drm/i915: use the complete gtt
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob6d9971f0ed928f6742b68909975543b8ec0c0c4b
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment, bool mappable);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
115 i915_gem_check_is_wedged(struct drm_device *dev)
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long mappable_end,
177 unsigned long end)
179 drm_i915_private_t *dev_priv = dev->dev_private;
181 if (start >= end ||
182 (start & (PAGE_SIZE - 1)) != 0 ||
183 (end & (PAGE_SIZE - 1)) != 0) {
184 return -EINVAL;
187 drm_mm_init(&dev_priv->mm.gtt_space, start,
188 end - start);
190 dev_priv->mm.gtt_total = end - start;
191 dev_priv->mm.gtt_mappable_end = mappable_end;
193 return 0;
197 i915_gem_init_ioctl(struct drm_device *dev, void *data,
198 struct drm_file *file_priv)
200 struct drm_i915_gem_init *args = data;
201 int ret;
203 mutex_lock(&dev->struct_mutex);
204 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
205 mutex_unlock(&dev->struct_mutex);
207 return ret;
211 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
212 struct drm_file *file_priv)
214 struct drm_i915_private *dev_priv = dev->dev_private;
215 struct drm_i915_gem_get_aperture *args = data;
217 if (!(dev->driver->driver_features & DRIVER_GEM))
218 return -ENODEV;
220 mutex_lock(&dev->struct_mutex);
221 args->aper_size = dev_priv->mm.gtt_total;
222 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
223 mutex_unlock(&dev->struct_mutex);
225 return 0;
230 * Creates a new mm object and returns a handle to it.
233 i915_gem_create_ioctl(struct drm_device *dev, void *data,
234 struct drm_file *file_priv)
236 struct drm_i915_gem_create *args = data;
237 struct drm_gem_object *obj;
238 int ret;
239 u32 handle;
241 args->size = roundup(args->size, PAGE_SIZE);
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, args->size);
245 if (obj == NULL)
246 return -ENOMEM;
248 ret = drm_gem_handle_create(file_priv, obj, &handle);
249 if (ret) {
250 drm_gem_object_release(obj);
251 i915_gem_info_remove_obj(dev->dev_private, obj->size);
252 kfree(obj);
253 return ret;
256 /* drop reference from allocate - handle holds it now */
257 drm_gem_object_unreference(obj);
258 trace_i915_gem_object_create(obj);
260 args->handle = handle;
261 return 0;
264 static bool
265 i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
267 struct drm_device *dev = obj->base.dev;
268 drm_i915_private_t *dev_priv = dev->dev_private;
270 return obj->gtt_space == NULL ||
271 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
274 static inline int
275 fast_shmem_read(struct page **pages,
276 loff_t page_base, int page_offset,
277 char __user *data,
278 int length)
280 char *vaddr;
281 int ret;
283 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
284 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
285 kunmap_atomic(vaddr);
287 return ret;
290 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
292 drm_i915_private_t *dev_priv = obj->dev->dev_private;
293 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
295 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
296 obj_priv->tiling_mode != I915_TILING_NONE;
299 static inline void
300 slow_shmem_copy(struct page *dst_page,
301 int dst_offset,
302 struct page *src_page,
303 int src_offset,
304 int length)
306 char *dst_vaddr, *src_vaddr;
308 dst_vaddr = kmap(dst_page);
309 src_vaddr = kmap(src_page);
311 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
313 kunmap(src_page);
314 kunmap(dst_page);
317 static inline void
318 slow_shmem_bit17_copy(struct page *gpu_page,
319 int gpu_offset,
320 struct page *cpu_page,
321 int cpu_offset,
322 int length,
323 int is_read)
325 char *gpu_vaddr, *cpu_vaddr;
327 /* Use the unswizzled path if this page isn't affected. */
328 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
329 if (is_read)
330 return slow_shmem_copy(cpu_page, cpu_offset,
331 gpu_page, gpu_offset, length);
332 else
333 return slow_shmem_copy(gpu_page, gpu_offset,
334 cpu_page, cpu_offset, length);
337 gpu_vaddr = kmap(gpu_page);
338 cpu_vaddr = kmap(cpu_page);
340 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
341 * XORing with the other bits (A9 for Y, A9 and A10 for X)
343 while (length > 0) {
344 int cacheline_end = ALIGN(gpu_offset + 1, 64);
345 int this_length = min(cacheline_end - gpu_offset, length);
346 int swizzled_gpu_offset = gpu_offset ^ 64;
348 if (is_read) {
349 memcpy(cpu_vaddr + cpu_offset,
350 gpu_vaddr + swizzled_gpu_offset,
351 this_length);
352 } else {
353 memcpy(gpu_vaddr + swizzled_gpu_offset,
354 cpu_vaddr + cpu_offset,
355 this_length);
357 cpu_offset += this_length;
358 gpu_offset += this_length;
359 length -= this_length;
362 kunmap(cpu_page);
363 kunmap(gpu_page);
367 * This is the fast shmem pread path, which attempts to copy_from_user directly
368 * from the backing pages of the object to the user's address space. On a
369 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
371 static int
372 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
373 struct drm_i915_gem_pread *args,
374 struct drm_file *file_priv)
376 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
377 ssize_t remain;
378 loff_t offset, page_base;
379 char __user *user_data;
380 int page_offset, page_length;
382 user_data = (char __user *) (uintptr_t) args->data_ptr;
383 remain = args->size;
385 obj_priv = to_intel_bo(obj);
386 offset = args->offset;
388 while (remain > 0) {
389 /* Operation in this page
391 * page_base = page offset within aperture
392 * page_offset = offset within page
393 * page_length = bytes to copy for this page
395 page_base = (offset & ~(PAGE_SIZE-1));
396 page_offset = offset & (PAGE_SIZE-1);
397 page_length = remain;
398 if ((page_offset + remain) > PAGE_SIZE)
399 page_length = PAGE_SIZE - page_offset;
401 if (fast_shmem_read(obj_priv->pages,
402 page_base, page_offset,
403 user_data, page_length))
404 return -EFAULT;
406 remain -= page_length;
407 user_data += page_length;
408 offset += page_length;
411 return 0;
414 static int
415 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
417 int ret;
419 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
421 /* If we've insufficient memory to map in the pages, attempt
422 * to make some space by throwing out some old buffers.
424 if (ret == -ENOMEM) {
425 struct drm_device *dev = obj->dev;
427 ret = i915_gem_evict_something(dev, obj->size,
428 i915_gem_get_gtt_alignment(obj),
429 false);
430 if (ret)
431 return ret;
433 ret = i915_gem_object_get_pages(obj, 0);
436 return ret;
440 * This is the fallback shmem pread path, which allocates temporary storage
441 * in kernel space to copy_to_user into outside of the struct_mutex, so we
442 * can copy out of the object's backing pages while holding the struct mutex
443 * and not take page faults.
445 static int
446 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
447 struct drm_i915_gem_pread *args,
448 struct drm_file *file_priv)
450 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
451 struct mm_struct *mm = current->mm;
452 struct page **user_pages;
453 ssize_t remain;
454 loff_t offset, pinned_pages, i;
455 loff_t first_data_page, last_data_page, num_pages;
456 int shmem_page_index, shmem_page_offset;
457 int data_page_index, data_page_offset;
458 int page_length;
459 int ret;
460 uint64_t data_ptr = args->data_ptr;
461 int do_bit17_swizzling;
463 remain = args->size;
465 /* Pin the user pages containing the data. We can't fault while
466 * holding the struct mutex, yet we want to hold it while
467 * dereferencing the user data.
469 first_data_page = data_ptr / PAGE_SIZE;
470 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
471 num_pages = last_data_page - first_data_page + 1;
473 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
474 if (user_pages == NULL)
475 return -ENOMEM;
477 mutex_unlock(&dev->struct_mutex);
478 down_read(&mm->mmap_sem);
479 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
480 num_pages, 1, 0, user_pages, NULL);
481 up_read(&mm->mmap_sem);
482 mutex_lock(&dev->struct_mutex);
483 if (pinned_pages < num_pages) {
484 ret = -EFAULT;
485 goto out;
488 ret = i915_gem_object_set_cpu_read_domain_range(obj,
489 args->offset,
490 args->size);
491 if (ret)
492 goto out;
494 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
496 obj_priv = to_intel_bo(obj);
497 offset = args->offset;
499 while (remain > 0) {
500 /* Operation in this page
502 * shmem_page_index = page number within shmem file
503 * shmem_page_offset = offset within page in shmem file
504 * data_page_index = page number in get_user_pages return
505 * data_page_offset = offset with data_page_index page.
506 * page_length = bytes to copy for this page
508 shmem_page_index = offset / PAGE_SIZE;
509 shmem_page_offset = offset & ~PAGE_MASK;
510 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
511 data_page_offset = data_ptr & ~PAGE_MASK;
513 page_length = remain;
514 if ((shmem_page_offset + page_length) > PAGE_SIZE)
515 page_length = PAGE_SIZE - shmem_page_offset;
516 if ((data_page_offset + page_length) > PAGE_SIZE)
517 page_length = PAGE_SIZE - data_page_offset;
519 if (do_bit17_swizzling) {
520 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
521 shmem_page_offset,
522 user_pages[data_page_index],
523 data_page_offset,
524 page_length,
526 } else {
527 slow_shmem_copy(user_pages[data_page_index],
528 data_page_offset,
529 obj_priv->pages[shmem_page_index],
530 shmem_page_offset,
531 page_length);
534 remain -= page_length;
535 data_ptr += page_length;
536 offset += page_length;
539 out:
540 for (i = 0; i < pinned_pages; i++) {
541 SetPageDirty(user_pages[i]);
542 page_cache_release(user_pages[i]);
544 drm_free_large(user_pages);
546 return ret;
550 * Reads data from the object referenced by handle.
552 * On error, the contents of *data are undefined.
555 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
556 struct drm_file *file_priv)
558 struct drm_i915_gem_pread *args = data;
559 struct drm_gem_object *obj;
560 struct drm_i915_gem_object *obj_priv;
561 int ret = 0;
563 ret = i915_mutex_lock_interruptible(dev);
564 if (ret)
565 return ret;
567 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
568 if (obj == NULL) {
569 ret = -ENOENT;
570 goto unlock;
572 obj_priv = to_intel_bo(obj);
574 /* Bounds check source. */
575 if (args->offset > obj->size || args->size > obj->size - args->offset) {
576 ret = -EINVAL;
577 goto out;
580 if (args->size == 0)
581 goto out;
583 if (!access_ok(VERIFY_WRITE,
584 (char __user *)(uintptr_t)args->data_ptr,
585 args->size)) {
586 ret = -EFAULT;
587 goto out;
590 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
591 args->size);
592 if (ret) {
593 ret = -EFAULT;
594 goto out;
597 ret = i915_gem_object_get_pages_or_evict(obj);
598 if (ret)
599 goto out;
601 ret = i915_gem_object_set_cpu_read_domain_range(obj,
602 args->offset,
603 args->size);
604 if (ret)
605 goto out_put;
607 ret = -EFAULT;
608 if (!i915_gem_object_needs_bit17_swizzle(obj))
609 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
610 if (ret == -EFAULT)
611 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
613 out_put:
614 i915_gem_object_put_pages(obj);
615 out:
616 drm_gem_object_unreference(obj);
617 unlock:
618 mutex_unlock(&dev->struct_mutex);
619 return ret;
622 /* This is the fast write path which cannot handle
623 * page faults in the source data
626 static inline int
627 fast_user_write(struct io_mapping *mapping,
628 loff_t page_base, int page_offset,
629 char __user *user_data,
630 int length)
632 char *vaddr_atomic;
633 unsigned long unwritten;
635 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
636 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
637 user_data, length);
638 io_mapping_unmap_atomic(vaddr_atomic);
639 return unwritten;
642 /* Here's the write path which can sleep for
643 * page faults
646 static inline void
647 slow_kernel_write(struct io_mapping *mapping,
648 loff_t gtt_base, int gtt_offset,
649 struct page *user_page, int user_offset,
650 int length)
652 char __iomem *dst_vaddr;
653 char *src_vaddr;
655 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
656 src_vaddr = kmap(user_page);
658 memcpy_toio(dst_vaddr + gtt_offset,
659 src_vaddr + user_offset,
660 length);
662 kunmap(user_page);
663 io_mapping_unmap(dst_vaddr);
666 static inline int
667 fast_shmem_write(struct page **pages,
668 loff_t page_base, int page_offset,
669 char __user *data,
670 int length)
672 char *vaddr;
673 int ret;
675 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
676 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
677 kunmap_atomic(vaddr);
679 return ret;
683 * This is the fast pwrite path, where we copy the data directly from the
684 * user into the GTT, uncached.
686 static int
687 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
688 struct drm_i915_gem_pwrite *args,
689 struct drm_file *file_priv)
691 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
692 drm_i915_private_t *dev_priv = dev->dev_private;
693 ssize_t remain;
694 loff_t offset, page_base;
695 char __user *user_data;
696 int page_offset, page_length;
698 user_data = (char __user *) (uintptr_t) args->data_ptr;
699 remain = args->size;
701 obj_priv = to_intel_bo(obj);
702 offset = obj_priv->gtt_offset + args->offset;
704 while (remain > 0) {
705 /* Operation in this page
707 * page_base = page offset within aperture
708 * page_offset = offset within page
709 * page_length = bytes to copy for this page
711 page_base = (offset & ~(PAGE_SIZE-1));
712 page_offset = offset & (PAGE_SIZE-1);
713 page_length = remain;
714 if ((page_offset + remain) > PAGE_SIZE)
715 page_length = PAGE_SIZE - page_offset;
717 /* If we get a fault while copying data, then (presumably) our
718 * source page isn't available. Return the error and we'll
719 * retry in the slow path.
721 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
722 page_offset, user_data, page_length))
724 return -EFAULT;
726 remain -= page_length;
727 user_data += page_length;
728 offset += page_length;
731 return 0;
735 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
736 * the memory and maps it using kmap_atomic for copying.
738 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
739 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
741 static int
742 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
747 drm_i915_private_t *dev_priv = dev->dev_private;
748 ssize_t remain;
749 loff_t gtt_page_base, offset;
750 loff_t first_data_page, last_data_page, num_pages;
751 loff_t pinned_pages, i;
752 struct page **user_pages;
753 struct mm_struct *mm = current->mm;
754 int gtt_page_offset, data_page_offset, data_page_index, page_length;
755 int ret;
756 uint64_t data_ptr = args->data_ptr;
758 remain = args->size;
760 /* Pin the user pages containing the data. We can't fault while
761 * holding the struct mutex, and all of the pwrite implementations
762 * want to hold it while dereferencing the user data.
764 first_data_page = data_ptr / PAGE_SIZE;
765 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
766 num_pages = last_data_page - first_data_page + 1;
768 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
769 if (user_pages == NULL)
770 return -ENOMEM;
772 mutex_unlock(&dev->struct_mutex);
773 down_read(&mm->mmap_sem);
774 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
775 num_pages, 0, 0, user_pages, NULL);
776 up_read(&mm->mmap_sem);
777 mutex_lock(&dev->struct_mutex);
778 if (pinned_pages < num_pages) {
779 ret = -EFAULT;
780 goto out_unpin_pages;
783 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
784 if (ret)
785 goto out_unpin_pages;
787 obj_priv = to_intel_bo(obj);
788 offset = obj_priv->gtt_offset + args->offset;
790 while (remain > 0) {
791 /* Operation in this page
793 * gtt_page_base = page offset within aperture
794 * gtt_page_offset = offset within page in aperture
795 * data_page_index = page number in get_user_pages return
796 * data_page_offset = offset with data_page_index page.
797 * page_length = bytes to copy for this page
799 gtt_page_base = offset & PAGE_MASK;
800 gtt_page_offset = offset & ~PAGE_MASK;
801 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
802 data_page_offset = data_ptr & ~PAGE_MASK;
804 page_length = remain;
805 if ((gtt_page_offset + page_length) > PAGE_SIZE)
806 page_length = PAGE_SIZE - gtt_page_offset;
807 if ((data_page_offset + page_length) > PAGE_SIZE)
808 page_length = PAGE_SIZE - data_page_offset;
810 slow_kernel_write(dev_priv->mm.gtt_mapping,
811 gtt_page_base, gtt_page_offset,
812 user_pages[data_page_index],
813 data_page_offset,
814 page_length);
816 remain -= page_length;
817 offset += page_length;
818 data_ptr += page_length;
821 out_unpin_pages:
822 for (i = 0; i < pinned_pages; i++)
823 page_cache_release(user_pages[i]);
824 drm_free_large(user_pages);
826 return ret;
830 * This is the fast shmem pwrite path, which attempts to directly
831 * copy_from_user into the kmapped pages backing the object.
833 static int
834 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
835 struct drm_i915_gem_pwrite *args,
836 struct drm_file *file_priv)
838 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
839 ssize_t remain;
840 loff_t offset, page_base;
841 char __user *user_data;
842 int page_offset, page_length;
844 user_data = (char __user *) (uintptr_t) args->data_ptr;
845 remain = args->size;
847 obj_priv = to_intel_bo(obj);
848 offset = args->offset;
849 obj_priv->dirty = 1;
851 while (remain > 0) {
852 /* Operation in this page
854 * page_base = page offset within aperture
855 * page_offset = offset within page
856 * page_length = bytes to copy for this page
858 page_base = (offset & ~(PAGE_SIZE-1));
859 page_offset = offset & (PAGE_SIZE-1);
860 page_length = remain;
861 if ((page_offset + remain) > PAGE_SIZE)
862 page_length = PAGE_SIZE - page_offset;
864 if (fast_shmem_write(obj_priv->pages,
865 page_base, page_offset,
866 user_data, page_length))
867 return -EFAULT;
869 remain -= page_length;
870 user_data += page_length;
871 offset += page_length;
874 return 0;
878 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
879 * the memory and maps it using kmap_atomic for copying.
881 * This avoids taking mmap_sem for faulting on the user's address while the
882 * struct_mutex is held.
884 static int
885 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
886 struct drm_i915_gem_pwrite *args,
887 struct drm_file *file_priv)
889 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
890 struct mm_struct *mm = current->mm;
891 struct page **user_pages;
892 ssize_t remain;
893 loff_t offset, pinned_pages, i;
894 loff_t first_data_page, last_data_page, num_pages;
895 int shmem_page_index, shmem_page_offset;
896 int data_page_index, data_page_offset;
897 int page_length;
898 int ret;
899 uint64_t data_ptr = args->data_ptr;
900 int do_bit17_swizzling;
902 remain = args->size;
904 /* Pin the user pages containing the data. We can't fault while
905 * holding the struct mutex, and all of the pwrite implementations
906 * want to hold it while dereferencing the user data.
908 first_data_page = data_ptr / PAGE_SIZE;
909 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
910 num_pages = last_data_page - first_data_page + 1;
912 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
913 if (user_pages == NULL)
914 return -ENOMEM;
916 mutex_unlock(&dev->struct_mutex);
917 down_read(&mm->mmap_sem);
918 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
919 num_pages, 0, 0, user_pages, NULL);
920 up_read(&mm->mmap_sem);
921 mutex_lock(&dev->struct_mutex);
922 if (pinned_pages < num_pages) {
923 ret = -EFAULT;
924 goto out;
927 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
928 if (ret)
929 goto out;
931 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
933 obj_priv = to_intel_bo(obj);
934 offset = args->offset;
935 obj_priv->dirty = 1;
937 while (remain > 0) {
938 /* Operation in this page
940 * shmem_page_index = page number within shmem file
941 * shmem_page_offset = offset within page in shmem file
942 * data_page_index = page number in get_user_pages return
943 * data_page_offset = offset with data_page_index page.
944 * page_length = bytes to copy for this page
946 shmem_page_index = offset / PAGE_SIZE;
947 shmem_page_offset = offset & ~PAGE_MASK;
948 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
949 data_page_offset = data_ptr & ~PAGE_MASK;
951 page_length = remain;
952 if ((shmem_page_offset + page_length) > PAGE_SIZE)
953 page_length = PAGE_SIZE - shmem_page_offset;
954 if ((data_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - data_page_offset;
957 if (do_bit17_swizzling) {
958 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
959 shmem_page_offset,
960 user_pages[data_page_index],
961 data_page_offset,
962 page_length,
964 } else {
965 slow_shmem_copy(obj_priv->pages[shmem_page_index],
966 shmem_page_offset,
967 user_pages[data_page_index],
968 data_page_offset,
969 page_length);
972 remain -= page_length;
973 data_ptr += page_length;
974 offset += page_length;
977 out:
978 for (i = 0; i < pinned_pages; i++)
979 page_cache_release(user_pages[i]);
980 drm_free_large(user_pages);
982 return ret;
986 * Writes data to the object referenced by handle.
988 * On error, the contents of the buffer that were to be modified are undefined.
991 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file)
994 struct drm_i915_gem_pwrite *args = data;
995 struct drm_gem_object *obj;
996 struct drm_i915_gem_object *obj_priv;
997 int ret = 0;
999 ret = i915_mutex_lock_interruptible(dev);
1000 if (ret)
1001 return ret;
1003 obj = drm_gem_object_lookup(dev, file, args->handle);
1004 if (obj == NULL) {
1005 ret = -ENOENT;
1006 goto unlock;
1008 obj_priv = to_intel_bo(obj);
1011 /* Bounds check destination. */
1012 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1013 ret = -EINVAL;
1014 goto out;
1017 if (args->size == 0)
1018 goto out;
1020 if (!access_ok(VERIFY_READ,
1021 (char __user *)(uintptr_t)args->data_ptr,
1022 args->size)) {
1023 ret = -EFAULT;
1024 goto out;
1027 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1028 args->size);
1029 if (ret) {
1030 ret = -EFAULT;
1031 goto out;
1034 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1035 * it would end up going through the fenced access, and we'll get
1036 * different detiling behavior between reading and writing.
1037 * pread/pwrite currently are reading and writing from the CPU
1038 * perspective, requiring manual detiling by the client.
1040 if (obj_priv->phys_obj)
1041 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1042 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1043 obj_priv->gtt_space &&
1044 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1045 ret = i915_gem_object_pin(obj, 0, true);
1046 if (ret)
1047 goto out;
1049 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1050 if (ret)
1051 goto out_unpin;
1053 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1054 if (ret == -EFAULT)
1055 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1057 out_unpin:
1058 i915_gem_object_unpin(obj);
1059 } else {
1060 ret = i915_gem_object_get_pages_or_evict(obj);
1061 if (ret)
1062 goto out;
1064 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1065 if (ret)
1066 goto out_put;
1068 ret = -EFAULT;
1069 if (!i915_gem_object_needs_bit17_swizzle(obj))
1070 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1071 if (ret == -EFAULT)
1072 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1074 out_put:
1075 i915_gem_object_put_pages(obj);
1078 out:
1079 drm_gem_object_unreference(obj);
1080 unlock:
1081 mutex_unlock(&dev->struct_mutex);
1082 return ret;
1086 * Called when user space prepares to use an object with the CPU, either
1087 * through the mmap ioctl's mapping or a GTT mapping.
1090 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1091 struct drm_file *file_priv)
1093 struct drm_i915_private *dev_priv = dev->dev_private;
1094 struct drm_i915_gem_set_domain *args = data;
1095 struct drm_gem_object *obj;
1096 struct drm_i915_gem_object *obj_priv;
1097 uint32_t read_domains = args->read_domains;
1098 uint32_t write_domain = args->write_domain;
1099 int ret;
1101 if (!(dev->driver->driver_features & DRIVER_GEM))
1102 return -ENODEV;
1104 /* Only handle setting domains to types used by the CPU. */
1105 if (write_domain & I915_GEM_GPU_DOMAINS)
1106 return -EINVAL;
1108 if (read_domains & I915_GEM_GPU_DOMAINS)
1109 return -EINVAL;
1111 /* Having something in the write domain implies it's in the read
1112 * domain, and only that read domain. Enforce that in the request.
1114 if (write_domain != 0 && read_domains != write_domain)
1115 return -EINVAL;
1117 ret = i915_mutex_lock_interruptible(dev);
1118 if (ret)
1119 return ret;
1121 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1122 if (obj == NULL) {
1123 ret = -ENOENT;
1124 goto unlock;
1126 obj_priv = to_intel_bo(obj);
1128 intel_mark_busy(dev, obj);
1130 if (read_domains & I915_GEM_DOMAIN_GTT) {
1131 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1133 /* Update the LRU on the fence for the CPU access that's
1134 * about to occur.
1136 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1137 struct drm_i915_fence_reg *reg =
1138 &dev_priv->fence_regs[obj_priv->fence_reg];
1139 list_move_tail(&reg->lru_list,
1140 &dev_priv->mm.fence_list);
1143 /* Silently promote "you're not bound, there was nothing to do"
1144 * to success, since the client was just asking us to
1145 * make sure everything was done.
1147 if (ret == -EINVAL)
1148 ret = 0;
1149 } else {
1150 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1153 /* Maintain LRU order of "inactive" objects */
1154 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1155 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1157 drm_gem_object_unreference(obj);
1158 unlock:
1159 mutex_unlock(&dev->struct_mutex);
1160 return ret;
1164 * Called when user space has done writes to this buffer
1167 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1168 struct drm_file *file_priv)
1170 struct drm_i915_gem_sw_finish *args = data;
1171 struct drm_gem_object *obj;
1172 int ret = 0;
1174 if (!(dev->driver->driver_features & DRIVER_GEM))
1175 return -ENODEV;
1177 ret = i915_mutex_lock_interruptible(dev);
1178 if (ret)
1179 return ret;
1181 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1182 if (obj == NULL) {
1183 ret = -ENOENT;
1184 goto unlock;
1187 /* Pinned buffers may be scanout, so flush the cache */
1188 if (to_intel_bo(obj)->pin_count)
1189 i915_gem_object_flush_cpu_write_domain(obj);
1191 drm_gem_object_unreference(obj);
1192 unlock:
1193 mutex_unlock(&dev->struct_mutex);
1194 return ret;
1198 * Maps the contents of an object, returning the address it is mapped
1199 * into.
1201 * While the mapping holds a reference on the contents of the object, it doesn't
1202 * imply a ref on the object itself.
1205 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1206 struct drm_file *file_priv)
1208 struct drm_i915_gem_mmap *args = data;
1209 struct drm_gem_object *obj;
1210 loff_t offset;
1211 unsigned long addr;
1213 if (!(dev->driver->driver_features & DRIVER_GEM))
1214 return -ENODEV;
1216 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1217 if (obj == NULL)
1218 return -ENOENT;
1220 offset = args->offset;
1222 down_write(&current->mm->mmap_sem);
1223 addr = do_mmap(obj->filp, 0, args->size,
1224 PROT_READ | PROT_WRITE, MAP_SHARED,
1225 args->offset);
1226 up_write(&current->mm->mmap_sem);
1227 drm_gem_object_unreference_unlocked(obj);
1228 if (IS_ERR((void *)addr))
1229 return addr;
1231 args->addr_ptr = (uint64_t) addr;
1233 return 0;
1237 * i915_gem_fault - fault a page into the GTT
1238 * vma: VMA in question
1239 * vmf: fault info
1241 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1242 * from userspace. The fault handler takes care of binding the object to
1243 * the GTT (if needed), allocating and programming a fence register (again,
1244 * only if needed based on whether the old reg is still valid or the object
1245 * is tiled) and inserting a new PTE into the faulting process.
1247 * Note that the faulting process may involve evicting existing objects
1248 * from the GTT and/or fence registers to make room. So performance may
1249 * suffer if the GTT working set is large or there are few fence registers
1250 * left.
1252 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1254 struct drm_gem_object *obj = vma->vm_private_data;
1255 struct drm_device *dev = obj->dev;
1256 drm_i915_private_t *dev_priv = dev->dev_private;
1257 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1258 pgoff_t page_offset;
1259 unsigned long pfn;
1260 int ret = 0;
1261 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1263 /* We don't use vmf->pgoff since that has the fake offset */
1264 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1265 PAGE_SHIFT;
1267 /* Now bind it into the GTT if needed */
1268 mutex_lock(&dev->struct_mutex);
1269 if (!i915_gem_object_cpu_accessible(obj_priv))
1270 i915_gem_object_unbind(obj);
1272 if (!obj_priv->gtt_space) {
1273 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1274 if (ret)
1275 goto unlock;
1277 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1278 if (ret)
1279 goto unlock;
1282 /* Need a new fence register? */
1283 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1284 ret = i915_gem_object_get_fence_reg(obj, true);
1285 if (ret)
1286 goto unlock;
1289 if (i915_gem_object_is_inactive(obj_priv))
1290 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1292 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1293 page_offset;
1295 /* Finally, remap it using the new GTT offset */
1296 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1297 unlock:
1298 mutex_unlock(&dev->struct_mutex);
1300 switch (ret) {
1301 case 0:
1302 case -ERESTARTSYS:
1303 return VM_FAULT_NOPAGE;
1304 case -ENOMEM:
1305 case -EAGAIN:
1306 return VM_FAULT_OOM;
1307 default:
1308 return VM_FAULT_SIGBUS;
1313 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1314 * @obj: obj in question
1316 * GEM memory mapping works by handing back to userspace a fake mmap offset
1317 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1318 * up the object based on the offset and sets up the various memory mapping
1319 * structures.
1321 * This routine allocates and attaches a fake offset for @obj.
1323 static int
1324 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1326 struct drm_device *dev = obj->dev;
1327 struct drm_gem_mm *mm = dev->mm_private;
1328 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1329 struct drm_map_list *list;
1330 struct drm_local_map *map;
1331 int ret = 0;
1333 /* Set the object up for mmap'ing */
1334 list = &obj->map_list;
1335 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1336 if (!list->map)
1337 return -ENOMEM;
1339 map = list->map;
1340 map->type = _DRM_GEM;
1341 map->size = obj->size;
1342 map->handle = obj;
1344 /* Get a DRM GEM mmap offset allocated... */
1345 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1346 obj->size / PAGE_SIZE, 0, 0);
1347 if (!list->file_offset_node) {
1348 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1349 ret = -ENOSPC;
1350 goto out_free_list;
1353 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1354 obj->size / PAGE_SIZE, 0);
1355 if (!list->file_offset_node) {
1356 ret = -ENOMEM;
1357 goto out_free_list;
1360 list->hash.key = list->file_offset_node->start;
1361 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1362 if (ret) {
1363 DRM_ERROR("failed to add to map hash\n");
1364 goto out_free_mm;
1367 /* By now we should be all set, any drm_mmap request on the offset
1368 * below will get to our mmap & fault handler */
1369 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1371 return 0;
1373 out_free_mm:
1374 drm_mm_put_block(list->file_offset_node);
1375 out_free_list:
1376 kfree(list->map);
1378 return ret;
1382 * i915_gem_release_mmap - remove physical page mappings
1383 * @obj: obj in question
1385 * Preserve the reservation of the mmapping with the DRM core code, but
1386 * relinquish ownership of the pages back to the system.
1388 * It is vital that we remove the page mapping if we have mapped a tiled
1389 * object through the GTT and then lose the fence register due to
1390 * resource pressure. Similarly if the object has been moved out of the
1391 * aperture, than pages mapped into userspace must be revoked. Removing the
1392 * mapping will then trigger a page fault on the next user access, allowing
1393 * fixup by i915_gem_fault().
1395 void
1396 i915_gem_release_mmap(struct drm_gem_object *obj)
1398 struct drm_device *dev = obj->dev;
1399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1401 if (dev->dev_mapping)
1402 unmap_mapping_range(dev->dev_mapping,
1403 obj_priv->mmap_offset, obj->size, 1);
1406 static void
1407 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1409 struct drm_device *dev = obj->dev;
1410 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1411 struct drm_gem_mm *mm = dev->mm_private;
1412 struct drm_map_list *list;
1414 list = &obj->map_list;
1415 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1417 if (list->file_offset_node) {
1418 drm_mm_put_block(list->file_offset_node);
1419 list->file_offset_node = NULL;
1422 if (list->map) {
1423 kfree(list->map);
1424 list->map = NULL;
1427 obj_priv->mmap_offset = 0;
1431 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1432 * @obj: object to check
1434 * Return the required GTT alignment for an object, taking into account
1435 * potential fence register mapping if needed.
1437 static uint32_t
1438 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1440 struct drm_device *dev = obj->dev;
1441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1442 int start, i;
1445 * Minimum alignment is 4k (GTT page size), but might be greater
1446 * if a fence register is needed for the object.
1448 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1449 return 4096;
1452 * Previous chips need to be aligned to the size of the smallest
1453 * fence register that can contain the object.
1455 if (INTEL_INFO(dev)->gen == 3)
1456 start = 1024*1024;
1457 else
1458 start = 512*1024;
1460 for (i = start; i < obj->size; i <<= 1)
1463 return i;
1467 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1468 * @dev: DRM device
1469 * @data: GTT mapping ioctl data
1470 * @file_priv: GEM object info
1472 * Simply returns the fake offset to userspace so it can mmap it.
1473 * The mmap call will end up in drm_gem_mmap(), which will set things
1474 * up so we can get faults in the handler above.
1476 * The fault handler will take care of binding the object into the GTT
1477 * (since it may have been evicted to make room for something), allocating
1478 * a fence register, and mapping the appropriate aperture address into
1479 * userspace.
1482 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1483 struct drm_file *file_priv)
1485 struct drm_i915_gem_mmap_gtt *args = data;
1486 struct drm_gem_object *obj;
1487 struct drm_i915_gem_object *obj_priv;
1488 int ret;
1490 if (!(dev->driver->driver_features & DRIVER_GEM))
1491 return -ENODEV;
1493 ret = i915_mutex_lock_interruptible(dev);
1494 if (ret)
1495 return ret;
1497 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1498 if (obj == NULL) {
1499 ret = -ENOENT;
1500 goto unlock;
1502 obj_priv = to_intel_bo(obj);
1504 if (obj_priv->madv != I915_MADV_WILLNEED) {
1505 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1506 ret = -EINVAL;
1507 goto out;
1510 if (!obj_priv->mmap_offset) {
1511 ret = i915_gem_create_mmap_offset(obj);
1512 if (ret)
1513 goto out;
1516 args->offset = obj_priv->mmap_offset;
1519 * Pull it into the GTT so that we have a page list (makes the
1520 * initial fault faster and any subsequent flushing possible).
1522 if (!obj_priv->agp_mem) {
1523 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1524 if (ret)
1525 goto out;
1528 out:
1529 drm_gem_object_unreference(obj);
1530 unlock:
1531 mutex_unlock(&dev->struct_mutex);
1532 return ret;
1535 static void
1536 i915_gem_object_put_pages(struct drm_gem_object *obj)
1538 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1539 int page_count = obj->size / PAGE_SIZE;
1540 int i;
1542 BUG_ON(obj_priv->pages_refcount == 0);
1543 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1545 if (--obj_priv->pages_refcount != 0)
1546 return;
1548 if (obj_priv->tiling_mode != I915_TILING_NONE)
1549 i915_gem_object_save_bit_17_swizzle(obj);
1551 if (obj_priv->madv == I915_MADV_DONTNEED)
1552 obj_priv->dirty = 0;
1554 for (i = 0; i < page_count; i++) {
1555 if (obj_priv->dirty)
1556 set_page_dirty(obj_priv->pages[i]);
1558 if (obj_priv->madv == I915_MADV_WILLNEED)
1559 mark_page_accessed(obj_priv->pages[i]);
1561 page_cache_release(obj_priv->pages[i]);
1563 obj_priv->dirty = 0;
1565 drm_free_large(obj_priv->pages);
1566 obj_priv->pages = NULL;
1569 static uint32_t
1570 i915_gem_next_request_seqno(struct drm_device *dev,
1571 struct intel_ring_buffer *ring)
1573 drm_i915_private_t *dev_priv = dev->dev_private;
1575 ring->outstanding_lazy_request = true;
1576 return dev_priv->next_seqno;
1579 static void
1580 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1581 struct intel_ring_buffer *ring)
1583 struct drm_device *dev = obj->dev;
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1586 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1588 BUG_ON(ring == NULL);
1589 obj_priv->ring = ring;
1591 /* Add a reference if we're newly entering the active list. */
1592 if (!obj_priv->active) {
1593 drm_gem_object_reference(obj);
1594 obj_priv->active = 1;
1597 /* Move from whatever list we were on to the tail of execution. */
1598 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1599 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1600 obj_priv->last_rendering_seqno = seqno;
1603 static void
1604 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1606 struct drm_device *dev = obj->dev;
1607 drm_i915_private_t *dev_priv = dev->dev_private;
1608 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1610 BUG_ON(!obj_priv->active);
1611 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1612 list_del_init(&obj_priv->ring_list);
1613 obj_priv->last_rendering_seqno = 0;
1616 /* Immediately discard the backing storage */
1617 static void
1618 i915_gem_object_truncate(struct drm_gem_object *obj)
1620 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1621 struct inode *inode;
1623 /* Our goal here is to return as much of the memory as
1624 * is possible back to the system as we are called from OOM.
1625 * To do this we must instruct the shmfs to drop all of its
1626 * backing pages, *now*. Here we mirror the actions taken
1627 * when by shmem_delete_inode() to release the backing store.
1629 inode = obj->filp->f_path.dentry->d_inode;
1630 truncate_inode_pages(inode->i_mapping, 0);
1631 if (inode->i_op->truncate_range)
1632 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1634 obj_priv->madv = __I915_MADV_PURGED;
1637 static inline int
1638 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1640 return obj_priv->madv == I915_MADV_DONTNEED;
1643 static void
1644 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1646 struct drm_device *dev = obj->dev;
1647 drm_i915_private_t *dev_priv = dev->dev_private;
1648 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1650 if (obj_priv->pin_count != 0)
1651 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1652 else
1653 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1654 list_del_init(&obj_priv->ring_list);
1656 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1658 obj_priv->last_rendering_seqno = 0;
1659 obj_priv->ring = NULL;
1660 if (obj_priv->active) {
1661 obj_priv->active = 0;
1662 drm_gem_object_unreference(obj);
1664 WARN_ON(i915_verify_lists(dev));
1667 static void
1668 i915_gem_process_flushing_list(struct drm_device *dev,
1669 uint32_t flush_domains,
1670 struct intel_ring_buffer *ring)
1672 drm_i915_private_t *dev_priv = dev->dev_private;
1673 struct drm_i915_gem_object *obj_priv, *next;
1675 list_for_each_entry_safe(obj_priv, next,
1676 &ring->gpu_write_list,
1677 gpu_write_list) {
1678 struct drm_gem_object *obj = &obj_priv->base;
1680 if (obj->write_domain & flush_domains) {
1681 uint32_t old_write_domain = obj->write_domain;
1683 obj->write_domain = 0;
1684 list_del_init(&obj_priv->gpu_write_list);
1685 i915_gem_object_move_to_active(obj, ring);
1687 /* update the fence lru list */
1688 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1689 struct drm_i915_fence_reg *reg =
1690 &dev_priv->fence_regs[obj_priv->fence_reg];
1691 list_move_tail(&reg->lru_list,
1692 &dev_priv->mm.fence_list);
1695 trace_i915_gem_object_change_domain(obj,
1696 obj->read_domains,
1697 old_write_domain);
1703 i915_add_request(struct drm_device *dev,
1704 struct drm_file *file,
1705 struct drm_i915_gem_request *request,
1706 struct intel_ring_buffer *ring)
1708 drm_i915_private_t *dev_priv = dev->dev_private;
1709 struct drm_i915_file_private *file_priv = NULL;
1710 uint32_t seqno;
1711 int was_empty;
1712 int ret;
1714 BUG_ON(request == NULL);
1716 if (file != NULL)
1717 file_priv = file->driver_priv;
1719 ret = ring->add_request(ring, &seqno);
1720 if (ret)
1721 return ret;
1723 ring->outstanding_lazy_request = false;
1725 request->seqno = seqno;
1726 request->ring = ring;
1727 request->emitted_jiffies = jiffies;
1728 was_empty = list_empty(&ring->request_list);
1729 list_add_tail(&request->list, &ring->request_list);
1731 if (file_priv) {
1732 spin_lock(&file_priv->mm.lock);
1733 request->file_priv = file_priv;
1734 list_add_tail(&request->client_list,
1735 &file_priv->mm.request_list);
1736 spin_unlock(&file_priv->mm.lock);
1739 if (!dev_priv->mm.suspended) {
1740 mod_timer(&dev_priv->hangcheck_timer,
1741 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1742 if (was_empty)
1743 queue_delayed_work(dev_priv->wq,
1744 &dev_priv->mm.retire_work, HZ);
1746 return 0;
1750 * Command execution barrier
1752 * Ensures that all commands in the ring are finished
1753 * before signalling the CPU
1755 static void
1756 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1758 uint32_t flush_domains = 0;
1760 /* The sampler always gets flushed on i965 (sigh) */
1761 if (INTEL_INFO(dev)->gen >= 4)
1762 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1764 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1767 static inline void
1768 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1770 struct drm_i915_file_private *file_priv = request->file_priv;
1772 if (!file_priv)
1773 return;
1775 spin_lock(&file_priv->mm.lock);
1776 list_del(&request->client_list);
1777 request->file_priv = NULL;
1778 spin_unlock(&file_priv->mm.lock);
1781 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1782 struct intel_ring_buffer *ring)
1784 while (!list_empty(&ring->request_list)) {
1785 struct drm_i915_gem_request *request;
1787 request = list_first_entry(&ring->request_list,
1788 struct drm_i915_gem_request,
1789 list);
1791 list_del(&request->list);
1792 i915_gem_request_remove_from_client(request);
1793 kfree(request);
1796 while (!list_empty(&ring->active_list)) {
1797 struct drm_i915_gem_object *obj_priv;
1799 obj_priv = list_first_entry(&ring->active_list,
1800 struct drm_i915_gem_object,
1801 ring_list);
1803 obj_priv->base.write_domain = 0;
1804 list_del_init(&obj_priv->gpu_write_list);
1805 i915_gem_object_move_to_inactive(&obj_priv->base);
1809 void i915_gem_reset(struct drm_device *dev)
1811 struct drm_i915_private *dev_priv = dev->dev_private;
1812 struct drm_i915_gem_object *obj_priv;
1813 int i;
1815 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1816 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1817 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1819 /* Remove anything from the flushing lists. The GPU cache is likely
1820 * to be lost on reset along with the data, so simply move the
1821 * lost bo to the inactive list.
1823 while (!list_empty(&dev_priv->mm.flushing_list)) {
1824 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1825 struct drm_i915_gem_object,
1826 mm_list);
1828 obj_priv->base.write_domain = 0;
1829 list_del_init(&obj_priv->gpu_write_list);
1830 i915_gem_object_move_to_inactive(&obj_priv->base);
1833 /* Move everything out of the GPU domains to ensure we do any
1834 * necessary invalidation upon reuse.
1836 list_for_each_entry(obj_priv,
1837 &dev_priv->mm.inactive_list,
1838 mm_list)
1840 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1843 /* The fence registers are invalidated so clear them out */
1844 for (i = 0; i < 16; i++) {
1845 struct drm_i915_fence_reg *reg;
1847 reg = &dev_priv->fence_regs[i];
1848 if (!reg->obj)
1849 continue;
1851 i915_gem_clear_fence_reg(reg->obj);
1856 * This function clears the request list as sequence numbers are passed.
1858 static void
1859 i915_gem_retire_requests_ring(struct drm_device *dev,
1860 struct intel_ring_buffer *ring)
1862 drm_i915_private_t *dev_priv = dev->dev_private;
1863 uint32_t seqno;
1865 if (!ring->status_page.page_addr ||
1866 list_empty(&ring->request_list))
1867 return;
1869 WARN_ON(i915_verify_lists(dev));
1871 seqno = ring->get_seqno(ring);
1872 while (!list_empty(&ring->request_list)) {
1873 struct drm_i915_gem_request *request;
1875 request = list_first_entry(&ring->request_list,
1876 struct drm_i915_gem_request,
1877 list);
1879 if (!i915_seqno_passed(seqno, request->seqno))
1880 break;
1882 trace_i915_gem_request_retire(dev, request->seqno);
1884 list_del(&request->list);
1885 i915_gem_request_remove_from_client(request);
1886 kfree(request);
1889 /* Move any buffers on the active list that are no longer referenced
1890 * by the ringbuffer to the flushing/inactive lists as appropriate.
1892 while (!list_empty(&ring->active_list)) {
1893 struct drm_gem_object *obj;
1894 struct drm_i915_gem_object *obj_priv;
1896 obj_priv = list_first_entry(&ring->active_list,
1897 struct drm_i915_gem_object,
1898 ring_list);
1900 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1901 break;
1903 obj = &obj_priv->base;
1904 if (obj->write_domain != 0)
1905 i915_gem_object_move_to_flushing(obj);
1906 else
1907 i915_gem_object_move_to_inactive(obj);
1910 if (unlikely (dev_priv->trace_irq_seqno &&
1911 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1912 ring->user_irq_put(ring);
1913 dev_priv->trace_irq_seqno = 0;
1916 WARN_ON(i915_verify_lists(dev));
1919 void
1920 i915_gem_retire_requests(struct drm_device *dev)
1922 drm_i915_private_t *dev_priv = dev->dev_private;
1924 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1925 struct drm_i915_gem_object *obj_priv, *tmp;
1927 /* We must be careful that during unbind() we do not
1928 * accidentally infinitely recurse into retire requests.
1929 * Currently:
1930 * retire -> free -> unbind -> wait -> retire_ring
1932 list_for_each_entry_safe(obj_priv, tmp,
1933 &dev_priv->mm.deferred_free_list,
1934 mm_list)
1935 i915_gem_free_object_tail(&obj_priv->base);
1938 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1939 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1940 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1943 static void
1944 i915_gem_retire_work_handler(struct work_struct *work)
1946 drm_i915_private_t *dev_priv;
1947 struct drm_device *dev;
1949 dev_priv = container_of(work, drm_i915_private_t,
1950 mm.retire_work.work);
1951 dev = dev_priv->dev;
1953 /* Come back later if the device is busy... */
1954 if (!mutex_trylock(&dev->struct_mutex)) {
1955 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1956 return;
1959 i915_gem_retire_requests(dev);
1961 if (!dev_priv->mm.suspended &&
1962 (!list_empty(&dev_priv->render_ring.request_list) ||
1963 !list_empty(&dev_priv->bsd_ring.request_list) ||
1964 !list_empty(&dev_priv->blt_ring.request_list)))
1965 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1966 mutex_unlock(&dev->struct_mutex);
1970 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1971 bool interruptible, struct intel_ring_buffer *ring)
1973 drm_i915_private_t *dev_priv = dev->dev_private;
1974 u32 ier;
1975 int ret = 0;
1977 BUG_ON(seqno == 0);
1979 if (atomic_read(&dev_priv->mm.wedged))
1980 return -EAGAIN;
1982 if (ring->outstanding_lazy_request) {
1983 struct drm_i915_gem_request *request;
1985 request = kzalloc(sizeof(*request), GFP_KERNEL);
1986 if (request == NULL)
1987 return -ENOMEM;
1989 ret = i915_add_request(dev, NULL, request, ring);
1990 if (ret) {
1991 kfree(request);
1992 return ret;
1995 seqno = request->seqno;
1997 BUG_ON(seqno == dev_priv->next_seqno);
1999 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2000 if (HAS_PCH_SPLIT(dev))
2001 ier = I915_READ(DEIER) | I915_READ(GTIER);
2002 else
2003 ier = I915_READ(IER);
2004 if (!ier) {
2005 DRM_ERROR("something (likely vbetool) disabled "
2006 "interrupts, re-enabling\n");
2007 i915_driver_irq_preinstall(dev);
2008 i915_driver_irq_postinstall(dev);
2011 trace_i915_gem_request_wait_begin(dev, seqno);
2013 ring->waiting_seqno = seqno;
2014 ring->user_irq_get(ring);
2015 if (interruptible)
2016 ret = wait_event_interruptible(ring->irq_queue,
2017 i915_seqno_passed(ring->get_seqno(ring), seqno)
2018 || atomic_read(&dev_priv->mm.wedged));
2019 else
2020 wait_event(ring->irq_queue,
2021 i915_seqno_passed(ring->get_seqno(ring), seqno)
2022 || atomic_read(&dev_priv->mm.wedged));
2024 ring->user_irq_put(ring);
2025 ring->waiting_seqno = 0;
2027 trace_i915_gem_request_wait_end(dev, seqno);
2029 if (atomic_read(&dev_priv->mm.wedged))
2030 ret = -EAGAIN;
2032 if (ret && ret != -ERESTARTSYS)
2033 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2034 __func__, ret, seqno, ring->get_seqno(ring),
2035 dev_priv->next_seqno);
2037 /* Directly dispatch request retiring. While we have the work queue
2038 * to handle this, the waiter on a request often wants an associated
2039 * buffer to have made it to the inactive list, and we would need
2040 * a separate wait queue to handle that.
2042 if (ret == 0)
2043 i915_gem_retire_requests_ring(dev, ring);
2045 return ret;
2049 * Waits for a sequence number to be signaled, and cleans up the
2050 * request and object lists appropriately for that event.
2052 static int
2053 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2054 struct intel_ring_buffer *ring)
2056 return i915_do_wait_request(dev, seqno, 1, ring);
2059 static void
2060 i915_gem_flush_ring(struct drm_device *dev,
2061 struct drm_file *file_priv,
2062 struct intel_ring_buffer *ring,
2063 uint32_t invalidate_domains,
2064 uint32_t flush_domains)
2066 ring->flush(ring, invalidate_domains, flush_domains);
2067 i915_gem_process_flushing_list(dev, flush_domains, ring);
2070 static void
2071 i915_gem_flush(struct drm_device *dev,
2072 struct drm_file *file_priv,
2073 uint32_t invalidate_domains,
2074 uint32_t flush_domains,
2075 uint32_t flush_rings)
2077 drm_i915_private_t *dev_priv = dev->dev_private;
2079 if (flush_domains & I915_GEM_DOMAIN_CPU)
2080 drm_agp_chipset_flush(dev);
2082 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2083 if (flush_rings & RING_RENDER)
2084 i915_gem_flush_ring(dev, file_priv,
2085 &dev_priv->render_ring,
2086 invalidate_domains, flush_domains);
2087 if (flush_rings & RING_BSD)
2088 i915_gem_flush_ring(dev, file_priv,
2089 &dev_priv->bsd_ring,
2090 invalidate_domains, flush_domains);
2091 if (flush_rings & RING_BLT)
2092 i915_gem_flush_ring(dev, file_priv,
2093 &dev_priv->blt_ring,
2094 invalidate_domains, flush_domains);
2099 * Ensures that all rendering to the object has completed and the object is
2100 * safe to unbind from the GTT or access from the CPU.
2102 static int
2103 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2104 bool interruptible)
2106 struct drm_device *dev = obj->dev;
2107 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2108 int ret;
2110 /* This function only exists to support waiting for existing rendering,
2111 * not for emitting required flushes.
2113 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2115 /* If there is rendering queued on the buffer being evicted, wait for
2116 * it.
2118 if (obj_priv->active) {
2119 ret = i915_do_wait_request(dev,
2120 obj_priv->last_rendering_seqno,
2121 interruptible,
2122 obj_priv->ring);
2123 if (ret)
2124 return ret;
2127 return 0;
2131 * Unbinds an object from the GTT aperture.
2134 i915_gem_object_unbind(struct drm_gem_object *obj)
2136 struct drm_device *dev = obj->dev;
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2139 int ret = 0;
2141 if (obj_priv->gtt_space == NULL)
2142 return 0;
2144 if (obj_priv->pin_count != 0) {
2145 DRM_ERROR("Attempting to unbind pinned buffer\n");
2146 return -EINVAL;
2149 /* blow away mappings if mapped through GTT */
2150 i915_gem_release_mmap(obj);
2152 /* Move the object to the CPU domain to ensure that
2153 * any possible CPU writes while it's not in the GTT
2154 * are flushed when we go to remap it. This will
2155 * also ensure that all pending GPU writes are finished
2156 * before we unbind.
2158 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2159 if (ret == -ERESTARTSYS)
2160 return ret;
2161 /* Continue on if we fail due to EIO, the GPU is hung so we
2162 * should be safe and we need to cleanup or else we might
2163 * cause memory corruption through use-after-free.
2165 if (ret) {
2166 i915_gem_clflush_object(obj);
2167 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2170 /* release the fence reg _after_ flushing */
2171 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2172 i915_gem_clear_fence_reg(obj);
2174 drm_unbind_agp(obj_priv->agp_mem);
2175 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2177 i915_gem_object_put_pages(obj);
2178 BUG_ON(obj_priv->pages_refcount);
2180 i915_gem_info_remove_gtt(dev_priv, obj->size);
2181 list_del_init(&obj_priv->mm_list);
2183 drm_mm_put_block(obj_priv->gtt_space);
2184 obj_priv->gtt_space = NULL;
2185 obj_priv->gtt_offset = 0;
2187 if (i915_gem_object_is_purgeable(obj_priv))
2188 i915_gem_object_truncate(obj);
2190 trace_i915_gem_object_unbind(obj);
2192 return ret;
2195 static int i915_ring_idle(struct drm_device *dev,
2196 struct intel_ring_buffer *ring)
2198 if (list_empty(&ring->gpu_write_list))
2199 return 0;
2201 i915_gem_flush_ring(dev, NULL, ring,
2202 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2203 return i915_wait_request(dev,
2204 i915_gem_next_request_seqno(dev, ring),
2205 ring);
2209 i915_gpu_idle(struct drm_device *dev)
2211 drm_i915_private_t *dev_priv = dev->dev_private;
2212 bool lists_empty;
2213 int ret;
2215 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2216 list_empty(&dev_priv->render_ring.active_list) &&
2217 list_empty(&dev_priv->bsd_ring.active_list) &&
2218 list_empty(&dev_priv->blt_ring.active_list));
2219 if (lists_empty)
2220 return 0;
2222 /* Flush everything onto the inactive list. */
2223 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2224 if (ret)
2225 return ret;
2227 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2228 if (ret)
2229 return ret;
2231 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2232 if (ret)
2233 return ret;
2235 return 0;
2238 static int
2239 i915_gem_object_get_pages(struct drm_gem_object *obj,
2240 gfp_t gfpmask)
2242 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2243 int page_count, i;
2244 struct address_space *mapping;
2245 struct inode *inode;
2246 struct page *page;
2248 BUG_ON(obj_priv->pages_refcount
2249 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2251 if (obj_priv->pages_refcount++ != 0)
2252 return 0;
2254 /* Get the list of pages out of our struct file. They'll be pinned
2255 * at this point until we release them.
2257 page_count = obj->size / PAGE_SIZE;
2258 BUG_ON(obj_priv->pages != NULL);
2259 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2260 if (obj_priv->pages == NULL) {
2261 obj_priv->pages_refcount--;
2262 return -ENOMEM;
2265 inode = obj->filp->f_path.dentry->d_inode;
2266 mapping = inode->i_mapping;
2267 for (i = 0; i < page_count; i++) {
2268 page = read_cache_page_gfp(mapping, i,
2269 GFP_HIGHUSER |
2270 __GFP_COLD |
2271 __GFP_RECLAIMABLE |
2272 gfpmask);
2273 if (IS_ERR(page))
2274 goto err_pages;
2276 obj_priv->pages[i] = page;
2279 if (obj_priv->tiling_mode != I915_TILING_NONE)
2280 i915_gem_object_do_bit_17_swizzle(obj);
2282 return 0;
2284 err_pages:
2285 while (i--)
2286 page_cache_release(obj_priv->pages[i]);
2288 drm_free_large(obj_priv->pages);
2289 obj_priv->pages = NULL;
2290 obj_priv->pages_refcount--;
2291 return PTR_ERR(page);
2294 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2296 struct drm_gem_object *obj = reg->obj;
2297 struct drm_device *dev = obj->dev;
2298 drm_i915_private_t *dev_priv = dev->dev_private;
2299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2300 int regnum = obj_priv->fence_reg;
2301 uint64_t val;
2303 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2304 0xfffff000) << 32;
2305 val |= obj_priv->gtt_offset & 0xfffff000;
2306 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2307 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2309 if (obj_priv->tiling_mode == I915_TILING_Y)
2310 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2311 val |= I965_FENCE_REG_VALID;
2313 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2316 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2318 struct drm_gem_object *obj = reg->obj;
2319 struct drm_device *dev = obj->dev;
2320 drm_i915_private_t *dev_priv = dev->dev_private;
2321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2322 int regnum = obj_priv->fence_reg;
2323 uint64_t val;
2325 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2326 0xfffff000) << 32;
2327 val |= obj_priv->gtt_offset & 0xfffff000;
2328 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2329 if (obj_priv->tiling_mode == I915_TILING_Y)
2330 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2331 val |= I965_FENCE_REG_VALID;
2333 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2336 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2338 struct drm_gem_object *obj = reg->obj;
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
2341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2342 int regnum = obj_priv->fence_reg;
2343 int tile_width;
2344 uint32_t fence_reg, val;
2345 uint32_t pitch_val;
2347 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2348 (obj_priv->gtt_offset & (obj->size - 1))) {
2349 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2350 __func__, obj_priv->gtt_offset, obj->size);
2351 return;
2354 if (obj_priv->tiling_mode == I915_TILING_Y &&
2355 HAS_128_BYTE_Y_TILING(dev))
2356 tile_width = 128;
2357 else
2358 tile_width = 512;
2360 /* Note: pitch better be a power of two tile widths */
2361 pitch_val = obj_priv->stride / tile_width;
2362 pitch_val = ffs(pitch_val) - 1;
2364 if (obj_priv->tiling_mode == I915_TILING_Y &&
2365 HAS_128_BYTE_Y_TILING(dev))
2366 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2367 else
2368 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2370 val = obj_priv->gtt_offset;
2371 if (obj_priv->tiling_mode == I915_TILING_Y)
2372 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2373 val |= I915_FENCE_SIZE_BITS(obj->size);
2374 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2375 val |= I830_FENCE_REG_VALID;
2377 if (regnum < 8)
2378 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2379 else
2380 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2381 I915_WRITE(fence_reg, val);
2384 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2386 struct drm_gem_object *obj = reg->obj;
2387 struct drm_device *dev = obj->dev;
2388 drm_i915_private_t *dev_priv = dev->dev_private;
2389 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2390 int regnum = obj_priv->fence_reg;
2391 uint32_t val;
2392 uint32_t pitch_val;
2393 uint32_t fence_size_bits;
2395 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2396 (obj_priv->gtt_offset & (obj->size - 1))) {
2397 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2398 __func__, obj_priv->gtt_offset);
2399 return;
2402 pitch_val = obj_priv->stride / 128;
2403 pitch_val = ffs(pitch_val) - 1;
2404 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2406 val = obj_priv->gtt_offset;
2407 if (obj_priv->tiling_mode == I915_TILING_Y)
2408 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2409 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2410 WARN_ON(fence_size_bits & ~0x00000f00);
2411 val |= fence_size_bits;
2412 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2413 val |= I830_FENCE_REG_VALID;
2415 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2418 static int i915_find_fence_reg(struct drm_device *dev,
2419 bool interruptible)
2421 struct drm_i915_fence_reg *reg = NULL;
2422 struct drm_i915_gem_object *obj_priv = NULL;
2423 struct drm_i915_private *dev_priv = dev->dev_private;
2424 struct drm_gem_object *obj = NULL;
2425 int i, avail, ret;
2427 /* First try to find a free reg */
2428 avail = 0;
2429 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2430 reg = &dev_priv->fence_regs[i];
2431 if (!reg->obj)
2432 return i;
2434 obj_priv = to_intel_bo(reg->obj);
2435 if (!obj_priv->pin_count)
2436 avail++;
2439 if (avail == 0)
2440 return -ENOSPC;
2442 /* None available, try to steal one or wait for a user to finish */
2443 i = I915_FENCE_REG_NONE;
2444 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2445 lru_list) {
2446 obj = reg->obj;
2447 obj_priv = to_intel_bo(obj);
2449 if (obj_priv->pin_count)
2450 continue;
2452 /* found one! */
2453 i = obj_priv->fence_reg;
2454 break;
2457 BUG_ON(i == I915_FENCE_REG_NONE);
2459 /* We only have a reference on obj from the active list. put_fence_reg
2460 * might drop that one, causing a use-after-free in it. So hold a
2461 * private reference to obj like the other callers of put_fence_reg
2462 * (set_tiling ioctl) do. */
2463 drm_gem_object_reference(obj);
2464 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2465 drm_gem_object_unreference(obj);
2466 if (ret != 0)
2467 return ret;
2469 return i;
2473 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2474 * @obj: object to map through a fence reg
2476 * When mapping objects through the GTT, userspace wants to be able to write
2477 * to them without having to worry about swizzling if the object is tiled.
2479 * This function walks the fence regs looking for a free one for @obj,
2480 * stealing one if it can't find any.
2482 * It then sets up the reg based on the object's properties: address, pitch
2483 * and tiling format.
2486 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2487 bool interruptible)
2489 struct drm_device *dev = obj->dev;
2490 struct drm_i915_private *dev_priv = dev->dev_private;
2491 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2492 struct drm_i915_fence_reg *reg = NULL;
2493 int ret;
2495 /* Just update our place in the LRU if our fence is getting used. */
2496 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2497 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2498 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2499 return 0;
2502 switch (obj_priv->tiling_mode) {
2503 case I915_TILING_NONE:
2504 WARN(1, "allocating a fence for non-tiled object?\n");
2505 break;
2506 case I915_TILING_X:
2507 if (!obj_priv->stride)
2508 return -EINVAL;
2509 WARN((obj_priv->stride & (512 - 1)),
2510 "object 0x%08x is X tiled but has non-512B pitch\n",
2511 obj_priv->gtt_offset);
2512 break;
2513 case I915_TILING_Y:
2514 if (!obj_priv->stride)
2515 return -EINVAL;
2516 WARN((obj_priv->stride & (128 - 1)),
2517 "object 0x%08x is Y tiled but has non-128B pitch\n",
2518 obj_priv->gtt_offset);
2519 break;
2522 ret = i915_find_fence_reg(dev, interruptible);
2523 if (ret < 0)
2524 return ret;
2526 obj_priv->fence_reg = ret;
2527 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2528 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2530 reg->obj = obj;
2532 switch (INTEL_INFO(dev)->gen) {
2533 case 6:
2534 sandybridge_write_fence_reg(reg);
2535 break;
2536 case 5:
2537 case 4:
2538 i965_write_fence_reg(reg);
2539 break;
2540 case 3:
2541 i915_write_fence_reg(reg);
2542 break;
2543 case 2:
2544 i830_write_fence_reg(reg);
2545 break;
2548 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2549 obj_priv->tiling_mode);
2551 return 0;
2555 * i915_gem_clear_fence_reg - clear out fence register info
2556 * @obj: object to clear
2558 * Zeroes out the fence register itself and clears out the associated
2559 * data structures in dev_priv and obj_priv.
2561 static void
2562 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2564 struct drm_device *dev = obj->dev;
2565 drm_i915_private_t *dev_priv = dev->dev_private;
2566 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2567 struct drm_i915_fence_reg *reg =
2568 &dev_priv->fence_regs[obj_priv->fence_reg];
2569 uint32_t fence_reg;
2571 switch (INTEL_INFO(dev)->gen) {
2572 case 6:
2573 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2574 (obj_priv->fence_reg * 8), 0);
2575 break;
2576 case 5:
2577 case 4:
2578 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2579 break;
2580 case 3:
2581 if (obj_priv->fence_reg >= 8)
2582 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2583 else
2584 case 2:
2585 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2587 I915_WRITE(fence_reg, 0);
2588 break;
2591 reg->obj = NULL;
2592 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2593 list_del_init(&reg->lru_list);
2597 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2598 * to the buffer to finish, and then resets the fence register.
2599 * @obj: tiled object holding a fence register.
2600 * @bool: whether the wait upon the fence is interruptible
2602 * Zeroes out the fence register itself and clears out the associated
2603 * data structures in dev_priv and obj_priv.
2606 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2607 bool interruptible)
2609 struct drm_device *dev = obj->dev;
2610 struct drm_i915_private *dev_priv = dev->dev_private;
2611 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2612 struct drm_i915_fence_reg *reg;
2614 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2615 return 0;
2617 /* If we've changed tiling, GTT-mappings of the object
2618 * need to re-fault to ensure that the correct fence register
2619 * setup is in place.
2621 i915_gem_release_mmap(obj);
2623 /* On the i915, GPU access to tiled buffers is via a fence,
2624 * therefore we must wait for any outstanding access to complete
2625 * before clearing the fence.
2627 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2628 if (reg->gpu) {
2629 int ret;
2631 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2632 if (ret)
2633 return ret;
2635 ret = i915_gem_object_wait_rendering(obj, interruptible);
2636 if (ret)
2637 return ret;
2639 reg->gpu = false;
2642 i915_gem_object_flush_gtt_write_domain(obj);
2643 i915_gem_clear_fence_reg(obj);
2645 return 0;
2649 * Finds free space in the GTT aperture and binds the object there.
2651 static int
2652 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2653 unsigned alignment,
2654 bool mappable)
2656 struct drm_device *dev = obj->dev;
2657 drm_i915_private_t *dev_priv = dev->dev_private;
2658 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2659 struct drm_mm_node *free_space;
2660 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2661 int ret;
2663 if (obj_priv->madv != I915_MADV_WILLNEED) {
2664 DRM_ERROR("Attempting to bind a purgeable object\n");
2665 return -EINVAL;
2668 if (alignment == 0)
2669 alignment = i915_gem_get_gtt_alignment(obj);
2670 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2671 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2672 return -EINVAL;
2675 /* If the object is bigger than the entire aperture, reject it early
2676 * before evicting everything in a vain attempt to find space.
2678 if (obj->size >
2679 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2680 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2681 return -E2BIG;
2684 search_free:
2685 if (mappable)
2686 free_space =
2687 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2688 obj->size, alignment, 0,
2689 dev_priv->mm.gtt_mappable_end,
2691 else
2692 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2693 obj->size, alignment, 0);
2695 if (free_space != NULL) {
2696 if (mappable)
2697 obj_priv->gtt_space =
2698 drm_mm_get_block_range_generic(free_space,
2699 obj->size,
2700 alignment, 0,
2701 dev_priv->mm.gtt_mappable_end,
2703 else
2704 obj_priv->gtt_space =
2705 drm_mm_get_block(free_space, obj->size,
2706 alignment);
2708 if (obj_priv->gtt_space == NULL) {
2709 /* If the gtt is empty and we're still having trouble
2710 * fitting our object in, we're out of memory.
2712 ret = i915_gem_evict_something(dev, obj->size, alignment,
2713 mappable);
2714 if (ret)
2715 return ret;
2717 goto search_free;
2720 ret = i915_gem_object_get_pages(obj, gfpmask);
2721 if (ret) {
2722 drm_mm_put_block(obj_priv->gtt_space);
2723 obj_priv->gtt_space = NULL;
2725 if (ret == -ENOMEM) {
2726 /* first try to clear up some space from the GTT */
2727 ret = i915_gem_evict_something(dev, obj->size,
2728 alignment, mappable);
2729 if (ret) {
2730 /* now try to shrink everyone else */
2731 if (gfpmask) {
2732 gfpmask = 0;
2733 goto search_free;
2736 return ret;
2739 goto search_free;
2742 return ret;
2745 /* Create an AGP memory structure pointing at our pages, and bind it
2746 * into the GTT.
2748 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2749 obj_priv->pages,
2750 obj->size >> PAGE_SHIFT,
2751 obj_priv->gtt_space->start,
2752 obj_priv->agp_type);
2753 if (obj_priv->agp_mem == NULL) {
2754 i915_gem_object_put_pages(obj);
2755 drm_mm_put_block(obj_priv->gtt_space);
2756 obj_priv->gtt_space = NULL;
2758 ret = i915_gem_evict_something(dev, obj->size, alignment,
2759 mappable);
2760 if (ret)
2761 return ret;
2763 goto search_free;
2766 /* keep track of bounds object by adding it to the inactive list */
2767 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2768 i915_gem_info_add_gtt(dev_priv, obj->size);
2770 /* Assert that the object is not currently in any GPU domain. As it
2771 * wasn't in the GTT, there shouldn't be any way it could have been in
2772 * a GPU cache
2774 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2775 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2777 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2778 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2780 return 0;
2783 void
2784 i915_gem_clflush_object(struct drm_gem_object *obj)
2786 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2788 /* If we don't have a page list set up, then we're not pinned
2789 * to GPU, and we can ignore the cache flush because it'll happen
2790 * again at bind time.
2792 if (obj_priv->pages == NULL)
2793 return;
2795 trace_i915_gem_object_clflush(obj);
2797 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2800 /** Flushes any GPU write domain for the object if it's dirty. */
2801 static int
2802 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2803 bool pipelined)
2805 struct drm_device *dev = obj->dev;
2806 uint32_t old_write_domain;
2808 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2809 return 0;
2811 /* Queue the GPU write cache flushing we need. */
2812 old_write_domain = obj->write_domain;
2813 i915_gem_flush_ring(dev, NULL,
2814 to_intel_bo(obj)->ring,
2815 0, obj->write_domain);
2816 BUG_ON(obj->write_domain);
2818 trace_i915_gem_object_change_domain(obj,
2819 obj->read_domains,
2820 old_write_domain);
2822 if (pipelined)
2823 return 0;
2825 return i915_gem_object_wait_rendering(obj, true);
2828 /** Flushes the GTT write domain for the object if it's dirty. */
2829 static void
2830 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2832 uint32_t old_write_domain;
2834 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2835 return;
2837 /* No actual flushing is required for the GTT write domain. Writes
2838 * to it immediately go to main memory as far as we know, so there's
2839 * no chipset flush. It also doesn't land in render cache.
2841 old_write_domain = obj->write_domain;
2842 obj->write_domain = 0;
2844 trace_i915_gem_object_change_domain(obj,
2845 obj->read_domains,
2846 old_write_domain);
2849 /** Flushes the CPU write domain for the object if it's dirty. */
2850 static void
2851 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2853 struct drm_device *dev = obj->dev;
2854 uint32_t old_write_domain;
2856 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2857 return;
2859 i915_gem_clflush_object(obj);
2860 drm_agp_chipset_flush(dev);
2861 old_write_domain = obj->write_domain;
2862 obj->write_domain = 0;
2864 trace_i915_gem_object_change_domain(obj,
2865 obj->read_domains,
2866 old_write_domain);
2870 * Moves a single object to the GTT read, and possibly write domain.
2872 * This function returns when the move is complete, including waiting on
2873 * flushes to occur.
2876 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2878 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2879 uint32_t old_write_domain, old_read_domains;
2880 int ret;
2882 /* Not valid to be called on unbound objects. */
2883 if (obj_priv->gtt_space == NULL)
2884 return -EINVAL;
2886 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2887 if (ret != 0)
2888 return ret;
2890 i915_gem_object_flush_cpu_write_domain(obj);
2892 if (write) {
2893 ret = i915_gem_object_wait_rendering(obj, true);
2894 if (ret)
2895 return ret;
2898 old_write_domain = obj->write_domain;
2899 old_read_domains = obj->read_domains;
2901 /* It should now be out of any other write domains, and we can update
2902 * the domain values for our changes.
2904 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2905 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2906 if (write) {
2907 obj->read_domains = I915_GEM_DOMAIN_GTT;
2908 obj->write_domain = I915_GEM_DOMAIN_GTT;
2909 obj_priv->dirty = 1;
2912 trace_i915_gem_object_change_domain(obj,
2913 old_read_domains,
2914 old_write_domain);
2916 return 0;
2920 * Prepare buffer for display plane. Use uninterruptible for possible flush
2921 * wait, as in modesetting process we're not supposed to be interrupted.
2924 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2925 bool pipelined)
2927 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2928 uint32_t old_read_domains;
2929 int ret;
2931 /* Not valid to be called on unbound objects. */
2932 if (obj_priv->gtt_space == NULL)
2933 return -EINVAL;
2935 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2936 if (ret)
2937 return ret;
2939 /* Currently, we are always called from an non-interruptible context. */
2940 if (!pipelined) {
2941 ret = i915_gem_object_wait_rendering(obj, false);
2942 if (ret)
2943 return ret;
2946 i915_gem_object_flush_cpu_write_domain(obj);
2948 old_read_domains = obj->read_domains;
2949 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2951 trace_i915_gem_object_change_domain(obj,
2952 old_read_domains,
2953 obj->write_domain);
2955 return 0;
2959 * Moves a single object to the CPU read, and possibly write domain.
2961 * This function returns when the move is complete, including waiting on
2962 * flushes to occur.
2964 static int
2965 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2967 uint32_t old_write_domain, old_read_domains;
2968 int ret;
2970 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2971 if (ret != 0)
2972 return ret;
2974 i915_gem_object_flush_gtt_write_domain(obj);
2976 /* If we have a partially-valid cache of the object in the CPU,
2977 * finish invalidating it and free the per-page flags.
2979 i915_gem_object_set_to_full_cpu_read_domain(obj);
2981 if (write) {
2982 ret = i915_gem_object_wait_rendering(obj, true);
2983 if (ret)
2984 return ret;
2987 old_write_domain = obj->write_domain;
2988 old_read_domains = obj->read_domains;
2990 /* Flush the CPU cache if it's still invalid. */
2991 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2992 i915_gem_clflush_object(obj);
2994 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2997 /* It should now be out of any other write domains, and we can update
2998 * the domain values for our changes.
3000 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3002 /* If we're writing through the CPU, then the GPU read domains will
3003 * need to be invalidated at next use.
3005 if (write) {
3006 obj->read_domains = I915_GEM_DOMAIN_CPU;
3007 obj->write_domain = I915_GEM_DOMAIN_CPU;
3010 trace_i915_gem_object_change_domain(obj,
3011 old_read_domains,
3012 old_write_domain);
3014 return 0;
3018 * Set the next domain for the specified object. This
3019 * may not actually perform the necessary flushing/invaliding though,
3020 * as that may want to be batched with other set_domain operations
3022 * This is (we hope) the only really tricky part of gem. The goal
3023 * is fairly simple -- track which caches hold bits of the object
3024 * and make sure they remain coherent. A few concrete examples may
3025 * help to explain how it works. For shorthand, we use the notation
3026 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3027 * a pair of read and write domain masks.
3029 * Case 1: the batch buffer
3031 * 1. Allocated
3032 * 2. Written by CPU
3033 * 3. Mapped to GTT
3034 * 4. Read by GPU
3035 * 5. Unmapped from GTT
3036 * 6. Freed
3038 * Let's take these a step at a time
3040 * 1. Allocated
3041 * Pages allocated from the kernel may still have
3042 * cache contents, so we set them to (CPU, CPU) always.
3043 * 2. Written by CPU (using pwrite)
3044 * The pwrite function calls set_domain (CPU, CPU) and
3045 * this function does nothing (as nothing changes)
3046 * 3. Mapped by GTT
3047 * This function asserts that the object is not
3048 * currently in any GPU-based read or write domains
3049 * 4. Read by GPU
3050 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3051 * As write_domain is zero, this function adds in the
3052 * current read domains (CPU+COMMAND, 0).
3053 * flush_domains is set to CPU.
3054 * invalidate_domains is set to COMMAND
3055 * clflush is run to get data out of the CPU caches
3056 * then i915_dev_set_domain calls i915_gem_flush to
3057 * emit an MI_FLUSH and drm_agp_chipset_flush
3058 * 5. Unmapped from GTT
3059 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3060 * flush_domains and invalidate_domains end up both zero
3061 * so no flushing/invalidating happens
3062 * 6. Freed
3063 * yay, done
3065 * Case 2: The shared render buffer
3067 * 1. Allocated
3068 * 2. Mapped to GTT
3069 * 3. Read/written by GPU
3070 * 4. set_domain to (CPU,CPU)
3071 * 5. Read/written by CPU
3072 * 6. Read/written by GPU
3074 * 1. Allocated
3075 * Same as last example, (CPU, CPU)
3076 * 2. Mapped to GTT
3077 * Nothing changes (assertions find that it is not in the GPU)
3078 * 3. Read/written by GPU
3079 * execbuffer calls set_domain (RENDER, RENDER)
3080 * flush_domains gets CPU
3081 * invalidate_domains gets GPU
3082 * clflush (obj)
3083 * MI_FLUSH and drm_agp_chipset_flush
3084 * 4. set_domain (CPU, CPU)
3085 * flush_domains gets GPU
3086 * invalidate_domains gets CPU
3087 * wait_rendering (obj) to make sure all drawing is complete.
3088 * This will include an MI_FLUSH to get the data from GPU
3089 * to memory
3090 * clflush (obj) to invalidate the CPU cache
3091 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3092 * 5. Read/written by CPU
3093 * cache lines are loaded and dirtied
3094 * 6. Read written by GPU
3095 * Same as last GPU access
3097 * Case 3: The constant buffer
3099 * 1. Allocated
3100 * 2. Written by CPU
3101 * 3. Read by GPU
3102 * 4. Updated (written) by CPU again
3103 * 5. Read by GPU
3105 * 1. Allocated
3106 * (CPU, CPU)
3107 * 2. Written by CPU
3108 * (CPU, CPU)
3109 * 3. Read by GPU
3110 * (CPU+RENDER, 0)
3111 * flush_domains = CPU
3112 * invalidate_domains = RENDER
3113 * clflush (obj)
3114 * MI_FLUSH
3115 * drm_agp_chipset_flush
3116 * 4. Updated (written) by CPU again
3117 * (CPU, CPU)
3118 * flush_domains = 0 (no previous write domain)
3119 * invalidate_domains = 0 (no new read domains)
3120 * 5. Read by GPU
3121 * (CPU+RENDER, 0)
3122 * flush_domains = CPU
3123 * invalidate_domains = RENDER
3124 * clflush (obj)
3125 * MI_FLUSH
3126 * drm_agp_chipset_flush
3128 static void
3129 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3130 struct intel_ring_buffer *ring)
3132 struct drm_device *dev = obj->dev;
3133 struct drm_i915_private *dev_priv = dev->dev_private;
3134 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3135 uint32_t invalidate_domains = 0;
3136 uint32_t flush_domains = 0;
3139 * If the object isn't moving to a new write domain,
3140 * let the object stay in multiple read domains
3142 if (obj->pending_write_domain == 0)
3143 obj->pending_read_domains |= obj->read_domains;
3146 * Flush the current write domain if
3147 * the new read domains don't match. Invalidate
3148 * any read domains which differ from the old
3149 * write domain
3151 if (obj->write_domain &&
3152 obj->write_domain != obj->pending_read_domains) {
3153 flush_domains |= obj->write_domain;
3154 invalidate_domains |=
3155 obj->pending_read_domains & ~obj->write_domain;
3158 * Invalidate any read caches which may have
3159 * stale data. That is, any new read domains.
3161 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3162 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3163 i915_gem_clflush_object(obj);
3165 /* The actual obj->write_domain will be updated with
3166 * pending_write_domain after we emit the accumulated flush for all
3167 * of our domain changes in execbuffers (which clears objects'
3168 * write_domains). So if we have a current write domain that we
3169 * aren't changing, set pending_write_domain to that.
3171 if (flush_domains == 0 && obj->pending_write_domain == 0)
3172 obj->pending_write_domain = obj->write_domain;
3174 dev->invalidate_domains |= invalidate_domains;
3175 dev->flush_domains |= flush_domains;
3176 if (flush_domains & I915_GEM_GPU_DOMAINS)
3177 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3178 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3179 dev_priv->mm.flush_rings |= ring->id;
3183 * Moves the object from a partially CPU read to a full one.
3185 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3186 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3188 static void
3189 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3191 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3193 if (!obj_priv->page_cpu_valid)
3194 return;
3196 /* If we're partially in the CPU read domain, finish moving it in.
3198 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3199 int i;
3201 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3202 if (obj_priv->page_cpu_valid[i])
3203 continue;
3204 drm_clflush_pages(obj_priv->pages + i, 1);
3208 /* Free the page_cpu_valid mappings which are now stale, whether
3209 * or not we've got I915_GEM_DOMAIN_CPU.
3211 kfree(obj_priv->page_cpu_valid);
3212 obj_priv->page_cpu_valid = NULL;
3216 * Set the CPU read domain on a range of the object.
3218 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3219 * not entirely valid. The page_cpu_valid member of the object flags which
3220 * pages have been flushed, and will be respected by
3221 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3222 * of the whole object.
3224 * This function returns when the move is complete, including waiting on
3225 * flushes to occur.
3227 static int
3228 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3229 uint64_t offset, uint64_t size)
3231 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3232 uint32_t old_read_domains;
3233 int i, ret;
3235 if (offset == 0 && size == obj->size)
3236 return i915_gem_object_set_to_cpu_domain(obj, 0);
3238 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3239 if (ret != 0)
3240 return ret;
3241 i915_gem_object_flush_gtt_write_domain(obj);
3243 /* If we're already fully in the CPU read domain, we're done. */
3244 if (obj_priv->page_cpu_valid == NULL &&
3245 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3246 return 0;
3248 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3249 * newly adding I915_GEM_DOMAIN_CPU
3251 if (obj_priv->page_cpu_valid == NULL) {
3252 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3253 GFP_KERNEL);
3254 if (obj_priv->page_cpu_valid == NULL)
3255 return -ENOMEM;
3256 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3257 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3259 /* Flush the cache on any pages that are still invalid from the CPU's
3260 * perspective.
3262 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3263 i++) {
3264 if (obj_priv->page_cpu_valid[i])
3265 continue;
3267 drm_clflush_pages(obj_priv->pages + i, 1);
3269 obj_priv->page_cpu_valid[i] = 1;
3272 /* It should now be out of any other write domains, and we can update
3273 * the domain values for our changes.
3275 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3277 old_read_domains = obj->read_domains;
3278 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3280 trace_i915_gem_object_change_domain(obj,
3281 old_read_domains,
3282 obj->write_domain);
3284 return 0;
3288 * Pin an object to the GTT and evaluate the relocations landing in it.
3290 static int
3291 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3292 struct drm_file *file_priv,
3293 struct drm_i915_gem_exec_object2 *entry)
3295 struct drm_device *dev = obj->base.dev;
3296 drm_i915_private_t *dev_priv = dev->dev_private;
3297 struct drm_i915_gem_relocation_entry __user *user_relocs;
3298 struct drm_gem_object *target_obj = NULL;
3299 uint32_t target_handle = 0;
3300 int i, ret = 0;
3302 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3303 for (i = 0; i < entry->relocation_count; i++) {
3304 struct drm_i915_gem_relocation_entry reloc;
3305 uint32_t target_offset;
3307 if (__copy_from_user_inatomic(&reloc,
3308 user_relocs+i,
3309 sizeof(reloc))) {
3310 ret = -EFAULT;
3311 break;
3314 if (reloc.target_handle != target_handle) {
3315 drm_gem_object_unreference(target_obj);
3317 target_obj = drm_gem_object_lookup(dev, file_priv,
3318 reloc.target_handle);
3319 if (target_obj == NULL) {
3320 ret = -ENOENT;
3321 break;
3324 target_handle = reloc.target_handle;
3326 target_offset = to_intel_bo(target_obj)->gtt_offset;
3328 #if WATCH_RELOC
3329 DRM_INFO("%s: obj %p offset %08x target %d "
3330 "read %08x write %08x gtt %08x "
3331 "presumed %08x delta %08x\n",
3332 __func__,
3333 obj,
3334 (int) reloc.offset,
3335 (int) reloc.target_handle,
3336 (int) reloc.read_domains,
3337 (int) reloc.write_domain,
3338 (int) target_offset,
3339 (int) reloc.presumed_offset,
3340 reloc.delta);
3341 #endif
3343 /* The target buffer should have appeared before us in the
3344 * exec_object list, so it should have a GTT space bound by now.
3346 if (target_offset == 0) {
3347 DRM_ERROR("No GTT space found for object %d\n",
3348 reloc.target_handle);
3349 ret = -EINVAL;
3350 break;
3353 /* Validate that the target is in a valid r/w GPU domain */
3354 if (reloc.write_domain & (reloc.write_domain - 1)) {
3355 DRM_ERROR("reloc with multiple write domains: "
3356 "obj %p target %d offset %d "
3357 "read %08x write %08x",
3358 obj, reloc.target_handle,
3359 (int) reloc.offset,
3360 reloc.read_domains,
3361 reloc.write_domain);
3362 ret = -EINVAL;
3363 break;
3365 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3366 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3367 DRM_ERROR("reloc with read/write CPU domains: "
3368 "obj %p target %d offset %d "
3369 "read %08x write %08x",
3370 obj, reloc.target_handle,
3371 (int) reloc.offset,
3372 reloc.read_domains,
3373 reloc.write_domain);
3374 ret = -EINVAL;
3375 break;
3377 if (reloc.write_domain && target_obj->pending_write_domain &&
3378 reloc.write_domain != target_obj->pending_write_domain) {
3379 DRM_ERROR("Write domain conflict: "
3380 "obj %p target %d offset %d "
3381 "new %08x old %08x\n",
3382 obj, reloc.target_handle,
3383 (int) reloc.offset,
3384 reloc.write_domain,
3385 target_obj->pending_write_domain);
3386 ret = -EINVAL;
3387 break;
3390 target_obj->pending_read_domains |= reloc.read_domains;
3391 target_obj->pending_write_domain |= reloc.write_domain;
3393 /* If the relocation already has the right value in it, no
3394 * more work needs to be done.
3396 if (target_offset == reloc.presumed_offset)
3397 continue;
3399 /* Check that the relocation address is valid... */
3400 if (reloc.offset > obj->base.size - 4) {
3401 DRM_ERROR("Relocation beyond object bounds: "
3402 "obj %p target %d offset %d size %d.\n",
3403 obj, reloc.target_handle,
3404 (int) reloc.offset, (int) obj->base.size);
3405 ret = -EINVAL;
3406 break;
3408 if (reloc.offset & 3) {
3409 DRM_ERROR("Relocation not 4-byte aligned: "
3410 "obj %p target %d offset %d.\n",
3411 obj, reloc.target_handle,
3412 (int) reloc.offset);
3413 ret = -EINVAL;
3414 break;
3417 /* and points to somewhere within the target object. */
3418 if (reloc.delta >= target_obj->size) {
3419 DRM_ERROR("Relocation beyond target object bounds: "
3420 "obj %p target %d delta %d size %d.\n",
3421 obj, reloc.target_handle,
3422 (int) reloc.delta, (int) target_obj->size);
3423 ret = -EINVAL;
3424 break;
3427 reloc.delta += target_offset;
3428 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3429 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3430 char *vaddr;
3432 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3433 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3434 kunmap_atomic(vaddr);
3435 } else {
3436 uint32_t __iomem *reloc_entry;
3437 void __iomem *reloc_page;
3439 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3440 if (ret)
3441 break;
3443 /* Map the page containing the relocation we're going to perform. */
3444 reloc.offset += obj->gtt_offset;
3445 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3446 reloc.offset & PAGE_MASK);
3447 reloc_entry = (uint32_t __iomem *)
3448 (reloc_page + (reloc.offset & ~PAGE_MASK));
3449 iowrite32(reloc.delta, reloc_entry);
3450 io_mapping_unmap_atomic(reloc_page);
3453 /* and update the user's relocation entry */
3454 reloc.presumed_offset = target_offset;
3455 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3456 &reloc.presumed_offset,
3457 sizeof(reloc.presumed_offset))) {
3458 ret = -EFAULT;
3459 break;
3463 drm_gem_object_unreference(target_obj);
3464 return ret;
3467 static int
3468 i915_gem_execbuffer_pin(struct drm_device *dev,
3469 struct drm_file *file,
3470 struct drm_gem_object **object_list,
3471 struct drm_i915_gem_exec_object2 *exec_list,
3472 int count)
3474 struct drm_i915_private *dev_priv = dev->dev_private;
3475 int ret, i, retry;
3477 /* attempt to pin all of the buffers into the GTT */
3478 for (retry = 0; retry < 2; retry++) {
3479 ret = 0;
3480 for (i = 0; i < count; i++) {
3481 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3482 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3483 bool need_fence =
3484 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3485 obj->tiling_mode != I915_TILING_NONE;
3487 /* g33/pnv can't fence buffers in the unmappable part */
3488 bool need_mappable =
3489 entry->relocation_count ? true : need_fence;
3491 /* Check fence reg constraints and rebind if necessary */
3492 if (need_fence &&
3493 !i915_gem_object_fence_offset_ok(&obj->base,
3494 obj->tiling_mode)) {
3495 ret = i915_gem_object_unbind(&obj->base);
3496 if (ret)
3497 break;
3500 ret = i915_gem_object_pin(&obj->base,
3501 entry->alignment,
3502 need_mappable);
3503 if (ret)
3504 break;
3507 * Pre-965 chips need a fence register set up in order
3508 * to properly handle blits to/from tiled surfaces.
3510 if (need_fence) {
3511 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3512 if (ret) {
3513 i915_gem_object_unpin(&obj->base);
3514 break;
3517 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3520 entry->offset = obj->gtt_offset;
3523 while (i--)
3524 i915_gem_object_unpin(object_list[i]);
3526 if (ret == 0)
3527 break;
3529 if (ret != -ENOSPC || retry)
3530 return ret;
3532 ret = i915_gem_evict_everything(dev);
3533 if (ret)
3534 return ret;
3537 return 0;
3540 /* Throttle our rendering by waiting until the ring has completed our requests
3541 * emitted over 20 msec ago.
3543 * Note that if we were to use the current jiffies each time around the loop,
3544 * we wouldn't escape the function with any frames outstanding if the time to
3545 * render a frame was over 20ms.
3547 * This should get us reasonable parallelism between CPU and GPU but also
3548 * relatively low latency when blocking on a particular request to finish.
3550 static int
3551 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3553 struct drm_i915_private *dev_priv = dev->dev_private;
3554 struct drm_i915_file_private *file_priv = file->driver_priv;
3555 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3556 struct drm_i915_gem_request *request;
3557 struct intel_ring_buffer *ring = NULL;
3558 u32 seqno = 0;
3559 int ret;
3561 spin_lock(&file_priv->mm.lock);
3562 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3563 if (time_after_eq(request->emitted_jiffies, recent_enough))
3564 break;
3566 ring = request->ring;
3567 seqno = request->seqno;
3569 spin_unlock(&file_priv->mm.lock);
3571 if (seqno == 0)
3572 return 0;
3574 ret = 0;
3575 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3576 /* And wait for the seqno passing without holding any locks and
3577 * causing extra latency for others. This is safe as the irq
3578 * generation is designed to be run atomically and so is
3579 * lockless.
3581 ring->user_irq_get(ring);
3582 ret = wait_event_interruptible(ring->irq_queue,
3583 i915_seqno_passed(ring->get_seqno(ring), seqno)
3584 || atomic_read(&dev_priv->mm.wedged));
3585 ring->user_irq_put(ring);
3587 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3588 ret = -EIO;
3591 if (ret == 0)
3592 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3594 return ret;
3597 static int
3598 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3599 uint64_t exec_offset)
3601 uint32_t exec_start, exec_len;
3603 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3604 exec_len = (uint32_t) exec->batch_len;
3606 if ((exec_start | exec_len) & 0x7)
3607 return -EINVAL;
3609 if (!exec_start)
3610 return -EINVAL;
3612 return 0;
3615 static int
3616 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3617 int count)
3619 int i;
3621 for (i = 0; i < count; i++) {
3622 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3623 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3625 if (!access_ok(VERIFY_READ, ptr, length))
3626 return -EFAULT;
3628 /* we may also need to update the presumed offsets */
3629 if (!access_ok(VERIFY_WRITE, ptr, length))
3630 return -EFAULT;
3632 if (fault_in_pages_readable(ptr, length))
3633 return -EFAULT;
3636 return 0;
3639 static int
3640 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3641 struct drm_file *file,
3642 struct drm_i915_gem_execbuffer2 *args,
3643 struct drm_i915_gem_exec_object2 *exec_list)
3645 drm_i915_private_t *dev_priv = dev->dev_private;
3646 struct drm_gem_object **object_list = NULL;
3647 struct drm_gem_object *batch_obj;
3648 struct drm_clip_rect *cliprects = NULL;
3649 struct drm_i915_gem_request *request = NULL;
3650 int ret, i, flips;
3651 uint64_t exec_offset;
3653 struct intel_ring_buffer *ring = NULL;
3655 ret = i915_gem_check_is_wedged(dev);
3656 if (ret)
3657 return ret;
3659 ret = validate_exec_list(exec_list, args->buffer_count);
3660 if (ret)
3661 return ret;
3663 #if WATCH_EXEC
3664 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3665 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3666 #endif
3667 switch (args->flags & I915_EXEC_RING_MASK) {
3668 case I915_EXEC_DEFAULT:
3669 case I915_EXEC_RENDER:
3670 ring = &dev_priv->render_ring;
3671 break;
3672 case I915_EXEC_BSD:
3673 if (!HAS_BSD(dev)) {
3674 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3675 return -EINVAL;
3677 ring = &dev_priv->bsd_ring;
3678 break;
3679 case I915_EXEC_BLT:
3680 if (!HAS_BLT(dev)) {
3681 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3682 return -EINVAL;
3684 ring = &dev_priv->blt_ring;
3685 break;
3686 default:
3687 DRM_ERROR("execbuf with unknown ring: %d\n",
3688 (int)(args->flags & I915_EXEC_RING_MASK));
3689 return -EINVAL;
3692 if (args->buffer_count < 1) {
3693 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3694 return -EINVAL;
3696 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3697 if (object_list == NULL) {
3698 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3699 args->buffer_count);
3700 ret = -ENOMEM;
3701 goto pre_mutex_err;
3704 if (args->num_cliprects != 0) {
3705 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3706 GFP_KERNEL);
3707 if (cliprects == NULL) {
3708 ret = -ENOMEM;
3709 goto pre_mutex_err;
3712 ret = copy_from_user(cliprects,
3713 (struct drm_clip_rect __user *)
3714 (uintptr_t) args->cliprects_ptr,
3715 sizeof(*cliprects) * args->num_cliprects);
3716 if (ret != 0) {
3717 DRM_ERROR("copy %d cliprects failed: %d\n",
3718 args->num_cliprects, ret);
3719 ret = -EFAULT;
3720 goto pre_mutex_err;
3724 request = kzalloc(sizeof(*request), GFP_KERNEL);
3725 if (request == NULL) {
3726 ret = -ENOMEM;
3727 goto pre_mutex_err;
3730 ret = i915_mutex_lock_interruptible(dev);
3731 if (ret)
3732 goto pre_mutex_err;
3734 if (dev_priv->mm.suspended) {
3735 mutex_unlock(&dev->struct_mutex);
3736 ret = -EBUSY;
3737 goto pre_mutex_err;
3740 /* Look up object handles */
3741 for (i = 0; i < args->buffer_count; i++) {
3742 struct drm_i915_gem_object *obj_priv;
3744 object_list[i] = drm_gem_object_lookup(dev, file,
3745 exec_list[i].handle);
3746 if (object_list[i] == NULL) {
3747 DRM_ERROR("Invalid object handle %d at index %d\n",
3748 exec_list[i].handle, i);
3749 /* prevent error path from reading uninitialized data */
3750 args->buffer_count = i + 1;
3751 ret = -ENOENT;
3752 goto err;
3755 obj_priv = to_intel_bo(object_list[i]);
3756 if (obj_priv->in_execbuffer) {
3757 DRM_ERROR("Object %p appears more than once in object list\n",
3758 object_list[i]);
3759 /* prevent error path from reading uninitialized data */
3760 args->buffer_count = i + 1;
3761 ret = -EINVAL;
3762 goto err;
3764 obj_priv->in_execbuffer = true;
3767 /* Move the objects en-masse into the GTT, evicting if necessary. */
3768 ret = i915_gem_execbuffer_pin(dev, file,
3769 object_list, exec_list,
3770 args->buffer_count);
3771 if (ret)
3772 goto err;
3774 /* The objects are in their final locations, apply the relocations. */
3775 for (i = 0; i < args->buffer_count; i++) {
3776 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3777 obj->base.pending_read_domains = 0;
3778 obj->base.pending_write_domain = 0;
3779 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3780 if (ret)
3781 goto err;
3784 /* Set the pending read domains for the batch buffer to COMMAND */
3785 batch_obj = object_list[args->buffer_count-1];
3786 if (batch_obj->pending_write_domain) {
3787 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3788 ret = -EINVAL;
3789 goto err;
3791 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3793 /* Sanity check the batch buffer */
3794 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3795 ret = i915_gem_check_execbuffer(args, exec_offset);
3796 if (ret != 0) {
3797 DRM_ERROR("execbuf with invalid offset/length\n");
3798 goto err;
3801 /* Zero the global flush/invalidate flags. These
3802 * will be modified as new domains are computed
3803 * for each object
3805 dev->invalidate_domains = 0;
3806 dev->flush_domains = 0;
3807 dev_priv->mm.flush_rings = 0;
3808 for (i = 0; i < args->buffer_count; i++)
3809 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
3811 if (dev->invalidate_domains | dev->flush_domains) {
3812 #if WATCH_EXEC
3813 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3814 __func__,
3815 dev->invalidate_domains,
3816 dev->flush_domains);
3817 #endif
3818 i915_gem_flush(dev, file,
3819 dev->invalidate_domains,
3820 dev->flush_domains,
3821 dev_priv->mm.flush_rings);
3824 #if WATCH_COHERENCY
3825 for (i = 0; i < args->buffer_count; i++) {
3826 i915_gem_object_check_coherency(object_list[i],
3827 exec_list[i].handle);
3829 #endif
3831 #if WATCH_EXEC
3832 i915_gem_dump_object(batch_obj,
3833 args->batch_len,
3834 __func__,
3835 ~0);
3836 #endif
3838 /* Check for any pending flips. As we only maintain a flip queue depth
3839 * of 1, we can simply insert a WAIT for the next display flip prior
3840 * to executing the batch and avoid stalling the CPU.
3842 flips = 0;
3843 for (i = 0; i < args->buffer_count; i++) {
3844 if (object_list[i]->write_domain)
3845 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3847 if (flips) {
3848 int plane, flip_mask;
3850 for (plane = 0; flips >> plane; plane++) {
3851 if (((flips >> plane) & 1) == 0)
3852 continue;
3854 if (plane)
3855 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3856 else
3857 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3859 ret = intel_ring_begin(ring, 2);
3860 if (ret)
3861 goto err;
3863 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3864 intel_ring_emit(ring, MI_NOOP);
3865 intel_ring_advance(ring);
3869 /* Exec the batchbuffer */
3870 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
3871 if (ret) {
3872 DRM_ERROR("dispatch failed %d\n", ret);
3873 goto err;
3876 for (i = 0; i < args->buffer_count; i++) {
3877 struct drm_gem_object *obj = object_list[i];
3879 obj->read_domains = obj->pending_read_domains;
3880 obj->write_domain = obj->pending_write_domain;
3882 i915_gem_object_move_to_active(obj, ring);
3883 if (obj->write_domain) {
3884 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3885 obj_priv->dirty = 1;
3886 list_move_tail(&obj_priv->gpu_write_list,
3887 &ring->gpu_write_list);
3888 intel_mark_busy(dev, obj);
3891 trace_i915_gem_object_change_domain(obj,
3892 obj->read_domains,
3893 obj->write_domain);
3897 * Ensure that the commands in the batch buffer are
3898 * finished before the interrupt fires
3900 i915_retire_commands(dev, ring);
3902 if (i915_add_request(dev, file, request, ring))
3903 ring->outstanding_lazy_request = true;
3904 else
3905 request = NULL;
3907 err:
3908 for (i = 0; i < args->buffer_count; i++) {
3909 if (object_list[i] == NULL)
3910 break;
3912 to_intel_bo(object_list[i])->in_execbuffer = false;
3913 drm_gem_object_unreference(object_list[i]);
3916 mutex_unlock(&dev->struct_mutex);
3918 pre_mutex_err:
3919 drm_free_large(object_list);
3920 kfree(cliprects);
3921 kfree(request);
3923 return ret;
3927 * Legacy execbuffer just creates an exec2 list from the original exec object
3928 * list array and passes it to the real function.
3931 i915_gem_execbuffer(struct drm_device *dev, void *data,
3932 struct drm_file *file_priv)
3934 struct drm_i915_gem_execbuffer *args = data;
3935 struct drm_i915_gem_execbuffer2 exec2;
3936 struct drm_i915_gem_exec_object *exec_list = NULL;
3937 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3938 int ret, i;
3940 #if WATCH_EXEC
3941 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3942 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3943 #endif
3945 if (args->buffer_count < 1) {
3946 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3947 return -EINVAL;
3950 /* Copy in the exec list from userland */
3951 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3952 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3953 if (exec_list == NULL || exec2_list == NULL) {
3954 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3955 args->buffer_count);
3956 drm_free_large(exec_list);
3957 drm_free_large(exec2_list);
3958 return -ENOMEM;
3960 ret = copy_from_user(exec_list,
3961 (struct drm_i915_relocation_entry __user *)
3962 (uintptr_t) args->buffers_ptr,
3963 sizeof(*exec_list) * args->buffer_count);
3964 if (ret != 0) {
3965 DRM_ERROR("copy %d exec entries failed %d\n",
3966 args->buffer_count, ret);
3967 drm_free_large(exec_list);
3968 drm_free_large(exec2_list);
3969 return -EFAULT;
3972 for (i = 0; i < args->buffer_count; i++) {
3973 exec2_list[i].handle = exec_list[i].handle;
3974 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3975 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3976 exec2_list[i].alignment = exec_list[i].alignment;
3977 exec2_list[i].offset = exec_list[i].offset;
3978 if (INTEL_INFO(dev)->gen < 4)
3979 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3980 else
3981 exec2_list[i].flags = 0;
3984 exec2.buffers_ptr = args->buffers_ptr;
3985 exec2.buffer_count = args->buffer_count;
3986 exec2.batch_start_offset = args->batch_start_offset;
3987 exec2.batch_len = args->batch_len;
3988 exec2.DR1 = args->DR1;
3989 exec2.DR4 = args->DR4;
3990 exec2.num_cliprects = args->num_cliprects;
3991 exec2.cliprects_ptr = args->cliprects_ptr;
3992 exec2.flags = I915_EXEC_RENDER;
3994 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3995 if (!ret) {
3996 /* Copy the new buffer offsets back to the user's exec list. */
3997 for (i = 0; i < args->buffer_count; i++)
3998 exec_list[i].offset = exec2_list[i].offset;
3999 /* ... and back out to userspace */
4000 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4001 (uintptr_t) args->buffers_ptr,
4002 exec_list,
4003 sizeof(*exec_list) * args->buffer_count);
4004 if (ret) {
4005 ret = -EFAULT;
4006 DRM_ERROR("failed to copy %d exec entries "
4007 "back to user (%d)\n",
4008 args->buffer_count, ret);
4012 drm_free_large(exec_list);
4013 drm_free_large(exec2_list);
4014 return ret;
4018 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4019 struct drm_file *file_priv)
4021 struct drm_i915_gem_execbuffer2 *args = data;
4022 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4023 int ret;
4025 #if WATCH_EXEC
4026 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4027 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4028 #endif
4030 if (args->buffer_count < 1) {
4031 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4032 return -EINVAL;
4035 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4036 if (exec2_list == NULL) {
4037 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4038 args->buffer_count);
4039 return -ENOMEM;
4041 ret = copy_from_user(exec2_list,
4042 (struct drm_i915_relocation_entry __user *)
4043 (uintptr_t) args->buffers_ptr,
4044 sizeof(*exec2_list) * args->buffer_count);
4045 if (ret != 0) {
4046 DRM_ERROR("copy %d exec entries failed %d\n",
4047 args->buffer_count, ret);
4048 drm_free_large(exec2_list);
4049 return -EFAULT;
4052 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4053 if (!ret) {
4054 /* Copy the new buffer offsets back to the user's exec list. */
4055 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4056 (uintptr_t) args->buffers_ptr,
4057 exec2_list,
4058 sizeof(*exec2_list) * args->buffer_count);
4059 if (ret) {
4060 ret = -EFAULT;
4061 DRM_ERROR("failed to copy %d exec entries "
4062 "back to user (%d)\n",
4063 args->buffer_count, ret);
4067 drm_free_large(exec2_list);
4068 return ret;
4072 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4073 bool mappable)
4075 struct drm_device *dev = obj->dev;
4076 struct drm_i915_private *dev_priv = dev->dev_private;
4077 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4078 int ret;
4080 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4081 WARN_ON(i915_verify_lists(dev));
4083 if (obj_priv->gtt_space != NULL) {
4084 if (alignment == 0)
4085 alignment = i915_gem_get_gtt_alignment(obj);
4086 if (obj_priv->gtt_offset & (alignment - 1) ||
4087 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
4088 WARN(obj_priv->pin_count,
4089 "bo is already pinned with incorrect alignment:"
4090 " offset=%x, req.alignment=%x\n",
4091 obj_priv->gtt_offset, alignment);
4092 ret = i915_gem_object_unbind(obj);
4093 if (ret)
4094 return ret;
4098 if (obj_priv->gtt_space == NULL) {
4099 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
4100 if (ret)
4101 return ret;
4104 obj_priv->pin_count++;
4106 /* If the object is not active and not pending a flush,
4107 * remove it from the inactive list
4109 if (obj_priv->pin_count == 1) {
4110 i915_gem_info_add_pin(dev_priv, obj->size);
4111 if (!obj_priv->active)
4112 list_move_tail(&obj_priv->mm_list,
4113 &dev_priv->mm.pinned_list);
4116 WARN_ON(i915_verify_lists(dev));
4117 return 0;
4120 void
4121 i915_gem_object_unpin(struct drm_gem_object *obj)
4123 struct drm_device *dev = obj->dev;
4124 drm_i915_private_t *dev_priv = dev->dev_private;
4125 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4127 WARN_ON(i915_verify_lists(dev));
4128 obj_priv->pin_count--;
4129 BUG_ON(obj_priv->pin_count < 0);
4130 BUG_ON(obj_priv->gtt_space == NULL);
4132 /* If the object is no longer pinned, and is
4133 * neither active nor being flushed, then stick it on
4134 * the inactive list
4136 if (obj_priv->pin_count == 0) {
4137 if (!obj_priv->active)
4138 list_move_tail(&obj_priv->mm_list,
4139 &dev_priv->mm.inactive_list);
4140 i915_gem_info_remove_pin(dev_priv, obj->size);
4142 WARN_ON(i915_verify_lists(dev));
4146 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4147 struct drm_file *file_priv)
4149 struct drm_i915_gem_pin *args = data;
4150 struct drm_gem_object *obj;
4151 struct drm_i915_gem_object *obj_priv;
4152 int ret;
4154 ret = i915_mutex_lock_interruptible(dev);
4155 if (ret)
4156 return ret;
4158 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4159 if (obj == NULL) {
4160 ret = -ENOENT;
4161 goto unlock;
4163 obj_priv = to_intel_bo(obj);
4165 if (obj_priv->madv != I915_MADV_WILLNEED) {
4166 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4167 ret = -EINVAL;
4168 goto out;
4171 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4172 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4173 args->handle);
4174 ret = -EINVAL;
4175 goto out;
4178 obj_priv->user_pin_count++;
4179 obj_priv->pin_filp = file_priv;
4180 if (obj_priv->user_pin_count == 1) {
4181 ret = i915_gem_object_pin(obj, args->alignment, true);
4182 if (ret)
4183 goto out;
4186 /* XXX - flush the CPU caches for pinned objects
4187 * as the X server doesn't manage domains yet
4189 i915_gem_object_flush_cpu_write_domain(obj);
4190 args->offset = obj_priv->gtt_offset;
4191 out:
4192 drm_gem_object_unreference(obj);
4193 unlock:
4194 mutex_unlock(&dev->struct_mutex);
4195 return ret;
4199 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4200 struct drm_file *file_priv)
4202 struct drm_i915_gem_pin *args = data;
4203 struct drm_gem_object *obj;
4204 struct drm_i915_gem_object *obj_priv;
4205 int ret;
4207 ret = i915_mutex_lock_interruptible(dev);
4208 if (ret)
4209 return ret;
4211 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4212 if (obj == NULL) {
4213 ret = -ENOENT;
4214 goto unlock;
4216 obj_priv = to_intel_bo(obj);
4218 if (obj_priv->pin_filp != file_priv) {
4219 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4220 args->handle);
4221 ret = -EINVAL;
4222 goto out;
4224 obj_priv->user_pin_count--;
4225 if (obj_priv->user_pin_count == 0) {
4226 obj_priv->pin_filp = NULL;
4227 i915_gem_object_unpin(obj);
4230 out:
4231 drm_gem_object_unreference(obj);
4232 unlock:
4233 mutex_unlock(&dev->struct_mutex);
4234 return ret;
4238 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4239 struct drm_file *file_priv)
4241 struct drm_i915_gem_busy *args = data;
4242 struct drm_gem_object *obj;
4243 struct drm_i915_gem_object *obj_priv;
4244 int ret;
4246 ret = i915_mutex_lock_interruptible(dev);
4247 if (ret)
4248 return ret;
4250 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4251 if (obj == NULL) {
4252 ret = -ENOENT;
4253 goto unlock;
4255 obj_priv = to_intel_bo(obj);
4257 /* Count all active objects as busy, even if they are currently not used
4258 * by the gpu. Users of this interface expect objects to eventually
4259 * become non-busy without any further actions, therefore emit any
4260 * necessary flushes here.
4262 args->busy = obj_priv->active;
4263 if (args->busy) {
4264 /* Unconditionally flush objects, even when the gpu still uses this
4265 * object. Userspace calling this function indicates that it wants to
4266 * use this buffer rather sooner than later, so issuing the required
4267 * flush earlier is beneficial.
4269 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4270 i915_gem_flush_ring(dev, file_priv,
4271 obj_priv->ring,
4272 0, obj->write_domain);
4274 /* Update the active list for the hardware's current position.
4275 * Otherwise this only updates on a delayed timer or when irqs
4276 * are actually unmasked, and our working set ends up being
4277 * larger than required.
4279 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4281 args->busy = obj_priv->active;
4284 drm_gem_object_unreference(obj);
4285 unlock:
4286 mutex_unlock(&dev->struct_mutex);
4287 return ret;
4291 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4292 struct drm_file *file_priv)
4294 return i915_gem_ring_throttle(dev, file_priv);
4298 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4299 struct drm_file *file_priv)
4301 struct drm_i915_gem_madvise *args = data;
4302 struct drm_gem_object *obj;
4303 struct drm_i915_gem_object *obj_priv;
4304 int ret;
4306 switch (args->madv) {
4307 case I915_MADV_DONTNEED:
4308 case I915_MADV_WILLNEED:
4309 break;
4310 default:
4311 return -EINVAL;
4314 ret = i915_mutex_lock_interruptible(dev);
4315 if (ret)
4316 return ret;
4318 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4319 if (obj == NULL) {
4320 ret = -ENOENT;
4321 goto unlock;
4323 obj_priv = to_intel_bo(obj);
4325 if (obj_priv->pin_count) {
4326 ret = -EINVAL;
4327 goto out;
4330 if (obj_priv->madv != __I915_MADV_PURGED)
4331 obj_priv->madv = args->madv;
4333 /* if the object is no longer bound, discard its backing storage */
4334 if (i915_gem_object_is_purgeable(obj_priv) &&
4335 obj_priv->gtt_space == NULL)
4336 i915_gem_object_truncate(obj);
4338 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4340 out:
4341 drm_gem_object_unreference(obj);
4342 unlock:
4343 mutex_unlock(&dev->struct_mutex);
4344 return ret;
4347 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4348 size_t size)
4350 struct drm_i915_private *dev_priv = dev->dev_private;
4351 struct drm_i915_gem_object *obj;
4353 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4354 if (obj == NULL)
4355 return NULL;
4357 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4358 kfree(obj);
4359 return NULL;
4362 i915_gem_info_add_obj(dev_priv, size);
4364 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4365 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4367 obj->agp_type = AGP_USER_MEMORY;
4368 obj->base.driver_private = NULL;
4369 obj->fence_reg = I915_FENCE_REG_NONE;
4370 INIT_LIST_HEAD(&obj->mm_list);
4371 INIT_LIST_HEAD(&obj->ring_list);
4372 INIT_LIST_HEAD(&obj->gpu_write_list);
4373 obj->madv = I915_MADV_WILLNEED;
4375 return &obj->base;
4378 int i915_gem_init_object(struct drm_gem_object *obj)
4380 BUG();
4382 return 0;
4385 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4387 struct drm_device *dev = obj->dev;
4388 drm_i915_private_t *dev_priv = dev->dev_private;
4389 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4390 int ret;
4392 ret = i915_gem_object_unbind(obj);
4393 if (ret == -ERESTARTSYS) {
4394 list_move(&obj_priv->mm_list,
4395 &dev_priv->mm.deferred_free_list);
4396 return;
4399 if (obj_priv->mmap_offset)
4400 i915_gem_free_mmap_offset(obj);
4402 drm_gem_object_release(obj);
4403 i915_gem_info_remove_obj(dev_priv, obj->size);
4405 kfree(obj_priv->page_cpu_valid);
4406 kfree(obj_priv->bit_17);
4407 kfree(obj_priv);
4410 void i915_gem_free_object(struct drm_gem_object *obj)
4412 struct drm_device *dev = obj->dev;
4413 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4415 trace_i915_gem_object_destroy(obj);
4417 while (obj_priv->pin_count > 0)
4418 i915_gem_object_unpin(obj);
4420 if (obj_priv->phys_obj)
4421 i915_gem_detach_phys_object(dev, obj);
4423 i915_gem_free_object_tail(obj);
4427 i915_gem_idle(struct drm_device *dev)
4429 drm_i915_private_t *dev_priv = dev->dev_private;
4430 int ret;
4432 mutex_lock(&dev->struct_mutex);
4434 if (dev_priv->mm.suspended) {
4435 mutex_unlock(&dev->struct_mutex);
4436 return 0;
4439 ret = i915_gpu_idle(dev);
4440 if (ret) {
4441 mutex_unlock(&dev->struct_mutex);
4442 return ret;
4445 /* Under UMS, be paranoid and evict. */
4446 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4447 ret = i915_gem_evict_inactive(dev);
4448 if (ret) {
4449 mutex_unlock(&dev->struct_mutex);
4450 return ret;
4454 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4455 * We need to replace this with a semaphore, or something.
4456 * And not confound mm.suspended!
4458 dev_priv->mm.suspended = 1;
4459 del_timer_sync(&dev_priv->hangcheck_timer);
4461 i915_kernel_lost_context(dev);
4462 i915_gem_cleanup_ringbuffer(dev);
4464 mutex_unlock(&dev->struct_mutex);
4466 /* Cancel the retire work handler, which should be idle now. */
4467 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4469 return 0;
4473 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4474 * over cache flushing.
4476 static int
4477 i915_gem_init_pipe_control(struct drm_device *dev)
4479 drm_i915_private_t *dev_priv = dev->dev_private;
4480 struct drm_gem_object *obj;
4481 struct drm_i915_gem_object *obj_priv;
4482 int ret;
4484 obj = i915_gem_alloc_object(dev, 4096);
4485 if (obj == NULL) {
4486 DRM_ERROR("Failed to allocate seqno page\n");
4487 ret = -ENOMEM;
4488 goto err;
4490 obj_priv = to_intel_bo(obj);
4491 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4493 ret = i915_gem_object_pin(obj, 4096, true);
4494 if (ret)
4495 goto err_unref;
4497 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4498 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4499 if (dev_priv->seqno_page == NULL)
4500 goto err_unpin;
4502 dev_priv->seqno_obj = obj;
4503 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4505 return 0;
4507 err_unpin:
4508 i915_gem_object_unpin(obj);
4509 err_unref:
4510 drm_gem_object_unreference(obj);
4511 err:
4512 return ret;
4516 static void
4517 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4519 drm_i915_private_t *dev_priv = dev->dev_private;
4520 struct drm_gem_object *obj;
4521 struct drm_i915_gem_object *obj_priv;
4523 obj = dev_priv->seqno_obj;
4524 obj_priv = to_intel_bo(obj);
4525 kunmap(obj_priv->pages[0]);
4526 i915_gem_object_unpin(obj);
4527 drm_gem_object_unreference(obj);
4528 dev_priv->seqno_obj = NULL;
4530 dev_priv->seqno_page = NULL;
4534 i915_gem_init_ringbuffer(struct drm_device *dev)
4536 drm_i915_private_t *dev_priv = dev->dev_private;
4537 int ret;
4539 if (HAS_PIPE_CONTROL(dev)) {
4540 ret = i915_gem_init_pipe_control(dev);
4541 if (ret)
4542 return ret;
4545 ret = intel_init_render_ring_buffer(dev);
4546 if (ret)
4547 goto cleanup_pipe_control;
4549 if (HAS_BSD(dev)) {
4550 ret = intel_init_bsd_ring_buffer(dev);
4551 if (ret)
4552 goto cleanup_render_ring;
4555 if (HAS_BLT(dev)) {
4556 ret = intel_init_blt_ring_buffer(dev);
4557 if (ret)
4558 goto cleanup_bsd_ring;
4561 dev_priv->next_seqno = 1;
4563 return 0;
4565 cleanup_bsd_ring:
4566 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4567 cleanup_render_ring:
4568 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4569 cleanup_pipe_control:
4570 if (HAS_PIPE_CONTROL(dev))
4571 i915_gem_cleanup_pipe_control(dev);
4572 return ret;
4575 void
4576 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4578 drm_i915_private_t *dev_priv = dev->dev_private;
4580 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4581 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4582 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4583 if (HAS_PIPE_CONTROL(dev))
4584 i915_gem_cleanup_pipe_control(dev);
4588 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4589 struct drm_file *file_priv)
4591 drm_i915_private_t *dev_priv = dev->dev_private;
4592 int ret;
4594 if (drm_core_check_feature(dev, DRIVER_MODESET))
4595 return 0;
4597 if (atomic_read(&dev_priv->mm.wedged)) {
4598 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4599 atomic_set(&dev_priv->mm.wedged, 0);
4602 mutex_lock(&dev->struct_mutex);
4603 dev_priv->mm.suspended = 0;
4605 ret = i915_gem_init_ringbuffer(dev);
4606 if (ret != 0) {
4607 mutex_unlock(&dev->struct_mutex);
4608 return ret;
4611 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4612 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4613 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4614 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4615 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4616 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4617 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4618 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4619 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4620 mutex_unlock(&dev->struct_mutex);
4622 ret = drm_irq_install(dev);
4623 if (ret)
4624 goto cleanup_ringbuffer;
4626 return 0;
4628 cleanup_ringbuffer:
4629 mutex_lock(&dev->struct_mutex);
4630 i915_gem_cleanup_ringbuffer(dev);
4631 dev_priv->mm.suspended = 1;
4632 mutex_unlock(&dev->struct_mutex);
4634 return ret;
4638 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4639 struct drm_file *file_priv)
4641 if (drm_core_check_feature(dev, DRIVER_MODESET))
4642 return 0;
4644 drm_irq_uninstall(dev);
4645 return i915_gem_idle(dev);
4648 void
4649 i915_gem_lastclose(struct drm_device *dev)
4651 int ret;
4653 if (drm_core_check_feature(dev, DRIVER_MODESET))
4654 return;
4656 ret = i915_gem_idle(dev);
4657 if (ret)
4658 DRM_ERROR("failed to idle hardware: %d\n", ret);
4661 static void
4662 init_ring_lists(struct intel_ring_buffer *ring)
4664 INIT_LIST_HEAD(&ring->active_list);
4665 INIT_LIST_HEAD(&ring->request_list);
4666 INIT_LIST_HEAD(&ring->gpu_write_list);
4669 void
4670 i915_gem_load(struct drm_device *dev)
4672 int i;
4673 drm_i915_private_t *dev_priv = dev->dev_private;
4675 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4676 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4677 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4678 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4679 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4680 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4681 init_ring_lists(&dev_priv->render_ring);
4682 init_ring_lists(&dev_priv->bsd_ring);
4683 init_ring_lists(&dev_priv->blt_ring);
4684 for (i = 0; i < 16; i++)
4685 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4686 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4687 i915_gem_retire_work_handler);
4688 init_completion(&dev_priv->error_completion);
4689 spin_lock(&shrink_list_lock);
4690 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4691 spin_unlock(&shrink_list_lock);
4693 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4694 if (IS_GEN3(dev)) {
4695 u32 tmp = I915_READ(MI_ARB_STATE);
4696 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4697 /* arb state is a masked write, so set bit + bit in mask */
4698 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4699 I915_WRITE(MI_ARB_STATE, tmp);
4703 /* Old X drivers will take 0-2 for front, back, depth buffers */
4704 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4705 dev_priv->fence_reg_start = 3;
4707 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4708 dev_priv->num_fence_regs = 16;
4709 else
4710 dev_priv->num_fence_regs = 8;
4712 /* Initialize fence registers to zero */
4713 switch (INTEL_INFO(dev)->gen) {
4714 case 6:
4715 for (i = 0; i < 16; i++)
4716 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4717 break;
4718 case 5:
4719 case 4:
4720 for (i = 0; i < 16; i++)
4721 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4722 break;
4723 case 3:
4724 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4725 for (i = 0; i < 8; i++)
4726 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4727 case 2:
4728 for (i = 0; i < 8; i++)
4729 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4730 break;
4732 i915_gem_detect_bit_6_swizzle(dev);
4733 init_waitqueue_head(&dev_priv->pending_flip_queue);
4737 * Create a physically contiguous memory object for this object
4738 * e.g. for cursor + overlay regs
4740 static int i915_gem_init_phys_object(struct drm_device *dev,
4741 int id, int size, int align)
4743 drm_i915_private_t *dev_priv = dev->dev_private;
4744 struct drm_i915_gem_phys_object *phys_obj;
4745 int ret;
4747 if (dev_priv->mm.phys_objs[id - 1] || !size)
4748 return 0;
4750 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4751 if (!phys_obj)
4752 return -ENOMEM;
4754 phys_obj->id = id;
4756 phys_obj->handle = drm_pci_alloc(dev, size, align);
4757 if (!phys_obj->handle) {
4758 ret = -ENOMEM;
4759 goto kfree_obj;
4761 #ifdef CONFIG_X86
4762 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4763 #endif
4765 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4767 return 0;
4768 kfree_obj:
4769 kfree(phys_obj);
4770 return ret;
4773 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4775 drm_i915_private_t *dev_priv = dev->dev_private;
4776 struct drm_i915_gem_phys_object *phys_obj;
4778 if (!dev_priv->mm.phys_objs[id - 1])
4779 return;
4781 phys_obj = dev_priv->mm.phys_objs[id - 1];
4782 if (phys_obj->cur_obj) {
4783 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4786 #ifdef CONFIG_X86
4787 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4788 #endif
4789 drm_pci_free(dev, phys_obj->handle);
4790 kfree(phys_obj);
4791 dev_priv->mm.phys_objs[id - 1] = NULL;
4794 void i915_gem_free_all_phys_object(struct drm_device *dev)
4796 int i;
4798 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4799 i915_gem_free_phys_object(dev, i);
4802 void i915_gem_detach_phys_object(struct drm_device *dev,
4803 struct drm_gem_object *obj)
4805 struct drm_i915_gem_object *obj_priv;
4806 int i;
4807 int ret;
4808 int page_count;
4810 obj_priv = to_intel_bo(obj);
4811 if (!obj_priv->phys_obj)
4812 return;
4814 ret = i915_gem_object_get_pages(obj, 0);
4815 if (ret)
4816 goto out;
4818 page_count = obj->size / PAGE_SIZE;
4820 for (i = 0; i < page_count; i++) {
4821 char *dst = kmap_atomic(obj_priv->pages[i]);
4822 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4824 memcpy(dst, src, PAGE_SIZE);
4825 kunmap_atomic(dst);
4827 drm_clflush_pages(obj_priv->pages, page_count);
4828 drm_agp_chipset_flush(dev);
4830 i915_gem_object_put_pages(obj);
4831 out:
4832 obj_priv->phys_obj->cur_obj = NULL;
4833 obj_priv->phys_obj = NULL;
4837 i915_gem_attach_phys_object(struct drm_device *dev,
4838 struct drm_gem_object *obj,
4839 int id,
4840 int align)
4842 drm_i915_private_t *dev_priv = dev->dev_private;
4843 struct drm_i915_gem_object *obj_priv;
4844 int ret = 0;
4845 int page_count;
4846 int i;
4848 if (id > I915_MAX_PHYS_OBJECT)
4849 return -EINVAL;
4851 obj_priv = to_intel_bo(obj);
4853 if (obj_priv->phys_obj) {
4854 if (obj_priv->phys_obj->id == id)
4855 return 0;
4856 i915_gem_detach_phys_object(dev, obj);
4859 /* create a new object */
4860 if (!dev_priv->mm.phys_objs[id - 1]) {
4861 ret = i915_gem_init_phys_object(dev, id,
4862 obj->size, align);
4863 if (ret) {
4864 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4865 goto out;
4869 /* bind to the object */
4870 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4871 obj_priv->phys_obj->cur_obj = obj;
4873 ret = i915_gem_object_get_pages(obj, 0);
4874 if (ret) {
4875 DRM_ERROR("failed to get page list\n");
4876 goto out;
4879 page_count = obj->size / PAGE_SIZE;
4881 for (i = 0; i < page_count; i++) {
4882 char *src = kmap_atomic(obj_priv->pages[i]);
4883 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4885 memcpy(dst, src, PAGE_SIZE);
4886 kunmap_atomic(src);
4889 i915_gem_object_put_pages(obj);
4891 return 0;
4892 out:
4893 return ret;
4896 static int
4897 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4898 struct drm_i915_gem_pwrite *args,
4899 struct drm_file *file_priv)
4901 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4902 void *obj_addr;
4903 int ret;
4904 char __user *user_data;
4906 user_data = (char __user *) (uintptr_t) args->data_ptr;
4907 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4909 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4910 ret = copy_from_user(obj_addr, user_data, args->size);
4911 if (ret)
4912 return -EFAULT;
4914 drm_agp_chipset_flush(dev);
4915 return 0;
4918 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4920 struct drm_i915_file_private *file_priv = file->driver_priv;
4922 /* Clean up our request list when the client is going away, so that
4923 * later retire_requests won't dereference our soon-to-be-gone
4924 * file_priv.
4926 spin_lock(&file_priv->mm.lock);
4927 while (!list_empty(&file_priv->mm.request_list)) {
4928 struct drm_i915_gem_request *request;
4930 request = list_first_entry(&file_priv->mm.request_list,
4931 struct drm_i915_gem_request,
4932 client_list);
4933 list_del(&request->client_list);
4934 request->file_priv = NULL;
4936 spin_unlock(&file_priv->mm.lock);
4939 static int
4940 i915_gpu_is_active(struct drm_device *dev)
4942 drm_i915_private_t *dev_priv = dev->dev_private;
4943 int lists_empty;
4945 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4946 list_empty(&dev_priv->render_ring.active_list) &&
4947 list_empty(&dev_priv->bsd_ring.active_list) &&
4948 list_empty(&dev_priv->blt_ring.active_list);
4950 return !lists_empty;
4953 static int
4954 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4956 drm_i915_private_t *dev_priv, *next_dev;
4957 struct drm_i915_gem_object *obj_priv, *next_obj;
4958 int cnt = 0;
4959 int would_deadlock = 1;
4961 /* "fast-path" to count number of available objects */
4962 if (nr_to_scan == 0) {
4963 spin_lock(&shrink_list_lock);
4964 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4965 struct drm_device *dev = dev_priv->dev;
4967 if (mutex_trylock(&dev->struct_mutex)) {
4968 list_for_each_entry(obj_priv,
4969 &dev_priv->mm.inactive_list,
4970 mm_list)
4971 cnt++;
4972 mutex_unlock(&dev->struct_mutex);
4975 spin_unlock(&shrink_list_lock);
4977 return (cnt / 100) * sysctl_vfs_cache_pressure;
4980 spin_lock(&shrink_list_lock);
4982 rescan:
4983 /* first scan for clean buffers */
4984 list_for_each_entry_safe(dev_priv, next_dev,
4985 &shrink_list, mm.shrink_list) {
4986 struct drm_device *dev = dev_priv->dev;
4988 if (! mutex_trylock(&dev->struct_mutex))
4989 continue;
4991 spin_unlock(&shrink_list_lock);
4992 i915_gem_retire_requests(dev);
4994 list_for_each_entry_safe(obj_priv, next_obj,
4995 &dev_priv->mm.inactive_list,
4996 mm_list) {
4997 if (i915_gem_object_is_purgeable(obj_priv)) {
4998 i915_gem_object_unbind(&obj_priv->base);
4999 if (--nr_to_scan <= 0)
5000 break;
5004 spin_lock(&shrink_list_lock);
5005 mutex_unlock(&dev->struct_mutex);
5007 would_deadlock = 0;
5009 if (nr_to_scan <= 0)
5010 break;
5013 /* second pass, evict/count anything still on the inactive list */
5014 list_for_each_entry_safe(dev_priv, next_dev,
5015 &shrink_list, mm.shrink_list) {
5016 struct drm_device *dev = dev_priv->dev;
5018 if (! mutex_trylock(&dev->struct_mutex))
5019 continue;
5021 spin_unlock(&shrink_list_lock);
5023 list_for_each_entry_safe(obj_priv, next_obj,
5024 &dev_priv->mm.inactive_list,
5025 mm_list) {
5026 if (nr_to_scan > 0) {
5027 i915_gem_object_unbind(&obj_priv->base);
5028 nr_to_scan--;
5029 } else
5030 cnt++;
5033 spin_lock(&shrink_list_lock);
5034 mutex_unlock(&dev->struct_mutex);
5036 would_deadlock = 0;
5039 if (nr_to_scan) {
5040 int active = 0;
5043 * We are desperate for pages, so as a last resort, wait
5044 * for the GPU to finish and discard whatever we can.
5045 * This has a dramatic impact to reduce the number of
5046 * OOM-killer events whilst running the GPU aggressively.
5048 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5049 struct drm_device *dev = dev_priv->dev;
5051 if (!mutex_trylock(&dev->struct_mutex))
5052 continue;
5054 spin_unlock(&shrink_list_lock);
5056 if (i915_gpu_is_active(dev)) {
5057 i915_gpu_idle(dev);
5058 active++;
5061 spin_lock(&shrink_list_lock);
5062 mutex_unlock(&dev->struct_mutex);
5065 if (active)
5066 goto rescan;
5069 spin_unlock(&shrink_list_lock);
5071 if (would_deadlock)
5072 return -1;
5073 else if (cnt > 0)
5074 return (cnt / 100) * sysctl_vfs_cache_pressure;
5075 else
5076 return 0;
5079 static struct shrinker shrinker = {
5080 .shrink = i915_gem_shrink,
5081 .seeks = DEFAULT_SEEKS,
5084 __init void
5085 i915_gem_shrinker_init(void)
5087 register_shrinker(&shrinker);
5090 __exit void
5091 i915_gem_shrinker_exit(void)
5093 unregister_shrinker(&shrinker);