sch_sfq: fix peek() implementation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sched / sch_sfq.c
blobe852bb1f64296d9002958458a8a734bd29baf68c
1 /*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/jiffies.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/ipv6.h>
21 #include <linux/skbuff.h>
22 #include <linux/jhash.h>
23 #include <linux/slab.h>
24 #include <net/ip.h>
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
29 /* Stochastic Fairness Queuing algorithm.
30 =======================================
32 Source:
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
36 Paul E. McKenney "Stochastic Fairness Queuing",
37 "Interworking: Research and Experience", v.2, 1991, p.113-131.
40 See also:
41 M. Shreedhar and George Varghese "Efficient Fair
42 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
45 This is not the thing that is usually called (W)FQ nowadays.
46 It does not use any timestamp mechanism, but instead
47 processes queues in round-robin order.
49 ADVANTAGE:
51 - It is very cheap. Both CPU and memory requirements are minimal.
53 DRAWBACKS:
55 - "Stochastic" -> It is not 100% fair.
56 When hash collisions occur, several flows are considered as one.
58 - "Round-robin" -> It introduces larger delays than virtual clock
59 based schemes, and should not be used for isolating interactive
60 traffic from non-interactive. It means, that this scheduler
61 should be used as leaf of CBQ or P3, which put interactive traffic
62 to higher priority band.
64 We still need true WFQ for top level CSZ, but using WFQ
65 for the best effort traffic is absolutely pointless:
66 SFQ is superior for this purpose.
68 IMPLEMENTATION:
69 This implementation limits maximal queue length to 128;
70 max mtu to 2^18-1; max 128 flows, number of hash buckets to 1024.
71 The only goal of this restrictions was that all data
72 fit into one 4K page on 32bit arches.
74 It is easy to increase these values, but not in flight. */
76 #define SFQ_DEPTH 128 /* max number of packets per flow */
77 #define SFQ_SLOTS 128 /* max number of flows */
78 #define SFQ_EMPTY_SLOT 255
79 #define SFQ_HASH_DIVISOR 1024
80 /* We use 16 bits to store allot, and want to handle packets up to 64K
81 * Scale allot by 8 (1<<3) so that no overflow occurs.
83 #define SFQ_ALLOT_SHIFT 3
84 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT)
86 /* This type should contain at least SFQ_DEPTH + SFQ_SLOTS values */
87 typedef unsigned char sfq_index;
90 * We dont use pointers to save space.
91 * Small indexes [0 ... SFQ_SLOTS - 1] are 'pointers' to slots[] array
92 * while following values [SFQ_SLOTS ... SFQ_SLOTS + SFQ_DEPTH - 1]
93 * are 'pointers' to dep[] array
95 struct sfq_head
97 sfq_index next;
98 sfq_index prev;
101 struct sfq_slot {
102 struct sk_buff *skblist_next;
103 struct sk_buff *skblist_prev;
104 sfq_index qlen; /* number of skbs in skblist */
105 sfq_index next; /* next slot in sfq chain */
106 struct sfq_head dep; /* anchor in dep[] chains */
107 unsigned short hash; /* hash value (index in ht[]) */
108 short allot; /* credit for this slot */
111 struct sfq_sched_data
113 /* Parameters */
114 int perturb_period;
115 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
116 int limit;
118 /* Variables */
119 struct tcf_proto *filter_list;
120 struct timer_list perturb_timer;
121 u32 perturbation;
122 sfq_index cur_depth; /* depth of longest slot */
123 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */
124 struct sfq_slot *tail; /* current slot in round */
125 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
126 struct sfq_slot slots[SFQ_SLOTS];
127 struct sfq_head dep[SFQ_DEPTH]; /* Linked list of slots, indexed by depth */
131 * sfq_head are either in a sfq_slot or in dep[] array
133 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
135 if (val < SFQ_SLOTS)
136 return &q->slots[val].dep;
137 return &q->dep[val - SFQ_SLOTS];
140 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
142 return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
145 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
147 u32 h, h2;
149 switch (skb->protocol) {
150 case htons(ETH_P_IP):
152 const struct iphdr *iph;
153 int poff;
155 if (!pskb_network_may_pull(skb, sizeof(*iph)))
156 goto err;
157 iph = ip_hdr(skb);
158 h = (__force u32)iph->daddr;
159 h2 = (__force u32)iph->saddr ^ iph->protocol;
160 if (iph->frag_off & htons(IP_MF|IP_OFFSET))
161 break;
162 poff = proto_ports_offset(iph->protocol);
163 if (poff >= 0 &&
164 pskb_network_may_pull(skb, iph->ihl * 4 + 4 + poff)) {
165 iph = ip_hdr(skb);
166 h2 ^= *(u32*)((void *)iph + iph->ihl * 4 + poff);
168 break;
170 case htons(ETH_P_IPV6):
172 struct ipv6hdr *iph;
173 int poff;
175 if (!pskb_network_may_pull(skb, sizeof(*iph)))
176 goto err;
177 iph = ipv6_hdr(skb);
178 h = (__force u32)iph->daddr.s6_addr32[3];
179 h2 = (__force u32)iph->saddr.s6_addr32[3] ^ iph->nexthdr;
180 poff = proto_ports_offset(iph->nexthdr);
181 if (poff >= 0 &&
182 pskb_network_may_pull(skb, sizeof(*iph) + 4 + poff)) {
183 iph = ipv6_hdr(skb);
184 h2 ^= *(u32*)((void *)iph + sizeof(*iph) + poff);
186 break;
188 default:
189 err:
190 h = (unsigned long)skb_dst(skb) ^ (__force u32)skb->protocol;
191 h2 = (unsigned long)skb->sk;
194 return sfq_fold_hash(q, h, h2);
197 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
198 int *qerr)
200 struct sfq_sched_data *q = qdisc_priv(sch);
201 struct tcf_result res;
202 int result;
204 if (TC_H_MAJ(skb->priority) == sch->handle &&
205 TC_H_MIN(skb->priority) > 0 &&
206 TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
207 return TC_H_MIN(skb->priority);
209 if (!q->filter_list)
210 return sfq_hash(q, skb) + 1;
212 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
213 result = tc_classify(skb, q->filter_list, &res);
214 if (result >= 0) {
215 #ifdef CONFIG_NET_CLS_ACT
216 switch (result) {
217 case TC_ACT_STOLEN:
218 case TC_ACT_QUEUED:
219 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
220 case TC_ACT_SHOT:
221 return 0;
223 #endif
224 if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
225 return TC_H_MIN(res.classid);
227 return 0;
231 * x : slot number [0 .. SFQ_SLOTS - 1]
233 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
235 sfq_index p, n;
236 int qlen = q->slots[x].qlen;
238 p = qlen + SFQ_SLOTS;
239 n = q->dep[qlen].next;
241 q->slots[x].dep.next = n;
242 q->slots[x].dep.prev = p;
244 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
245 sfq_dep_head(q, n)->prev = x;
248 #define sfq_unlink(q, x, n, p) \
249 n = q->slots[x].dep.next; \
250 p = q->slots[x].dep.prev; \
251 sfq_dep_head(q, p)->next = n; \
252 sfq_dep_head(q, n)->prev = p
255 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
257 sfq_index p, n;
258 int d;
260 sfq_unlink(q, x, n, p);
262 d = q->slots[x].qlen--;
263 if (n == p && q->cur_depth == d)
264 q->cur_depth--;
265 sfq_link(q, x);
268 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
270 sfq_index p, n;
271 int d;
273 sfq_unlink(q, x, n, p);
275 d = ++q->slots[x].qlen;
276 if (q->cur_depth < d)
277 q->cur_depth = d;
278 sfq_link(q, x);
281 /* helper functions : might be changed when/if skb use a standard list_head */
283 /* remove one skb from tail of slot queue */
284 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
286 struct sk_buff *skb = slot->skblist_prev;
288 slot->skblist_prev = skb->prev;
289 skb->prev->next = (struct sk_buff *)slot;
290 skb->next = skb->prev = NULL;
291 return skb;
294 /* remove one skb from head of slot queue */
295 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
297 struct sk_buff *skb = slot->skblist_next;
299 slot->skblist_next = skb->next;
300 skb->next->prev = (struct sk_buff *)slot;
301 skb->next = skb->prev = NULL;
302 return skb;
305 static inline void slot_queue_init(struct sfq_slot *slot)
307 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
310 /* add skb to slot queue (tail add) */
311 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
313 skb->prev = slot->skblist_prev;
314 skb->next = (struct sk_buff *)slot;
315 slot->skblist_prev->next = skb;
316 slot->skblist_prev = skb;
319 #define slot_queue_walk(slot, skb) \
320 for (skb = slot->skblist_next; \
321 skb != (struct sk_buff *)slot; \
322 skb = skb->next)
324 static unsigned int sfq_drop(struct Qdisc *sch)
326 struct sfq_sched_data *q = qdisc_priv(sch);
327 sfq_index x, d = q->cur_depth;
328 struct sk_buff *skb;
329 unsigned int len;
330 struct sfq_slot *slot;
332 /* Queue is full! Find the longest slot and drop tail packet from it */
333 if (d > 1) {
334 x = q->dep[d].next;
335 slot = &q->slots[x];
336 drop:
337 skb = slot_dequeue_tail(slot);
338 len = qdisc_pkt_len(skb);
339 sfq_dec(q, x);
340 kfree_skb(skb);
341 sch->q.qlen--;
342 sch->qstats.drops++;
343 sch->qstats.backlog -= len;
344 return len;
347 if (d == 1) {
348 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
349 x = q->tail->next;
350 slot = &q->slots[x];
351 q->tail->next = slot->next;
352 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
353 goto drop;
356 return 0;
359 static int
360 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
362 struct sfq_sched_data *q = qdisc_priv(sch);
363 unsigned int hash;
364 sfq_index x, qlen;
365 struct sfq_slot *slot;
366 int uninitialized_var(ret);
368 hash = sfq_classify(skb, sch, &ret);
369 if (hash == 0) {
370 if (ret & __NET_XMIT_BYPASS)
371 sch->qstats.drops++;
372 kfree_skb(skb);
373 return ret;
375 hash--;
377 x = q->ht[hash];
378 slot = &q->slots[x];
379 if (x == SFQ_EMPTY_SLOT) {
380 x = q->dep[0].next; /* get a free slot */
381 q->ht[hash] = x;
382 slot = &q->slots[x];
383 slot->hash = hash;
386 /* If selected queue has length q->limit, do simple tail drop,
387 * i.e. drop _this_ packet.
389 if (slot->qlen >= q->limit)
390 return qdisc_drop(skb, sch);
392 sch->qstats.backlog += qdisc_pkt_len(skb);
393 slot_queue_add(slot, skb);
394 sfq_inc(q, x);
395 if (slot->qlen == 1) { /* The flow is new */
396 if (q->tail == NULL) { /* It is the first flow */
397 slot->next = x;
398 } else {
399 slot->next = q->tail->next;
400 q->tail->next = x;
402 q->tail = slot;
403 slot->allot = q->scaled_quantum;
405 if (++sch->q.qlen <= q->limit)
406 return NET_XMIT_SUCCESS;
408 qlen = slot->qlen;
409 sfq_drop(sch);
410 /* Return Congestion Notification only if we dropped a packet
411 * from this flow.
413 return (qlen != slot->qlen) ? NET_XMIT_CN : NET_XMIT_SUCCESS;
416 static struct sk_buff *
417 sfq_dequeue(struct Qdisc *sch)
419 struct sfq_sched_data *q = qdisc_priv(sch);
420 struct sk_buff *skb;
421 sfq_index a, next_a;
422 struct sfq_slot *slot;
424 /* No active slots */
425 if (q->tail == NULL)
426 return NULL;
428 next_slot:
429 a = q->tail->next;
430 slot = &q->slots[a];
431 if (slot->allot <= 0) {
432 q->tail = slot;
433 slot->allot += q->scaled_quantum;
434 goto next_slot;
436 skb = slot_dequeue_head(slot);
437 sfq_dec(q, a);
438 qdisc_bstats_update(sch, skb);
439 sch->q.qlen--;
440 sch->qstats.backlog -= qdisc_pkt_len(skb);
442 /* Is the slot empty? */
443 if (slot->qlen == 0) {
444 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
445 next_a = slot->next;
446 if (a == next_a) {
447 q->tail = NULL; /* no more active slots */
448 return skb;
450 q->tail->next = next_a;
451 } else {
452 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb));
454 return skb;
457 static void
458 sfq_reset(struct Qdisc *sch)
460 struct sk_buff *skb;
462 while ((skb = sfq_dequeue(sch)) != NULL)
463 kfree_skb(skb);
466 static void sfq_perturbation(unsigned long arg)
468 struct Qdisc *sch = (struct Qdisc *)arg;
469 struct sfq_sched_data *q = qdisc_priv(sch);
471 q->perturbation = net_random();
473 if (q->perturb_period)
474 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
477 static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
479 struct sfq_sched_data *q = qdisc_priv(sch);
480 struct tc_sfq_qopt *ctl = nla_data(opt);
481 unsigned int qlen;
483 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
484 return -EINVAL;
486 sch_tree_lock(sch);
487 q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
488 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
489 q->perturb_period = ctl->perturb_period * HZ;
490 if (ctl->limit)
491 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
493 qlen = sch->q.qlen;
494 while (sch->q.qlen > q->limit)
495 sfq_drop(sch);
496 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
498 del_timer(&q->perturb_timer);
499 if (q->perturb_period) {
500 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
501 q->perturbation = net_random();
503 sch_tree_unlock(sch);
504 return 0;
507 static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
509 struct sfq_sched_data *q = qdisc_priv(sch);
510 int i;
512 q->perturb_timer.function = sfq_perturbation;
513 q->perturb_timer.data = (unsigned long)sch;
514 init_timer_deferrable(&q->perturb_timer);
516 for (i = 0; i < SFQ_HASH_DIVISOR; i++)
517 q->ht[i] = SFQ_EMPTY_SLOT;
519 for (i = 0; i < SFQ_DEPTH; i++) {
520 q->dep[i].next = i + SFQ_SLOTS;
521 q->dep[i].prev = i + SFQ_SLOTS;
524 q->limit = SFQ_DEPTH - 1;
525 q->cur_depth = 0;
526 q->tail = NULL;
527 if (opt == NULL) {
528 q->quantum = psched_mtu(qdisc_dev(sch));
529 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum);
530 q->perturb_period = 0;
531 q->perturbation = net_random();
532 } else {
533 int err = sfq_change(sch, opt);
534 if (err)
535 return err;
538 for (i = 0; i < SFQ_SLOTS; i++) {
539 slot_queue_init(&q->slots[i]);
540 sfq_link(q, i);
542 return 0;
545 static void sfq_destroy(struct Qdisc *sch)
547 struct sfq_sched_data *q = qdisc_priv(sch);
549 tcf_destroy_chain(&q->filter_list);
550 q->perturb_period = 0;
551 del_timer_sync(&q->perturb_timer);
554 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
556 struct sfq_sched_data *q = qdisc_priv(sch);
557 unsigned char *b = skb_tail_pointer(skb);
558 struct tc_sfq_qopt opt;
560 opt.quantum = q->quantum;
561 opt.perturb_period = q->perturb_period / HZ;
563 opt.limit = q->limit;
564 opt.divisor = SFQ_HASH_DIVISOR;
565 opt.flows = q->limit;
567 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
569 return skb->len;
571 nla_put_failure:
572 nlmsg_trim(skb, b);
573 return -1;
576 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
578 return NULL;
581 static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
583 return 0;
586 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
587 u32 classid)
589 return 0;
592 static void sfq_put(struct Qdisc *q, unsigned long cl)
596 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
598 struct sfq_sched_data *q = qdisc_priv(sch);
600 if (cl)
601 return NULL;
602 return &q->filter_list;
605 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
606 struct sk_buff *skb, struct tcmsg *tcm)
608 tcm->tcm_handle |= TC_H_MIN(cl);
609 return 0;
612 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
613 struct gnet_dump *d)
615 struct sfq_sched_data *q = qdisc_priv(sch);
616 sfq_index idx = q->ht[cl - 1];
617 struct gnet_stats_queue qs = { 0 };
618 struct tc_sfq_xstats xstats = { 0 };
619 struct sk_buff *skb;
621 if (idx != SFQ_EMPTY_SLOT) {
622 const struct sfq_slot *slot = &q->slots[idx];
624 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT;
625 qs.qlen = slot->qlen;
626 slot_queue_walk(slot, skb)
627 qs.backlog += qdisc_pkt_len(skb);
629 if (gnet_stats_copy_queue(d, &qs) < 0)
630 return -1;
631 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
634 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
636 struct sfq_sched_data *q = qdisc_priv(sch);
637 unsigned int i;
639 if (arg->stop)
640 return;
642 for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
643 if (q->ht[i] == SFQ_EMPTY_SLOT ||
644 arg->count < arg->skip) {
645 arg->count++;
646 continue;
648 if (arg->fn(sch, i + 1, arg) < 0) {
649 arg->stop = 1;
650 break;
652 arg->count++;
656 static const struct Qdisc_class_ops sfq_class_ops = {
657 .leaf = sfq_leaf,
658 .get = sfq_get,
659 .put = sfq_put,
660 .tcf_chain = sfq_find_tcf,
661 .bind_tcf = sfq_bind,
662 .unbind_tcf = sfq_put,
663 .dump = sfq_dump_class,
664 .dump_stats = sfq_dump_class_stats,
665 .walk = sfq_walk,
668 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
669 .cl_ops = &sfq_class_ops,
670 .id = "sfq",
671 .priv_size = sizeof(struct sfq_sched_data),
672 .enqueue = sfq_enqueue,
673 .dequeue = sfq_dequeue,
674 .peek = qdisc_peek_dequeued,
675 .drop = sfq_drop,
676 .init = sfq_init,
677 .reset = sfq_reset,
678 .destroy = sfq_destroy,
679 .change = NULL,
680 .dump = sfq_dump,
681 .owner = THIS_MODULE,
684 static int __init sfq_module_init(void)
686 return register_qdisc(&sfq_qdisc_ops);
688 static void __exit sfq_module_exit(void)
690 unregister_qdisc(&sfq_qdisc_ops);
692 module_init(sfq_module_init)
693 module_exit(sfq_module_exit)
694 MODULE_LICENSE("GPL");