target: Fix bug with task_sg chained transport_free_dev_tasks release
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / target / target_core_transport.c
blob0ddcc264ef316185c65e07cb5ac5ccf04598e4d9
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp_lock.h>
38 #include <linux/kthread.h>
39 #include <linux/in.h>
40 #include <linux/cdrom.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/libsas.h> /* For TASK_ATTR_* */
48 #include <target/target_core_base.h>
49 #include <target/target_core_device.h>
50 #include <target/target_core_tmr.h>
51 #include <target/target_core_tpg.h>
52 #include <target/target_core_transport.h>
53 #include <target/target_core_fabric_ops.h>
54 #include <target/target_core_configfs.h>
56 #include "target_core_alua.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_scdb.h"
60 #include "target_core_ua.h"
62 /* #define DEBUG_CDB_HANDLER */
63 #ifdef DEBUG_CDB_HANDLER
64 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
65 #else
66 #define DEBUG_CDB_H(x...)
67 #endif
69 /* #define DEBUG_CMD_MAP */
70 #ifdef DEBUG_CMD_MAP
71 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
72 #else
73 #define DEBUG_CMD_M(x...)
74 #endif
76 /* #define DEBUG_MEM_ALLOC */
77 #ifdef DEBUG_MEM_ALLOC
78 #define DEBUG_MEM(x...) printk(KERN_INFO x)
79 #else
80 #define DEBUG_MEM(x...)
81 #endif
83 /* #define DEBUG_MEM2_ALLOC */
84 #ifdef DEBUG_MEM2_ALLOC
85 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
86 #else
87 #define DEBUG_MEM2(x...)
88 #endif
90 /* #define DEBUG_SG_CALC */
91 #ifdef DEBUG_SG_CALC
92 #define DEBUG_SC(x...) printk(KERN_INFO x)
93 #else
94 #define DEBUG_SC(x...)
95 #endif
97 /* #define DEBUG_SE_OBJ */
98 #ifdef DEBUG_SE_OBJ
99 #define DEBUG_SO(x...) printk(KERN_INFO x)
100 #else
101 #define DEBUG_SO(x...)
102 #endif
104 /* #define DEBUG_CMD_VOL */
105 #ifdef DEBUG_CMD_VOL
106 #define DEBUG_VOL(x...) printk(KERN_INFO x)
107 #else
108 #define DEBUG_VOL(x...)
109 #endif
111 /* #define DEBUG_CMD_STOP */
112 #ifdef DEBUG_CMD_STOP
113 #define DEBUG_CS(x...) printk(KERN_INFO x)
114 #else
115 #define DEBUG_CS(x...)
116 #endif
118 /* #define DEBUG_PASSTHROUGH */
119 #ifdef DEBUG_PASSTHROUGH
120 #define DEBUG_PT(x...) printk(KERN_INFO x)
121 #else
122 #define DEBUG_PT(x...)
123 #endif
125 /* #define DEBUG_TASK_STOP */
126 #ifdef DEBUG_TASK_STOP
127 #define DEBUG_TS(x...) printk(KERN_INFO x)
128 #else
129 #define DEBUG_TS(x...)
130 #endif
132 /* #define DEBUG_TRANSPORT_STOP */
133 #ifdef DEBUG_TRANSPORT_STOP
134 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
135 #else
136 #define DEBUG_TRANSPORT_S(x...)
137 #endif
139 /* #define DEBUG_TASK_FAILURE */
140 #ifdef DEBUG_TASK_FAILURE
141 #define DEBUG_TF(x...) printk(KERN_INFO x)
142 #else
143 #define DEBUG_TF(x...)
144 #endif
146 /* #define DEBUG_DEV_OFFLINE */
147 #ifdef DEBUG_DEV_OFFLINE
148 #define DEBUG_DO(x...) printk(KERN_INFO x)
149 #else
150 #define DEBUG_DO(x...)
151 #endif
153 /* #define DEBUG_TASK_STATE */
154 #ifdef DEBUG_TASK_STATE
155 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
156 #else
157 #define DEBUG_TSTATE(x...)
158 #endif
160 /* #define DEBUG_STATUS_THR */
161 #ifdef DEBUG_STATUS_THR
162 #define DEBUG_ST(x...) printk(KERN_INFO x)
163 #else
164 #define DEBUG_ST(x...)
165 #endif
167 /* #define DEBUG_TASK_TIMEOUT */
168 #ifdef DEBUG_TASK_TIMEOUT
169 #define DEBUG_TT(x...) printk(KERN_INFO x)
170 #else
171 #define DEBUG_TT(x...)
172 #endif
174 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
175 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
176 #define DEBUG_GRF(x...) printk(KERN_INFO x)
177 #else
178 #define DEBUG_GRF(x...)
179 #endif
181 /* #define DEBUG_SAM_TASK_ATTRS */
182 #ifdef DEBUG_SAM_TASK_ATTRS
183 #define DEBUG_STA(x...) printk(KERN_INFO x)
184 #else
185 #define DEBUG_STA(x...)
186 #endif
188 struct se_global *se_global;
190 static struct kmem_cache *se_cmd_cache;
191 static struct kmem_cache *se_sess_cache;
192 struct kmem_cache *se_tmr_req_cache;
193 struct kmem_cache *se_ua_cache;
194 struct kmem_cache *se_mem_cache;
195 struct kmem_cache *t10_pr_reg_cache;
196 struct kmem_cache *t10_alua_lu_gp_cache;
197 struct kmem_cache *t10_alua_lu_gp_mem_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_cache;
199 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
201 /* Used for transport_dev_get_map_*() */
202 typedef int (*map_func_t)(struct se_task *, u32);
204 static int transport_generic_write_pending(struct se_cmd *);
205 static int transport_processing_thread(void *);
206 static int __transport_execute_tasks(struct se_device *dev);
207 static void transport_complete_task_attr(struct se_cmd *cmd);
208 static void transport_direct_request_timeout(struct se_cmd *cmd);
209 static void transport_free_dev_tasks(struct se_cmd *cmd);
210 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
211 unsigned long long starting_lba, u32 sectors,
212 enum dma_data_direction data_direction,
213 struct list_head *mem_list, int set_counts);
214 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
215 u32 dma_size);
216 static int transport_generic_remove(struct se_cmd *cmd,
217 int release_to_pool, int session_reinstatement);
218 static int transport_get_sectors(struct se_cmd *cmd);
219 static struct list_head *transport_init_se_mem_list(void);
220 static int transport_map_sg_to_mem(struct se_cmd *cmd,
221 struct list_head *se_mem_list, void *in_mem,
222 u32 *se_mem_cnt);
223 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
224 unsigned char *dst, struct list_head *se_mem_list);
225 static void transport_release_fe_cmd(struct se_cmd *cmd);
226 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
227 struct se_queue_obj *qobj);
228 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
229 static void transport_stop_all_task_timers(struct se_cmd *cmd);
231 int transport_emulate_control_cdb(struct se_task *task);
233 int init_se_global(void)
235 struct se_global *global;
237 global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
238 if (!(global)) {
239 printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
240 return -1;
243 INIT_LIST_HEAD(&global->g_lu_gps_list);
244 INIT_LIST_HEAD(&global->g_se_tpg_list);
245 INIT_LIST_HEAD(&global->g_hba_list);
246 INIT_LIST_HEAD(&global->g_se_dev_list);
247 spin_lock_init(&global->g_device_lock);
248 spin_lock_init(&global->hba_lock);
249 spin_lock_init(&global->se_tpg_lock);
250 spin_lock_init(&global->lu_gps_lock);
251 spin_lock_init(&global->plugin_class_lock);
253 se_cmd_cache = kmem_cache_create("se_cmd_cache",
254 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
255 if (!(se_cmd_cache)) {
256 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
257 goto out;
259 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
260 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
261 0, NULL);
262 if (!(se_tmr_req_cache)) {
263 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
264 " failed\n");
265 goto out;
267 se_sess_cache = kmem_cache_create("se_sess_cache",
268 sizeof(struct se_session), __alignof__(struct se_session),
269 0, NULL);
270 if (!(se_sess_cache)) {
271 printk(KERN_ERR "kmem_cache_create() for struct se_session"
272 " failed\n");
273 goto out;
275 se_ua_cache = kmem_cache_create("se_ua_cache",
276 sizeof(struct se_ua), __alignof__(struct se_ua),
277 0, NULL);
278 if (!(se_ua_cache)) {
279 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
280 goto out;
282 se_mem_cache = kmem_cache_create("se_mem_cache",
283 sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
284 if (!(se_mem_cache)) {
285 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
286 goto out;
288 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
289 sizeof(struct t10_pr_registration),
290 __alignof__(struct t10_pr_registration), 0, NULL);
291 if (!(t10_pr_reg_cache)) {
292 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
293 " failed\n");
294 goto out;
296 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
297 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
298 0, NULL);
299 if (!(t10_alua_lu_gp_cache)) {
300 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
301 " failed\n");
302 goto out;
304 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
305 sizeof(struct t10_alua_lu_gp_member),
306 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
307 if (!(t10_alua_lu_gp_mem_cache)) {
308 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
309 "cache failed\n");
310 goto out;
312 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
313 sizeof(struct t10_alua_tg_pt_gp),
314 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
315 if (!(t10_alua_tg_pt_gp_cache)) {
316 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
317 "cache failed\n");
318 goto out;
320 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
321 "t10_alua_tg_pt_gp_mem_cache",
322 sizeof(struct t10_alua_tg_pt_gp_member),
323 __alignof__(struct t10_alua_tg_pt_gp_member),
324 0, NULL);
325 if (!(t10_alua_tg_pt_gp_mem_cache)) {
326 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
327 "mem_t failed\n");
328 goto out;
331 se_global = global;
333 return 0;
334 out:
335 if (se_cmd_cache)
336 kmem_cache_destroy(se_cmd_cache);
337 if (se_tmr_req_cache)
338 kmem_cache_destroy(se_tmr_req_cache);
339 if (se_sess_cache)
340 kmem_cache_destroy(se_sess_cache);
341 if (se_ua_cache)
342 kmem_cache_destroy(se_ua_cache);
343 if (se_mem_cache)
344 kmem_cache_destroy(se_mem_cache);
345 if (t10_pr_reg_cache)
346 kmem_cache_destroy(t10_pr_reg_cache);
347 if (t10_alua_lu_gp_cache)
348 kmem_cache_destroy(t10_alua_lu_gp_cache);
349 if (t10_alua_lu_gp_mem_cache)
350 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
351 if (t10_alua_tg_pt_gp_cache)
352 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
353 if (t10_alua_tg_pt_gp_mem_cache)
354 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
355 kfree(global);
356 return -1;
359 void release_se_global(void)
361 struct se_global *global;
363 global = se_global;
364 if (!(global))
365 return;
367 kmem_cache_destroy(se_cmd_cache);
368 kmem_cache_destroy(se_tmr_req_cache);
369 kmem_cache_destroy(se_sess_cache);
370 kmem_cache_destroy(se_ua_cache);
371 kmem_cache_destroy(se_mem_cache);
372 kmem_cache_destroy(t10_pr_reg_cache);
373 kmem_cache_destroy(t10_alua_lu_gp_cache);
374 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
375 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
376 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
377 kfree(global);
379 se_global = NULL;
382 /* SCSI statistics table index */
383 static struct scsi_index_table scsi_index_table;
386 * Initialize the index table for allocating unique row indexes to various mib
387 * tables.
389 void init_scsi_index_table(void)
391 memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
392 spin_lock_init(&scsi_index_table.lock);
396 * Allocate a new row index for the entry type specified
398 u32 scsi_get_new_index(scsi_index_t type)
400 u32 new_index;
402 if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
403 printk(KERN_ERR "Invalid index type %d\n", type);
404 return -EINVAL;
407 spin_lock(&scsi_index_table.lock);
408 new_index = ++scsi_index_table.scsi_mib_index[type];
409 if (new_index == 0)
410 new_index = ++scsi_index_table.scsi_mib_index[type];
411 spin_unlock(&scsi_index_table.lock);
413 return new_index;
416 void transport_init_queue_obj(struct se_queue_obj *qobj)
418 atomic_set(&qobj->queue_cnt, 0);
419 INIT_LIST_HEAD(&qobj->qobj_list);
420 init_waitqueue_head(&qobj->thread_wq);
421 spin_lock_init(&qobj->cmd_queue_lock);
423 EXPORT_SYMBOL(transport_init_queue_obj);
425 static int transport_subsystem_reqmods(void)
427 int ret;
429 ret = request_module("target_core_iblock");
430 if (ret != 0)
431 printk(KERN_ERR "Unable to load target_core_iblock\n");
433 ret = request_module("target_core_file");
434 if (ret != 0)
435 printk(KERN_ERR "Unable to load target_core_file\n");
437 ret = request_module("target_core_pscsi");
438 if (ret != 0)
439 printk(KERN_ERR "Unable to load target_core_pscsi\n");
441 ret = request_module("target_core_stgt");
442 if (ret != 0)
443 printk(KERN_ERR "Unable to load target_core_stgt\n");
445 return 0;
448 int transport_subsystem_check_init(void)
450 if (se_global->g_sub_api_initialized)
451 return 0;
453 * Request the loading of known TCM subsystem plugins..
455 if (transport_subsystem_reqmods() < 0)
456 return -1;
458 se_global->g_sub_api_initialized = 1;
459 return 0;
462 struct se_session *transport_init_session(void)
464 struct se_session *se_sess;
466 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
467 if (!(se_sess)) {
468 printk(KERN_ERR "Unable to allocate struct se_session from"
469 " se_sess_cache\n");
470 return ERR_PTR(-ENOMEM);
472 INIT_LIST_HEAD(&se_sess->sess_list);
473 INIT_LIST_HEAD(&se_sess->sess_acl_list);
475 return se_sess;
477 EXPORT_SYMBOL(transport_init_session);
480 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
482 void __transport_register_session(
483 struct se_portal_group *se_tpg,
484 struct se_node_acl *se_nacl,
485 struct se_session *se_sess,
486 void *fabric_sess_ptr)
488 unsigned char buf[PR_REG_ISID_LEN];
490 se_sess->se_tpg = se_tpg;
491 se_sess->fabric_sess_ptr = fabric_sess_ptr;
493 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
495 * Only set for struct se_session's that will actually be moving I/O.
496 * eg: *NOT* discovery sessions.
498 if (se_nacl) {
500 * If the fabric module supports an ISID based TransportID,
501 * save this value in binary from the fabric I_T Nexus now.
503 if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
504 memset(&buf[0], 0, PR_REG_ISID_LEN);
505 TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
506 &buf[0], PR_REG_ISID_LEN);
507 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
509 spin_lock_irq(&se_nacl->nacl_sess_lock);
511 * The se_nacl->nacl_sess pointer will be set to the
512 * last active I_T Nexus for each struct se_node_acl.
514 se_nacl->nacl_sess = se_sess;
516 list_add_tail(&se_sess->sess_acl_list,
517 &se_nacl->acl_sess_list);
518 spin_unlock_irq(&se_nacl->nacl_sess_lock);
520 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
522 printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
523 TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
525 EXPORT_SYMBOL(__transport_register_session);
527 void transport_register_session(
528 struct se_portal_group *se_tpg,
529 struct se_node_acl *se_nacl,
530 struct se_session *se_sess,
531 void *fabric_sess_ptr)
533 spin_lock_bh(&se_tpg->session_lock);
534 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
535 spin_unlock_bh(&se_tpg->session_lock);
537 EXPORT_SYMBOL(transport_register_session);
539 void transport_deregister_session_configfs(struct se_session *se_sess)
541 struct se_node_acl *se_nacl;
544 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
546 se_nacl = se_sess->se_node_acl;
547 if ((se_nacl)) {
548 spin_lock_irq(&se_nacl->nacl_sess_lock);
549 list_del(&se_sess->sess_acl_list);
551 * If the session list is empty, then clear the pointer.
552 * Otherwise, set the struct se_session pointer from the tail
553 * element of the per struct se_node_acl active session list.
555 if (list_empty(&se_nacl->acl_sess_list))
556 se_nacl->nacl_sess = NULL;
557 else {
558 se_nacl->nacl_sess = container_of(
559 se_nacl->acl_sess_list.prev,
560 struct se_session, sess_acl_list);
562 spin_unlock_irq(&se_nacl->nacl_sess_lock);
565 EXPORT_SYMBOL(transport_deregister_session_configfs);
567 void transport_free_session(struct se_session *se_sess)
569 kmem_cache_free(se_sess_cache, se_sess);
571 EXPORT_SYMBOL(transport_free_session);
573 void transport_deregister_session(struct se_session *se_sess)
575 struct se_portal_group *se_tpg = se_sess->se_tpg;
576 struct se_node_acl *se_nacl;
578 if (!(se_tpg)) {
579 transport_free_session(se_sess);
580 return;
583 spin_lock_bh(&se_tpg->session_lock);
584 list_del(&se_sess->sess_list);
585 se_sess->se_tpg = NULL;
586 se_sess->fabric_sess_ptr = NULL;
587 spin_unlock_bh(&se_tpg->session_lock);
590 * Determine if we need to do extra work for this initiator node's
591 * struct se_node_acl if it had been previously dynamically generated.
593 se_nacl = se_sess->se_node_acl;
594 if ((se_nacl)) {
595 spin_lock_bh(&se_tpg->acl_node_lock);
596 if (se_nacl->dynamic_node_acl) {
597 if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
598 se_tpg))) {
599 list_del(&se_nacl->acl_list);
600 se_tpg->num_node_acls--;
601 spin_unlock_bh(&se_tpg->acl_node_lock);
603 core_tpg_wait_for_nacl_pr_ref(se_nacl);
604 core_free_device_list_for_node(se_nacl, se_tpg);
605 TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
606 se_nacl);
607 spin_lock_bh(&se_tpg->acl_node_lock);
610 spin_unlock_bh(&se_tpg->acl_node_lock);
613 transport_free_session(se_sess);
615 printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
616 TPG_TFO(se_tpg)->get_fabric_name());
618 EXPORT_SYMBOL(transport_deregister_session);
621 * Called with T_TASK(cmd)->t_state_lock held.
623 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
625 struct se_device *dev;
626 struct se_task *task;
627 unsigned long flags;
629 if (!T_TASK(cmd))
630 return;
632 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
633 dev = task->se_dev;
634 if (!(dev))
635 continue;
637 if (atomic_read(&task->task_active))
638 continue;
640 if (!(atomic_read(&task->task_state_active)))
641 continue;
643 spin_lock_irqsave(&dev->execute_task_lock, flags);
644 list_del(&task->t_state_list);
645 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
646 CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
647 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
649 atomic_set(&task->task_state_active, 0);
650 atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
654 /* transport_cmd_check_stop():
656 * 'transport_off = 1' determines if t_transport_active should be cleared.
657 * 'transport_off = 2' determines if task_dev_state should be removed.
659 * A non-zero u8 t_state sets cmd->t_state.
660 * Returns 1 when command is stopped, else 0.
662 static int transport_cmd_check_stop(
663 struct se_cmd *cmd,
664 int transport_off,
665 u8 t_state)
667 unsigned long flags;
669 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
671 * Determine if IOCTL context caller in requesting the stopping of this
672 * command for LUN shutdown purposes.
674 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
675 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
676 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
677 CMD_TFO(cmd)->get_task_tag(cmd));
679 cmd->deferred_t_state = cmd->t_state;
680 cmd->t_state = TRANSPORT_DEFERRED_CMD;
681 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
682 if (transport_off == 2)
683 transport_all_task_dev_remove_state(cmd);
684 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
686 complete(&T_TASK(cmd)->transport_lun_stop_comp);
687 return 1;
690 * Determine if frontend context caller is requesting the stopping of
691 * this command for frontend excpections.
693 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
694 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
695 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
696 CMD_TFO(cmd)->get_task_tag(cmd));
698 cmd->deferred_t_state = cmd->t_state;
699 cmd->t_state = TRANSPORT_DEFERRED_CMD;
700 if (transport_off == 2)
701 transport_all_task_dev_remove_state(cmd);
704 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
705 * to FE.
707 if (transport_off == 2)
708 cmd->se_lun = NULL;
709 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
711 complete(&T_TASK(cmd)->t_transport_stop_comp);
712 return 1;
714 if (transport_off) {
715 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
716 if (transport_off == 2) {
717 transport_all_task_dev_remove_state(cmd);
719 * Clear struct se_cmd->se_lun before the transport_off == 2
720 * handoff to fabric module.
722 cmd->se_lun = NULL;
724 * Some fabric modules like tcm_loop can release
725 * their internally allocated I/O refrence now and
726 * struct se_cmd now.
728 if (CMD_TFO(cmd)->check_stop_free != NULL) {
729 spin_unlock_irqrestore(
730 &T_TASK(cmd)->t_state_lock, flags);
732 CMD_TFO(cmd)->check_stop_free(cmd);
733 return 1;
736 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
738 return 0;
739 } else if (t_state)
740 cmd->t_state = t_state;
741 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
743 return 0;
746 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
748 return transport_cmd_check_stop(cmd, 2, 0);
751 static void transport_lun_remove_cmd(struct se_cmd *cmd)
753 struct se_lun *lun = SE_LUN(cmd);
754 unsigned long flags;
756 if (!lun)
757 return;
759 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
760 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
761 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
762 goto check_lun;
764 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
765 transport_all_task_dev_remove_state(cmd);
766 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
769 check_lun:
770 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
771 if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
772 list_del(&cmd->se_lun_list);
773 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
774 #if 0
775 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
776 CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
777 #endif
779 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
782 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
784 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
785 transport_lun_remove_cmd(cmd);
787 if (transport_cmd_check_stop_to_fabric(cmd))
788 return;
789 if (remove)
790 transport_generic_remove(cmd, 0, 0);
793 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
795 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
797 if (transport_cmd_check_stop_to_fabric(cmd))
798 return;
800 transport_generic_remove(cmd, 0, 0);
803 static int transport_add_cmd_to_queue(
804 struct se_cmd *cmd,
805 int t_state)
807 struct se_device *dev = cmd->se_dev;
808 struct se_queue_obj *qobj = dev->dev_queue_obj;
809 struct se_queue_req *qr;
810 unsigned long flags;
812 qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
813 if (!(qr)) {
814 printk(KERN_ERR "Unable to allocate memory for"
815 " struct se_queue_req\n");
816 return -1;
818 INIT_LIST_HEAD(&qr->qr_list);
820 qr->cmd = (void *)cmd;
821 qr->state = t_state;
823 if (t_state) {
824 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
825 cmd->t_state = t_state;
826 atomic_set(&T_TASK(cmd)->t_transport_active, 1);
827 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
830 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
831 list_add_tail(&qr->qr_list, &qobj->qobj_list);
832 atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
833 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
835 atomic_inc(&qobj->queue_cnt);
836 wake_up_interruptible(&qobj->thread_wq);
837 return 0;
841 * Called with struct se_queue_obj->cmd_queue_lock held.
843 static struct se_queue_req *
844 __transport_get_qr_from_queue(struct se_queue_obj *qobj)
846 struct se_cmd *cmd;
847 struct se_queue_req *qr = NULL;
849 if (list_empty(&qobj->qobj_list))
850 return NULL;
852 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
853 break;
855 if (qr->cmd) {
856 cmd = (struct se_cmd *)qr->cmd;
857 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
859 list_del(&qr->qr_list);
860 atomic_dec(&qobj->queue_cnt);
862 return qr;
865 static struct se_queue_req *
866 transport_get_qr_from_queue(struct se_queue_obj *qobj)
868 struct se_cmd *cmd;
869 struct se_queue_req *qr;
870 unsigned long flags;
872 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
873 if (list_empty(&qobj->qobj_list)) {
874 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
875 return NULL;
878 list_for_each_entry(qr, &qobj->qobj_list, qr_list)
879 break;
881 if (qr->cmd) {
882 cmd = (struct se_cmd *)qr->cmd;
883 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
885 list_del(&qr->qr_list);
886 atomic_dec(&qobj->queue_cnt);
887 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
889 return qr;
892 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
893 struct se_queue_obj *qobj)
895 struct se_cmd *q_cmd;
896 struct se_queue_req *qr = NULL, *qr_p = NULL;
897 unsigned long flags;
899 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
900 if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
901 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
902 return;
905 list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
906 q_cmd = (struct se_cmd *)qr->cmd;
907 if (q_cmd != cmd)
908 continue;
910 atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
911 atomic_dec(&qobj->queue_cnt);
912 list_del(&qr->qr_list);
913 kfree(qr);
915 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
917 if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
918 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
919 CMD_TFO(cmd)->get_task_tag(cmd),
920 atomic_read(&T_TASK(cmd)->t_transport_queue_active));
925 * Completion function used by TCM subsystem plugins (such as FILEIO)
926 * for queueing up response from struct se_subsystem_api->do_task()
928 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
930 struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
931 struct se_task, t_list);
933 if (good) {
934 cmd->scsi_status = SAM_STAT_GOOD;
935 task->task_scsi_status = GOOD;
936 } else {
937 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
938 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
939 TASK_CMD(task)->transport_error_status =
940 PYX_TRANSPORT_ILLEGAL_REQUEST;
943 transport_complete_task(task, good);
945 EXPORT_SYMBOL(transport_complete_sync_cache);
947 /* transport_complete_task():
949 * Called from interrupt and non interrupt context depending
950 * on the transport plugin.
952 void transport_complete_task(struct se_task *task, int success)
954 struct se_cmd *cmd = TASK_CMD(task);
955 struct se_device *dev = task->se_dev;
956 int t_state;
957 unsigned long flags;
958 #if 0
959 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
960 T_TASK(cmd)->t_task_cdb[0], dev);
961 #endif
962 if (dev) {
963 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
964 atomic_inc(&dev->depth_left);
965 atomic_inc(&SE_HBA(dev)->left_queue_depth);
966 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
969 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
970 atomic_set(&task->task_active, 0);
973 * See if any sense data exists, if so set the TASK_SENSE flag.
974 * Also check for any other post completion work that needs to be
975 * done by the plugins.
977 if (dev && dev->transport->transport_complete) {
978 if (dev->transport->transport_complete(task) != 0) {
979 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
980 task->task_sense = 1;
981 success = 1;
986 * See if we are waiting for outstanding struct se_task
987 * to complete for an exception condition
989 if (atomic_read(&task->task_stop)) {
991 * Decrement T_TASK(cmd)->t_se_count if this task had
992 * previously thrown its timeout exception handler.
994 if (atomic_read(&task->task_timeout)) {
995 atomic_dec(&T_TASK(cmd)->t_se_count);
996 atomic_set(&task->task_timeout, 0);
998 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1000 complete(&task->task_stop_comp);
1001 return;
1004 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1005 * left counter to determine when the struct se_cmd is ready to be queued to
1006 * the processing thread.
1008 if (atomic_read(&task->task_timeout)) {
1009 if (!(atomic_dec_and_test(
1010 &T_TASK(cmd)->t_task_cdbs_timeout_left))) {
1011 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
1012 flags);
1013 return;
1015 t_state = TRANSPORT_COMPLETE_TIMEOUT;
1016 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1018 transport_add_cmd_to_queue(cmd, t_state);
1019 return;
1021 atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
1024 * Decrement the outstanding t_task_cdbs_left count. The last
1025 * struct se_task from struct se_cmd will complete itself into the
1026 * device queue depending upon int success.
1028 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
1029 if (!success)
1030 T_TASK(cmd)->t_tasks_failed = 1;
1032 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1033 return;
1036 if (!success || T_TASK(cmd)->t_tasks_failed) {
1037 t_state = TRANSPORT_COMPLETE_FAILURE;
1038 if (!task->task_error_status) {
1039 task->task_error_status =
1040 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1041 cmd->transport_error_status =
1042 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1044 } else {
1045 atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
1046 t_state = TRANSPORT_COMPLETE_OK;
1048 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1050 transport_add_cmd_to_queue(cmd, t_state);
1052 EXPORT_SYMBOL(transport_complete_task);
1055 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1056 * struct se_task list are ready to be added to the active execution list
1057 * struct se_device
1059 * Called with se_dev_t->execute_task_lock called.
1061 static inline int transport_add_task_check_sam_attr(
1062 struct se_task *task,
1063 struct se_task *task_prev,
1064 struct se_device *dev)
1067 * No SAM Task attribute emulation enabled, add to tail of
1068 * execution queue
1070 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
1071 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1072 return 0;
1075 * HEAD_OF_QUEUE attribute for received CDB, which means
1076 * the first task that is associated with a struct se_cmd goes to
1077 * head of the struct se_device->execute_task_list, and task_prev
1078 * after that for each subsequent task
1080 if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) {
1081 list_add(&task->t_execute_list,
1082 (task_prev != NULL) ?
1083 &task_prev->t_execute_list :
1084 &dev->execute_task_list);
1086 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1087 " in execution queue\n",
1088 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
1089 return 1;
1092 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1093 * transitioned from Dermant -> Active state, and are added to the end
1094 * of the struct se_device->execute_task_list
1096 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1097 return 0;
1100 /* __transport_add_task_to_execute_queue():
1102 * Called with se_dev_t->execute_task_lock called.
1104 static void __transport_add_task_to_execute_queue(
1105 struct se_task *task,
1106 struct se_task *task_prev,
1107 struct se_device *dev)
1109 int head_of_queue;
1111 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1112 atomic_inc(&dev->execute_tasks);
1114 if (atomic_read(&task->task_state_active))
1115 return;
1117 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1118 * state list as well. Running with SAM Task Attribute emulation
1119 * will always return head_of_queue == 0 here
1121 if (head_of_queue)
1122 list_add(&task->t_state_list, (task_prev) ?
1123 &task_prev->t_state_list :
1124 &dev->state_task_list);
1125 else
1126 list_add_tail(&task->t_state_list, &dev->state_task_list);
1128 atomic_set(&task->task_state_active, 1);
1130 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1131 CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
1132 task, dev);
1135 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1137 struct se_device *dev;
1138 struct se_task *task;
1139 unsigned long flags;
1141 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1142 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1143 dev = task->se_dev;
1145 if (atomic_read(&task->task_state_active))
1146 continue;
1148 spin_lock(&dev->execute_task_lock);
1149 list_add_tail(&task->t_state_list, &dev->state_task_list);
1150 atomic_set(&task->task_state_active, 1);
1152 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1153 CMD_TFO(task->task_se_cmd)->get_task_tag(
1154 task->task_se_cmd), task, dev);
1156 spin_unlock(&dev->execute_task_lock);
1158 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1161 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1163 struct se_device *dev = SE_DEV(cmd);
1164 struct se_task *task, *task_prev = NULL;
1165 unsigned long flags;
1167 spin_lock_irqsave(&dev->execute_task_lock, flags);
1168 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1169 if (atomic_read(&task->task_execute_queue))
1170 continue;
1172 * __transport_add_task_to_execute_queue() handles the
1173 * SAM Task Attribute emulation if enabled
1175 __transport_add_task_to_execute_queue(task, task_prev, dev);
1176 atomic_set(&task->task_execute_queue, 1);
1177 task_prev = task;
1179 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1181 return;
1184 /* transport_get_task_from_execute_queue():
1186 * Called with dev->execute_task_lock held.
1188 static struct se_task *
1189 transport_get_task_from_execute_queue(struct se_device *dev)
1191 struct se_task *task;
1193 if (list_empty(&dev->execute_task_list))
1194 return NULL;
1196 list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
1197 break;
1199 list_del(&task->t_execute_list);
1200 atomic_dec(&dev->execute_tasks);
1202 return task;
1205 /* transport_remove_task_from_execute_queue():
1209 void transport_remove_task_from_execute_queue(
1210 struct se_task *task,
1211 struct se_device *dev)
1213 unsigned long flags;
1215 spin_lock_irqsave(&dev->execute_task_lock, flags);
1216 list_del(&task->t_execute_list);
1217 atomic_dec(&dev->execute_tasks);
1218 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1221 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1223 switch (cmd->data_direction) {
1224 case DMA_NONE:
1225 return "NONE";
1226 case DMA_FROM_DEVICE:
1227 return "READ";
1228 case DMA_TO_DEVICE:
1229 return "WRITE";
1230 case DMA_BIDIRECTIONAL:
1231 return "BIDI";
1232 default:
1233 break;
1236 return "UNKNOWN";
1239 void transport_dump_dev_state(
1240 struct se_device *dev,
1241 char *b,
1242 int *bl)
1244 *bl += sprintf(b + *bl, "Status: ");
1245 switch (dev->dev_status) {
1246 case TRANSPORT_DEVICE_ACTIVATED:
1247 *bl += sprintf(b + *bl, "ACTIVATED");
1248 break;
1249 case TRANSPORT_DEVICE_DEACTIVATED:
1250 *bl += sprintf(b + *bl, "DEACTIVATED");
1251 break;
1252 case TRANSPORT_DEVICE_SHUTDOWN:
1253 *bl += sprintf(b + *bl, "SHUTDOWN");
1254 break;
1255 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1256 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1257 *bl += sprintf(b + *bl, "OFFLINE");
1258 break;
1259 default:
1260 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1261 break;
1264 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1265 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1266 dev->queue_depth);
1267 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1268 DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
1269 *bl += sprintf(b + *bl, " ");
1272 /* transport_release_all_cmds():
1276 static void transport_release_all_cmds(struct se_device *dev)
1278 struct se_cmd *cmd = NULL;
1279 struct se_queue_req *qr = NULL, *qr_p = NULL;
1280 int bug_out = 0, t_state;
1281 unsigned long flags;
1283 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1284 list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
1285 qr_list) {
1287 cmd = (struct se_cmd *)qr->cmd;
1288 t_state = qr->state;
1289 list_del(&qr->qr_list);
1290 kfree(qr);
1291 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
1292 flags);
1294 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1295 " t_state: %u directly\n",
1296 CMD_TFO(cmd)->get_task_tag(cmd),
1297 CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
1299 transport_release_fe_cmd(cmd);
1300 bug_out = 1;
1302 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1304 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
1305 #if 0
1306 if (bug_out)
1307 BUG();
1308 #endif
1311 void transport_dump_vpd_proto_id(
1312 struct t10_vpd *vpd,
1313 unsigned char *p_buf,
1314 int p_buf_len)
1316 unsigned char buf[VPD_TMP_BUF_SIZE];
1317 int len;
1319 memset(buf, 0, VPD_TMP_BUF_SIZE);
1320 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1322 switch (vpd->protocol_identifier) {
1323 case 0x00:
1324 sprintf(buf+len, "Fibre Channel\n");
1325 break;
1326 case 0x10:
1327 sprintf(buf+len, "Parallel SCSI\n");
1328 break;
1329 case 0x20:
1330 sprintf(buf+len, "SSA\n");
1331 break;
1332 case 0x30:
1333 sprintf(buf+len, "IEEE 1394\n");
1334 break;
1335 case 0x40:
1336 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1337 " Protocol\n");
1338 break;
1339 case 0x50:
1340 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1341 break;
1342 case 0x60:
1343 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1344 break;
1345 case 0x70:
1346 sprintf(buf+len, "Automation/Drive Interface Transport"
1347 " Protocol\n");
1348 break;
1349 case 0x80:
1350 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1351 break;
1352 default:
1353 sprintf(buf+len, "Unknown 0x%02x\n",
1354 vpd->protocol_identifier);
1355 break;
1358 if (p_buf)
1359 strncpy(p_buf, buf, p_buf_len);
1360 else
1361 printk(KERN_INFO "%s", buf);
1364 void
1365 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1368 * Check if the Protocol Identifier Valid (PIV) bit is set..
1370 * from spc3r23.pdf section 7.5.1
1372 if (page_83[1] & 0x80) {
1373 vpd->protocol_identifier = (page_83[0] & 0xf0);
1374 vpd->protocol_identifier_set = 1;
1375 transport_dump_vpd_proto_id(vpd, NULL, 0);
1378 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1380 int transport_dump_vpd_assoc(
1381 struct t10_vpd *vpd,
1382 unsigned char *p_buf,
1383 int p_buf_len)
1385 unsigned char buf[VPD_TMP_BUF_SIZE];
1386 int ret = 0, len;
1388 memset(buf, 0, VPD_TMP_BUF_SIZE);
1389 len = sprintf(buf, "T10 VPD Identifier Association: ");
1391 switch (vpd->association) {
1392 case 0x00:
1393 sprintf(buf+len, "addressed logical unit\n");
1394 break;
1395 case 0x10:
1396 sprintf(buf+len, "target port\n");
1397 break;
1398 case 0x20:
1399 sprintf(buf+len, "SCSI target device\n");
1400 break;
1401 default:
1402 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1403 ret = -1;
1404 break;
1407 if (p_buf)
1408 strncpy(p_buf, buf, p_buf_len);
1409 else
1410 printk("%s", buf);
1412 return ret;
1415 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1418 * The VPD identification association..
1420 * from spc3r23.pdf Section 7.6.3.1 Table 297
1422 vpd->association = (page_83[1] & 0x30);
1423 return transport_dump_vpd_assoc(vpd, NULL, 0);
1425 EXPORT_SYMBOL(transport_set_vpd_assoc);
1427 int transport_dump_vpd_ident_type(
1428 struct t10_vpd *vpd,
1429 unsigned char *p_buf,
1430 int p_buf_len)
1432 unsigned char buf[VPD_TMP_BUF_SIZE];
1433 int ret = 0, len;
1435 memset(buf, 0, VPD_TMP_BUF_SIZE);
1436 len = sprintf(buf, "T10 VPD Identifier Type: ");
1438 switch (vpd->device_identifier_type) {
1439 case 0x00:
1440 sprintf(buf+len, "Vendor specific\n");
1441 break;
1442 case 0x01:
1443 sprintf(buf+len, "T10 Vendor ID based\n");
1444 break;
1445 case 0x02:
1446 sprintf(buf+len, "EUI-64 based\n");
1447 break;
1448 case 0x03:
1449 sprintf(buf+len, "NAA\n");
1450 break;
1451 case 0x04:
1452 sprintf(buf+len, "Relative target port identifier\n");
1453 break;
1454 case 0x08:
1455 sprintf(buf+len, "SCSI name string\n");
1456 break;
1457 default:
1458 sprintf(buf+len, "Unsupported: 0x%02x\n",
1459 vpd->device_identifier_type);
1460 ret = -1;
1461 break;
1464 if (p_buf)
1465 strncpy(p_buf, buf, p_buf_len);
1466 else
1467 printk("%s", buf);
1469 return ret;
1472 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1475 * The VPD identifier type..
1477 * from spc3r23.pdf Section 7.6.3.1 Table 298
1479 vpd->device_identifier_type = (page_83[1] & 0x0f);
1480 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1482 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1484 int transport_dump_vpd_ident(
1485 struct t10_vpd *vpd,
1486 unsigned char *p_buf,
1487 int p_buf_len)
1489 unsigned char buf[VPD_TMP_BUF_SIZE];
1490 int ret = 0;
1492 memset(buf, 0, VPD_TMP_BUF_SIZE);
1494 switch (vpd->device_identifier_code_set) {
1495 case 0x01: /* Binary */
1496 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1497 &vpd->device_identifier[0]);
1498 break;
1499 case 0x02: /* ASCII */
1500 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1501 &vpd->device_identifier[0]);
1502 break;
1503 case 0x03: /* UTF-8 */
1504 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1505 &vpd->device_identifier[0]);
1506 break;
1507 default:
1508 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1509 " 0x%02x", vpd->device_identifier_code_set);
1510 ret = -1;
1511 break;
1514 if (p_buf)
1515 strncpy(p_buf, buf, p_buf_len);
1516 else
1517 printk("%s", buf);
1519 return ret;
1523 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1525 static const char hex_str[] = "0123456789abcdef";
1526 int j = 0, i = 4; /* offset to start of the identifer */
1529 * The VPD Code Set (encoding)
1531 * from spc3r23.pdf Section 7.6.3.1 Table 296
1533 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1534 switch (vpd->device_identifier_code_set) {
1535 case 0x01: /* Binary */
1536 vpd->device_identifier[j++] =
1537 hex_str[vpd->device_identifier_type];
1538 while (i < (4 + page_83[3])) {
1539 vpd->device_identifier[j++] =
1540 hex_str[(page_83[i] & 0xf0) >> 4];
1541 vpd->device_identifier[j++] =
1542 hex_str[page_83[i] & 0x0f];
1543 i++;
1545 break;
1546 case 0x02: /* ASCII */
1547 case 0x03: /* UTF-8 */
1548 while (i < (4 + page_83[3]))
1549 vpd->device_identifier[j++] = page_83[i++];
1550 break;
1551 default:
1552 break;
1555 return transport_dump_vpd_ident(vpd, NULL, 0);
1557 EXPORT_SYMBOL(transport_set_vpd_ident);
1559 static void core_setup_task_attr_emulation(struct se_device *dev)
1562 * If this device is from Target_Core_Mod/pSCSI, disable the
1563 * SAM Task Attribute emulation.
1565 * This is currently not available in upsream Linux/SCSI Target
1566 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1568 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1569 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1570 return;
1573 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1574 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1575 " device\n", TRANSPORT(dev)->name,
1576 TRANSPORT(dev)->get_device_rev(dev));
1579 static void scsi_dump_inquiry(struct se_device *dev)
1581 struct t10_wwn *wwn = DEV_T10_WWN(dev);
1582 int i, device_type;
1584 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1586 printk(" Vendor: ");
1587 for (i = 0; i < 8; i++)
1588 if (wwn->vendor[i] >= 0x20)
1589 printk("%c", wwn->vendor[i]);
1590 else
1591 printk(" ");
1593 printk(" Model: ");
1594 for (i = 0; i < 16; i++)
1595 if (wwn->model[i] >= 0x20)
1596 printk("%c", wwn->model[i]);
1597 else
1598 printk(" ");
1600 printk(" Revision: ");
1601 for (i = 0; i < 4; i++)
1602 if (wwn->revision[i] >= 0x20)
1603 printk("%c", wwn->revision[i]);
1604 else
1605 printk(" ");
1607 printk("\n");
1609 device_type = TRANSPORT(dev)->get_device_type(dev);
1610 printk(" Type: %s ", scsi_device_type(device_type));
1611 printk(" ANSI SCSI revision: %02x\n",
1612 TRANSPORT(dev)->get_device_rev(dev));
1615 struct se_device *transport_add_device_to_core_hba(
1616 struct se_hba *hba,
1617 struct se_subsystem_api *transport,
1618 struct se_subsystem_dev *se_dev,
1619 u32 device_flags,
1620 void *transport_dev,
1621 struct se_dev_limits *dev_limits,
1622 const char *inquiry_prod,
1623 const char *inquiry_rev)
1625 int ret = 0, force_pt;
1626 struct se_device *dev;
1628 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1629 if (!(dev)) {
1630 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1631 return NULL;
1633 dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
1634 if (!(dev->dev_queue_obj)) {
1635 printk(KERN_ERR "Unable to allocate memory for"
1636 " dev->dev_queue_obj\n");
1637 kfree(dev);
1638 return NULL;
1640 transport_init_queue_obj(dev->dev_queue_obj);
1642 dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
1643 GFP_KERNEL);
1644 if (!(dev->dev_status_queue_obj)) {
1645 printk(KERN_ERR "Unable to allocate memory for"
1646 " dev->dev_status_queue_obj\n");
1647 kfree(dev->dev_queue_obj);
1648 kfree(dev);
1649 return NULL;
1651 transport_init_queue_obj(dev->dev_status_queue_obj);
1653 dev->dev_flags = device_flags;
1654 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1655 dev->dev_ptr = (void *) transport_dev;
1656 dev->se_hba = hba;
1657 dev->se_sub_dev = se_dev;
1658 dev->transport = transport;
1659 atomic_set(&dev->active_cmds, 0);
1660 INIT_LIST_HEAD(&dev->dev_list);
1661 INIT_LIST_HEAD(&dev->dev_sep_list);
1662 INIT_LIST_HEAD(&dev->dev_tmr_list);
1663 INIT_LIST_HEAD(&dev->execute_task_list);
1664 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1665 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1666 INIT_LIST_HEAD(&dev->state_task_list);
1667 spin_lock_init(&dev->execute_task_lock);
1668 spin_lock_init(&dev->delayed_cmd_lock);
1669 spin_lock_init(&dev->ordered_cmd_lock);
1670 spin_lock_init(&dev->state_task_lock);
1671 spin_lock_init(&dev->dev_alua_lock);
1672 spin_lock_init(&dev->dev_reservation_lock);
1673 spin_lock_init(&dev->dev_status_lock);
1674 spin_lock_init(&dev->dev_status_thr_lock);
1675 spin_lock_init(&dev->se_port_lock);
1676 spin_lock_init(&dev->se_tmr_lock);
1678 dev->queue_depth = dev_limits->queue_depth;
1679 atomic_set(&dev->depth_left, dev->queue_depth);
1680 atomic_set(&dev->dev_ordered_id, 0);
1682 se_dev_set_default_attribs(dev, dev_limits);
1684 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1685 dev->creation_time = get_jiffies_64();
1686 spin_lock_init(&dev->stats_lock);
1688 spin_lock(&hba->device_lock);
1689 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1690 hba->dev_count++;
1691 spin_unlock(&hba->device_lock);
1693 * Setup the SAM Task Attribute emulation for struct se_device
1695 core_setup_task_attr_emulation(dev);
1697 * Force PR and ALUA passthrough emulation with internal object use.
1699 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1701 * Setup the Reservations infrastructure for struct se_device
1703 core_setup_reservations(dev, force_pt);
1705 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1707 if (core_setup_alua(dev, force_pt) < 0)
1708 goto out;
1711 * Startup the struct se_device processing thread
1713 dev->process_thread = kthread_run(transport_processing_thread, dev,
1714 "LIO_%s", TRANSPORT(dev)->name);
1715 if (IS_ERR(dev->process_thread)) {
1716 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1717 TRANSPORT(dev)->name);
1718 goto out;
1722 * Preload the initial INQUIRY const values if we are doing
1723 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1724 * passthrough because this is being provided by the backend LLD.
1725 * This is required so that transport_get_inquiry() copies these
1726 * originals once back into DEV_T10_WWN(dev) for the virtual device
1727 * setup.
1729 if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1730 if (!(inquiry_prod) || !(inquiry_prod)) {
1731 printk(KERN_ERR "All non TCM/pSCSI plugins require"
1732 " INQUIRY consts\n");
1733 goto out;
1736 strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
1737 strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
1738 strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
1740 scsi_dump_inquiry(dev);
1742 out:
1743 if (!ret)
1744 return dev;
1745 kthread_stop(dev->process_thread);
1747 spin_lock(&hba->device_lock);
1748 list_del(&dev->dev_list);
1749 hba->dev_count--;
1750 spin_unlock(&hba->device_lock);
1752 se_release_vpd_for_dev(dev);
1754 kfree(dev->dev_status_queue_obj);
1755 kfree(dev->dev_queue_obj);
1756 kfree(dev);
1758 return NULL;
1760 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1762 /* transport_generic_prepare_cdb():
1764 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1765 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1766 * The point of this is since we are mapping iSCSI LUNs to
1767 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1768 * devices and HBAs for a loop.
1770 static inline void transport_generic_prepare_cdb(
1771 unsigned char *cdb)
1773 switch (cdb[0]) {
1774 case READ_10: /* SBC - RDProtect */
1775 case READ_12: /* SBC - RDProtect */
1776 case READ_16: /* SBC - RDProtect */
1777 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1778 case VERIFY: /* SBC - VRProtect */
1779 case VERIFY_16: /* SBC - VRProtect */
1780 case WRITE_VERIFY: /* SBC - VRProtect */
1781 case WRITE_VERIFY_12: /* SBC - VRProtect */
1782 break;
1783 default:
1784 cdb[1] &= 0x1f; /* clear logical unit number */
1785 break;
1789 static struct se_task *
1790 transport_generic_get_task(struct se_cmd *cmd,
1791 enum dma_data_direction data_direction)
1793 struct se_task *task;
1794 struct se_device *dev = SE_DEV(cmd);
1795 unsigned long flags;
1797 task = dev->transport->alloc_task(cmd);
1798 if (!task) {
1799 printk(KERN_ERR "Unable to allocate struct se_task\n");
1800 return NULL;
1803 INIT_LIST_HEAD(&task->t_list);
1804 INIT_LIST_HEAD(&task->t_execute_list);
1805 INIT_LIST_HEAD(&task->t_state_list);
1806 init_completion(&task->task_stop_comp);
1807 task->task_no = T_TASK(cmd)->t_tasks_no++;
1808 task->task_se_cmd = cmd;
1809 task->se_dev = dev;
1810 task->task_data_direction = data_direction;
1812 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1813 list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
1814 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1816 return task;
1819 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1821 void transport_device_setup_cmd(struct se_cmd *cmd)
1823 cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
1825 EXPORT_SYMBOL(transport_device_setup_cmd);
1828 * Used by fabric modules containing a local struct se_cmd within their
1829 * fabric dependent per I/O descriptor.
1831 void transport_init_se_cmd(
1832 struct se_cmd *cmd,
1833 struct target_core_fabric_ops *tfo,
1834 struct se_session *se_sess,
1835 u32 data_length,
1836 int data_direction,
1837 int task_attr,
1838 unsigned char *sense_buffer)
1840 INIT_LIST_HEAD(&cmd->se_lun_list);
1841 INIT_LIST_HEAD(&cmd->se_delayed_list);
1842 INIT_LIST_HEAD(&cmd->se_ordered_list);
1844 * Setup t_task pointer to t_task_backstore
1846 cmd->t_task = &cmd->t_task_backstore;
1848 INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
1849 init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
1850 init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
1851 init_completion(&T_TASK(cmd)->t_transport_stop_comp);
1852 spin_lock_init(&T_TASK(cmd)->t_state_lock);
1853 atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
1855 cmd->se_tfo = tfo;
1856 cmd->se_sess = se_sess;
1857 cmd->data_length = data_length;
1858 cmd->data_direction = data_direction;
1859 cmd->sam_task_attr = task_attr;
1860 cmd->sense_buffer = sense_buffer;
1862 EXPORT_SYMBOL(transport_init_se_cmd);
1864 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1867 * Check if SAM Task Attribute emulation is enabled for this
1868 * struct se_device storage object
1870 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1871 return 0;
1873 if (cmd->sam_task_attr == TASK_ATTR_ACA) {
1874 DEBUG_STA("SAM Task Attribute ACA"
1875 " emulation is not supported\n");
1876 return -1;
1879 * Used to determine when ORDERED commands should go from
1880 * Dormant to Active status.
1882 cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
1883 smp_mb__after_atomic_inc();
1884 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1885 cmd->se_ordered_id, cmd->sam_task_attr,
1886 TRANSPORT(cmd->se_dev)->name);
1887 return 0;
1890 void transport_free_se_cmd(
1891 struct se_cmd *se_cmd)
1893 if (se_cmd->se_tmr_req)
1894 core_tmr_release_req(se_cmd->se_tmr_req);
1896 * Check and free any extended CDB buffer that was allocated
1898 if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
1899 kfree(T_TASK(se_cmd)->t_task_cdb);
1901 EXPORT_SYMBOL(transport_free_se_cmd);
1903 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1905 /* transport_generic_allocate_tasks():
1907 * Called from fabric RX Thread.
1909 int transport_generic_allocate_tasks(
1910 struct se_cmd *cmd,
1911 unsigned char *cdb)
1913 int ret;
1915 transport_generic_prepare_cdb(cdb);
1918 * This is needed for early exceptions.
1920 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1922 transport_device_setup_cmd(cmd);
1924 * Ensure that the received CDB is less than the max (252 + 8) bytes
1925 * for VARIABLE_LENGTH_CMD
1927 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1928 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1929 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1930 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1931 return -1;
1934 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1935 * allocate the additional extended CDB buffer now.. Otherwise
1936 * setup the pointer from __t_task_cdb to t_task_cdb.
1938 if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
1939 T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
1940 GFP_KERNEL);
1941 if (!(T_TASK(cmd)->t_task_cdb)) {
1942 printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
1943 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1944 scsi_command_size(cdb),
1945 (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
1946 return -1;
1948 } else
1949 T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
1951 * Copy the original CDB into T_TASK(cmd).
1953 memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
1955 * Setup the received CDB based on SCSI defined opcodes and
1956 * perform unit attention, persistent reservations and ALUA
1957 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1958 * pointer is expected to be setup before we reach this point.
1960 ret = transport_generic_cmd_sequencer(cmd, cdb);
1961 if (ret < 0)
1962 return ret;
1964 * Check for SAM Task Attribute Emulation
1966 if (transport_check_alloc_task_attr(cmd) < 0) {
1967 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1968 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1969 return -2;
1971 spin_lock(&cmd->se_lun->lun_sep_lock);
1972 if (cmd->se_lun->lun_sep)
1973 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1974 spin_unlock(&cmd->se_lun->lun_sep_lock);
1975 return 0;
1977 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1980 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1981 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1983 int transport_generic_handle_cdb(
1984 struct se_cmd *cmd)
1986 if (!SE_LUN(cmd)) {
1987 dump_stack();
1988 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
1989 return -1;
1992 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1993 return 0;
1995 EXPORT_SYMBOL(transport_generic_handle_cdb);
1998 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1999 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
2000 * complete setup in TCM process context w/ TFO->new_cmd_map().
2002 int transport_generic_handle_cdb_map(
2003 struct se_cmd *cmd)
2005 if (!SE_LUN(cmd)) {
2006 dump_stack();
2007 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2008 return -1;
2011 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
2012 return 0;
2014 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
2016 /* transport_generic_handle_data():
2020 int transport_generic_handle_data(
2021 struct se_cmd *cmd)
2024 * For the software fabric case, then we assume the nexus is being
2025 * failed/shutdown when signals are pending from the kthread context
2026 * caller, so we return a failure. For the HW target mode case running
2027 * in interrupt code, the signal_pending() check is skipped.
2029 if (!in_interrupt() && signal_pending(current))
2030 return -1;
2032 * If the received CDB has aleady been ABORTED by the generic
2033 * target engine, we now call transport_check_aborted_status()
2034 * to queue any delated TASK_ABORTED status for the received CDB to the
2035 * fabric module as we are expecting no futher incoming DATA OUT
2036 * sequences at this point.
2038 if (transport_check_aborted_status(cmd, 1) != 0)
2039 return 0;
2041 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
2042 return 0;
2044 EXPORT_SYMBOL(transport_generic_handle_data);
2046 /* transport_generic_handle_tmr():
2050 int transport_generic_handle_tmr(
2051 struct se_cmd *cmd)
2054 * This is needed for early exceptions.
2056 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
2057 transport_device_setup_cmd(cmd);
2059 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
2060 return 0;
2062 EXPORT_SYMBOL(transport_generic_handle_tmr);
2064 void transport_generic_free_cmd_intr(
2065 struct se_cmd *cmd)
2067 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
2069 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
2071 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
2073 struct se_task *task, *task_tmp;
2074 unsigned long flags;
2075 int ret = 0;
2077 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2078 CMD_TFO(cmd)->get_task_tag(cmd));
2081 * No tasks remain in the execution queue
2083 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2084 list_for_each_entry_safe(task, task_tmp,
2085 &T_TASK(cmd)->t_task_list, t_list) {
2086 DEBUG_TS("task_no[%d] - Processing task %p\n",
2087 task->task_no, task);
2089 * If the struct se_task has not been sent and is not active,
2090 * remove the struct se_task from the execution queue.
2092 if (!atomic_read(&task->task_sent) &&
2093 !atomic_read(&task->task_active)) {
2094 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2095 flags);
2096 transport_remove_task_from_execute_queue(task,
2097 task->se_dev);
2099 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2100 task->task_no);
2101 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2102 continue;
2106 * If the struct se_task is active, sleep until it is returned
2107 * from the plugin.
2109 if (atomic_read(&task->task_active)) {
2110 atomic_set(&task->task_stop, 1);
2111 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2112 flags);
2114 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2115 task->task_no);
2116 wait_for_completion(&task->task_stop_comp);
2117 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2118 task->task_no);
2120 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2121 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
2123 atomic_set(&task->task_active, 0);
2124 atomic_set(&task->task_stop, 0);
2125 } else {
2126 DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2127 ret++;
2130 __transport_stop_task_timer(task, &flags);
2132 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2134 return ret;
2137 static void transport_failure_reset_queue_depth(struct se_device *dev)
2139 unsigned long flags;
2141 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);;
2142 atomic_inc(&dev->depth_left);
2143 atomic_inc(&SE_HBA(dev)->left_queue_depth);
2144 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2148 * Handle SAM-esque emulation for generic transport request failures.
2150 static void transport_generic_request_failure(
2151 struct se_cmd *cmd,
2152 struct se_device *dev,
2153 int complete,
2154 int sc)
2156 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2157 " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
2158 T_TASK(cmd)->t_task_cdb[0]);
2159 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2160 " %d/%d transport_error_status: %d\n",
2161 CMD_TFO(cmd)->get_cmd_state(cmd),
2162 cmd->t_state, cmd->deferred_t_state,
2163 cmd->transport_error_status);
2164 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2165 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2166 " t_transport_active: %d t_transport_stop: %d"
2167 " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
2168 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
2169 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
2170 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
2171 atomic_read(&T_TASK(cmd)->t_transport_active),
2172 atomic_read(&T_TASK(cmd)->t_transport_stop),
2173 atomic_read(&T_TASK(cmd)->t_transport_sent));
2175 transport_stop_all_task_timers(cmd);
2177 if (dev)
2178 transport_failure_reset_queue_depth(dev);
2180 * For SAM Task Attribute emulation for failed struct se_cmd
2182 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2183 transport_complete_task_attr(cmd);
2185 if (complete) {
2186 transport_direct_request_timeout(cmd);
2187 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2190 switch (cmd->transport_error_status) {
2191 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2192 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2193 break;
2194 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2195 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2196 break;
2197 case PYX_TRANSPORT_INVALID_CDB_FIELD:
2198 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2199 break;
2200 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2201 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2202 break;
2203 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2204 if (!sc)
2205 transport_new_cmd_failure(cmd);
2207 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2208 * we force this session to fall back to session
2209 * recovery.
2211 CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
2212 CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
2214 goto check_stop;
2215 case PYX_TRANSPORT_LU_COMM_FAILURE:
2216 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2217 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2218 break;
2219 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2220 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2221 break;
2222 case PYX_TRANSPORT_WRITE_PROTECTED:
2223 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2224 break;
2225 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2227 * No SENSE Data payload for this case, set SCSI Status
2228 * and queue the response to $FABRIC_MOD.
2230 * Uses linux/include/scsi/scsi.h SAM status codes defs
2232 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2234 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2235 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2236 * CONFLICT STATUS.
2238 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2240 if (SE_SESS(cmd) &&
2241 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
2242 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
2243 cmd->orig_fe_lun, 0x2C,
2244 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2246 CMD_TFO(cmd)->queue_status(cmd);
2247 goto check_stop;
2248 case PYX_TRANSPORT_USE_SENSE_REASON:
2250 * struct se_cmd->scsi_sense_reason already set
2252 break;
2253 default:
2254 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2255 T_TASK(cmd)->t_task_cdb[0],
2256 cmd->transport_error_status);
2257 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2258 break;
2261 if (!sc)
2262 transport_new_cmd_failure(cmd);
2263 else
2264 transport_send_check_condition_and_sense(cmd,
2265 cmd->scsi_sense_reason, 0);
2266 check_stop:
2267 transport_lun_remove_cmd(cmd);
2268 if (!(transport_cmd_check_stop_to_fabric(cmd)))
2272 static void transport_direct_request_timeout(struct se_cmd *cmd)
2274 unsigned long flags;
2276 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2277 if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
2278 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2279 return;
2281 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
2282 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2283 return;
2286 atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
2287 &T_TASK(cmd)->t_se_count);
2288 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2291 static void transport_generic_request_timeout(struct se_cmd *cmd)
2293 unsigned long flags;
2296 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2297 * to allow last call to free memory resources.
2299 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2300 if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
2301 int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
2303 atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
2305 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2307 transport_generic_remove(cmd, 0, 0);
2310 static int
2311 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2313 unsigned char *buf;
2315 buf = kzalloc(data_length, GFP_KERNEL);
2316 if (!(buf)) {
2317 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2318 return -1;
2321 T_TASK(cmd)->t_tasks_se_num = 0;
2322 T_TASK(cmd)->t_task_buf = buf;
2324 return 0;
2327 static inline u32 transport_lba_21(unsigned char *cdb)
2329 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2332 static inline u32 transport_lba_32(unsigned char *cdb)
2334 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2337 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2339 unsigned int __v1, __v2;
2341 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2342 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2344 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2348 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2350 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2352 unsigned int __v1, __v2;
2354 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2355 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2357 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2360 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2362 unsigned long flags;
2364 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2365 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2366 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2370 * Called from interrupt context.
2372 static void transport_task_timeout_handler(unsigned long data)
2374 struct se_task *task = (struct se_task *)data;
2375 struct se_cmd *cmd = TASK_CMD(task);
2376 unsigned long flags;
2378 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2380 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2381 if (task->task_flags & TF_STOP) {
2382 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2383 return;
2385 task->task_flags &= ~TF_RUNNING;
2388 * Determine if transport_complete_task() has already been called.
2390 if (!(atomic_read(&task->task_active))) {
2391 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2392 " == 0\n", task, cmd);
2393 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2394 return;
2397 atomic_inc(&T_TASK(cmd)->t_se_count);
2398 atomic_inc(&T_TASK(cmd)->t_transport_timeout);
2399 T_TASK(cmd)->t_tasks_failed = 1;
2401 atomic_set(&task->task_timeout, 1);
2402 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2403 task->task_scsi_status = 1;
2405 if (atomic_read(&task->task_stop)) {
2406 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2407 " == 1\n", task, cmd);
2408 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2409 complete(&task->task_stop_comp);
2410 return;
2413 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
2414 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2415 " t_task_cdbs_left\n", task, cmd);
2416 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2417 return;
2419 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2420 task, cmd);
2422 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2423 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2425 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2429 * Called with T_TASK(cmd)->t_state_lock held.
2431 static void transport_start_task_timer(struct se_task *task)
2433 struct se_device *dev = task->se_dev;
2434 int timeout;
2436 if (task->task_flags & TF_RUNNING)
2437 return;
2439 * If the task_timeout is disabled, exit now.
2441 timeout = DEV_ATTRIB(dev)->task_timeout;
2442 if (!(timeout))
2443 return;
2445 init_timer(&task->task_timer);
2446 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2447 task->task_timer.data = (unsigned long) task;
2448 task->task_timer.function = transport_task_timeout_handler;
2450 task->task_flags |= TF_RUNNING;
2451 add_timer(&task->task_timer);
2452 #if 0
2453 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2454 " %d\n", task->task_se_cmd, task, timeout);
2455 #endif
2459 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2461 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2463 struct se_cmd *cmd = TASK_CMD(task);
2465 if (!(task->task_flags & TF_RUNNING))
2466 return;
2468 task->task_flags |= TF_STOP;
2469 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
2471 del_timer_sync(&task->task_timer);
2473 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
2474 task->task_flags &= ~TF_RUNNING;
2475 task->task_flags &= ~TF_STOP;
2478 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2480 struct se_task *task = NULL, *task_tmp;
2481 unsigned long flags;
2483 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2484 list_for_each_entry_safe(task, task_tmp,
2485 &T_TASK(cmd)->t_task_list, t_list)
2486 __transport_stop_task_timer(task, &flags);
2487 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2490 static inline int transport_tcq_window_closed(struct se_device *dev)
2492 if (dev->dev_tcq_window_closed++ <
2493 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2494 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2495 } else
2496 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2498 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
2499 return 0;
2503 * Called from Fabric Module context from transport_execute_tasks()
2505 * The return of this function determins if the tasks from struct se_cmd
2506 * get added to the execution queue in transport_execute_tasks(),
2507 * or are added to the delayed or ordered lists here.
2509 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2511 if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2512 return 1;
2514 * Check for the existance of HEAD_OF_QUEUE, and if true return 1
2515 * to allow the passed struct se_cmd list of tasks to the front of the list.
2517 if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
2518 atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
2519 smp_mb__after_atomic_inc();
2520 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2521 " 0x%02x, se_ordered_id: %u\n",
2522 T_TASK(cmd)->t_task_cdb[0],
2523 cmd->se_ordered_id);
2524 return 1;
2525 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
2526 spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
2527 list_add_tail(&cmd->se_ordered_list,
2528 &SE_DEV(cmd)->ordered_cmd_list);
2529 spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
2531 atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
2532 smp_mb__after_atomic_inc();
2534 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2535 " list, se_ordered_id: %u\n",
2536 T_TASK(cmd)->t_task_cdb[0],
2537 cmd->se_ordered_id);
2539 * Add ORDERED command to tail of execution queue if
2540 * no other older commands exist that need to be
2541 * completed first.
2543 if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
2544 return 1;
2545 } else {
2547 * For SIMPLE and UNTAGGED Task Attribute commands
2549 atomic_inc(&SE_DEV(cmd)->simple_cmds);
2550 smp_mb__after_atomic_inc();
2553 * Otherwise if one or more outstanding ORDERED task attribute exist,
2554 * add the dormant task(s) built for the passed struct se_cmd to the
2555 * execution queue and become in Active state for this struct se_device.
2557 if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
2559 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2560 * will be drained upon competion of HEAD_OF_QUEUE task.
2562 spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
2563 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2564 list_add_tail(&cmd->se_delayed_list,
2565 &SE_DEV(cmd)->delayed_cmd_list);
2566 spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
2568 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2569 " delayed CMD list, se_ordered_id: %u\n",
2570 T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
2571 cmd->se_ordered_id);
2573 * Return zero to let transport_execute_tasks() know
2574 * not to add the delayed tasks to the execution list.
2576 return 0;
2579 * Otherwise, no ORDERED task attributes exist..
2581 return 1;
2585 * Called from fabric module context in transport_generic_new_cmd() and
2586 * transport_generic_process_write()
2588 static int transport_execute_tasks(struct se_cmd *cmd)
2590 int add_tasks;
2592 if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2593 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2594 cmd->transport_error_status =
2595 PYX_TRANSPORT_LU_COMM_FAILURE;
2596 transport_generic_request_failure(cmd, NULL, 0, 1);
2597 return 0;
2601 * Call transport_cmd_check_stop() to see if a fabric exception
2602 * has occured that prevents execution.
2604 if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2606 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2607 * attribute for the tasks of the received struct se_cmd CDB
2609 add_tasks = transport_execute_task_attr(cmd);
2610 if (add_tasks == 0)
2611 goto execute_tasks;
2613 * This calls transport_add_tasks_from_cmd() to handle
2614 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2615 * (if enabled) in __transport_add_task_to_execute_queue() and
2616 * transport_add_task_check_sam_attr().
2618 transport_add_tasks_from_cmd(cmd);
2621 * Kick the execution queue for the cmd associated struct se_device
2622 * storage object.
2624 execute_tasks:
2625 __transport_execute_tasks(SE_DEV(cmd));
2626 return 0;
2630 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2631 * from struct se_device->execute_task_list and
2633 * Called from transport_processing_thread()
2635 static int __transport_execute_tasks(struct se_device *dev)
2637 int error;
2638 struct se_cmd *cmd = NULL;
2639 struct se_task *task;
2640 unsigned long flags;
2643 * Check if there is enough room in the device and HBA queue to send
2644 * struct se_transport_task's to the selected transport.
2646 check_depth:
2647 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2648 if (!(atomic_read(&dev->depth_left)) ||
2649 !(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
2650 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2651 return transport_tcq_window_closed(dev);
2653 dev->dev_tcq_window_closed = 0;
2655 spin_lock(&dev->execute_task_lock);
2656 task = transport_get_task_from_execute_queue(dev);
2657 spin_unlock(&dev->execute_task_lock);
2659 if (!task) {
2660 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2661 return 0;
2664 atomic_dec(&dev->depth_left);
2665 atomic_dec(&SE_HBA(dev)->left_queue_depth);
2666 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2668 cmd = TASK_CMD(task);
2670 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2671 atomic_set(&task->task_active, 1);
2672 atomic_set(&task->task_sent, 1);
2673 atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
2675 if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
2676 T_TASK(cmd)->t_task_cdbs)
2677 atomic_set(&cmd->transport_sent, 1);
2679 transport_start_task_timer(task);
2680 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2682 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2683 * to grab REPORT_LUNS CDBs before they hit the
2684 * struct se_subsystem_api->do_task() caller below.
2686 if (cmd->transport_emulate_cdb) {
2687 error = cmd->transport_emulate_cdb(cmd);
2688 if (error != 0) {
2689 cmd->transport_error_status = error;
2690 atomic_set(&task->task_active, 0);
2691 atomic_set(&cmd->transport_sent, 0);
2692 transport_stop_tasks_for_cmd(cmd);
2693 transport_generic_request_failure(cmd, dev, 0, 1);
2694 goto check_depth;
2697 * Handle the successful completion for transport_emulate_cdb()
2698 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2699 * Otherwise the caller is expected to complete the task with
2700 * proper status.
2702 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2703 cmd->scsi_status = SAM_STAT_GOOD;
2704 task->task_scsi_status = GOOD;
2705 transport_complete_task(task, 1);
2707 } else {
2709 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2710 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2711 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2712 * LUN emulation code.
2714 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2715 * call ->do_task() directly and let the underlying TCM subsystem plugin
2716 * code handle the CDB emulation.
2718 if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2719 (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2720 error = transport_emulate_control_cdb(task);
2721 else
2722 error = TRANSPORT(dev)->do_task(task);
2724 if (error != 0) {
2725 cmd->transport_error_status = error;
2726 atomic_set(&task->task_active, 0);
2727 atomic_set(&cmd->transport_sent, 0);
2728 transport_stop_tasks_for_cmd(cmd);
2729 transport_generic_request_failure(cmd, dev, 0, 1);
2733 goto check_depth;
2735 return 0;
2738 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2740 unsigned long flags;
2742 * Any unsolicited data will get dumped for failed command inside of
2743 * the fabric plugin
2745 spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2746 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2747 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2748 spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2750 CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
2753 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2755 static inline u32 transport_get_sectors_6(
2756 unsigned char *cdb,
2757 struct se_cmd *cmd,
2758 int *ret)
2760 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2763 * Assume TYPE_DISK for non struct se_device objects.
2764 * Use 8-bit sector value.
2766 if (!dev)
2767 goto type_disk;
2770 * Use 24-bit allocation length for TYPE_TAPE.
2772 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2773 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2776 * Everything else assume TYPE_DISK Sector CDB location.
2777 * Use 8-bit sector value.
2779 type_disk:
2780 return (u32)cdb[4];
2783 static inline u32 transport_get_sectors_10(
2784 unsigned char *cdb,
2785 struct se_cmd *cmd,
2786 int *ret)
2788 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2791 * Assume TYPE_DISK for non struct se_device objects.
2792 * Use 16-bit sector value.
2794 if (!dev)
2795 goto type_disk;
2798 * XXX_10 is not defined in SSC, throw an exception
2800 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2801 *ret = -1;
2802 return 0;
2806 * Everything else assume TYPE_DISK Sector CDB location.
2807 * Use 16-bit sector value.
2809 type_disk:
2810 return (u32)(cdb[7] << 8) + cdb[8];
2813 static inline u32 transport_get_sectors_12(
2814 unsigned char *cdb,
2815 struct se_cmd *cmd,
2816 int *ret)
2818 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2821 * Assume TYPE_DISK for non struct se_device objects.
2822 * Use 32-bit sector value.
2824 if (!dev)
2825 goto type_disk;
2828 * XXX_12 is not defined in SSC, throw an exception
2830 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2831 *ret = -1;
2832 return 0;
2836 * Everything else assume TYPE_DISK Sector CDB location.
2837 * Use 32-bit sector value.
2839 type_disk:
2840 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2843 static inline u32 transport_get_sectors_16(
2844 unsigned char *cdb,
2845 struct se_cmd *cmd,
2846 int *ret)
2848 struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2851 * Assume TYPE_DISK for non struct se_device objects.
2852 * Use 32-bit sector value.
2854 if (!dev)
2855 goto type_disk;
2858 * Use 24-bit allocation length for TYPE_TAPE.
2860 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2861 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2863 type_disk:
2864 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2865 (cdb[12] << 8) + cdb[13];
2869 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2871 static inline u32 transport_get_sectors_32(
2872 unsigned char *cdb,
2873 struct se_cmd *cmd,
2874 int *ret)
2877 * Assume TYPE_DISK for non struct se_device objects.
2878 * Use 32-bit sector value.
2880 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2881 (cdb[30] << 8) + cdb[31];
2885 static inline u32 transport_get_size(
2886 u32 sectors,
2887 unsigned char *cdb,
2888 struct se_cmd *cmd)
2890 struct se_device *dev = SE_DEV(cmd);
2892 if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2893 if (cdb[1] & 1) { /* sectors */
2894 return DEV_ATTRIB(dev)->block_size * sectors;
2895 } else /* bytes */
2896 return sectors;
2898 #if 0
2899 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2900 " %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
2901 DEV_ATTRIB(dev)->block_size * sectors,
2902 TRANSPORT(dev)->name);
2903 #endif
2904 return DEV_ATTRIB(dev)->block_size * sectors;
2907 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2909 unsigned char result = 0;
2911 * MSB
2913 if ((val[0] >= 'a') && (val[0] <= 'f'))
2914 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2915 else
2916 if ((val[0] >= 'A') && (val[0] <= 'F'))
2917 result = ((val[0] - 'A' + 10) & 0xf) << 4;
2918 else /* digit */
2919 result = ((val[0] - '0') & 0xf) << 4;
2921 * LSB
2923 if ((val[1] >= 'a') && (val[1] <= 'f'))
2924 result |= ((val[1] - 'a' + 10) & 0xf);
2925 else
2926 if ((val[1] >= 'A') && (val[1] <= 'F'))
2927 result |= ((val[1] - 'A' + 10) & 0xf);
2928 else /* digit */
2929 result |= ((val[1] - '0') & 0xf);
2931 return result;
2933 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2935 static void transport_xor_callback(struct se_cmd *cmd)
2937 unsigned char *buf, *addr;
2938 struct se_mem *se_mem;
2939 unsigned int offset;
2940 int i;
2942 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2944 * 1) read the specified logical block(s);
2945 * 2) transfer logical blocks from the data-out buffer;
2946 * 3) XOR the logical blocks transferred from the data-out buffer with
2947 * the logical blocks read, storing the resulting XOR data in a buffer;
2948 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2949 * blocks transferred from the data-out buffer; and
2950 * 5) transfer the resulting XOR data to the data-in buffer.
2952 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2953 if (!(buf)) {
2954 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2955 return;
2958 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2959 * into the locally allocated *buf
2961 transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
2963 * Now perform the XOR against the BIDI read memory located at
2964 * T_TASK(cmd)->t_mem_bidi_list
2967 offset = 0;
2968 list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
2969 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2970 if (!(addr))
2971 goto out;
2973 for (i = 0; i < se_mem->se_len; i++)
2974 *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2976 offset += se_mem->se_len;
2977 kunmap_atomic(addr, KM_USER0);
2979 out:
2980 kfree(buf);
2984 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2986 static int transport_get_sense_data(struct se_cmd *cmd)
2988 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2989 struct se_device *dev;
2990 struct se_task *task = NULL, *task_tmp;
2991 unsigned long flags;
2992 u32 offset = 0;
2994 if (!SE_LUN(cmd)) {
2995 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2996 return -1;
2998 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2999 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3000 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3001 return 0;
3004 list_for_each_entry_safe(task, task_tmp,
3005 &T_TASK(cmd)->t_task_list, t_list) {
3007 if (!task->task_sense)
3008 continue;
3010 dev = task->se_dev;
3011 if (!(dev))
3012 continue;
3014 if (!TRANSPORT(dev)->get_sense_buffer) {
3015 printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
3016 " is NULL\n");
3017 continue;
3020 sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
3021 if (!(sense_buffer)) {
3022 printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
3023 " sense buffer for task with sense\n",
3024 CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
3025 continue;
3027 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3029 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
3030 TRANSPORT_SENSE_BUFFER);
3032 memcpy((void *)&buffer[offset], (void *)sense_buffer,
3033 TRANSPORT_SENSE_BUFFER);
3034 cmd->scsi_status = task->task_scsi_status;
3035 /* Automatically padded */
3036 cmd->scsi_sense_length =
3037 (TRANSPORT_SENSE_BUFFER + offset);
3039 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3040 " and sense\n",
3041 dev->se_hba->hba_id, TRANSPORT(dev)->name,
3042 cmd->scsi_status);
3043 return 0;
3045 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3047 return -1;
3050 static int transport_allocate_resources(struct se_cmd *cmd)
3052 u32 length = cmd->data_length;
3054 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3055 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
3056 return transport_generic_get_mem(cmd, length, PAGE_SIZE);
3057 else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
3058 return transport_generic_allocate_buf(cmd, length);
3059 else
3060 return 0;
3063 static int
3064 transport_handle_reservation_conflict(struct se_cmd *cmd)
3066 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3067 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3068 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
3069 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
3071 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3072 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3073 * CONFLICT STATUS.
3075 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3077 if (SE_SESS(cmd) &&
3078 DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
3079 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
3080 cmd->orig_fe_lun, 0x2C,
3081 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
3082 return -2;
3085 /* transport_generic_cmd_sequencer():
3087 * Generic Command Sequencer that should work for most DAS transport
3088 * drivers.
3090 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3091 * RX Thread.
3093 * FIXME: Need to support other SCSI OPCODES where as well.
3095 static int transport_generic_cmd_sequencer(
3096 struct se_cmd *cmd,
3097 unsigned char *cdb)
3099 struct se_device *dev = SE_DEV(cmd);
3100 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
3101 int ret = 0, sector_ret = 0, passthrough;
3102 u32 sectors = 0, size = 0, pr_reg_type = 0;
3103 u16 service_action;
3104 u8 alua_ascq = 0;
3106 * Check for an existing UNIT ATTENTION condition
3108 if (core_scsi3_ua_check(cmd, cdb) < 0) {
3109 cmd->transport_wait_for_tasks =
3110 &transport_nop_wait_for_tasks;
3111 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3112 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3113 return -2;
3116 * Check status of Asymmetric Logical Unit Assignment port
3118 ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
3119 if (ret != 0) {
3120 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3122 * Set SCSI additional sense code (ASC) to 'LUN Not Accessable';
3123 * The ALUA additional sense code qualifier (ASCQ) is determined
3124 * by the ALUA primary or secondary access state..
3126 if (ret > 0) {
3127 #if 0
3128 printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3129 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3130 CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
3131 #endif
3132 transport_set_sense_codes(cmd, 0x04, alua_ascq);
3133 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3134 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3135 return -2;
3137 goto out_invalid_cdb_field;
3140 * Check status for SPC-3 Persistent Reservations
3142 if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
3143 if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
3144 cmd, cdb, pr_reg_type) != 0)
3145 return transport_handle_reservation_conflict(cmd);
3147 * This means the CDB is allowed for the SCSI Initiator port
3148 * when said port is *NOT* holding the legacy SPC-2 or
3149 * SPC-3 Persistent Reservation.
3153 switch (cdb[0]) {
3154 case READ_6:
3155 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3156 if (sector_ret)
3157 goto out_unsupported_cdb;
3158 size = transport_get_size(sectors, cdb, cmd);
3159 cmd->transport_split_cdb = &split_cdb_XX_6;
3160 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3161 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3162 break;
3163 case READ_10:
3164 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3165 if (sector_ret)
3166 goto out_unsupported_cdb;
3167 size = transport_get_size(sectors, cdb, cmd);
3168 cmd->transport_split_cdb = &split_cdb_XX_10;
3169 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3170 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3171 break;
3172 case READ_12:
3173 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3174 if (sector_ret)
3175 goto out_unsupported_cdb;
3176 size = transport_get_size(sectors, cdb, cmd);
3177 cmd->transport_split_cdb = &split_cdb_XX_12;
3178 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3179 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3180 break;
3181 case READ_16:
3182 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3183 if (sector_ret)
3184 goto out_unsupported_cdb;
3185 size = transport_get_size(sectors, cdb, cmd);
3186 cmd->transport_split_cdb = &split_cdb_XX_16;
3187 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3188 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3189 break;
3190 case WRITE_6:
3191 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3192 if (sector_ret)
3193 goto out_unsupported_cdb;
3194 size = transport_get_size(sectors, cdb, cmd);
3195 cmd->transport_split_cdb = &split_cdb_XX_6;
3196 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3197 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3198 break;
3199 case WRITE_10:
3200 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3201 if (sector_ret)
3202 goto out_unsupported_cdb;
3203 size = transport_get_size(sectors, cdb, cmd);
3204 cmd->transport_split_cdb = &split_cdb_XX_10;
3205 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3206 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3207 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3208 break;
3209 case WRITE_12:
3210 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3211 if (sector_ret)
3212 goto out_unsupported_cdb;
3213 size = transport_get_size(sectors, cdb, cmd);
3214 cmd->transport_split_cdb = &split_cdb_XX_12;
3215 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3216 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3217 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3218 break;
3219 case WRITE_16:
3220 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3221 if (sector_ret)
3222 goto out_unsupported_cdb;
3223 size = transport_get_size(sectors, cdb, cmd);
3224 cmd->transport_split_cdb = &split_cdb_XX_16;
3225 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3226 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3227 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3228 break;
3229 case XDWRITEREAD_10:
3230 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3231 !(T_TASK(cmd)->t_tasks_bidi))
3232 goto out_invalid_cdb_field;
3233 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3234 if (sector_ret)
3235 goto out_unsupported_cdb;
3236 size = transport_get_size(sectors, cdb, cmd);
3237 cmd->transport_split_cdb = &split_cdb_XX_10;
3238 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3239 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3240 passthrough = (TRANSPORT(dev)->transport_type ==
3241 TRANSPORT_PLUGIN_PHBA_PDEV);
3243 * Skip the remaining assignments for TCM/PSCSI passthrough
3245 if (passthrough)
3246 break;
3248 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3250 cmd->transport_complete_callback = &transport_xor_callback;
3251 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3252 break;
3253 case VARIABLE_LENGTH_CMD:
3254 service_action = get_unaligned_be16(&cdb[8]);
3256 * Determine if this is TCM/PSCSI device and we should disable
3257 * internal emulation for this CDB.
3259 passthrough = (TRANSPORT(dev)->transport_type ==
3260 TRANSPORT_PLUGIN_PHBA_PDEV);
3262 switch (service_action) {
3263 case XDWRITEREAD_32:
3264 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3265 if (sector_ret)
3266 goto out_unsupported_cdb;
3267 size = transport_get_size(sectors, cdb, cmd);
3269 * Use WRITE_32 and READ_32 opcodes for the emulated
3270 * XDWRITE_READ_32 logic.
3272 cmd->transport_split_cdb = &split_cdb_XX_32;
3273 T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
3274 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3277 * Skip the remaining assignments for TCM/PSCSI passthrough
3279 if (passthrough)
3280 break;
3283 * Setup BIDI XOR callback to be run during
3284 * transport_generic_complete_ok()
3286 cmd->transport_complete_callback = &transport_xor_callback;
3287 T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
3288 break;
3289 case WRITE_SAME_32:
3290 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3291 if (sector_ret)
3292 goto out_unsupported_cdb;
3293 size = transport_get_size(sectors, cdb, cmd);
3294 T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
3295 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3298 * Skip the remaining assignments for TCM/PSCSI passthrough
3300 if (passthrough)
3301 break;
3303 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3304 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3305 " bits not supported for Block Discard"
3306 " Emulation\n");
3307 goto out_invalid_cdb_field;
3310 * Currently for the emulated case we only accept
3311 * tpws with the UNMAP=1 bit set.
3313 if (!(cdb[10] & 0x08)) {
3314 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3315 " supported for Block Discard Emulation\n");
3316 goto out_invalid_cdb_field;
3318 break;
3319 default:
3320 printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3321 " 0x%04x not supported\n", service_action);
3322 goto out_unsupported_cdb;
3324 break;
3325 case 0xa3:
3326 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3327 /* MAINTENANCE_IN from SCC-2 */
3329 * Check for emulated MI_REPORT_TARGET_PGS.
3331 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3332 cmd->transport_emulate_cdb =
3333 (T10_ALUA(su_dev)->alua_type ==
3334 SPC3_ALUA_EMULATED) ?
3335 &core_emulate_report_target_port_groups :
3336 NULL;
3338 size = (cdb[6] << 24) | (cdb[7] << 16) |
3339 (cdb[8] << 8) | cdb[9];
3340 } else {
3341 /* GPCMD_SEND_KEY from multi media commands */
3342 size = (cdb[8] << 8) + cdb[9];
3344 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3345 break;
3346 case MODE_SELECT:
3347 size = cdb[4];
3348 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3349 break;
3350 case MODE_SELECT_10:
3351 size = (cdb[7] << 8) + cdb[8];
3352 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3353 break;
3354 case MODE_SENSE:
3355 size = cdb[4];
3356 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3357 break;
3358 case MODE_SENSE_10:
3359 case GPCMD_READ_BUFFER_CAPACITY:
3360 case GPCMD_SEND_OPC:
3361 case LOG_SELECT:
3362 case LOG_SENSE:
3363 size = (cdb[7] << 8) + cdb[8];
3364 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3365 break;
3366 case READ_BLOCK_LIMITS:
3367 size = READ_BLOCK_LEN;
3368 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3369 break;
3370 case GPCMD_GET_CONFIGURATION:
3371 case GPCMD_READ_FORMAT_CAPACITIES:
3372 case GPCMD_READ_DISC_INFO:
3373 case GPCMD_READ_TRACK_RZONE_INFO:
3374 size = (cdb[7] << 8) + cdb[8];
3375 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3376 break;
3377 case PERSISTENT_RESERVE_IN:
3378 case PERSISTENT_RESERVE_OUT:
3379 cmd->transport_emulate_cdb =
3380 (T10_RES(su_dev)->res_type ==
3381 SPC3_PERSISTENT_RESERVATIONS) ?
3382 &core_scsi3_emulate_pr : NULL;
3383 size = (cdb[7] << 8) + cdb[8];
3384 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3385 break;
3386 case GPCMD_MECHANISM_STATUS:
3387 case GPCMD_READ_DVD_STRUCTURE:
3388 size = (cdb[8] << 8) + cdb[9];
3389 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3390 break;
3391 case READ_POSITION:
3392 size = READ_POSITION_LEN;
3393 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3394 break;
3395 case 0xa4:
3396 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3397 /* MAINTENANCE_OUT from SCC-2
3399 * Check for emulated MO_SET_TARGET_PGS.
3401 if (cdb[1] == MO_SET_TARGET_PGS) {
3402 cmd->transport_emulate_cdb =
3403 (T10_ALUA(su_dev)->alua_type ==
3404 SPC3_ALUA_EMULATED) ?
3405 &core_emulate_set_target_port_groups :
3406 NULL;
3409 size = (cdb[6] << 24) | (cdb[7] << 16) |
3410 (cdb[8] << 8) | cdb[9];
3411 } else {
3412 /* GPCMD_REPORT_KEY from multi media commands */
3413 size = (cdb[8] << 8) + cdb[9];
3415 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3416 break;
3417 case INQUIRY:
3418 size = (cdb[3] << 8) + cdb[4];
3420 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3421 * See spc4r17 section 5.3
3423 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3424 cmd->sam_task_attr = TASK_ATTR_HOQ;
3425 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3426 break;
3427 case READ_BUFFER:
3428 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3429 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3430 break;
3431 case READ_CAPACITY:
3432 size = READ_CAP_LEN;
3433 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3434 break;
3435 case READ_MEDIA_SERIAL_NUMBER:
3436 case SECURITY_PROTOCOL_IN:
3437 case SECURITY_PROTOCOL_OUT:
3438 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3439 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3440 break;
3441 case SERVICE_ACTION_IN:
3442 case ACCESS_CONTROL_IN:
3443 case ACCESS_CONTROL_OUT:
3444 case EXTENDED_COPY:
3445 case READ_ATTRIBUTE:
3446 case RECEIVE_COPY_RESULTS:
3447 case WRITE_ATTRIBUTE:
3448 size = (cdb[10] << 24) | (cdb[11] << 16) |
3449 (cdb[12] << 8) | cdb[13];
3450 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3451 break;
3452 case RECEIVE_DIAGNOSTIC:
3453 case SEND_DIAGNOSTIC:
3454 size = (cdb[3] << 8) | cdb[4];
3455 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3456 break;
3457 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3458 #if 0
3459 case GPCMD_READ_CD:
3460 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3461 size = (2336 * sectors);
3462 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3463 break;
3464 #endif
3465 case READ_TOC:
3466 size = cdb[8];
3467 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3468 break;
3469 case REQUEST_SENSE:
3470 size = cdb[4];
3471 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3472 break;
3473 case READ_ELEMENT_STATUS:
3474 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3475 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3476 break;
3477 case WRITE_BUFFER:
3478 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3479 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3480 break;
3481 case RESERVE:
3482 case RESERVE_10:
3484 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3485 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3487 if (cdb[0] == RESERVE_10)
3488 size = (cdb[7] << 8) | cdb[8];
3489 else
3490 size = cmd->data_length;
3493 * Setup the legacy emulated handler for SPC-2 and
3494 * >= SPC-3 compatible reservation handling (CRH=1)
3495 * Otherwise, we assume the underlying SCSI logic is
3496 * is running in SPC_PASSTHROUGH, and wants reservations
3497 * emulation disabled.
3499 cmd->transport_emulate_cdb =
3500 (T10_RES(su_dev)->res_type !=
3501 SPC_PASSTHROUGH) ?
3502 &core_scsi2_emulate_crh : NULL;
3503 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3504 break;
3505 case RELEASE:
3506 case RELEASE_10:
3508 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3509 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3511 if (cdb[0] == RELEASE_10)
3512 size = (cdb[7] << 8) | cdb[8];
3513 else
3514 size = cmd->data_length;
3516 cmd->transport_emulate_cdb =
3517 (T10_RES(su_dev)->res_type !=
3518 SPC_PASSTHROUGH) ?
3519 &core_scsi2_emulate_crh : NULL;
3520 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3521 break;
3522 case SYNCHRONIZE_CACHE:
3523 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3525 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3527 if (cdb[0] == SYNCHRONIZE_CACHE) {
3528 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3529 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3530 } else {
3531 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3532 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3534 if (sector_ret)
3535 goto out_unsupported_cdb;
3537 size = transport_get_size(sectors, cdb, cmd);
3538 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3541 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3543 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3544 break;
3546 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3547 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3549 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3551 * Check to ensure that LBA + Range does not exceed past end of
3552 * device.
3554 if (transport_get_sectors(cmd) < 0)
3555 goto out_invalid_cdb_field;
3556 break;
3557 case UNMAP:
3558 size = get_unaligned_be16(&cdb[7]);
3559 passthrough = (TRANSPORT(dev)->transport_type ==
3560 TRANSPORT_PLUGIN_PHBA_PDEV);
3562 * Determine if the received UNMAP used to for direct passthrough
3563 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3564 * signaling the use of internal transport_generic_unmap() emulation
3565 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3566 * subsystem plugin backstores.
3568 if (!(passthrough))
3569 cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3571 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3572 break;
3573 case WRITE_SAME_16:
3574 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3575 if (sector_ret)
3576 goto out_unsupported_cdb;
3577 size = transport_get_size(sectors, cdb, cmd);
3578 T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
3579 passthrough = (TRANSPORT(dev)->transport_type ==
3580 TRANSPORT_PLUGIN_PHBA_PDEV);
3582 * Determine if the received WRITE_SAME_16 is used to for direct
3583 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3584 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3585 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3586 * TCM/FILEIO subsystem plugin backstores.
3588 if (!(passthrough)) {
3589 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3590 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3591 " bits not supported for Block Discard"
3592 " Emulation\n");
3593 goto out_invalid_cdb_field;
3596 * Currently for the emulated case we only accept
3597 * tpws with the UNMAP=1 bit set.
3599 if (!(cdb[1] & 0x08)) {
3600 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3601 " supported for Block Discard Emulation\n");
3602 goto out_invalid_cdb_field;
3605 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3606 break;
3607 case ALLOW_MEDIUM_REMOVAL:
3608 case GPCMD_CLOSE_TRACK:
3609 case ERASE:
3610 case INITIALIZE_ELEMENT_STATUS:
3611 case GPCMD_LOAD_UNLOAD:
3612 case REZERO_UNIT:
3613 case SEEK_10:
3614 case GPCMD_SET_SPEED:
3615 case SPACE:
3616 case START_STOP:
3617 case TEST_UNIT_READY:
3618 case VERIFY:
3619 case WRITE_FILEMARKS:
3620 case MOVE_MEDIUM:
3621 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3622 break;
3623 case REPORT_LUNS:
3624 cmd->transport_emulate_cdb =
3625 &transport_core_report_lun_response;
3626 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3628 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3629 * See spc4r17 section 5.3
3631 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3632 cmd->sam_task_attr = TASK_ATTR_HOQ;
3633 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3634 break;
3635 default:
3636 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3637 " 0x%02x, sending CHECK_CONDITION.\n",
3638 CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
3639 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3640 goto out_unsupported_cdb;
3643 if (size != cmd->data_length) {
3644 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3645 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3646 " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
3647 cmd->data_length, size, cdb[0]);
3649 cmd->cmd_spdtl = size;
3651 if (cmd->data_direction == DMA_TO_DEVICE) {
3652 printk(KERN_ERR "Rejecting underflow/overflow"
3653 " WRITE data\n");
3654 goto out_invalid_cdb_field;
3657 * Reject READ_* or WRITE_* with overflow/underflow for
3658 * type SCF_SCSI_DATA_SG_IO_CDB.
3660 if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) {
3661 printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3662 " CDB on non 512-byte sector setup subsystem"
3663 " plugin: %s\n", TRANSPORT(dev)->name);
3664 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3665 goto out_invalid_cdb_field;
3668 if (size > cmd->data_length) {
3669 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3670 cmd->residual_count = (size - cmd->data_length);
3671 } else {
3672 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3673 cmd->residual_count = (cmd->data_length - size);
3675 cmd->data_length = size;
3678 transport_set_supported_SAM_opcode(cmd);
3679 return ret;
3681 out_unsupported_cdb:
3682 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3683 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3684 return -2;
3685 out_invalid_cdb_field:
3686 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3687 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3688 return -2;
3691 static inline void transport_release_tasks(struct se_cmd *);
3694 * This function will copy a contiguous *src buffer into a destination
3695 * struct scatterlist array.
3697 static void transport_memcpy_write_contig(
3698 struct se_cmd *cmd,
3699 struct scatterlist *sg_d,
3700 unsigned char *src)
3702 u32 i = 0, length = 0, total_length = cmd->data_length;
3703 void *dst;
3705 while (total_length) {
3706 length = sg_d[i].length;
3708 if (length > total_length)
3709 length = total_length;
3711 dst = sg_virt(&sg_d[i]);
3713 memcpy(dst, src, length);
3715 if (!(total_length -= length))
3716 return;
3718 src += length;
3719 i++;
3724 * This function will copy a struct scatterlist array *sg_s into a destination
3725 * contiguous *dst buffer.
3727 static void transport_memcpy_read_contig(
3728 struct se_cmd *cmd,
3729 unsigned char *dst,
3730 struct scatterlist *sg_s)
3732 u32 i = 0, length = 0, total_length = cmd->data_length;
3733 void *src;
3735 while (total_length) {
3736 length = sg_s[i].length;
3738 if (length > total_length)
3739 length = total_length;
3741 src = sg_virt(&sg_s[i]);
3743 memcpy(dst, src, length);
3745 if (!(total_length -= length))
3746 return;
3748 dst += length;
3749 i++;
3753 static void transport_memcpy_se_mem_read_contig(
3754 struct se_cmd *cmd,
3755 unsigned char *dst,
3756 struct list_head *se_mem_list)
3758 struct se_mem *se_mem;
3759 void *src;
3760 u32 length = 0, total_length = cmd->data_length;
3762 list_for_each_entry(se_mem, se_mem_list, se_list) {
3763 length = se_mem->se_len;
3765 if (length > total_length)
3766 length = total_length;
3768 src = page_address(se_mem->se_page) + se_mem->se_off;
3770 memcpy(dst, src, length);
3772 if (!(total_length -= length))
3773 return;
3775 dst += length;
3780 * Called from transport_generic_complete_ok() and
3781 * transport_generic_request_failure() to determine which dormant/delayed
3782 * and ordered cmds need to have their tasks added to the execution queue.
3784 static void transport_complete_task_attr(struct se_cmd *cmd)
3786 struct se_device *dev = SE_DEV(cmd);
3787 struct se_cmd *cmd_p, *cmd_tmp;
3788 int new_active_tasks = 0;
3790 if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) {
3791 atomic_dec(&dev->simple_cmds);
3792 smp_mb__after_atomic_dec();
3793 dev->dev_cur_ordered_id++;
3794 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3795 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3796 cmd->se_ordered_id);
3797 } else if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
3798 atomic_dec(&dev->dev_hoq_count);
3799 smp_mb__after_atomic_dec();
3800 dev->dev_cur_ordered_id++;
3801 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3802 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3803 cmd->se_ordered_id);
3804 } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
3805 spin_lock(&dev->ordered_cmd_lock);
3806 list_del(&cmd->se_ordered_list);
3807 atomic_dec(&dev->dev_ordered_sync);
3808 smp_mb__after_atomic_dec();
3809 spin_unlock(&dev->ordered_cmd_lock);
3811 dev->dev_cur_ordered_id++;
3812 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3813 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3816 * Process all commands up to the last received
3817 * ORDERED task attribute which requires another blocking
3818 * boundary
3820 spin_lock(&dev->delayed_cmd_lock);
3821 list_for_each_entry_safe(cmd_p, cmd_tmp,
3822 &dev->delayed_cmd_list, se_delayed_list) {
3824 list_del(&cmd_p->se_delayed_list);
3825 spin_unlock(&dev->delayed_cmd_lock);
3827 DEBUG_STA("Calling add_tasks() for"
3828 " cmd_p: 0x%02x Task Attr: 0x%02x"
3829 " Dormant -> Active, se_ordered_id: %u\n",
3830 T_TASK(cmd_p)->t_task_cdb[0],
3831 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3833 transport_add_tasks_from_cmd(cmd_p);
3834 new_active_tasks++;
3836 spin_lock(&dev->delayed_cmd_lock);
3837 if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED)
3838 break;
3840 spin_unlock(&dev->delayed_cmd_lock);
3842 * If new tasks have become active, wake up the transport thread
3843 * to do the processing of the Active tasks.
3845 if (new_active_tasks != 0)
3846 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
3849 static void transport_generic_complete_ok(struct se_cmd *cmd)
3851 int reason = 0;
3853 * Check if we need to move delayed/dormant tasks from cmds on the
3854 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3855 * Attribute.
3857 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3858 transport_complete_task_attr(cmd);
3860 * Check if we need to retrieve a sense buffer from
3861 * the struct se_cmd in question.
3863 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3864 if (transport_get_sense_data(cmd) < 0)
3865 reason = TCM_NON_EXISTENT_LUN;
3868 * Only set when an struct se_task->task_scsi_status returned
3869 * a non GOOD status.
3871 if (cmd->scsi_status) {
3872 transport_send_check_condition_and_sense(
3873 cmd, reason, 1);
3874 transport_lun_remove_cmd(cmd);
3875 transport_cmd_check_stop_to_fabric(cmd);
3876 return;
3880 * Check for a callback, used by amoungst other things
3881 * XDWRITE_READ_10 emulation.
3883 if (cmd->transport_complete_callback)
3884 cmd->transport_complete_callback(cmd);
3886 switch (cmd->data_direction) {
3887 case DMA_FROM_DEVICE:
3888 spin_lock(&cmd->se_lun->lun_sep_lock);
3889 if (SE_LUN(cmd)->lun_sep) {
3890 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3891 cmd->data_length;
3893 spin_unlock(&cmd->se_lun->lun_sep_lock);
3895 * If enabled by TCM fabirc module pre-registered SGL
3896 * memory, perform the memcpy() from the TCM internal
3897 * contigious buffer back to the original SGL.
3899 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3900 transport_memcpy_write_contig(cmd,
3901 T_TASK(cmd)->t_task_pt_sgl,
3902 T_TASK(cmd)->t_task_buf);
3904 CMD_TFO(cmd)->queue_data_in(cmd);
3905 break;
3906 case DMA_TO_DEVICE:
3907 spin_lock(&cmd->se_lun->lun_sep_lock);
3908 if (SE_LUN(cmd)->lun_sep) {
3909 SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
3910 cmd->data_length;
3912 spin_unlock(&cmd->se_lun->lun_sep_lock);
3914 * Check if we need to send READ payload for BIDI-COMMAND
3916 if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
3917 spin_lock(&cmd->se_lun->lun_sep_lock);
3918 if (SE_LUN(cmd)->lun_sep) {
3919 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3920 cmd->data_length;
3922 spin_unlock(&cmd->se_lun->lun_sep_lock);
3923 CMD_TFO(cmd)->queue_data_in(cmd);
3924 break;
3926 /* Fall through for DMA_TO_DEVICE */
3927 case DMA_NONE:
3928 CMD_TFO(cmd)->queue_status(cmd);
3929 break;
3930 default:
3931 break;
3934 transport_lun_remove_cmd(cmd);
3935 transport_cmd_check_stop_to_fabric(cmd);
3938 static void transport_free_dev_tasks(struct se_cmd *cmd)
3940 struct se_task *task, *task_tmp;
3941 unsigned long flags;
3943 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3944 list_for_each_entry_safe(task, task_tmp,
3945 &T_TASK(cmd)->t_task_list, t_list) {
3946 if (atomic_read(&task->task_active))
3947 continue;
3949 kfree(task->task_sg_bidi);
3950 kfree(task->task_sg);
3952 list_del(&task->t_list);
3954 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3955 if (task->se_dev)
3956 TRANSPORT(task->se_dev)->free_task(task);
3957 else
3958 printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3959 task->task_no);
3960 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3962 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3965 static inline void transport_free_pages(struct se_cmd *cmd)
3967 struct se_mem *se_mem, *se_mem_tmp;
3968 int free_page = 1;
3970 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3971 free_page = 0;
3972 if (cmd->se_dev->transport->do_se_mem_map)
3973 free_page = 0;
3975 if (T_TASK(cmd)->t_task_buf) {
3976 kfree(T_TASK(cmd)->t_task_buf);
3977 T_TASK(cmd)->t_task_buf = NULL;
3978 return;
3982 * Caller will handle releasing of struct se_mem.
3984 if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3985 return;
3987 if (!(T_TASK(cmd)->t_tasks_se_num))
3988 return;
3990 list_for_each_entry_safe(se_mem, se_mem_tmp,
3991 T_TASK(cmd)->t_mem_list, se_list) {
3993 * We only release call __free_page(struct se_mem->se_page) when
3994 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3996 if (free_page)
3997 __free_page(se_mem->se_page);
3999 list_del(&se_mem->se_list);
4000 kmem_cache_free(se_mem_cache, se_mem);
4003 if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
4004 list_for_each_entry_safe(se_mem, se_mem_tmp,
4005 T_TASK(cmd)->t_mem_bidi_list, se_list) {
4007 * We only release call __free_page(struct se_mem->se_page) when
4008 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4010 if (free_page)
4011 __free_page(se_mem->se_page);
4013 list_del(&se_mem->se_list);
4014 kmem_cache_free(se_mem_cache, se_mem);
4018 kfree(T_TASK(cmd)->t_mem_bidi_list);
4019 T_TASK(cmd)->t_mem_bidi_list = NULL;
4020 kfree(T_TASK(cmd)->t_mem_list);
4021 T_TASK(cmd)->t_mem_list = NULL;
4022 T_TASK(cmd)->t_tasks_se_num = 0;
4025 static inline void transport_release_tasks(struct se_cmd *cmd)
4027 transport_free_dev_tasks(cmd);
4030 static inline int transport_dec_and_check(struct se_cmd *cmd)
4032 unsigned long flags;
4034 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4035 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
4036 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
4037 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4038 flags);
4039 return 1;
4043 if (atomic_read(&T_TASK(cmd)->t_se_count)) {
4044 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
4045 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4046 flags);
4047 return 1;
4050 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4052 return 0;
4055 static void transport_release_fe_cmd(struct se_cmd *cmd)
4057 unsigned long flags;
4059 if (transport_dec_and_check(cmd))
4060 return;
4062 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4063 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4064 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4065 goto free_pages;
4067 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4068 transport_all_task_dev_remove_state(cmd);
4069 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4071 transport_release_tasks(cmd);
4072 free_pages:
4073 transport_free_pages(cmd);
4074 transport_free_se_cmd(cmd);
4075 CMD_TFO(cmd)->release_cmd_direct(cmd);
4078 static int transport_generic_remove(
4079 struct se_cmd *cmd,
4080 int release_to_pool,
4081 int session_reinstatement)
4083 unsigned long flags;
4085 if (!(T_TASK(cmd)))
4086 goto release_cmd;
4088 if (transport_dec_and_check(cmd)) {
4089 if (session_reinstatement) {
4090 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4091 transport_all_task_dev_remove_state(cmd);
4092 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4093 flags);
4095 return 1;
4098 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4099 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4100 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4101 goto free_pages;
4103 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4104 transport_all_task_dev_remove_state(cmd);
4105 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4107 transport_release_tasks(cmd);
4108 free_pages:
4109 transport_free_pages(cmd);
4111 release_cmd:
4112 if (release_to_pool) {
4113 transport_release_cmd_to_pool(cmd);
4114 } else {
4115 transport_free_se_cmd(cmd);
4116 CMD_TFO(cmd)->release_cmd_direct(cmd);
4119 return 0;
4123 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4124 * @cmd: Associated se_cmd descriptor
4125 * @mem: SGL style memory for TCM WRITE / READ
4126 * @sg_mem_num: Number of SGL elements
4127 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4128 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4130 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4131 * of parameters.
4133 int transport_generic_map_mem_to_cmd(
4134 struct se_cmd *cmd,
4135 struct scatterlist *mem,
4136 u32 sg_mem_num,
4137 struct scatterlist *mem_bidi_in,
4138 u32 sg_mem_bidi_num)
4140 u32 se_mem_cnt_out = 0;
4141 int ret;
4143 if (!(mem) || !(sg_mem_num))
4144 return 0;
4146 * Passed *mem will contain a list_head containing preformatted
4147 * struct se_mem elements...
4149 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
4150 if ((mem_bidi_in) || (sg_mem_bidi_num)) {
4151 printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4152 " with BIDI-COMMAND\n");
4153 return -ENOSYS;
4156 T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
4157 T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
4158 cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
4159 return 0;
4162 * Otherwise, assume the caller is passing a struct scatterlist
4163 * array from include/linux/scatterlist.h
4165 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4166 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4168 * For CDB using TCM struct se_mem linked list scatterlist memory
4169 * processed into a TCM struct se_subsystem_dev, we do the mapping
4170 * from the passed physical memory to struct se_mem->se_page here.
4172 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4173 if (!(T_TASK(cmd)->t_mem_list))
4174 return -ENOMEM;
4176 ret = transport_map_sg_to_mem(cmd,
4177 T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
4178 if (ret < 0)
4179 return -ENOMEM;
4181 T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
4183 * Setup BIDI READ list of struct se_mem elements
4185 if ((mem_bidi_in) && (sg_mem_bidi_num)) {
4186 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4187 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4188 kfree(T_TASK(cmd)->t_mem_list);
4189 return -ENOMEM;
4191 se_mem_cnt_out = 0;
4193 ret = transport_map_sg_to_mem(cmd,
4194 T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
4195 &se_mem_cnt_out);
4196 if (ret < 0) {
4197 kfree(T_TASK(cmd)->t_mem_list);
4198 return -ENOMEM;
4201 T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
4203 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4205 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4206 if (mem_bidi_in || sg_mem_bidi_num) {
4207 printk(KERN_ERR "BIDI-Commands not supported using "
4208 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4209 return -ENOSYS;
4212 * For incoming CDBs using a contiguous buffer internall with TCM,
4213 * save the passed struct scatterlist memory. After TCM storage object
4214 * processing has completed for this struct se_cmd, TCM core will call
4215 * transport_memcpy_[write,read]_contig() as necessary from
4216 * transport_generic_complete_ok() and transport_write_pending() in order
4217 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4218 * struct scatterlist format.
4220 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4221 T_TASK(cmd)->t_task_pt_sgl = mem;
4224 return 0;
4226 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4229 static inline long long transport_dev_end_lba(struct se_device *dev)
4231 return dev->transport->get_blocks(dev) + 1;
4234 static int transport_get_sectors(struct se_cmd *cmd)
4236 struct se_device *dev = SE_DEV(cmd);
4238 T_TASK(cmd)->t_tasks_sectors =
4239 (cmd->data_length / DEV_ATTRIB(dev)->block_size);
4240 if (!(T_TASK(cmd)->t_tasks_sectors))
4241 T_TASK(cmd)->t_tasks_sectors = 1;
4243 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
4244 return 0;
4246 if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
4247 transport_dev_end_lba(dev)) {
4248 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4249 " transport_dev_end_lba(): %llu\n",
4250 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4251 transport_dev_end_lba(dev));
4252 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4253 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4254 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4257 return 0;
4260 static int transport_new_cmd_obj(struct se_cmd *cmd)
4262 struct se_device *dev = SE_DEV(cmd);
4263 u32 task_cdbs = 0, rc;
4265 if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4266 task_cdbs++;
4267 T_TASK(cmd)->t_task_cdbs++;
4268 } else {
4269 int set_counts = 1;
4272 * Setup any BIDI READ tasks and memory from
4273 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4274 * are queued first for the non pSCSI passthrough case.
4276 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4277 (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4278 rc = transport_generic_get_cdb_count(cmd,
4279 T_TASK(cmd)->t_task_lba,
4280 T_TASK(cmd)->t_tasks_sectors,
4281 DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
4282 set_counts);
4283 if (!(rc)) {
4284 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4285 cmd->scsi_sense_reason =
4286 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4287 return PYX_TRANSPORT_LU_COMM_FAILURE;
4289 set_counts = 0;
4292 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4293 * Note for BIDI transfers this will contain the WRITE payload
4295 task_cdbs = transport_generic_get_cdb_count(cmd,
4296 T_TASK(cmd)->t_task_lba,
4297 T_TASK(cmd)->t_tasks_sectors,
4298 cmd->data_direction, T_TASK(cmd)->t_mem_list,
4299 set_counts);
4300 if (!(task_cdbs)) {
4301 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4302 cmd->scsi_sense_reason =
4303 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4304 return PYX_TRANSPORT_LU_COMM_FAILURE;
4306 T_TASK(cmd)->t_task_cdbs += task_cdbs;
4308 #if 0
4309 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4310 " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4311 T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4312 T_TASK(cmd)->t_task_cdbs);
4313 #endif
4316 atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
4317 atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
4318 atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
4319 return 0;
4322 static struct list_head *transport_init_se_mem_list(void)
4324 struct list_head *se_mem_list;
4326 se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
4327 if (!(se_mem_list)) {
4328 printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
4329 return NULL;
4331 INIT_LIST_HEAD(se_mem_list);
4333 return se_mem_list;
4336 static int
4337 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4339 unsigned char *buf;
4340 struct se_mem *se_mem;
4342 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4343 if (!(T_TASK(cmd)->t_mem_list))
4344 return -ENOMEM;
4347 * If the device uses memory mapping this is enough.
4349 if (cmd->se_dev->transport->do_se_mem_map)
4350 return 0;
4353 * Setup BIDI-COMMAND READ list of struct se_mem elements
4355 if (T_TASK(cmd)->t_tasks_bidi) {
4356 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4357 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4358 kfree(T_TASK(cmd)->t_mem_list);
4359 return -ENOMEM;
4363 while (length) {
4364 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4365 if (!(se_mem)) {
4366 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4367 goto out;
4369 INIT_LIST_HEAD(&se_mem->se_list);
4370 se_mem->se_len = (length > dma_size) ? dma_size : length;
4372 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4373 se_mem->se_page = (struct page *) alloc_pages(GFP_KERNEL, 0);
4374 if (!(se_mem->se_page)) {
4375 printk(KERN_ERR "alloc_pages() failed\n");
4376 goto out;
4379 buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4380 if (!(buf)) {
4381 printk(KERN_ERR "kmap_atomic() failed\n");
4382 goto out;
4384 memset(buf, 0, se_mem->se_len);
4385 kunmap_atomic(buf, KM_IRQ0);
4387 list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
4388 T_TASK(cmd)->t_tasks_se_num++;
4390 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4391 " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4392 se_mem->se_off);
4394 length -= se_mem->se_len;
4397 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4398 T_TASK(cmd)->t_tasks_se_num);
4400 return 0;
4401 out:
4402 return -1;
4405 extern u32 transport_calc_sg_num(
4406 struct se_task *task,
4407 struct se_mem *in_se_mem,
4408 u32 task_offset)
4410 struct se_cmd *se_cmd = task->task_se_cmd;
4411 struct se_device *se_dev = SE_DEV(se_cmd);
4412 struct se_mem *se_mem = in_se_mem;
4413 struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
4414 u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4416 while (task_size != 0) {
4417 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4418 " se_mem->se_off(%u) task_offset(%u)\n",
4419 se_mem->se_page, se_mem->se_len,
4420 se_mem->se_off, task_offset);
4422 if (task_offset == 0) {
4423 if (task_size >= se_mem->se_len) {
4424 sg_length = se_mem->se_len;
4426 if (!(list_is_last(&se_mem->se_list,
4427 T_TASK(se_cmd)->t_mem_list)))
4428 se_mem = list_entry(se_mem->se_list.next,
4429 struct se_mem, se_list);
4430 } else {
4431 sg_length = task_size;
4432 task_size -= sg_length;
4433 goto next;
4436 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4437 sg_length, task_size);
4438 } else {
4439 if ((se_mem->se_len - task_offset) > task_size) {
4440 sg_length = task_size;
4441 task_size -= sg_length;
4442 goto next;
4443 } else {
4444 sg_length = (se_mem->se_len - task_offset);
4446 if (!(list_is_last(&se_mem->se_list,
4447 T_TASK(se_cmd)->t_mem_list)))
4448 se_mem = list_entry(se_mem->se_list.next,
4449 struct se_mem, se_list);
4452 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4453 sg_length, task_size);
4455 task_offset = 0;
4457 task_size -= sg_length;
4458 next:
4459 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4460 task->task_no, task_size);
4462 task->task_sg_num++;
4465 * Check if the fabric module driver is requesting that all
4466 * struct se_task->task_sg[] be chained together.. If so,
4467 * then allocate an extra padding SG entry for linking and
4468 * marking the end of the chained SGL.
4470 if (tfo->task_sg_chaining) {
4471 task_sg_num_padded = (task->task_sg_num + 1);
4472 task->task_padded_sg = 1;
4473 } else
4474 task_sg_num_padded = task->task_sg_num;
4476 task->task_sg = kzalloc(task_sg_num_padded *
4477 sizeof(struct scatterlist), GFP_KERNEL);
4478 if (!(task->task_sg)) {
4479 printk(KERN_ERR "Unable to allocate memory for"
4480 " task->task_sg\n");
4481 return 0;
4483 sg_init_table(&task->task_sg[0], task_sg_num_padded);
4485 * Setup task->task_sg_bidi for SCSI READ payload for
4486 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4488 if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
4489 (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4490 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4491 sizeof(struct scatterlist), GFP_KERNEL);
4492 if (!(task->task_sg_bidi)) {
4493 printk(KERN_ERR "Unable to allocate memory for"
4494 " task->task_sg_bidi\n");
4495 return 0;
4497 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4500 * For the chaining case, setup the proper end of SGL for the
4501 * initial submission struct task into struct se_subsystem_api.
4502 * This will be cleared later by transport_do_task_sg_chain()
4504 if (task->task_padded_sg) {
4505 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4507 * Added the 'if' check before marking end of bi-directional
4508 * scatterlist (which gets created only in case of request
4509 * (RD + WR).
4511 if (task->task_sg_bidi)
4512 sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4515 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4516 " task_sg_num_padded(%u)\n", task->task_sg_num,
4517 task_sg_num_padded);
4519 return task->task_sg_num;
4522 static inline int transport_set_tasks_sectors_disk(
4523 struct se_task *task,
4524 struct se_device *dev,
4525 unsigned long long lba,
4526 u32 sectors,
4527 int *max_sectors_set)
4529 if ((lba + sectors) > transport_dev_end_lba(dev)) {
4530 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4532 if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
4533 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4534 *max_sectors_set = 1;
4536 } else {
4537 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4538 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4539 *max_sectors_set = 1;
4540 } else
4541 task->task_sectors = sectors;
4544 return 0;
4547 static inline int transport_set_tasks_sectors_non_disk(
4548 struct se_task *task,
4549 struct se_device *dev,
4550 unsigned long long lba,
4551 u32 sectors,
4552 int *max_sectors_set)
4554 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4555 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4556 *max_sectors_set = 1;
4557 } else
4558 task->task_sectors = sectors;
4560 return 0;
4563 static inline int transport_set_tasks_sectors(
4564 struct se_task *task,
4565 struct se_device *dev,
4566 unsigned long long lba,
4567 u32 sectors,
4568 int *max_sectors_set)
4570 return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
4571 transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4572 max_sectors_set) :
4573 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4574 max_sectors_set);
4577 static int transport_map_sg_to_mem(
4578 struct se_cmd *cmd,
4579 struct list_head *se_mem_list,
4580 void *in_mem,
4581 u32 *se_mem_cnt)
4583 struct se_mem *se_mem;
4584 struct scatterlist *sg;
4585 u32 sg_count = 1, cmd_size = cmd->data_length;
4587 if (!in_mem) {
4588 printk(KERN_ERR "No source scatterlist\n");
4589 return -1;
4591 sg = (struct scatterlist *)in_mem;
4593 while (cmd_size) {
4594 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4595 if (!(se_mem)) {
4596 printk(KERN_ERR "Unable to allocate struct se_mem\n");
4597 return -1;
4599 INIT_LIST_HEAD(&se_mem->se_list);
4600 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4601 " sg_page: %p offset: %d length: %d\n", cmd_size,
4602 sg_page(sg), sg->offset, sg->length);
4604 se_mem->se_page = sg_page(sg);
4605 se_mem->se_off = sg->offset;
4607 if (cmd_size > sg->length) {
4608 se_mem->se_len = sg->length;
4609 sg = sg_next(sg);
4610 sg_count++;
4611 } else
4612 se_mem->se_len = cmd_size;
4614 cmd_size -= se_mem->se_len;
4616 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4617 *se_mem_cnt, cmd_size);
4618 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4619 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4621 list_add_tail(&se_mem->se_list, se_mem_list);
4622 (*se_mem_cnt)++;
4625 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4626 " struct se_mem\n", sg_count, *se_mem_cnt);
4628 if (sg_count != *se_mem_cnt)
4629 BUG();
4631 return 0;
4634 /* transport_map_mem_to_sg():
4638 int transport_map_mem_to_sg(
4639 struct se_task *task,
4640 struct list_head *se_mem_list,
4641 void *in_mem,
4642 struct se_mem *in_se_mem,
4643 struct se_mem **out_se_mem,
4644 u32 *se_mem_cnt,
4645 u32 *task_offset)
4647 struct se_cmd *se_cmd = task->task_se_cmd;
4648 struct se_mem *se_mem = in_se_mem;
4649 struct scatterlist *sg = (struct scatterlist *)in_mem;
4650 u32 task_size = task->task_size, sg_no = 0;
4652 if (!sg) {
4653 printk(KERN_ERR "Unable to locate valid struct"
4654 " scatterlist pointer\n");
4655 return -1;
4658 while (task_size != 0) {
4660 * Setup the contigious array of scatterlists for
4661 * this struct se_task.
4663 sg_assign_page(sg, se_mem->se_page);
4665 if (*task_offset == 0) {
4666 sg->offset = se_mem->se_off;
4668 if (task_size >= se_mem->se_len) {
4669 sg->length = se_mem->se_len;
4671 if (!(list_is_last(&se_mem->se_list,
4672 T_TASK(se_cmd)->t_mem_list))) {
4673 se_mem = list_entry(se_mem->se_list.next,
4674 struct se_mem, se_list);
4675 (*se_mem_cnt)++;
4677 } else {
4678 sg->length = task_size;
4680 * Determine if we need to calculate an offset
4681 * into the struct se_mem on the next go around..
4683 task_size -= sg->length;
4684 if (!(task_size))
4685 *task_offset = sg->length;
4687 goto next;
4690 } else {
4691 sg->offset = (*task_offset + se_mem->se_off);
4693 if ((se_mem->se_len - *task_offset) > task_size) {
4694 sg->length = task_size;
4696 * Determine if we need to calculate an offset
4697 * into the struct se_mem on the next go around..
4699 task_size -= sg->length;
4700 if (!(task_size))
4701 *task_offset += sg->length;
4703 goto next;
4704 } else {
4705 sg->length = (se_mem->se_len - *task_offset);
4707 if (!(list_is_last(&se_mem->se_list,
4708 T_TASK(se_cmd)->t_mem_list))) {
4709 se_mem = list_entry(se_mem->se_list.next,
4710 struct se_mem, se_list);
4711 (*se_mem_cnt)++;
4715 *task_offset = 0;
4717 task_size -= sg->length;
4718 next:
4719 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4720 " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4721 sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4723 sg_no++;
4724 if (!(task_size))
4725 break;
4727 sg = sg_next(sg);
4729 if (task_size > se_cmd->data_length)
4730 BUG();
4732 *out_se_mem = se_mem;
4734 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4735 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4737 return 0;
4741 * This function can be used by HW target mode drivers to create a linked
4742 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4743 * This is intended to be called during the completion path by TCM Core
4744 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4746 void transport_do_task_sg_chain(struct se_cmd *cmd)
4748 struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4749 struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4750 struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4751 struct se_task *task;
4752 struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
4753 u32 task_sg_num = 0, sg_count = 0;
4754 int i;
4756 if (tfo->task_sg_chaining == 0) {
4757 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4758 " %s\n", tfo->get_fabric_name());
4759 dump_stack();
4760 return;
4763 * Walk the struct se_task list and setup scatterlist chains
4764 * for each contiguosly allocated struct se_task->task_sg[].
4766 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
4767 if (!(task->task_sg) || !(task->task_padded_sg))
4768 continue;
4770 if (sg_head && sg_link) {
4771 sg_head_cur = &task->task_sg[0];
4772 sg_link_cur = &task->task_sg[task->task_sg_num];
4774 * Either add chain or mark end of scatterlist
4776 if (!(list_is_last(&task->t_list,
4777 &T_TASK(cmd)->t_task_list))) {
4779 * Clear existing SGL termination bit set in
4780 * transport_calc_sg_num(), see sg_mark_end()
4782 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4783 sg_end_cur->page_link &= ~0x02;
4785 sg_chain(sg_head, task_sg_num, sg_head_cur);
4786 sg_count += task->task_sg_num;
4787 task_sg_num = (task->task_sg_num + 1);
4788 } else {
4789 sg_chain(sg_head, task_sg_num, sg_head_cur);
4790 sg_count += task->task_sg_num;
4791 task_sg_num = task->task_sg_num;
4794 sg_head = sg_head_cur;
4795 sg_link = sg_link_cur;
4796 continue;
4798 sg_head = sg_first = &task->task_sg[0];
4799 sg_link = &task->task_sg[task->task_sg_num];
4801 * Check for single task..
4803 if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
4805 * Clear existing SGL termination bit set in
4806 * transport_calc_sg_num(), see sg_mark_end()
4808 sg_end = &task->task_sg[task->task_sg_num - 1];
4809 sg_end->page_link &= ~0x02;
4810 sg_count += task->task_sg_num;
4811 task_sg_num = (task->task_sg_num + 1);
4812 } else {
4813 sg_count += task->task_sg_num;
4814 task_sg_num = task->task_sg_num;
4818 * Setup the starting pointer and total t_tasks_sg_linked_no including
4819 * padding SGs for linking and to mark the end.
4821 T_TASK(cmd)->t_tasks_sg_chained = sg_first;
4822 T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
4824 DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
4825 " t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained,
4826 T_TASK(cmd)->t_tasks_sg_chained_no);
4828 for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
4829 T_TASK(cmd)->t_tasks_sg_chained_no, i) {
4831 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
4832 i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic);
4833 if (sg_is_chain(sg))
4834 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4835 if (sg_is_last(sg))
4836 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4839 EXPORT_SYMBOL(transport_do_task_sg_chain);
4841 static int transport_do_se_mem_map(
4842 struct se_device *dev,
4843 struct se_task *task,
4844 struct list_head *se_mem_list,
4845 void *in_mem,
4846 struct se_mem *in_se_mem,
4847 struct se_mem **out_se_mem,
4848 u32 *se_mem_cnt,
4849 u32 *task_offset_in)
4851 u32 task_offset = *task_offset_in;
4852 int ret = 0;
4854 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4855 * has been done by the transport plugin.
4857 if (TRANSPORT(dev)->do_se_mem_map) {
4858 ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
4859 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4860 task_offset_in);
4861 if (ret == 0)
4862 T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
4864 return ret;
4867 BUG_ON(list_empty(se_mem_list));
4869 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4870 * WRITE payloads.. If we need to do BIDI READ passthrough for
4871 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4872 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4873 * allocation for task->task_sg_bidi, and the subsequent call to
4874 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4876 if (!(task->task_sg_bidi)) {
4878 * Assume default that transport plugin speaks preallocated
4879 * scatterlists.
4881 if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
4882 return -1;
4884 * struct se_task->task_sg now contains the struct scatterlist array.
4886 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4887 in_se_mem, out_se_mem, se_mem_cnt,
4888 task_offset_in);
4891 * Handle the se_mem_list -> struct task->task_sg_bidi
4892 * memory map for the extra BIDI READ payload
4894 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4895 in_se_mem, out_se_mem, se_mem_cnt,
4896 task_offset_in);
4899 static u32 transport_generic_get_cdb_count(
4900 struct se_cmd *cmd,
4901 unsigned long long lba,
4902 u32 sectors,
4903 enum dma_data_direction data_direction,
4904 struct list_head *mem_list,
4905 int set_counts)
4907 unsigned char *cdb = NULL;
4908 struct se_task *task;
4909 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4910 struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4911 struct se_device *dev = SE_DEV(cmd);
4912 int max_sectors_set = 0, ret;
4913 u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4915 if (!mem_list) {
4916 printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4917 "_cdb_count()\n");
4918 return 0;
4921 * While using RAMDISK_DR backstores is the only case where
4922 * mem_list will ever be empty at this point.
4924 if (!(list_empty(mem_list)))
4925 se_mem = list_entry(mem_list->next, struct se_mem, se_list);
4927 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4928 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4930 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4931 !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
4932 (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4933 se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
4934 struct se_mem, se_list);
4936 while (sectors) {
4937 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4938 CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
4939 transport_dev_end_lba(dev));
4941 task = transport_generic_get_task(cmd, data_direction);
4942 if (!(task))
4943 goto out;
4945 transport_set_tasks_sectors(task, dev, lba, sectors,
4946 &max_sectors_set);
4948 task->task_lba = lba;
4949 lba += task->task_sectors;
4950 sectors -= task->task_sectors;
4951 task->task_size = (task->task_sectors *
4952 DEV_ATTRIB(dev)->block_size);
4954 cdb = TRANSPORT(dev)->get_cdb(task);
4955 if ((cdb)) {
4956 memcpy(cdb, T_TASK(cmd)->t_task_cdb,
4957 scsi_command_size(T_TASK(cmd)->t_task_cdb));
4958 cmd->transport_split_cdb(task->task_lba,
4959 &task->task_sectors, cdb);
4963 * Perform the SE OBJ plugin and/or Transport plugin specific
4964 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4965 * task->task_sg and if necessary task->task_sg_bidi
4967 ret = transport_do_se_mem_map(dev, task, mem_list,
4968 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4969 &task_offset_in);
4970 if (ret < 0)
4971 goto out;
4973 se_mem = se_mem_lout;
4975 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4976 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4978 * Note that the first call to transport_do_se_mem_map() above will
4979 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4980 * -> transport_calc_sg_num(), and the second here will do the
4981 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4983 if (task->task_sg_bidi != NULL) {
4984 ret = transport_do_se_mem_map(dev, task,
4985 T_TASK(cmd)->t_mem_bidi_list, NULL,
4986 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4987 &task_offset_in);
4988 if (ret < 0)
4989 goto out;
4991 se_mem_bidi = se_mem_bidi_lout;
4993 task_cdbs++;
4995 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4996 task_cdbs, task->task_sg_num);
4998 if (max_sectors_set) {
4999 max_sectors_set = 0;
5000 continue;
5003 if (!sectors)
5004 break;
5007 if (set_counts) {
5008 atomic_inc(&T_TASK(cmd)->t_fe_count);
5009 atomic_inc(&T_TASK(cmd)->t_se_count);
5012 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5013 CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
5014 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
5016 return task_cdbs;
5017 out:
5018 return 0;
5021 static int
5022 transport_map_control_cmd_to_task(struct se_cmd *cmd)
5024 struct se_device *dev = SE_DEV(cmd);
5025 unsigned char *cdb;
5026 struct se_task *task;
5027 int ret;
5029 task = transport_generic_get_task(cmd, cmd->data_direction);
5030 if (!task)
5031 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5033 cdb = TRANSPORT(dev)->get_cdb(task);
5034 if (cdb)
5035 memcpy(cdb, cmd->t_task->t_task_cdb,
5036 scsi_command_size(cmd->t_task->t_task_cdb));
5038 task->task_size = cmd->data_length;
5039 task->task_sg_num =
5040 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
5042 atomic_inc(&cmd->t_task->t_fe_count);
5043 atomic_inc(&cmd->t_task->t_se_count);
5045 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
5046 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
5047 u32 se_mem_cnt = 0, task_offset = 0;
5049 if (!list_empty(T_TASK(cmd)->t_mem_list))
5050 se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
5051 struct se_mem, se_list);
5053 ret = transport_do_se_mem_map(dev, task,
5054 cmd->t_task->t_mem_list, NULL, se_mem,
5055 &se_mem_lout, &se_mem_cnt, &task_offset);
5056 if (ret < 0)
5057 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5059 if (dev->transport->map_task_SG)
5060 return dev->transport->map_task_SG(task);
5061 return 0;
5062 } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
5063 if (dev->transport->map_task_non_SG)
5064 return dev->transport->map_task_non_SG(task);
5065 return 0;
5066 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
5067 if (dev->transport->cdb_none)
5068 return dev->transport->cdb_none(task);
5069 return 0;
5070 } else {
5071 BUG();
5072 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5076 /* transport_generic_new_cmd(): Called from transport_processing_thread()
5078 * Allocate storage transport resources from a set of values predefined
5079 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5080 * Any non zero return here is treated as an "out of resource' op here.
5083 * Generate struct se_task(s) and/or their payloads for this CDB.
5085 static int transport_generic_new_cmd(struct se_cmd *cmd)
5087 struct se_portal_group *se_tpg;
5088 struct se_task *task;
5089 struct se_device *dev = SE_DEV(cmd);
5090 int ret = 0;
5093 * Determine is the TCM fabric module has already allocated physical
5094 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5095 * to setup beforehand the linked list of physical memory at
5096 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5098 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
5099 ret = transport_allocate_resources(cmd);
5100 if (ret < 0)
5101 return ret;
5104 ret = transport_get_sectors(cmd);
5105 if (ret < 0)
5106 return ret;
5108 ret = transport_new_cmd_obj(cmd);
5109 if (ret < 0)
5110 return ret;
5113 * Determine if the calling TCM fabric module is talking to
5114 * Linux/NET via kernel sockets and needs to allocate a
5115 * struct iovec array to complete the struct se_cmd
5117 se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
5118 if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
5119 ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
5120 if (ret < 0)
5121 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5124 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
5125 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
5126 if (atomic_read(&task->task_sent))
5127 continue;
5128 if (!dev->transport->map_task_SG)
5129 continue;
5131 ret = dev->transport->map_task_SG(task);
5132 if (ret < 0)
5133 return ret;
5135 } else {
5136 ret = transport_map_control_cmd_to_task(cmd);
5137 if (ret < 0)
5138 return ret;
5142 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5143 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5144 * will be added to the struct se_device execution queue after its WRITE
5145 * data has arrived. (ie: It gets handled by the transport processing
5146 * thread a second time)
5148 if (cmd->data_direction == DMA_TO_DEVICE) {
5149 transport_add_tasks_to_state_queue(cmd);
5150 return transport_generic_write_pending(cmd);
5153 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5154 * to the execution queue.
5156 transport_execute_tasks(cmd);
5157 return 0;
5160 /* transport_generic_process_write():
5164 void transport_generic_process_write(struct se_cmd *cmd)
5166 #if 0
5168 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5169 * original EDTL
5171 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
5172 if (!T_TASK(cmd)->t_tasks_se_num) {
5173 unsigned char *dst, *buf =
5174 (unsigned char *)T_TASK(cmd)->t_task_buf;
5176 dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
5177 if (!(dst)) {
5178 printk(KERN_ERR "Unable to allocate memory for"
5179 " WRITE underflow\n");
5180 transport_generic_request_failure(cmd, NULL,
5181 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5182 return;
5184 memcpy(dst, buf, cmd->cmd_spdtl);
5186 kfree(T_TASK(cmd)->t_task_buf);
5187 T_TASK(cmd)->t_task_buf = dst;
5188 } else {
5189 struct scatterlist *sg =
5190 (struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
5191 struct scatterlist *orig_sg;
5193 orig_sg = kzalloc(sizeof(struct scatterlist) *
5194 T_TASK(cmd)->t_tasks_se_num,
5195 GFP_KERNEL))) {
5196 if (!(orig_sg)) {
5197 printk(KERN_ERR "Unable to allocate memory"
5198 " for WRITE underflow\n");
5199 transport_generic_request_failure(cmd, NULL,
5200 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5201 return;
5204 memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
5205 sizeof(struct scatterlist) *
5206 T_TASK(cmd)->t_tasks_se_num);
5208 cmd->data_length = cmd->cmd_spdtl;
5210 * FIXME, clear out original struct se_task and state
5211 * information.
5213 if (transport_generic_new_cmd(cmd) < 0) {
5214 transport_generic_request_failure(cmd, NULL,
5215 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5216 kfree(orig_sg);
5217 return;
5220 transport_memcpy_write_sg(cmd, orig_sg);
5223 #endif
5224 transport_execute_tasks(cmd);
5226 EXPORT_SYMBOL(transport_generic_process_write);
5228 /* transport_generic_write_pending():
5232 static int transport_generic_write_pending(struct se_cmd *cmd)
5234 unsigned long flags;
5235 int ret;
5237 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5238 cmd->t_state = TRANSPORT_WRITE_PENDING;
5239 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5241 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5242 * from the passed Linux/SCSI struct scatterlist located at
5243 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5244 * T_TASK(se_cmd)->t_task_buf.
5246 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5247 transport_memcpy_read_contig(cmd,
5248 T_TASK(cmd)->t_task_buf,
5249 T_TASK(cmd)->t_task_pt_sgl);
5251 * Clear the se_cmd for WRITE_PENDING status in order to set
5252 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5253 * can be called from HW target mode interrupt code. This is safe
5254 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5255 * because the se_cmd->se_lun pointer is not being cleared.
5257 transport_cmd_check_stop(cmd, 1, 0);
5260 * Call the fabric write_pending function here to let the
5261 * frontend know that WRITE buffers are ready.
5263 ret = CMD_TFO(cmd)->write_pending(cmd);
5264 if (ret < 0)
5265 return ret;
5267 return PYX_TRANSPORT_WRITE_PENDING;
5270 /* transport_release_cmd_to_pool():
5274 void transport_release_cmd_to_pool(struct se_cmd *cmd)
5276 BUG_ON(!T_TASK(cmd));
5277 BUG_ON(!CMD_TFO(cmd));
5279 transport_free_se_cmd(cmd);
5280 CMD_TFO(cmd)->release_cmd_to_pool(cmd);
5282 EXPORT_SYMBOL(transport_release_cmd_to_pool);
5284 /* transport_generic_free_cmd():
5286 * Called from processing frontend to release storage engine resources
5288 void transport_generic_free_cmd(
5289 struct se_cmd *cmd,
5290 int wait_for_tasks,
5291 int release_to_pool,
5292 int session_reinstatement)
5294 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
5295 transport_release_cmd_to_pool(cmd);
5296 else {
5297 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5299 if (SE_LUN(cmd)) {
5300 #if 0
5301 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5302 " SE_LUN(cmd)\n", cmd,
5303 CMD_TFO(cmd)->get_task_tag(cmd));
5304 #endif
5305 transport_lun_remove_cmd(cmd);
5308 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5309 cmd->transport_wait_for_tasks(cmd, 0, 0);
5311 transport_free_dev_tasks(cmd);
5313 transport_generic_remove(cmd, release_to_pool,
5314 session_reinstatement);
5317 EXPORT_SYMBOL(transport_generic_free_cmd);
5319 static void transport_nop_wait_for_tasks(
5320 struct se_cmd *cmd,
5321 int remove_cmd,
5322 int session_reinstatement)
5324 return;
5327 /* transport_lun_wait_for_tasks():
5329 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5330 * an struct se_lun to be successfully shutdown.
5332 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5334 unsigned long flags;
5335 int ret;
5337 * If the frontend has already requested this struct se_cmd to
5338 * be stopped, we can safely ignore this struct se_cmd.
5340 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5341 if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
5342 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5343 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5344 " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
5345 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5346 transport_cmd_check_stop(cmd, 1, 0);
5347 return -1;
5349 atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
5350 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5352 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5354 ret = transport_stop_tasks_for_cmd(cmd);
5356 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5357 " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
5358 if (!ret) {
5359 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5360 CMD_TFO(cmd)->get_task_tag(cmd));
5361 wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
5362 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5363 CMD_TFO(cmd)->get_task_tag(cmd));
5365 transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
5367 return 0;
5370 /* #define DEBUG_CLEAR_LUN */
5371 #ifdef DEBUG_CLEAR_LUN
5372 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5373 #else
5374 #define DEBUG_CLEAR_L(x...)
5375 #endif
5377 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5379 struct se_cmd *cmd = NULL;
5380 unsigned long lun_flags, cmd_flags;
5382 * Do exception processing and return CHECK_CONDITION status to the
5383 * Initiator Port.
5385 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5386 while (!list_empty_careful(&lun->lun_cmd_list)) {
5387 cmd = list_entry(lun->lun_cmd_list.next,
5388 struct se_cmd, se_lun_list);
5389 list_del(&cmd->se_lun_list);
5391 if (!(T_TASK(cmd))) {
5392 printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
5393 "[i,t]_state: %u/%u\n",
5394 CMD_TFO(cmd)->get_task_tag(cmd),
5395 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5396 BUG();
5398 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
5400 * This will notify iscsi_target_transport.c:
5401 * transport_cmd_check_stop() that a LUN shutdown is in
5402 * progress for the iscsi_cmd_t.
5404 spin_lock(&T_TASK(cmd)->t_state_lock);
5405 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5406 "_lun_stop for ITT: 0x%08x\n",
5407 SE_LUN(cmd)->unpacked_lun,
5408 CMD_TFO(cmd)->get_task_tag(cmd));
5409 atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
5410 spin_unlock(&T_TASK(cmd)->t_state_lock);
5412 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5414 if (!(SE_LUN(cmd))) {
5415 printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5416 CMD_TFO(cmd)->get_task_tag(cmd),
5417 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5418 BUG();
5421 * If the Storage engine still owns the iscsi_cmd_t, determine
5422 * and/or stop its context.
5424 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5425 "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
5426 CMD_TFO(cmd)->get_task_tag(cmd));
5428 if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
5429 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5430 continue;
5433 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5434 "_wait_for_tasks(): SUCCESS\n",
5435 SE_LUN(cmd)->unpacked_lun,
5436 CMD_TFO(cmd)->get_task_tag(cmd));
5438 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5439 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
5440 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5441 goto check_cond;
5443 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
5444 transport_all_task_dev_remove_state(cmd);
5445 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5447 transport_free_dev_tasks(cmd);
5449 * The Storage engine stopped this struct se_cmd before it was
5450 * send to the fabric frontend for delivery back to the
5451 * Initiator Node. Return this SCSI CDB back with an
5452 * CHECK_CONDITION status.
5454 check_cond:
5455 transport_send_check_condition_and_sense(cmd,
5456 TCM_NON_EXISTENT_LUN, 0);
5458 * If the fabric frontend is waiting for this iscsi_cmd_t to
5459 * be released, notify the waiting thread now that LU has
5460 * finished accessing it.
5462 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5463 if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
5464 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5465 " struct se_cmd: %p ITT: 0x%08x\n",
5466 lun->unpacked_lun,
5467 cmd, CMD_TFO(cmd)->get_task_tag(cmd));
5469 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
5470 cmd_flags);
5471 transport_cmd_check_stop(cmd, 1, 0);
5472 complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5473 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5474 continue;
5476 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5477 lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
5479 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5480 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5482 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5485 static int transport_clear_lun_thread(void *p)
5487 struct se_lun *lun = (struct se_lun *)p;
5489 __transport_clear_lun_from_sessions(lun);
5490 complete(&lun->lun_shutdown_comp);
5492 return 0;
5495 int transport_clear_lun_from_sessions(struct se_lun *lun)
5497 struct task_struct *kt;
5499 kt = kthread_run(transport_clear_lun_thread, (void *)lun,
5500 "tcm_cl_%u", lun->unpacked_lun);
5501 if (IS_ERR(kt)) {
5502 printk(KERN_ERR "Unable to start clear_lun thread\n");
5503 return -1;
5505 wait_for_completion(&lun->lun_shutdown_comp);
5507 return 0;
5510 /* transport_generic_wait_for_tasks():
5512 * Called from frontend or passthrough context to wait for storage engine
5513 * to pause and/or release frontend generated struct se_cmd.
5515 static void transport_generic_wait_for_tasks(
5516 struct se_cmd *cmd,
5517 int remove_cmd,
5518 int session_reinstatement)
5520 unsigned long flags;
5522 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5523 return;
5525 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5527 * If we are already stopped due to an external event (ie: LUN shutdown)
5528 * sleep until the connection can have the passed struct se_cmd back.
5529 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5530 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5531 * has completed its operation on the struct se_cmd.
5533 if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
5535 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5536 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5537 "_stop_comp); for ITT: 0x%08x\n",
5538 CMD_TFO(cmd)->get_task_tag(cmd));
5540 * There is a special case for WRITES where a FE exception +
5541 * LUN shutdown means ConfigFS context is still sleeping on
5542 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5543 * We go ahead and up transport_lun_stop_comp just to be sure
5544 * here.
5546 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5547 complete(&T_TASK(cmd)->transport_lun_stop_comp);
5548 wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5549 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5551 transport_all_task_dev_remove_state(cmd);
5553 * At this point, the frontend who was the originator of this
5554 * struct se_cmd, now owns the structure and can be released through
5555 * normal means below.
5557 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5558 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5559 "stop_comp); for ITT: 0x%08x\n",
5560 CMD_TFO(cmd)->get_task_tag(cmd));
5562 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5564 if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
5565 atomic_read(&T_TASK(cmd)->t_transport_aborted))
5566 goto remove;
5568 atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
5570 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5571 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5572 " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
5573 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
5574 cmd->deferred_t_state);
5576 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5578 wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5580 wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
5582 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5583 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
5584 atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
5586 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5587 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5588 CMD_TFO(cmd)->get_task_tag(cmd));
5589 remove:
5590 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5591 if (!remove_cmd)
5592 return;
5594 transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5597 static int transport_get_sense_codes(
5598 struct se_cmd *cmd,
5599 u8 *asc,
5600 u8 *ascq)
5602 *asc = cmd->scsi_asc;
5603 *ascq = cmd->scsi_ascq;
5605 return 0;
5608 static int transport_set_sense_codes(
5609 struct se_cmd *cmd,
5610 u8 asc,
5611 u8 ascq)
5613 cmd->scsi_asc = asc;
5614 cmd->scsi_ascq = ascq;
5616 return 0;
5619 int transport_send_check_condition_and_sense(
5620 struct se_cmd *cmd,
5621 u8 reason,
5622 int from_transport)
5624 unsigned char *buffer = cmd->sense_buffer;
5625 unsigned long flags;
5626 int offset;
5627 u8 asc = 0, ascq = 0;
5629 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5630 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5631 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5632 return 0;
5634 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5635 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5637 if (!reason && from_transport)
5638 goto after_reason;
5640 if (!from_transport)
5641 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5643 * Data Segment and SenseLength of the fabric response PDU.
5645 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5646 * from include/scsi/scsi_cmnd.h
5648 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
5649 TRANSPORT_SENSE_BUFFER);
5651 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5652 * SENSE KEY values from include/scsi/scsi.h
5654 switch (reason) {
5655 case TCM_NON_EXISTENT_LUN:
5656 case TCM_UNSUPPORTED_SCSI_OPCODE:
5657 case TCM_SECTOR_COUNT_TOO_MANY:
5658 /* CURRENT ERROR */
5659 buffer[offset] = 0x70;
5660 /* ILLEGAL REQUEST */
5661 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5662 /* INVALID COMMAND OPERATION CODE */
5663 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5664 break;
5665 case TCM_UNKNOWN_MODE_PAGE:
5666 /* CURRENT ERROR */
5667 buffer[offset] = 0x70;
5668 /* ILLEGAL REQUEST */
5669 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5670 /* INVALID FIELD IN CDB */
5671 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5672 break;
5673 case TCM_CHECK_CONDITION_ABORT_CMD:
5674 /* CURRENT ERROR */
5675 buffer[offset] = 0x70;
5676 /* ABORTED COMMAND */
5677 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5678 /* BUS DEVICE RESET FUNCTION OCCURRED */
5679 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5680 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5681 break;
5682 case TCM_INCORRECT_AMOUNT_OF_DATA:
5683 /* CURRENT ERROR */
5684 buffer[offset] = 0x70;
5685 /* ABORTED COMMAND */
5686 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5687 /* WRITE ERROR */
5688 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5689 /* NOT ENOUGH UNSOLICITED DATA */
5690 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5691 break;
5692 case TCM_INVALID_CDB_FIELD:
5693 /* CURRENT ERROR */
5694 buffer[offset] = 0x70;
5695 /* ABORTED COMMAND */
5696 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5697 /* INVALID FIELD IN CDB */
5698 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5699 break;
5700 case TCM_INVALID_PARAMETER_LIST:
5701 /* CURRENT ERROR */
5702 buffer[offset] = 0x70;
5703 /* ABORTED COMMAND */
5704 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5705 /* INVALID FIELD IN PARAMETER LIST */
5706 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5707 break;
5708 case TCM_UNEXPECTED_UNSOLICITED_DATA:
5709 /* CURRENT ERROR */
5710 buffer[offset] = 0x70;
5711 /* ABORTED COMMAND */
5712 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5713 /* WRITE ERROR */
5714 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5715 /* UNEXPECTED_UNSOLICITED_DATA */
5716 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5717 break;
5718 case TCM_SERVICE_CRC_ERROR:
5719 /* CURRENT ERROR */
5720 buffer[offset] = 0x70;
5721 /* ABORTED COMMAND */
5722 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5723 /* PROTOCOL SERVICE CRC ERROR */
5724 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5725 /* N/A */
5726 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5727 break;
5728 case TCM_SNACK_REJECTED:
5729 /* CURRENT ERROR */
5730 buffer[offset] = 0x70;
5731 /* ABORTED COMMAND */
5732 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5733 /* READ ERROR */
5734 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5735 /* FAILED RETRANSMISSION REQUEST */
5736 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5737 break;
5738 case TCM_WRITE_PROTECTED:
5739 /* CURRENT ERROR */
5740 buffer[offset] = 0x70;
5741 /* DATA PROTECT */
5742 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5743 /* WRITE PROTECTED */
5744 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5745 break;
5746 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5747 /* CURRENT ERROR */
5748 buffer[offset] = 0x70;
5749 /* UNIT ATTENTION */
5750 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5751 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5752 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5753 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5754 break;
5755 case TCM_CHECK_CONDITION_NOT_READY:
5756 /* CURRENT ERROR */
5757 buffer[offset] = 0x70;
5758 /* Not Ready */
5759 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5760 transport_get_sense_codes(cmd, &asc, &ascq);
5761 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5762 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5763 break;
5764 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5765 default:
5766 /* CURRENT ERROR */
5767 buffer[offset] = 0x70;
5768 /* ILLEGAL REQUEST */
5769 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5770 /* LOGICAL UNIT COMMUNICATION FAILURE */
5771 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5772 break;
5775 * This code uses linux/include/scsi/scsi.h SAM status codes!
5777 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5779 * Automatically padded, this value is encoded in the fabric's
5780 * data_length response PDU containing the SCSI defined sense data.
5782 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
5784 after_reason:
5785 CMD_TFO(cmd)->queue_status(cmd);
5786 return 0;
5788 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5790 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5792 int ret = 0;
5794 if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
5795 if (!(send_status) ||
5796 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5797 return 1;
5798 #if 0
5799 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5800 " status for CDB: 0x%02x ITT: 0x%08x\n",
5801 T_TASK(cmd)->t_task_cdb[0],
5802 CMD_TFO(cmd)->get_task_tag(cmd));
5803 #endif
5804 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5805 CMD_TFO(cmd)->queue_status(cmd);
5806 ret = 1;
5808 return ret;
5810 EXPORT_SYMBOL(transport_check_aborted_status);
5812 void transport_send_task_abort(struct se_cmd *cmd)
5815 * If there are still expected incoming fabric WRITEs, we wait
5816 * until until they have completed before sending a TASK_ABORTED
5817 * response. This response with TASK_ABORTED status will be
5818 * queued back to fabric module by transport_check_aborted_status().
5820 if (cmd->data_direction == DMA_TO_DEVICE) {
5821 if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
5822 atomic_inc(&T_TASK(cmd)->t_transport_aborted);
5823 smp_mb__after_atomic_inc();
5824 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5825 transport_new_cmd_failure(cmd);
5826 return;
5829 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5830 #if 0
5831 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5832 " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
5833 CMD_TFO(cmd)->get_task_tag(cmd));
5834 #endif
5835 CMD_TFO(cmd)->queue_status(cmd);
5838 /* transport_generic_do_tmr():
5842 int transport_generic_do_tmr(struct se_cmd *cmd)
5844 struct se_cmd *ref_cmd;
5845 struct se_device *dev = SE_DEV(cmd);
5846 struct se_tmr_req *tmr = cmd->se_tmr_req;
5847 int ret;
5849 switch (tmr->function) {
5850 case ABORT_TASK:
5851 ref_cmd = tmr->ref_cmd;
5852 tmr->response = TMR_FUNCTION_REJECTED;
5853 break;
5854 case ABORT_TASK_SET:
5855 case CLEAR_ACA:
5856 case CLEAR_TASK_SET:
5857 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5858 break;
5859 case LUN_RESET:
5860 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5861 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5862 TMR_FUNCTION_REJECTED;
5863 break;
5864 #if 0
5865 case TARGET_WARM_RESET:
5866 transport_generic_host_reset(dev->se_hba);
5867 tmr->response = TMR_FUNCTION_REJECTED;
5868 break;
5869 case TARGET_COLD_RESET:
5870 transport_generic_host_reset(dev->se_hba);
5871 transport_generic_cold_reset(dev->se_hba);
5872 tmr->response = TMR_FUNCTION_REJECTED;
5873 break;
5874 #endif
5875 default:
5876 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5877 tmr->function);
5878 tmr->response = TMR_FUNCTION_REJECTED;
5879 break;
5882 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5883 CMD_TFO(cmd)->queue_tm_rsp(cmd);
5885 transport_cmd_check_stop(cmd, 2, 0);
5886 return 0;
5890 * Called with spin_lock_irq(&dev->execute_task_lock); held
5893 static struct se_task *
5894 transport_get_task_from_state_list(struct se_device *dev)
5896 struct se_task *task;
5898 if (list_empty(&dev->state_task_list))
5899 return NULL;
5901 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5902 break;
5904 list_del(&task->t_state_list);
5905 atomic_set(&task->task_state_active, 0);
5907 return task;
5910 static void transport_processing_shutdown(struct se_device *dev)
5912 struct se_cmd *cmd;
5913 struct se_queue_req *qr;
5914 struct se_task *task;
5915 u8 state;
5916 unsigned long flags;
5918 * Empty the struct se_device's struct se_task state list.
5920 spin_lock_irqsave(&dev->execute_task_lock, flags);
5921 while ((task = transport_get_task_from_state_list(dev))) {
5922 if (!(TASK_CMD(task))) {
5923 printk(KERN_ERR "TASK_CMD(task) is NULL!\n");
5924 continue;
5926 cmd = TASK_CMD(task);
5928 if (!T_TASK(cmd)) {
5929 printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:"
5930 " %p ITT: 0x%08x\n", task, cmd,
5931 CMD_TFO(cmd)->get_task_tag(cmd));
5932 continue;
5934 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5936 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5938 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5939 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5940 " %d/%d cdb: 0x%02x\n", cmd, task,
5941 CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn,
5942 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state,
5943 cmd->t_state, cmd->deferred_t_state,
5944 T_TASK(cmd)->t_task_cdb[0]);
5945 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5946 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5947 " t_transport_stop: %d t_transport_sent: %d\n",
5948 CMD_TFO(cmd)->get_task_tag(cmd),
5949 T_TASK(cmd)->t_task_cdbs,
5950 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
5951 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
5952 atomic_read(&T_TASK(cmd)->t_transport_active),
5953 atomic_read(&T_TASK(cmd)->t_transport_stop),
5954 atomic_read(&T_TASK(cmd)->t_transport_sent));
5956 if (atomic_read(&task->task_active)) {
5957 atomic_set(&task->task_stop, 1);
5958 spin_unlock_irqrestore(
5959 &T_TASK(cmd)->t_state_lock, flags);
5961 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5962 " %p\n", task, dev);
5963 wait_for_completion(&task->task_stop_comp);
5964 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5965 task, dev);
5967 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5968 atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
5970 atomic_set(&task->task_active, 0);
5971 atomic_set(&task->task_stop, 0);
5972 } else {
5973 if (atomic_read(&task->task_execute_queue) != 0)
5974 transport_remove_task_from_execute_queue(task, dev);
5976 __transport_stop_task_timer(task, &flags);
5978 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) {
5979 spin_unlock_irqrestore(
5980 &T_TASK(cmd)->t_state_lock, flags);
5982 DEBUG_DO("Skipping task: %p, dev: %p for"
5983 " t_task_cdbs_ex_left: %d\n", task, dev,
5984 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left));
5986 spin_lock_irqsave(&dev->execute_task_lock, flags);
5987 continue;
5990 if (atomic_read(&T_TASK(cmd)->t_transport_active)) {
5991 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5992 " %p\n", task, dev);
5994 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
5995 spin_unlock_irqrestore(
5996 &T_TASK(cmd)->t_state_lock, flags);
5997 transport_send_check_condition_and_sense(
5998 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
6000 transport_remove_cmd_from_queue(cmd,
6001 SE_DEV(cmd)->dev_queue_obj);
6003 transport_lun_remove_cmd(cmd);
6004 transport_cmd_check_stop(cmd, 1, 0);
6005 } else {
6006 spin_unlock_irqrestore(
6007 &T_TASK(cmd)->t_state_lock, flags);
6009 transport_remove_cmd_from_queue(cmd,
6010 SE_DEV(cmd)->dev_queue_obj);
6012 transport_lun_remove_cmd(cmd);
6014 if (transport_cmd_check_stop(cmd, 1, 0))
6015 transport_generic_remove(cmd, 0, 0);
6018 spin_lock_irqsave(&dev->execute_task_lock, flags);
6019 continue;
6021 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6022 task, dev);
6024 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6025 spin_unlock_irqrestore(
6026 &T_TASK(cmd)->t_state_lock, flags);
6027 transport_send_check_condition_and_sense(cmd,
6028 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6029 transport_remove_cmd_from_queue(cmd,
6030 SE_DEV(cmd)->dev_queue_obj);
6032 transport_lun_remove_cmd(cmd);
6033 transport_cmd_check_stop(cmd, 1, 0);
6034 } else {
6035 spin_unlock_irqrestore(
6036 &T_TASK(cmd)->t_state_lock, flags);
6038 transport_remove_cmd_from_queue(cmd,
6039 SE_DEV(cmd)->dev_queue_obj);
6040 transport_lun_remove_cmd(cmd);
6042 if (transport_cmd_check_stop(cmd, 1, 0))
6043 transport_generic_remove(cmd, 0, 0);
6046 spin_lock_irqsave(&dev->execute_task_lock, flags);
6048 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
6050 * Empty the struct se_device's struct se_cmd list.
6052 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6053 while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) {
6054 spin_unlock_irqrestore(
6055 &dev->dev_queue_obj->cmd_queue_lock, flags);
6056 cmd = (struct se_cmd *)qr->cmd;
6057 state = qr->state;
6058 kfree(qr);
6060 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6061 cmd, state);
6063 if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
6064 transport_send_check_condition_and_sense(cmd,
6065 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
6067 transport_lun_remove_cmd(cmd);
6068 transport_cmd_check_stop(cmd, 1, 0);
6069 } else {
6070 transport_lun_remove_cmd(cmd);
6071 if (transport_cmd_check_stop(cmd, 1, 0))
6072 transport_generic_remove(cmd, 0, 0);
6074 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
6076 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
6079 /* transport_processing_thread():
6083 static int transport_processing_thread(void *param)
6085 int ret, t_state;
6086 struct se_cmd *cmd;
6087 struct se_device *dev = (struct se_device *) param;
6088 struct se_queue_req *qr;
6090 set_user_nice(current, -20);
6092 while (!kthread_should_stop()) {
6093 ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq,
6094 atomic_read(&dev->dev_queue_obj->queue_cnt) ||
6095 kthread_should_stop());
6096 if (ret < 0)
6097 goto out;
6099 spin_lock_irq(&dev->dev_status_lock);
6100 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
6101 spin_unlock_irq(&dev->dev_status_lock);
6102 transport_processing_shutdown(dev);
6103 continue;
6105 spin_unlock_irq(&dev->dev_status_lock);
6107 get_cmd:
6108 __transport_execute_tasks(dev);
6110 qr = transport_get_qr_from_queue(dev->dev_queue_obj);
6111 if (!(qr))
6112 continue;
6114 cmd = (struct se_cmd *)qr->cmd;
6115 t_state = qr->state;
6116 kfree(qr);
6118 switch (t_state) {
6119 case TRANSPORT_NEW_CMD_MAP:
6120 if (!(CMD_TFO(cmd)->new_cmd_map)) {
6121 printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is"
6122 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6123 BUG();
6125 ret = CMD_TFO(cmd)->new_cmd_map(cmd);
6126 if (ret < 0) {
6127 cmd->transport_error_status = ret;
6128 transport_generic_request_failure(cmd, NULL,
6129 0, (cmd->data_direction !=
6130 DMA_TO_DEVICE));
6131 break;
6133 /* Fall through */
6134 case TRANSPORT_NEW_CMD:
6135 ret = transport_generic_new_cmd(cmd);
6136 if (ret < 0) {
6137 cmd->transport_error_status = ret;
6138 transport_generic_request_failure(cmd, NULL,
6139 0, (cmd->data_direction !=
6140 DMA_TO_DEVICE));
6142 break;
6143 case TRANSPORT_PROCESS_WRITE:
6144 transport_generic_process_write(cmd);
6145 break;
6146 case TRANSPORT_COMPLETE_OK:
6147 transport_stop_all_task_timers(cmd);
6148 transport_generic_complete_ok(cmd);
6149 break;
6150 case TRANSPORT_REMOVE:
6151 transport_generic_remove(cmd, 1, 0);
6152 break;
6153 case TRANSPORT_FREE_CMD_INTR:
6154 transport_generic_free_cmd(cmd, 0, 1, 0);
6155 break;
6156 case TRANSPORT_PROCESS_TMR:
6157 transport_generic_do_tmr(cmd);
6158 break;
6159 case TRANSPORT_COMPLETE_FAILURE:
6160 transport_generic_request_failure(cmd, NULL, 1, 1);
6161 break;
6162 case TRANSPORT_COMPLETE_TIMEOUT:
6163 transport_stop_all_task_timers(cmd);
6164 transport_generic_request_timeout(cmd);
6165 break;
6166 default:
6167 printk(KERN_ERR "Unknown t_state: %d deferred_t_state:"
6168 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6169 " %u\n", t_state, cmd->deferred_t_state,
6170 CMD_TFO(cmd)->get_task_tag(cmd),
6171 CMD_TFO(cmd)->get_cmd_state(cmd),
6172 SE_LUN(cmd)->unpacked_lun);
6173 BUG();
6176 goto get_cmd;
6179 out:
6180 transport_release_all_cmds(dev);
6181 dev->process_thread = NULL;
6182 return 0;