock_page(page);
540 page_cache_release(page);
541 continue;
544 if (PageWriteback(page)) {
545 if (PageDirty(page))
546 wait_on_page_writeback(page);
547 else {
548 unlock_page(page);
549 page_cache_release(page);
550 continue;
553 err = write_one_page(page, 0);
554 if (err)
555 werr = err;
556 page_cache_release(page);
559 if (err)
560 werr = err;
561 return werr;
565 * when btree blocks are allocated, they have some corresponding bits set for
566 * them in one of two extent_io trees. This is used to make sure all of
567 * those extents are on disk for transaction or log commit. We wait
568 * on all the pages and clear them from the dirty pages state tree
570 int btrfs_wait_marked_extents(struct btrfs_root *root,
571 struct extent_io_tree *dirty_pages, int mark)
573 int ret;
574 int err = 0;
575 int werr = 0;
576 struct page *page;
577 struct inode *btree_inode = root->fs_info->btree_inode;
578 u64 start = 0;
579 u64 end;
580 unsigned long index;
582 while (1) {
583 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
584 mark);
585 if (ret)
586 break;
588 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
589 while (start <= end) {
590 index = start >> PAGE_CACHE_SHIFT;
591 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
592 page = find_get_page(btree_inode->i_mapping, index);
593 if (!page)
594 continue;
595 if (PageDirty(page)) {
596 btree_lock_page_hook(page);
597 wait_on_page_writeback(page);
598 err = write_one_page(page, 0);
599 if (err)
600 werr = err;
602 wait_on_page_writeback(page);
603 page_cache_release(page);
604 cond_resched();
607 if (err)
608 werr = err;
609 return werr;
613 * when btree blocks are allocated, they have some corresponding bits set for
614 * them in one of two extent_io trees. This is used to make sure all of
615 * those extents are on disk for transaction or log commit
617 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
618 struct extent_io_tree *dirty_pages, int mark)
620 int ret;
621 int ret2;
623 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
624 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
625 return ret || ret2;
628 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
629 struct btrfs_root *root)
631 if (!trans || !trans->transaction) {
632 struct inode *btree_inode;
633 btree_inode = root->fs_info->btree_inode;
634 return filemap_write_and_wait(btree_inode->i_mapping);
636 return btrfs_write_and_wait_marked_extents(root,
637 &trans->transaction->dirty_pages,
638 EXTENT_DIRTY);
642 * this is used to update the root pointer in the tree of tree roots.
644 * But, in the case of the extent allocation tree, updating the root
645 * pointer may allocate blocks which may change the root of the extent
646 * allocation tree.
648 * So, this loops and repeats and makes sure the cowonly root didn't
649 * change while the root pointer was being updated in the metadata.
651 static int update_cowonly_root(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root)
654 int ret;
655 u64 old_root_bytenr;
656 u64 old_root_used;
657 struct btrfs_root *tree_root = root->fs_info->tree_root;
659 old_root_used = btrfs_root_used(&root->root_item);
660 btrfs_write_dirty_block_groups(trans, root);
662 while (1) {
663 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
664 if (old_root_bytenr == root->node->start &&
665 old_root_used == btrfs_root_used(&root->root_item))
666 break;
668 btrfs_set_root_node(&root->root_item, root->node);
669 ret = btrfs_update_root(trans, tree_root,
670 &root->root_key,
671 &root->root_item);
672 BUG_ON(ret);
674 old_root_used = btrfs_root_used(&root->root_item);
675 ret = btrfs_write_dirty_block_groups(trans, root);
676 BUG_ON(ret);
679 if (root != root->fs_info->extent_root)
680 switch_commit_root(root);
682 return 0;
686 * update all the cowonly tree roots on disk
688 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
689 struct btrfs_root *root)
691 struct btrfs_fs_info *fs_info = root->fs_info;
692 struct list_head *next;
693 struct extent_buffer *eb;
694 int ret;
696 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
697 BUG_ON(ret);
699 eb = btrfs_lock_root_node(fs_info->tree_root);
700 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
701 btrfs_tree_unlock(eb);
702 free_extent_buffer(eb);
704 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
705 BUG_ON(ret);
707 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
708 next = fs_info->dirty_cowonly_roots.next;
709 list_del_init(next);
710 root = list_entry(next, struct btrfs_root, dirty_list);
712 update_cowonly_root(trans, root);
715 down_write(&fs_info->extent_commit_sem);
716 switch_commit_root(fs_info->extent_root);
717 up_write(&fs_info->extent_commit_sem);
719 return 0;
723 * dead roots are old snapshots that need to be deleted. This allocates
724 * a dirty root struct and adds it into the list of dead roots that need to
725 * be deleted
727 int btrfs_add_dead_root(struct btrfs_root *root)
729 mutex_lock(&root->fs_info->trans_mutex);
730 list_add(&root->root_list, &root->fs_info->dead_roots);
731 mutex_unlock(&root->fs_info->trans_mutex);
732 return 0;
736 * update all the cowonly tree roots on disk
738 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
739 struct btrfs_root *root)
741 struct btrfs_root *gang[8];
742 struct btrfs_fs_info *fs_info = root->fs_info;
743 int i;
744 int ret;
745 int err = 0;
747 while (1) {
748 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
749 (void **)gang, 0,
750 ARRAY_SIZE(gang),
751 BTRFS_ROOT_TRANS_TAG);
752 if (ret == 0)
753 break;
754 for (i = 0; i < ret; i++) {
755 root = gang[i];
756 radix_tree_tag_clear(&fs_info->fs_roots_radix,
757 (unsigned long)root->root_key.objectid,
758 BTRFS_ROOT_TRANS_TAG);
760 btrfs_free_log(trans, root);
761 btrfs_update_reloc_root(trans, root);
762 btrfs_orphan_commit_root(trans, root);
764 if (root->commit_root != root->node) {
765 mutex_lock(&root->fs_commit_mutex);
766 switch_commit_root(root);
767 btrfs_unpin_free_ino(root);
768 mutex_unlock(&root->fs_commit_mutex);
770 btrfs_set_root_node(&root->root_item,
771 root->node);
774 err = btrfs_update_root(trans, fs_info->tree_root,
775 &root->root_key,
776 &root->root_item);
777 if (err)
778 break;
781 return err;
785 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
786 * otherwise every leaf in the btree is read and defragged.
788 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
790 struct btrfs_fs_info *info = root->fs_info;
791 struct btrfs_trans_handle *trans;
792 int ret;
793 unsigned long nr;
795 if (xchg(&root->defrag_running, 1))
796 return 0;
798 while (1) {
799 trans = btrfs_start_transaction(root, 0);
800 if (IS_ERR(trans))
801 return PTR_ERR(trans);
803 ret = btrfs_defrag_leaves(trans, root, cacheonly);
805 nr = trans->blocks_used;
806 btrfs_end_transaction(trans, root);
807 btrfs_btree_balance_dirty(info->tree_root, nr);
808 cond_resched();
810 if (root->fs_info->closing || ret != -EAGAIN)
811 break;
813 root->defrag_running = 0;
814 return ret;
817 #if 0
819 * when dropping snapshots, we generate a ton of delayed refs, and it makes
820 * sense not to join the transaction while it is trying to flush the current
821 * queue of delayed refs out.
823 * This is used by the drop snapshot code only
825 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
827 DEFINE_WAIT(wait);
829 mutex_lock(&info->trans_mutex);
830 while (info->running_transaction &&
831 info->running_transaction->delayed_refs.flushing) {
832 prepare_to_wait(&info->transaction_wait, &wait,
833 TASK_UNINTERRUPTIBLE);
834 mutex_unlock(&info->trans_mutex);
836 schedule();
838 mutex_lock(&info->trans_mutex);
839 finish_wait(&info->transaction_wait, &wait);
841 mutex_unlock(&info->trans_mutex);
842 return 0;
846 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
847 * all of them
849 int btrfs_drop_dead_root(struct btrfs_root *root)
851 struct btrfs_trans_handle *trans;
852 struct btrfs_root *tree_root = root->fs_info->tree_root;
853 unsigned long nr;
854 int ret;
856 while (1) {
858 * we don't want to jump in and create a bunch of
859 * delayed refs if the transaction is starting to close
861 wait_transaction_pre_flush(tree_root->fs_info);
862 trans = btrfs_start_transaction(tree_root, 1);
865 * we've joined a transaction, make sure it isn't
866 * closing right now
868 if (trans->transaction->delayed_refs.flushing) {
869 btrfs_end_transaction(trans, tree_root);
870 continue;
873 ret = btrfs_drop_snapshot(trans, root);
874 if (ret != -EAGAIN)
875 break;
877 ret = btrfs_update_root(trans, tree_root,
878 &root->root_key,
879 &root->root_item);
880 if (ret)
881 break;
883 nr = trans->blocks_used;
884 ret = btrfs_end_transaction(trans, tree_root);
885 BUG_ON(ret);
887 btrfs_btree_balance_dirty(tree_root, nr);
888 cond_resched();
890 BUG_ON(ret);
892 ret = btrfs_del_root(trans, tree_root, &root->root_key);
893 BUG_ON(ret);
895 nr = trans->blocks_used;
896 ret = btrfs_end_transaction(trans, tree_root);
897 BUG_ON(ret);
899 free_extent_buffer(root->node);
900 free_extent_buffer(root->commit_root);
901 kfree(root);
903 btrfs_btree_balance_dirty(tree_root, nr);
904 return ret;
906 #endif
909 * new snapshots need to be created at a very specific time in the
910 * transaction commit. This does the actual creation
912 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
913 struct btrfs_fs_info *fs_info,
914 struct btrfs_pending_snapshot *pending)
916 struct btrfs_key key;
917 struct btrfs_root_item *new_root_item;
918 struct btrfs_root *tree_root = fs_info->tree_root;
919 struct btrfs_root *root = pending->root;
920 struct btrfs_root *parent_root;
921 struct inode *parent_inode;
922 struct dentry *parent;
923 struct dentry *dentry;
924 struct extent_buffer *tmp;
925 struct extent_buffer *old;
926 int ret;
927 u64 to_reserve = 0;
928 u64 index = 0;
929 u64 objectid;
930 u64 root_flags;
932 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
933 if (!new_root_item) {
934 pending->error = -ENOMEM;
935 goto fail;
938 ret = btrfs_find_free_objectid(tree_root, &objectid);
939 if (ret) {
940 pending->error = ret;
941 goto fail;
944 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
945 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
947 if (to_reserve > 0) {
948 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
949 to_reserve);
950 if (ret) {
951 pending->error = ret;
952 goto fail;
956 key.objectid = objectid;
957 key.offset = (u64)-1;
958 key.type = BTRFS_ROOT_ITEM_KEY;
960 trans->block_rsv = &pending->block_rsv;
962 dentry = pending->dentry;
963 parent = dget_parent(dentry);
964 parent_inode = parent->d_inode;
965 parent_root = BTRFS_I(parent_inode)->root;
966 record_root_in_trans(trans, parent_root);
969 * insert the directory item
971 ret = btrfs_set_inode_index(parent_inode, &index);
972 BUG_ON(ret);
973 ret = btrfs_insert_dir_item(trans, parent_root,
974 dentry->d_name.name, dentry->d_name.len,
975 parent_inode->i_ino, &key,
976 BTRFS_FT_DIR, index);
977 BUG_ON(ret);
979 btrfs_i_size_write(parent_inode, parent_inode->i_size +
980 dentry->d_name.len * 2);
981 ret = btrfs_update_inode(trans, parent_root, parent_inode);
982 BUG_ON(ret);
984 record_root_in_trans(trans, root);
985 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
986 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
987 btrfs_check_and_init_root_item(new_root_item);
989 root_flags = btrfs_root_flags(new_root_item);
990 if (pending->readonly)
991 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
992 else
993 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
994 btrfs_set_root_flags(new_root_item, root_flags);
996 old = btrfs_lock_root_node(root);
997 btrfs_cow_block(trans, root, old, NULL, 0, &old);
998 btrfs_set_lock_blocking(old);
1000 btrfs_copy_root(trans, root, old, &tmp, objectid);
1001 btrfs_tree_unlock(old);
1002 free_extent_buffer(old);
1004 btrfs_set_root_node(new_root_item, tmp);
1005 /* record when the snapshot was created in key.offset */
1006 key.offset = trans->transid;
1007 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1008 btrfs_tree_unlock(tmp);
1009 free_extent_buffer(tmp);
1010 BUG_ON(ret);
1013 * insert root back/forward references
1015 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1016 parent_root->root_key.objectid,
1017 parent_inode->i_ino, index,
1018 dentry->d_name.name, dentry->d_name.len);
1019 BUG_ON(ret);
1020 dput(parent);
1022 key.offset = (u64)-1;
1023 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1024 BUG_ON(IS_ERR(pending->snap));
1026 btrfs_reloc_post_snapshot(trans, pending);
1027 btrfs_orphan_post_snapshot(trans, pending);
1028 fail:
1029 kfree(new_root_item);
1030 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1031 return 0;
1035 * create all the snapshots we've scheduled for creation
1037 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1038 struct btrfs_fs_info *fs_info)
1040 struct btrfs_pending_snapshot *pending;
1041 struct list_head *head = &trans->transaction->pending_snapshots;
1042 int ret;
1044 list_for_each_entry(pending, head, list) {
1045 ret = create_pending_snapshot(trans, fs_info, pending);
1046 BUG_ON(ret);
1048 return 0;
1051 static void update_super_roots(struct btrfs_root *root)
1053 struct btrfs_root_item *root_item;
1054 struct btrfs_super_block *super;
1056 super = &root->fs_info->super_copy;
1058 root_item = &root->fs_info->chunk_root->root_item;
1059 super->chunk_root = root_item->bytenr;
1060 super->chunk_root_generation = root_item->generation;
1061 super->chunk_root_level = root_item->level;
1063 root_item = &root->fs_info->tree_root->root_item;
1064 super->root = root_item->bytenr;
1065 super->generation = root_item->generation;
1066 super->root_level = root_item->level;
1067 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1068 super->cache_generation = root_item->generation;
1071 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1073 int ret = 0;
1074 spin_lock(&info->new_trans_lock);
1075 if (info->running_transaction)
1076 ret = info->running_transaction->in_commit;
1077 spin_unlock(&info->new_trans_lock);
1078 return ret;
1081 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1083 int ret = 0;
1084 spin_lock(&info->new_trans_lock);
1085 if (info->running_transaction)
1086 ret = info->running_transaction->blocked;
1087 spin_unlock(&info->new_trans_lock);
1088 return ret;
1092 * wait for the current transaction commit to start and block subsequent
1093 * transaction joins
1095 static void wait_current_trans_commit_start(struct btrfs_root *root,
1096 struct btrfs_transaction *trans)
1098 DEFINE_WAIT(wait);
1100 if (trans->in_commit)
1101 return;
1103 while (1) {
1104 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1105 TASK_UNINTERRUPTIBLE);
1106 if (trans->in_commit) {
1107 finish_wait(&root->fs_info->transaction_blocked_wait,
1108 &wait);
1109 break;
1111 mutex_unlock(&root->fs_info->trans_mutex);
1112 schedule();
1113 mutex_lock(&root->fs_info->trans_mutex);
1114 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1119 * wait for the current transaction to start and then become unblocked.
1120 * caller holds ref.
1122 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1123 struct btrfs_transaction *trans)
1125 DEFINE_WAIT(wait);
1127 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1128 return;
1130 while (1) {
1131 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1132 TASK_UNINTERRUPTIBLE);
1133 if (trans->commit_done ||
1134 (trans->in_commit && !trans->blocked)) {
1135 finish_wait(&root->fs_info->transaction_wait,
1136 &wait);
1137 break;
1139 mutex_unlock(&root->fs_info->trans_mutex);
1140 schedule();
1141 mutex_lock(&root->fs_info->trans_mutex);
1142 finish_wait(&root->fs_info->transaction_wait,
1143 &wait);
1148 * commit transactions asynchronously. once btrfs_commit_transaction_async
1149 * returns, any subsequent transaction will not be allowed to join.
1151 struct btrfs_async_commit {
1152 struct btrfs_trans_handle *newtrans;
1153 struct btrfs_root *root;
1154 struct delayed_work work;
1157 static void do_async_commit(struct work_struct *work)
1159 struct btrfs_async_commit *ac =
1160 container_of(work, struct btrfs_async_commit, work.work);
1162 btrfs_commit_transaction(ac->newtrans, ac->root);
1163 kfree(ac);
1166 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1167 struct btrfs_root *root,
1168 int wait_for_unblock)
1170 struct btrfs_async_commit *ac;
1171 struct btrfs_transaction *cur_trans;
1173 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1174 if (!ac)
1175 return -ENOMEM;
1177 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1178 ac->root = root;
1179 ac->newtrans = btrfs_join_transaction(root, 0);
1180 if (IS_ERR(ac->newtrans)) {
1181 int err = PTR_ERR(ac->newtrans);
1182 kfree(ac);
1183 return err;
1186 /* take transaction reference */
1187 mutex_lock(&root->fs_info->trans_mutex);
1188 cur_trans = trans->transaction;
1189 atomic_inc(&cur_trans->use_count);
1190 mutex_unlock(&root->fs_info->trans_mutex);
1192 btrfs_end_transaction(trans, root);
1193 schedule_delayed_work(&ac->work, 0);
1195 /* wait for transaction to start and unblock */
1196 mutex_lock(&root->fs_info->trans_mutex);
1197 if (wait_for_unblock)
1198 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1199 else
1200 wait_current_trans_commit_start(root, cur_trans);
1201 put_transaction(cur_trans);
1202 mutex_unlock(&root->fs_info->trans_mutex);
1204 return 0;
1208 * btrfs_transaction state sequence:
1209 * in_commit = 0, blocked = 0 (initial)
1210 * in_commit = 1, blocked = 1
1211 * blocked = 0
1212 * commit_done = 1
1214 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1215 struct btrfs_root *root)
1217 unsigned long joined = 0;
1218 struct btrfs_transaction *cur_trans;
1219 struct btrfs_transaction *prev_trans = NULL;
1220 DEFINE_WAIT(wait);
1221 int ret;
1222 int should_grow = 0;
1223 unsigned long now = get_seconds();
1224 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1226 btrfs_run_ordered_operations(root, 0);
1228 /* make a pass through all the delayed refs we have so far
1229 * any runnings procs may add more while we are here
1231 ret = btrfs_run_delayed_refs(trans, root, 0);
1232 BUG_ON(ret);
1234 btrfs_trans_release_metadata(trans, root);
1236 cur_trans = trans->transaction;
1238 * set the flushing flag so procs in this transaction have to
1239 * start sending their work down.
1241 cur_trans->delayed_refs.flushing = 1;
1243 ret = btrfs_run_delayed_refs(trans, root, 0);
1244 BUG_ON(ret);
1246 mutex_lock(&root->fs_info->trans_mutex);
1247 if (cur_trans->in_commit) {
1248 atomic_inc(&cur_trans->use_count);
1249 mutex_unlock(&root->fs_info->trans_mutex);
1250 btrfs_end_transaction(trans, root);
1252 ret = wait_for_commit(root, cur_trans);
1253 BUG_ON(ret);
1255 mutex_lock(&root->fs_info->trans_mutex);
1256 put_transaction(cur_trans);
1257 mutex_unlock(&root->fs_info->trans_mutex);
1259 return 0;
1262 trans->transaction->in_commit = 1;
1263 trans->transaction->blocked = 1;
1264 wake_up(&root->fs_info->transaction_blocked_wait);
1266 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1267 prev_trans = list_entry(cur_trans->list.prev,
1268 struct btrfs_transaction, list);
1269 if (!prev_trans->commit_done) {
1270 atomic_inc(&prev_trans->use_count);
1271 mutex_unlock(&root->fs_info->trans_mutex);
1273 wait_for_commit(root, prev_trans);
1275 mutex_lock(&root->fs_info->trans_mutex);
1276 put_transaction(prev_trans);
1280 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1281 should_grow = 1;
1283 do {
1284 int snap_pending = 0;
1285 joined = cur_trans->num_joined;
1286 if (!list_empty(&trans->transaction->pending_snapshots))
1287 snap_pending = 1;
1289 WARN_ON(cur_trans != trans->transaction);
1290 mutex_unlock(&root->fs_info->trans_mutex);
1292 if (flush_on_commit || snap_pending) {
1293 btrfs_start_delalloc_inodes(root, 1);
1294 ret = btrfs_wait_ordered_extents(root, 0, 1);
1295 BUG_ON(ret);
1299 * rename don't use btrfs_join_transaction, so, once we
1300 * set the transaction to blocked above, we aren't going
1301 * to get any new ordered operations. We can safely run
1302 * it here and no for sure that nothing new will be added
1303 * to the list
1305 btrfs_run_ordered_operations(root, 1);
1307 prepare_to_wait(&cur_trans->writer_wait, &wait,
1308 TASK_UNINTERRUPTIBLE);
1310 smp_mb();
1311 if (atomic_read(&cur_trans->num_writers) > 1)
1312 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1313 else if (should_grow)
1314 schedule_timeout(1);
1316 mutex_lock(&root->fs_info->trans_mutex);
1317 finish_wait(&cur_trans->writer_wait, &wait);
1318 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1319 (should_grow && cur_trans->num_joined != joined));
1321 ret = create_pending_snapshots(trans, root->fs_info);
1322 BUG_ON(ret);
1324 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1325 BUG_ON(ret);
1327 WARN_ON(cur_trans != trans->transaction);
1329 /* btrfs_commit_tree_roots is responsible for getting the
1330 * various roots consistent with each other. Every pointer
1331 * in the tree of tree roots has to point to the most up to date
1332 * root for every subvolume and other tree. So, we have to keep
1333 * the tree logging code from jumping in and changing any
1334 * of the trees.
1336 * At this point in the commit, there can't be any tree-log
1337 * writers, but a little lower down we drop the trans mutex
1338 * and let new people in. By holding the tree_log_mutex
1339 * from now until after the super is written, we avoid races
1340 * with the tree-log code.
1342 mutex_lock(&root->fs_info->tree_log_mutex);
1344 ret = commit_fs_roots(trans, root);
1345 BUG_ON(ret);
1347 /* commit_fs_roots gets rid of all the tree log roots, it is now
1348 * safe to free the root of tree log roots
1350 btrfs_free_log_root_tree(trans, root->fs_info);
1352 ret = commit_cowonly_roots(trans, root);
1353 BUG_ON(ret);
1355 btrfs_prepare_extent_commit(trans, root);
1357 cur_trans = root->fs_info->running_transaction;
1358 spin_lock(&root->fs_info->new_trans_lock);
1359 root->fs_info->running_transaction = NULL;
1360 spin_unlock(&root->fs_info->new_trans_lock);
1362 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1363 root->fs_info->tree_root->node);
1364 switch_commit_root(root->fs_info->tree_root);
1366 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1367 root->fs_info->chunk_root->node);
1368 switch_commit_root(root->fs_info->chunk_root);
1370 update_super_roots(root);
1372 if (!root->fs_info->log_root_recovering) {
1373 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1374 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1377 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1378 sizeof(root->fs_info->super_copy));
1380 trans->transaction->blocked = 0;
1382 wake_up(&root->fs_info->transaction_wait);
1384 mutex_unlock(&root->fs_info->trans_mutex);
1385 ret = btrfs_write_and_wait_transaction(trans, root);
1386 BUG_ON(ret);
1387 write_ctree_super(trans, root, 0);
1390 * the super is written, we can safely allow the tree-loggers
1391 * to go about their business
1393 mutex_unlock(&root->fs_info->tree_log_mutex);
1395 btrfs_finish_extent_commit(trans, root);
1397 mutex_lock(&root->fs_info->trans_mutex);
1399 cur_trans->commit_done = 1;
1401 root->fs_info->last_trans_committed = cur_trans->transid;
1403 wake_up(&cur_trans->commit_wait);
1405 list_del_init(&cur_trans->list);
1406 put_transaction(cur_trans);
1407 put_transaction(cur_trans);
1409 trace_btrfs_transaction_commit(root);
1411 mutex_unlock(&root->fs_info->trans_mutex);
1413 if (current->journal_info == trans)
1414 current->journal_info = NULL;
1416 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1418 if (current != root->fs_info->transaction_kthread)
1419 btrfs_run_delayed_iputs(root);
1421 return ret;
1425 * interface function to delete all the snapshots we have scheduled for deletion
1427 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1429 LIST_HEAD(list);
1430 struct btrfs_fs_info *fs_info = root->fs_info;
1432 mutex_lock(&fs_info->trans_mutex);
1433 list_splice_init(&fs_info->dead_roots, &list);
1434 mutex_unlock(&fs_info->trans_mutex);
1436 while (!list_empty(&list)) {
1437 root = list_entry(list.next, struct btrfs_root, root_list);
1438 list_del(&root->root_list);
1440 if (btrfs_header_backref_rev(root->node) <
1441 BTRFS_MIXED_BACKREF_REV)
1442 btrfs_drop_snapshot(root, NULL, 0);
1443 else
1444 btrfs_drop_snapshot(root, NULL, 1);
1446 return 0;