drm/radeon/kms: add new NI pci ids
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blob532307613539d6bfaeda8819c480936abcc93142
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
35 #include "blk.h"
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 static int __make_request(struct request_queue *q, struct bio *bio);
44 * For the allocated request tables
46 static struct kmem_cache *request_cachep;
49 * For queue allocation
51 struct kmem_cache *blk_requestq_cachep;
54 * Controlling structure to kblockd
56 static struct workqueue_struct *kblockd_workqueue;
58 static void drive_stat_acct(struct request *rq, int new_io)
60 struct hd_struct *part;
61 int rw = rq_data_dir(rq);
62 int cpu;
64 if (!blk_do_io_stat(rq))
65 return;
67 cpu = part_stat_lock();
69 if (!new_io) {
70 part = rq->part;
71 part_stat_inc(cpu, part, merges[rw]);
72 } else {
73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 if (!hd_struct_try_get(part)) {
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
83 part = &rq->rq_disk->part0;
84 hd_struct_get(part);
86 part_round_stats(cpu, part);
87 part_inc_in_flight(part, rw);
88 rq->part = part;
91 part_stat_unlock();
94 void blk_queue_congestion_threshold(struct request_queue *q)
96 int nr;
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * @bdev: device
113 * Locates the passed device's request queue and returns the address of its
114 * backing_dev_info
116 * Will return NULL if the request queue cannot be located.
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 struct backing_dev_info *ret = NULL;
121 struct request_queue *q = bdev_get_queue(bdev);
123 if (q)
124 ret = &q->backing_dev_info;
125 return ret;
127 EXPORT_SYMBOL(blk_get_backing_dev_info);
129 void blk_rq_init(struct request_queue *q, struct request *rq)
131 memset(rq, 0, sizeof(*rq));
133 INIT_LIST_HEAD(&rq->queuelist);
134 INIT_LIST_HEAD(&rq->timeout_list);
135 rq->cpu = -1;
136 rq->q = q;
137 rq->__sector = (sector_t) -1;
138 INIT_HLIST_NODE(&rq->hash);
139 RB_CLEAR_NODE(&rq->rb_node);
140 rq->cmd = rq->__cmd;
141 rq->cmd_len = BLK_MAX_CDB;
142 rq->tag = -1;
143 rq->ref_count = 1;
144 rq->start_time = jiffies;
145 set_start_time_ns(rq);
146 rq->part = NULL;
148 EXPORT_SYMBOL(blk_rq_init);
150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 unsigned int nbytes, int error)
153 if (error)
154 clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 error = -EIO;
158 if (unlikely(nbytes > bio->bi_size)) {
159 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 __func__, nbytes, bio->bi_size);
161 nbytes = bio->bi_size;
164 if (unlikely(rq->cmd_flags & REQ_QUIET))
165 set_bit(BIO_QUIET, &bio->bi_flags);
167 bio->bi_size -= nbytes;
168 bio->bi_sector += (nbytes >> 9);
170 if (bio_integrity(bio))
171 bio_integrity_advance(bio, nbytes);
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 bio_endio(bio, error);
178 void blk_dump_rq_flags(struct request *rq, char *msg)
180 int bit;
182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq),
188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 printk(KERN_INFO " cdb: ");
194 for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 printk("%02x ", rq->cmd[bit]);
196 printk("\n");
199 EXPORT_SYMBOL(blk_dump_rq_flags);
201 static void blk_delay_work(struct work_struct *work)
203 struct request_queue *q;
205 q = container_of(work, struct request_queue, delay_work.work);
206 spin_lock_irq(q->queue_lock);
207 __blk_run_queue(q);
208 spin_unlock_irq(q->queue_lock);
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
216 * Description:
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 msecs_to_jiffies(msecs));
226 EXPORT_SYMBOL(blk_delay_queue);
229 * blk_start_queue - restart a previously stopped queue
230 * @q: The &struct request_queue in question
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 void blk_start_queue(struct request_queue *q)
239 WARN_ON(!irqs_disabled());
241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 __blk_run_queue(q);
244 EXPORT_SYMBOL(blk_start_queue);
247 * blk_stop_queue - stop a queue
248 * @q: The &struct request_queue in question
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 void blk_stop_queue(struct request_queue *q)
262 __cancel_delayed_work(&q->delay_work);
263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 EXPORT_SYMBOL(blk_stop_queue);
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
276 * that the callbacks might use. The caller must already have made sure
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevaotor_exit()
282 * and blk_throtl_exit() to be called with queue lock initialized.
285 void blk_sync_queue(struct request_queue *q)
287 del_timer_sync(&q->timeout);
288 cancel_delayed_work_sync(&q->delay_work);
290 EXPORT_SYMBOL(blk_sync_queue);
293 * __blk_run_queue - run a single device queue
294 * @q: The queue to run
296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock
298 * held and interrupts disabled.
300 void __blk_run_queue(struct request_queue *q)
302 if (unlikely(blk_queue_stopped(q)))
303 return;
305 q->request_fn(q);
307 EXPORT_SYMBOL(__blk_run_queue);
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
313 * Description:
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315 * of us.
317 void blk_run_queue_async(struct request_queue *q)
319 if (likely(!blk_queue_stopped(q))) {
320 __cancel_delayed_work(&q->delay_work);
321 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
324 EXPORT_SYMBOL(blk_run_queue_async);
327 * blk_run_queue - run a single device queue
328 * @q: The queue to run
330 * Description:
331 * Invoke request handling on this queue, if it has pending work to do.
332 * May be used to restart queueing when a request has completed.
334 void blk_run_queue(struct request_queue *q)
336 unsigned long flags;
338 spin_lock_irqsave(q->queue_lock, flags);
339 __blk_run_queue(q);
340 spin_unlock_irqrestore(q->queue_lock, flags);
342 EXPORT_SYMBOL(blk_run_queue);
344 void blk_put_queue(struct request_queue *q)
346 kobject_put(&q->kobj);
348 EXPORT_SYMBOL(blk_put_queue);
351 * Note: If a driver supplied the queue lock, it should not zap that lock
352 * unexpectedly as some queue cleanup components like elevator_exit() and
353 * blk_throtl_exit() need queue lock.
355 void blk_cleanup_queue(struct request_queue *q)
358 * We know we have process context here, so we can be a little
359 * cautious and ensure that pending block actions on this device
360 * are done before moving on. Going into this function, we should
361 * not have processes doing IO to this device.
363 blk_sync_queue(q);
365 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
366 mutex_lock(&q->sysfs_lock);
367 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
368 mutex_unlock(&q->sysfs_lock);
370 if (q->elevator)
371 elevator_exit(q->elevator);
373 blk_throtl_exit(q);
375 blk_put_queue(q);
377 EXPORT_SYMBOL(blk_cleanup_queue);
379 static int blk_init_free_list(struct request_queue *q)
381 struct request_list *rl = &q->rq;
383 if (unlikely(rl->rq_pool))
384 return 0;
386 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
387 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
388 rl->elvpriv = 0;
389 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
390 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
392 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
393 mempool_free_slab, request_cachep, q->node);
395 if (!rl->rq_pool)
396 return -ENOMEM;
398 return 0;
401 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
403 return blk_alloc_queue_node(gfp_mask, -1);
405 EXPORT_SYMBOL(blk_alloc_queue);
407 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
409 struct request_queue *q;
410 int err;
412 q = kmem_cache_alloc_node(blk_requestq_cachep,
413 gfp_mask | __GFP_ZERO, node_id);
414 if (!q)
415 return NULL;
417 q->backing_dev_info.ra_pages =
418 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
419 q->backing_dev_info.state = 0;
420 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
421 q->backing_dev_info.name = "block";
423 err = bdi_init(&q->backing_dev_info);
424 if (err) {
425 kmem_cache_free(blk_requestq_cachep, q);
426 return NULL;
429 if (blk_throtl_init(q)) {
430 kmem_cache_free(blk_requestq_cachep, q);
431 return NULL;
434 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
435 laptop_mode_timer_fn, (unsigned long) q);
436 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
437 INIT_LIST_HEAD(&q->timeout_list);
438 INIT_LIST_HEAD(&q->flush_queue[0]);
439 INIT_LIST_HEAD(&q->flush_queue[1]);
440 INIT_LIST_HEAD(&q->flush_data_in_flight);
441 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
443 kobject_init(&q->kobj, &blk_queue_ktype);
445 mutex_init(&q->sysfs_lock);
446 spin_lock_init(&q->__queue_lock);
449 * By default initialize queue_lock to internal lock and driver can
450 * override it later if need be.
452 q->queue_lock = &q->__queue_lock;
454 return q;
456 EXPORT_SYMBOL(blk_alloc_queue_node);
459 * blk_init_queue - prepare a request queue for use with a block device
460 * @rfn: The function to be called to process requests that have been
461 * placed on the queue.
462 * @lock: Request queue spin lock
464 * Description:
465 * If a block device wishes to use the standard request handling procedures,
466 * which sorts requests and coalesces adjacent requests, then it must
467 * call blk_init_queue(). The function @rfn will be called when there
468 * are requests on the queue that need to be processed. If the device
469 * supports plugging, then @rfn may not be called immediately when requests
470 * are available on the queue, but may be called at some time later instead.
471 * Plugged queues are generally unplugged when a buffer belonging to one
472 * of the requests on the queue is needed, or due to memory pressure.
474 * @rfn is not required, or even expected, to remove all requests off the
475 * queue, but only as many as it can handle at a time. If it does leave
476 * requests on the queue, it is responsible for arranging that the requests
477 * get dealt with eventually.
479 * The queue spin lock must be held while manipulating the requests on the
480 * request queue; this lock will be taken also from interrupt context, so irq
481 * disabling is needed for it.
483 * Function returns a pointer to the initialized request queue, or %NULL if
484 * it didn't succeed.
486 * Note:
487 * blk_init_queue() must be paired with a blk_cleanup_queue() call
488 * when the block device is deactivated (such as at module unload).
491 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
493 return blk_init_queue_node(rfn, lock, -1);
495 EXPORT_SYMBOL(blk_init_queue);
497 struct request_queue *
498 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
500 struct request_queue *uninit_q, *q;
502 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
503 if (!uninit_q)
504 return NULL;
506 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
507 if (!q)
508 blk_cleanup_queue(uninit_q);
510 return q;
512 EXPORT_SYMBOL(blk_init_queue_node);
514 struct request_queue *
515 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
516 spinlock_t *lock)
518 return blk_init_allocated_queue_node(q, rfn, lock, -1);
520 EXPORT_SYMBOL(blk_init_allocated_queue);
522 struct request_queue *
523 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
524 spinlock_t *lock, int node_id)
526 if (!q)
527 return NULL;
529 q->node = node_id;
530 if (blk_init_free_list(q))
531 return NULL;
533 q->request_fn = rfn;
534 q->prep_rq_fn = NULL;
535 q->unprep_rq_fn = NULL;
536 q->queue_flags = QUEUE_FLAG_DEFAULT;
538 /* Override internal queue lock with supplied lock pointer */
539 if (lock)
540 q->queue_lock = lock;
543 * This also sets hw/phys segments, boundary and size
545 blk_queue_make_request(q, __make_request);
547 q->sg_reserved_size = INT_MAX;
550 * all done
552 if (!elevator_init(q, NULL)) {
553 blk_queue_congestion_threshold(q);
554 return q;
557 return NULL;
559 EXPORT_SYMBOL(blk_init_allocated_queue_node);
561 int blk_get_queue(struct request_queue *q)
563 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
564 kobject_get(&q->kobj);
565 return 0;
568 return 1;
570 EXPORT_SYMBOL(blk_get_queue);
572 static inline void blk_free_request(struct request_queue *q, struct request *rq)
574 BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
576 if (rq->cmd_flags & REQ_ELVPRIV)
577 elv_put_request(q, rq);
578 mempool_free(rq, q->rq.rq_pool);
581 static struct request *
582 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
584 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
586 if (!rq)
587 return NULL;
589 blk_rq_init(q, rq);
591 rq->cmd_flags = flags | REQ_ALLOCED;
593 if (priv) {
594 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
595 mempool_free(rq, q->rq.rq_pool);
596 return NULL;
598 rq->cmd_flags |= REQ_ELVPRIV;
601 return rq;
605 * ioc_batching returns true if the ioc is a valid batching request and
606 * should be given priority access to a request.
608 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
610 if (!ioc)
611 return 0;
614 * Make sure the process is able to allocate at least 1 request
615 * even if the batch times out, otherwise we could theoretically
616 * lose wakeups.
618 return ioc->nr_batch_requests == q->nr_batching ||
619 (ioc->nr_batch_requests > 0
620 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
624 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
625 * will cause the process to be a "batcher" on all queues in the system. This
626 * is the behaviour we want though - once it gets a wakeup it should be given
627 * a nice run.
629 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
631 if (!ioc || ioc_batching(q, ioc))
632 return;
634 ioc->nr_batch_requests = q->nr_batching;
635 ioc->last_waited = jiffies;
638 static void __freed_request(struct request_queue *q, int sync)
640 struct request_list *rl = &q->rq;
642 if (rl->count[sync] < queue_congestion_off_threshold(q))
643 blk_clear_queue_congested(q, sync);
645 if (rl->count[sync] + 1 <= q->nr_requests) {
646 if (waitqueue_active(&rl->wait[sync]))
647 wake_up(&rl->wait[sync]);
649 blk_clear_queue_full(q, sync);
654 * A request has just been released. Account for it, update the full and
655 * congestion status, wake up any waiters. Called under q->queue_lock.
657 static void freed_request(struct request_queue *q, int sync, int priv)
659 struct request_list *rl = &q->rq;
661 rl->count[sync]--;
662 if (priv)
663 rl->elvpriv--;
665 __freed_request(q, sync);
667 if (unlikely(rl->starved[sync ^ 1]))
668 __freed_request(q, sync ^ 1);
672 * Determine if elevator data should be initialized when allocating the
673 * request associated with @bio.
675 static bool blk_rq_should_init_elevator(struct bio *bio)
677 if (!bio)
678 return true;
681 * Flush requests do not use the elevator so skip initialization.
682 * This allows a request to share the flush and elevator data.
684 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
685 return false;
687 return true;
691 * Get a free request, queue_lock must be held.
692 * Returns NULL on failure, with queue_lock held.
693 * Returns !NULL on success, with queue_lock *not held*.
695 static struct request *get_request(struct request_queue *q, int rw_flags,
696 struct bio *bio, gfp_t gfp_mask)
698 struct request *rq = NULL;
699 struct request_list *rl = &q->rq;
700 struct io_context *ioc = NULL;
701 const bool is_sync = rw_is_sync(rw_flags) != 0;
702 int may_queue, priv = 0;
704 may_queue = elv_may_queue(q, rw_flags);
705 if (may_queue == ELV_MQUEUE_NO)
706 goto rq_starved;
708 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
709 if (rl->count[is_sync]+1 >= q->nr_requests) {
710 ioc = current_io_context(GFP_ATOMIC, q->node);
712 * The queue will fill after this allocation, so set
713 * it as full, and mark this process as "batching".
714 * This process will be allowed to complete a batch of
715 * requests, others will be blocked.
717 if (!blk_queue_full(q, is_sync)) {
718 ioc_set_batching(q, ioc);
719 blk_set_queue_full(q, is_sync);
720 } else {
721 if (may_queue != ELV_MQUEUE_MUST
722 && !ioc_batching(q, ioc)) {
724 * The queue is full and the allocating
725 * process is not a "batcher", and not
726 * exempted by the IO scheduler
728 goto out;
732 blk_set_queue_congested(q, is_sync);
736 * Only allow batching queuers to allocate up to 50% over the defined
737 * limit of requests, otherwise we could have thousands of requests
738 * allocated with any setting of ->nr_requests
740 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
741 goto out;
743 rl->count[is_sync]++;
744 rl->starved[is_sync] = 0;
746 if (blk_rq_should_init_elevator(bio)) {
747 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
748 if (priv)
749 rl->elvpriv++;
752 if (blk_queue_io_stat(q))
753 rw_flags |= REQ_IO_STAT;
754 spin_unlock_irq(q->queue_lock);
756 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
757 if (unlikely(!rq)) {
759 * Allocation failed presumably due to memory. Undo anything
760 * we might have messed up.
762 * Allocating task should really be put onto the front of the
763 * wait queue, but this is pretty rare.
765 spin_lock_irq(q->queue_lock);
766 freed_request(q, is_sync, priv);
769 * in the very unlikely event that allocation failed and no
770 * requests for this direction was pending, mark us starved
771 * so that freeing of a request in the other direction will
772 * notice us. another possible fix would be to split the
773 * rq mempool into READ and WRITE
775 rq_starved:
776 if (unlikely(rl->count[is_sync] == 0))
777 rl->starved[is_sync] = 1;
779 goto out;
783 * ioc may be NULL here, and ioc_batching will be false. That's
784 * OK, if the queue is under the request limit then requests need
785 * not count toward the nr_batch_requests limit. There will always
786 * be some limit enforced by BLK_BATCH_TIME.
788 if (ioc_batching(q, ioc))
789 ioc->nr_batch_requests--;
791 trace_block_getrq(q, bio, rw_flags & 1);
792 out:
793 return rq;
797 * No available requests for this queue, wait for some requests to become
798 * available.
800 * Called with q->queue_lock held, and returns with it unlocked.
802 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
803 struct bio *bio)
805 const bool is_sync = rw_is_sync(rw_flags) != 0;
806 struct request *rq;
808 rq = get_request(q, rw_flags, bio, GFP_NOIO);
809 while (!rq) {
810 DEFINE_WAIT(wait);
811 struct io_context *ioc;
812 struct request_list *rl = &q->rq;
814 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
815 TASK_UNINTERRUPTIBLE);
817 trace_block_sleeprq(q, bio, rw_flags & 1);
819 spin_unlock_irq(q->queue_lock);
820 io_schedule();
823 * After sleeping, we become a "batching" process and
824 * will be able to allocate at least one request, and
825 * up to a big batch of them for a small period time.
826 * See ioc_batching, ioc_set_batching
828 ioc = current_io_context(GFP_NOIO, q->node);
829 ioc_set_batching(q, ioc);
831 spin_lock_irq(q->queue_lock);
832 finish_wait(&rl->wait[is_sync], &wait);
834 rq = get_request(q, rw_flags, bio, GFP_NOIO);
837 return rq;
840 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
842 struct request *rq;
844 BUG_ON(rw != READ && rw != WRITE);
846 spin_lock_irq(q->queue_lock);
847 if (gfp_mask & __GFP_WAIT) {
848 rq = get_request_wait(q, rw, NULL);
849 } else {
850 rq = get_request(q, rw, NULL, gfp_mask);
851 if (!rq)
852 spin_unlock_irq(q->queue_lock);
854 /* q->queue_lock is unlocked at this point */
856 return rq;
858 EXPORT_SYMBOL(blk_get_request);
861 * blk_make_request - given a bio, allocate a corresponding struct request.
862 * @q: target request queue
863 * @bio: The bio describing the memory mappings that will be submitted for IO.
864 * It may be a chained-bio properly constructed by block/bio layer.
865 * @gfp_mask: gfp flags to be used for memory allocation
867 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
868 * type commands. Where the struct request needs to be farther initialized by
869 * the caller. It is passed a &struct bio, which describes the memory info of
870 * the I/O transfer.
872 * The caller of blk_make_request must make sure that bi_io_vec
873 * are set to describe the memory buffers. That bio_data_dir() will return
874 * the needed direction of the request. (And all bio's in the passed bio-chain
875 * are properly set accordingly)
877 * If called under none-sleepable conditions, mapped bio buffers must not
878 * need bouncing, by calling the appropriate masked or flagged allocator,
879 * suitable for the target device. Otherwise the call to blk_queue_bounce will
880 * BUG.
882 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
883 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
884 * anything but the first bio in the chain. Otherwise you risk waiting for IO
885 * completion of a bio that hasn't been submitted yet, thus resulting in a
886 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
887 * of bio_alloc(), as that avoids the mempool deadlock.
888 * If possible a big IO should be split into smaller parts when allocation
889 * fails. Partial allocation should not be an error, or you risk a live-lock.
891 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
892 gfp_t gfp_mask)
894 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
896 if (unlikely(!rq))
897 return ERR_PTR(-ENOMEM);
899 for_each_bio(bio) {
900 struct bio *bounce_bio = bio;
901 int ret;
903 blk_queue_bounce(q, &bounce_bio);
904 ret = blk_rq_append_bio(q, rq, bounce_bio);
905 if (unlikely(ret)) {
906 blk_put_request(rq);
907 return ERR_PTR(ret);
911 return rq;
913 EXPORT_SYMBOL(blk_make_request);
916 * blk_requeue_request - put a request back on queue
917 * @q: request queue where request should be inserted
918 * @rq: request to be inserted
920 * Description:
921 * Drivers often keep queueing requests until the hardware cannot accept
922 * more, when that condition happens we need to put the request back
923 * on the queue. Must be called with queue lock held.
925 void blk_requeue_request(struct request_queue *q, struct request *rq)
927 blk_delete_timer(rq);
928 blk_clear_rq_complete(rq);
929 trace_block_rq_requeue(q, rq);
931 if (blk_rq_tagged(rq))
932 blk_queue_end_tag(q, rq);
934 BUG_ON(blk_queued_rq(rq));
936 elv_requeue_request(q, rq);
938 EXPORT_SYMBOL(blk_requeue_request);
940 static void add_acct_request(struct request_queue *q, struct request *rq,
941 int where)
943 drive_stat_acct(rq, 1);
944 __elv_add_request(q, rq, where);
948 * blk_insert_request - insert a special request into a request queue
949 * @q: request queue where request should be inserted
950 * @rq: request to be inserted
951 * @at_head: insert request at head or tail of queue
952 * @data: private data
954 * Description:
955 * Many block devices need to execute commands asynchronously, so they don't
956 * block the whole kernel from preemption during request execution. This is
957 * accomplished normally by inserting aritficial requests tagged as
958 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
959 * be scheduled for actual execution by the request queue.
961 * We have the option of inserting the head or the tail of the queue.
962 * Typically we use the tail for new ioctls and so forth. We use the head
963 * of the queue for things like a QUEUE_FULL message from a device, or a
964 * host that is unable to accept a particular command.
966 void blk_insert_request(struct request_queue *q, struct request *rq,
967 int at_head, void *data)
969 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
970 unsigned long flags;
973 * tell I/O scheduler that this isn't a regular read/write (ie it
974 * must not attempt merges on this) and that it acts as a soft
975 * barrier
977 rq->cmd_type = REQ_TYPE_SPECIAL;
979 rq->special = data;
981 spin_lock_irqsave(q->queue_lock, flags);
984 * If command is tagged, release the tag
986 if (blk_rq_tagged(rq))
987 blk_queue_end_tag(q, rq);
989 add_acct_request(q, rq, where);
990 __blk_run_queue(q);
991 spin_unlock_irqrestore(q->queue_lock, flags);
993 EXPORT_SYMBOL(blk_insert_request);
995 static void part_round_stats_single(int cpu, struct hd_struct *part,
996 unsigned long now)
998 if (now == part->stamp)
999 return;
1001 if (part_in_flight(part)) {
1002 __part_stat_add(cpu, part, time_in_queue,
1003 part_in_flight(part) * (now - part->stamp));
1004 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1006 part->stamp = now;
1010 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1011 * @cpu: cpu number for stats access
1012 * @part: target partition
1014 * The average IO queue length and utilisation statistics are maintained
1015 * by observing the current state of the queue length and the amount of
1016 * time it has been in this state for.
1018 * Normally, that accounting is done on IO completion, but that can result
1019 * in more than a second's worth of IO being accounted for within any one
1020 * second, leading to >100% utilisation. To deal with that, we call this
1021 * function to do a round-off before returning the results when reading
1022 * /proc/diskstats. This accounts immediately for all queue usage up to
1023 * the current jiffies and restarts the counters again.
1025 void part_round_stats(int cpu, struct hd_struct *part)
1027 unsigned long now = jiffies;
1029 if (part->partno)
1030 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1031 part_round_stats_single(cpu, part, now);
1033 EXPORT_SYMBOL_GPL(part_round_stats);
1036 * queue lock must be held
1038 void __blk_put_request(struct request_queue *q, struct request *req)
1040 if (unlikely(!q))
1041 return;
1042 if (unlikely(--req->ref_count))
1043 return;
1045 elv_completed_request(q, req);
1047 /* this is a bio leak */
1048 WARN_ON(req->bio != NULL);
1051 * Request may not have originated from ll_rw_blk. if not,
1052 * it didn't come out of our reserved rq pools
1054 if (req->cmd_flags & REQ_ALLOCED) {
1055 int is_sync = rq_is_sync(req) != 0;
1056 int priv = req->cmd_flags & REQ_ELVPRIV;
1058 BUG_ON(!list_empty(&req->queuelist));
1059 BUG_ON(!hlist_unhashed(&req->hash));
1061 blk_free_request(q, req);
1062 freed_request(q, is_sync, priv);
1065 EXPORT_SYMBOL_GPL(__blk_put_request);
1067 void blk_put_request(struct request *req)
1069 unsigned long flags;
1070 struct request_queue *q = req->q;
1072 spin_lock_irqsave(q->queue_lock, flags);
1073 __blk_put_request(q, req);
1074 spin_unlock_irqrestore(q->queue_lock, flags);
1076 EXPORT_SYMBOL(blk_put_request);
1079 * blk_add_request_payload - add a payload to a request
1080 * @rq: request to update
1081 * @page: page backing the payload
1082 * @len: length of the payload.
1084 * This allows to later add a payload to an already submitted request by
1085 * a block driver. The driver needs to take care of freeing the payload
1086 * itself.
1088 * Note that this is a quite horrible hack and nothing but handling of
1089 * discard requests should ever use it.
1091 void blk_add_request_payload(struct request *rq, struct page *page,
1092 unsigned int len)
1094 struct bio *bio = rq->bio;
1096 bio->bi_io_vec->bv_page = page;
1097 bio->bi_io_vec->bv_offset = 0;
1098 bio->bi_io_vec->bv_len = len;
1100 bio->bi_size = len;
1101 bio->bi_vcnt = 1;
1102 bio->bi_phys_segments = 1;
1104 rq->__data_len = rq->resid_len = len;
1105 rq->nr_phys_segments = 1;
1106 rq->buffer = bio_data(bio);
1108 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1110 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1111 struct bio *bio)
1113 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1116 * Debug stuff, kill later
1118 if (!rq_mergeable(req)) {
1119 blk_dump_rq_flags(req, "back");
1120 return false;
1123 if (!ll_back_merge_fn(q, req, bio))
1124 return false;
1126 trace_block_bio_backmerge(q, bio);
1128 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1129 blk_rq_set_mixed_merge(req);
1131 req->biotail->bi_next = bio;
1132 req->biotail = bio;
1133 req->__data_len += bio->bi_size;
1134 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1136 drive_stat_acct(req, 0);
1137 return true;
1140 static bool bio_attempt_front_merge(struct request_queue *q,
1141 struct request *req, struct bio *bio)
1143 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1144 sector_t sector;
1147 * Debug stuff, kill later
1149 if (!rq_mergeable(req)) {
1150 blk_dump_rq_flags(req, "front");
1151 return false;
1154 if (!ll_front_merge_fn(q, req, bio))
1155 return false;
1157 trace_block_bio_frontmerge(q, bio);
1159 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1160 blk_rq_set_mixed_merge(req);
1162 sector = bio->bi_sector;
1164 bio->bi_next = req->bio;
1165 req->bio = bio;
1168 * may not be valid. if the low level driver said
1169 * it didn't need a bounce buffer then it better
1170 * not touch req->buffer either...
1172 req->buffer = bio_data(bio);
1173 req->__sector = bio->bi_sector;
1174 req->__data_len += bio->bi_size;
1175 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1177 drive_stat_acct(req, 0);
1178 return true;
1182 * Attempts to merge with the plugged list in the current process. Returns
1183 * true if merge was successful, otherwise false.
1185 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1186 struct bio *bio)
1188 struct blk_plug *plug;
1189 struct request *rq;
1190 bool ret = false;
1192 plug = tsk->plug;
1193 if (!plug)
1194 goto out;
1196 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1197 int el_ret;
1199 if (rq->q != q)
1200 continue;
1202 el_ret = elv_try_merge(rq, bio);
1203 if (el_ret == ELEVATOR_BACK_MERGE) {
1204 ret = bio_attempt_back_merge(q, rq, bio);
1205 if (ret)
1206 break;
1207 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1208 ret = bio_attempt_front_merge(q, rq, bio);
1209 if (ret)
1210 break;
1213 out:
1214 return ret;
1217 void init_request_from_bio(struct request *req, struct bio *bio)
1219 req->cpu = bio->bi_comp_cpu;
1220 req->cmd_type = REQ_TYPE_FS;
1222 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1223 if (bio->bi_rw & REQ_RAHEAD)
1224 req->cmd_flags |= REQ_FAILFAST_MASK;
1226 req->errors = 0;
1227 req->__sector = bio->bi_sector;
1228 req->ioprio = bio_prio(bio);
1229 blk_rq_bio_prep(req->q, req, bio);
1232 static int __make_request(struct request_queue *q, struct bio *bio)
1234 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1235 struct blk_plug *plug;
1236 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1237 struct request *req;
1240 * low level driver can indicate that it wants pages above a
1241 * certain limit bounced to low memory (ie for highmem, or even
1242 * ISA dma in theory)
1244 blk_queue_bounce(q, &bio);
1246 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1247 spin_lock_irq(q->queue_lock);
1248 where = ELEVATOR_INSERT_FLUSH;
1249 goto get_rq;
1253 * Check if we can merge with the plugged list before grabbing
1254 * any locks.
1256 if (attempt_plug_merge(current, q, bio))
1257 goto out;
1259 spin_lock_irq(q->queue_lock);
1261 el_ret = elv_merge(q, &req, bio);
1262 if (el_ret == ELEVATOR_BACK_MERGE) {
1263 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1264 if (bio_attempt_back_merge(q, req, bio)) {
1265 if (!attempt_back_merge(q, req))
1266 elv_merged_request(q, req, el_ret);
1267 goto out_unlock;
1269 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1270 BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1271 if (bio_attempt_front_merge(q, req, bio)) {
1272 if (!attempt_front_merge(q, req))
1273 elv_merged_request(q, req, el_ret);
1274 goto out_unlock;
1278 get_rq:
1280 * This sync check and mask will be re-done in init_request_from_bio(),
1281 * but we need to set it earlier to expose the sync flag to the
1282 * rq allocator and io schedulers.
1284 rw_flags = bio_data_dir(bio);
1285 if (sync)
1286 rw_flags |= REQ_SYNC;
1289 * Grab a free request. This is might sleep but can not fail.
1290 * Returns with the queue unlocked.
1292 req = get_request_wait(q, rw_flags, bio);
1295 * After dropping the lock and possibly sleeping here, our request
1296 * may now be mergeable after it had proven unmergeable (above).
1297 * We don't worry about that case for efficiency. It won't happen
1298 * often, and the elevators are able to handle it.
1300 init_request_from_bio(req, bio);
1302 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1303 bio_flagged(bio, BIO_CPU_AFFINE)) {
1304 req->cpu = blk_cpu_to_group(get_cpu());
1305 put_cpu();
1308 plug = current->plug;
1309 if (plug) {
1311 * If this is the first request added after a plug, fire
1312 * of a plug trace. If others have been added before, check
1313 * if we have multiple devices in this plug. If so, make a
1314 * note to sort the list before dispatch.
1316 if (list_empty(&plug->list))
1317 trace_block_plug(q);
1318 else if (!plug->should_sort) {
1319 struct request *__rq;
1321 __rq = list_entry_rq(plug->list.prev);
1322 if (__rq->q != q)
1323 plug->should_sort = 1;
1326 * Debug flag, kill later
1328 req->cmd_flags |= REQ_ON_PLUG;
1329 list_add_tail(&req->queuelist, &plug->list);
1330 drive_stat_acct(req, 1);
1331 } else {
1332 spin_lock_irq(q->queue_lock);
1333 add_acct_request(q, req, where);
1334 __blk_run_queue(q);
1335 out_unlock:
1336 spin_unlock_irq(q->queue_lock);
1338 out:
1339 return 0;
1343 * If bio->bi_dev is a partition, remap the location
1345 static inline void blk_partition_remap(struct bio *bio)
1347 struct block_device *bdev = bio->bi_bdev;
1349 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1350 struct hd_struct *p = bdev->bd_part;
1352 bio->bi_sector += p->start_sect;
1353 bio->bi_bdev = bdev->bd_contains;
1355 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1356 bdev->bd_dev,
1357 bio->bi_sector - p->start_sect);
1361 static void handle_bad_sector(struct bio *bio)
1363 char b[BDEVNAME_SIZE];
1365 printk(KERN_INFO "attempt to access beyond end of device\n");
1366 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1367 bdevname(bio->bi_bdev, b),
1368 bio->bi_rw,
1369 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1370 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1372 set_bit(BIO_EOF, &bio->bi_flags);
1375 #ifdef CONFIG_FAIL_MAKE_REQUEST
1377 static DECLARE_FAULT_ATTR(fail_make_request);
1379 static int __init setup_fail_make_request(char *str)
1381 return setup_fault_attr(&fail_make_request, str);
1383 __setup("fail_make_request=", setup_fail_make_request);
1385 static int should_fail_request(struct bio *bio)
1387 struct hd_struct *part = bio->bi_bdev->bd_part;
1389 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1390 return should_fail(&fail_make_request, bio->bi_size);
1392 return 0;
1395 static int __init fail_make_request_debugfs(void)
1397 return init_fault_attr_dentries(&fail_make_request,
1398 "fail_make_request");
1401 late_initcall(fail_make_request_debugfs);
1403 #else /* CONFIG_FAIL_MAKE_REQUEST */
1405 static inline int should_fail_request(struct bio *bio)
1407 return 0;
1410 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1413 * Check whether this bio extends beyond the end of the device.
1415 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1417 sector_t maxsector;
1419 if (!nr_sectors)
1420 return 0;
1422 /* Test device or partition size, when known. */
1423 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1424 if (maxsector) {
1425 sector_t sector = bio->bi_sector;
1427 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1429 * This may well happen - the kernel calls bread()
1430 * without checking the size of the device, e.g., when
1431 * mounting a device.
1433 handle_bad_sector(bio);
1434 return 1;
1438 return 0;
1442 * generic_make_request - hand a buffer to its device driver for I/O
1443 * @bio: The bio describing the location in memory and on the device.
1445 * generic_make_request() is used to make I/O requests of block
1446 * devices. It is passed a &struct bio, which describes the I/O that needs
1447 * to be done.
1449 * generic_make_request() does not return any status. The
1450 * success/failure status of the request, along with notification of
1451 * completion, is delivered asynchronously through the bio->bi_end_io
1452 * function described (one day) else where.
1454 * The caller of generic_make_request must make sure that bi_io_vec
1455 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1456 * set to describe the device address, and the
1457 * bi_end_io and optionally bi_private are set to describe how
1458 * completion notification should be signaled.
1460 * generic_make_request and the drivers it calls may use bi_next if this
1461 * bio happens to be merged with someone else, and may change bi_dev and
1462 * bi_sector for remaps as it sees fit. So the values of these fields
1463 * should NOT be depended on after the call to generic_make_request.
1465 static inline void __generic_make_request(struct bio *bio)
1467 struct request_queue *q;
1468 sector_t old_sector;
1469 int ret, nr_sectors = bio_sectors(bio);
1470 dev_t old_dev;
1471 int err = -EIO;
1473 might_sleep();
1475 if (bio_check_eod(bio, nr_sectors))
1476 goto end_io;
1479 * Resolve the mapping until finished. (drivers are
1480 * still free to implement/resolve their own stacking
1481 * by explicitly returning 0)
1483 * NOTE: we don't repeat the blk_size check for each new device.
1484 * Stacking drivers are expected to know what they are doing.
1486 old_sector = -1;
1487 old_dev = 0;
1488 do {
1489 char b[BDEVNAME_SIZE];
1491 q = bdev_get_queue(bio->bi_bdev);
1492 if (unlikely(!q)) {
1493 printk(KERN_ERR
1494 "generic_make_request: Trying to access "
1495 "nonexistent block-device %s (%Lu)\n",
1496 bdevname(bio->bi_bdev, b),
1497 (long long) bio->bi_sector);
1498 goto end_io;
1501 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1502 nr_sectors > queue_max_hw_sectors(q))) {
1503 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1504 bdevname(bio->bi_bdev, b),
1505 bio_sectors(bio),
1506 queue_max_hw_sectors(q));
1507 goto end_io;
1510 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1511 goto end_io;
1513 if (should_fail_request(bio))
1514 goto end_io;
1517 * If this device has partitions, remap block n
1518 * of partition p to block n+start(p) of the disk.
1520 blk_partition_remap(bio);
1522 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1523 goto end_io;
1525 if (old_sector != -1)
1526 trace_block_bio_remap(q, bio, old_dev, old_sector);
1528 old_sector = bio->bi_sector;
1529 old_dev = bio->bi_bdev->bd_dev;
1531 if (bio_check_eod(bio, nr_sectors))
1532 goto end_io;
1535 * Filter flush bio's early so that make_request based
1536 * drivers without flush support don't have to worry
1537 * about them.
1539 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1540 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1541 if (!nr_sectors) {
1542 err = 0;
1543 goto end_io;
1547 if ((bio->bi_rw & REQ_DISCARD) &&
1548 (!blk_queue_discard(q) ||
1549 ((bio->bi_rw & REQ_SECURE) &&
1550 !blk_queue_secdiscard(q)))) {
1551 err = -EOPNOTSUPP;
1552 goto end_io;
1555 blk_throtl_bio(q, &bio);
1558 * If bio = NULL, bio has been throttled and will be submitted
1559 * later.
1561 if (!bio)
1562 break;
1564 trace_block_bio_queue(q, bio);
1566 ret = q->make_request_fn(q, bio);
1567 } while (ret);
1569 return;
1571 end_io:
1572 bio_endio(bio, err);
1576 * We only want one ->make_request_fn to be active at a time,
1577 * else stack usage with stacked devices could be a problem.
1578 * So use current->bio_list to keep a list of requests
1579 * submited by a make_request_fn function.
1580 * current->bio_list is also used as a flag to say if
1581 * generic_make_request is currently active in this task or not.
1582 * If it is NULL, then no make_request is active. If it is non-NULL,
1583 * then a make_request is active, and new requests should be added
1584 * at the tail
1586 void generic_make_request(struct bio *bio)
1588 struct bio_list bio_list_on_stack;
1590 if (current->bio_list) {
1591 /* make_request is active */
1592 bio_list_add(current->bio_list, bio);
1593 return;
1595 /* following loop may be a bit non-obvious, and so deserves some
1596 * explanation.
1597 * Before entering the loop, bio->bi_next is NULL (as all callers
1598 * ensure that) so we have a list with a single bio.
1599 * We pretend that we have just taken it off a longer list, so
1600 * we assign bio_list to a pointer to the bio_list_on_stack,
1601 * thus initialising the bio_list of new bios to be
1602 * added. __generic_make_request may indeed add some more bios
1603 * through a recursive call to generic_make_request. If it
1604 * did, we find a non-NULL value in bio_list and re-enter the loop
1605 * from the top. In this case we really did just take the bio
1606 * of the top of the list (no pretending) and so remove it from
1607 * bio_list, and call into __generic_make_request again.
1609 * The loop was structured like this to make only one call to
1610 * __generic_make_request (which is important as it is large and
1611 * inlined) and to keep the structure simple.
1613 BUG_ON(bio->bi_next);
1614 bio_list_init(&bio_list_on_stack);
1615 current->bio_list = &bio_list_on_stack;
1616 do {
1617 __generic_make_request(bio);
1618 bio = bio_list_pop(current->bio_list);
1619 } while (bio);
1620 current->bio_list = NULL; /* deactivate */
1622 EXPORT_SYMBOL(generic_make_request);
1625 * submit_bio - submit a bio to the block device layer for I/O
1626 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1627 * @bio: The &struct bio which describes the I/O
1629 * submit_bio() is very similar in purpose to generic_make_request(), and
1630 * uses that function to do most of the work. Both are fairly rough
1631 * interfaces; @bio must be presetup and ready for I/O.
1634 void submit_bio(int rw, struct bio *bio)
1636 int count = bio_sectors(bio);
1638 bio->bi_rw |= rw;
1641 * If it's a regular read/write or a barrier with data attached,
1642 * go through the normal accounting stuff before submission.
1644 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1645 if (rw & WRITE) {
1646 count_vm_events(PGPGOUT, count);
1647 } else {
1648 task_io_account_read(bio->bi_size);
1649 count_vm_events(PGPGIN, count);
1652 if (unlikely(block_dump)) {
1653 char b[BDEVNAME_SIZE];
1654 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1655 current->comm, task_pid_nr(current),
1656 (rw & WRITE) ? "WRITE" : "READ",
1657 (unsigned long long)bio->bi_sector,
1658 bdevname(bio->bi_bdev, b),
1659 count);
1663 generic_make_request(bio);
1665 EXPORT_SYMBOL(submit_bio);
1668 * blk_rq_check_limits - Helper function to check a request for the queue limit
1669 * @q: the queue
1670 * @rq: the request being checked
1672 * Description:
1673 * @rq may have been made based on weaker limitations of upper-level queues
1674 * in request stacking drivers, and it may violate the limitation of @q.
1675 * Since the block layer and the underlying device driver trust @rq
1676 * after it is inserted to @q, it should be checked against @q before
1677 * the insertion using this generic function.
1679 * This function should also be useful for request stacking drivers
1680 * in some cases below, so export this function.
1681 * Request stacking drivers like request-based dm may change the queue
1682 * limits while requests are in the queue (e.g. dm's table swapping).
1683 * Such request stacking drivers should check those requests agaist
1684 * the new queue limits again when they dispatch those requests,
1685 * although such checkings are also done against the old queue limits
1686 * when submitting requests.
1688 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1690 if (rq->cmd_flags & REQ_DISCARD)
1691 return 0;
1693 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1694 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1695 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1696 return -EIO;
1700 * queue's settings related to segment counting like q->bounce_pfn
1701 * may differ from that of other stacking queues.
1702 * Recalculate it to check the request correctly on this queue's
1703 * limitation.
1705 blk_recalc_rq_segments(rq);
1706 if (rq->nr_phys_segments > queue_max_segments(q)) {
1707 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1708 return -EIO;
1711 return 0;
1713 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1716 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1717 * @q: the queue to submit the request
1718 * @rq: the request being queued
1720 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1722 unsigned long flags;
1724 if (blk_rq_check_limits(q, rq))
1725 return -EIO;
1727 #ifdef CONFIG_FAIL_MAKE_REQUEST
1728 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1729 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1730 return -EIO;
1731 #endif
1733 spin_lock_irqsave(q->queue_lock, flags);
1736 * Submitting request must be dequeued before calling this function
1737 * because it will be linked to another request_queue
1739 BUG_ON(blk_queued_rq(rq));
1741 add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1742 spin_unlock_irqrestore(q->queue_lock, flags);
1744 return 0;
1746 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1749 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1750 * @rq: request to examine
1752 * Description:
1753 * A request could be merge of IOs which require different failure
1754 * handling. This function determines the number of bytes which
1755 * can be failed from the beginning of the request without
1756 * crossing into area which need to be retried further.
1758 * Return:
1759 * The number of bytes to fail.
1761 * Context:
1762 * queue_lock must be held.
1764 unsigned int blk_rq_err_bytes(const struct request *rq)
1766 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1767 unsigned int bytes = 0;
1768 struct bio *bio;
1770 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1771 return blk_rq_bytes(rq);
1774 * Currently the only 'mixing' which can happen is between
1775 * different fastfail types. We can safely fail portions
1776 * which have all the failfast bits that the first one has -
1777 * the ones which are at least as eager to fail as the first
1778 * one.
1780 for (bio = rq->bio; bio; bio = bio->bi_next) {
1781 if ((bio->bi_rw & ff) != ff)
1782 break;
1783 bytes += bio->bi_size;
1786 /* this could lead to infinite loop */
1787 BUG_ON(blk_rq_bytes(rq) && !bytes);
1788 return bytes;
1790 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1792 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1794 if (blk_do_io_stat(req)) {
1795 const int rw = rq_data_dir(req);
1796 struct hd_struct *part;
1797 int cpu;
1799 cpu = part_stat_lock();
1800 part = req->part;
1801 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1802 part_stat_unlock();
1806 static void blk_account_io_done(struct request *req)
1809 * Account IO completion. flush_rq isn't accounted as a
1810 * normal IO on queueing nor completion. Accounting the
1811 * containing request is enough.
1813 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1814 unsigned long duration = jiffies - req->start_time;
1815 const int rw = rq_data_dir(req);
1816 struct hd_struct *part;
1817 int cpu;
1819 cpu = part_stat_lock();
1820 part = req->part;
1822 part_stat_inc(cpu, part, ios[rw]);
1823 part_stat_add(cpu, part, ticks[rw], duration);
1824 part_round_stats(cpu, part);
1825 part_dec_in_flight(part, rw);
1827 hd_struct_put(part);
1828 part_stat_unlock();
1833 * blk_peek_request - peek at the top of a request queue
1834 * @q: request queue to peek at
1836 * Description:
1837 * Return the request at the top of @q. The returned request
1838 * should be started using blk_start_request() before LLD starts
1839 * processing it.
1841 * Return:
1842 * Pointer to the request at the top of @q if available. Null
1843 * otherwise.
1845 * Context:
1846 * queue_lock must be held.
1848 struct request *blk_peek_request(struct request_queue *q)
1850 struct request *rq;
1851 int ret;
1853 while ((rq = __elv_next_request(q)) != NULL) {
1854 if (!(rq->cmd_flags & REQ_STARTED)) {
1856 * This is the first time the device driver
1857 * sees this request (possibly after
1858 * requeueing). Notify IO scheduler.
1860 if (rq->cmd_flags & REQ_SORTED)
1861 elv_activate_rq(q, rq);
1864 * just mark as started even if we don't start
1865 * it, a request that has been delayed should
1866 * not be passed by new incoming requests
1868 rq->cmd_flags |= REQ_STARTED;
1869 trace_block_rq_issue(q, rq);
1872 if (!q->boundary_rq || q->boundary_rq == rq) {
1873 q->end_sector = rq_end_sector(rq);
1874 q->boundary_rq = NULL;
1877 if (rq->cmd_flags & REQ_DONTPREP)
1878 break;
1880 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1882 * make sure space for the drain appears we
1883 * know we can do this because max_hw_segments
1884 * has been adjusted to be one fewer than the
1885 * device can handle
1887 rq->nr_phys_segments++;
1890 if (!q->prep_rq_fn)
1891 break;
1893 ret = q->prep_rq_fn(q, rq);
1894 if (ret == BLKPREP_OK) {
1895 break;
1896 } else if (ret == BLKPREP_DEFER) {
1898 * the request may have been (partially) prepped.
1899 * we need to keep this request in the front to
1900 * avoid resource deadlock. REQ_STARTED will
1901 * prevent other fs requests from passing this one.
1903 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1904 !(rq->cmd_flags & REQ_DONTPREP)) {
1906 * remove the space for the drain we added
1907 * so that we don't add it again
1909 --rq->nr_phys_segments;
1912 rq = NULL;
1913 break;
1914 } else if (ret == BLKPREP_KILL) {
1915 rq->cmd_flags |= REQ_QUIET;
1917 * Mark this request as started so we don't trigger
1918 * any debug logic in the end I/O path.
1920 blk_start_request(rq);
1921 __blk_end_request_all(rq, -EIO);
1922 } else {
1923 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1924 break;
1928 return rq;
1930 EXPORT_SYMBOL(blk_peek_request);
1932 void blk_dequeue_request(struct request *rq)
1934 struct request_queue *q = rq->q;
1936 BUG_ON(list_empty(&rq->queuelist));
1937 BUG_ON(ELV_ON_HASH(rq));
1939 list_del_init(&rq->queuelist);
1942 * the time frame between a request being removed from the lists
1943 * and to it is freed is accounted as io that is in progress at
1944 * the driver side.
1946 if (blk_account_rq(rq)) {
1947 q->in_flight[rq_is_sync(rq)]++;
1948 set_io_start_time_ns(rq);
1953 * blk_start_request - start request processing on the driver
1954 * @req: request to dequeue
1956 * Description:
1957 * Dequeue @req and start timeout timer on it. This hands off the
1958 * request to the driver.
1960 * Block internal functions which don't want to start timer should
1961 * call blk_dequeue_request().
1963 * Context:
1964 * queue_lock must be held.
1966 void blk_start_request(struct request *req)
1968 blk_dequeue_request(req);
1971 * We are now handing the request to the hardware, initialize
1972 * resid_len to full count and add the timeout handler.
1974 req->resid_len = blk_rq_bytes(req);
1975 if (unlikely(blk_bidi_rq(req)))
1976 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1978 blk_add_timer(req);
1980 EXPORT_SYMBOL(blk_start_request);
1983 * blk_fetch_request - fetch a request from a request queue
1984 * @q: request queue to fetch a request from
1986 * Description:
1987 * Return the request at the top of @q. The request is started on
1988 * return and LLD can start processing it immediately.
1990 * Return:
1991 * Pointer to the request at the top of @q if available. Null
1992 * otherwise.
1994 * Context:
1995 * queue_lock must be held.
1997 struct request *blk_fetch_request(struct request_queue *q)
1999 struct request *rq;
2001 rq = blk_peek_request(q);
2002 if (rq)
2003 blk_start_request(rq);
2004 return rq;
2006 EXPORT_SYMBOL(blk_fetch_request);
2009 * blk_update_request - Special helper function for request stacking drivers
2010 * @req: the request being processed
2011 * @error: %0 for success, < %0 for error
2012 * @nr_bytes: number of bytes to complete @req
2014 * Description:
2015 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2016 * the request structure even if @req doesn't have leftover.
2017 * If @req has leftover, sets it up for the next range of segments.
2019 * This special helper function is only for request stacking drivers
2020 * (e.g. request-based dm) so that they can handle partial completion.
2021 * Actual device drivers should use blk_end_request instead.
2023 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2024 * %false return from this function.
2026 * Return:
2027 * %false - this request doesn't have any more data
2028 * %true - this request has more data
2030 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2032 int total_bytes, bio_nbytes, next_idx = 0;
2033 struct bio *bio;
2035 if (!req->bio)
2036 return false;
2038 trace_block_rq_complete(req->q, req);
2041 * For fs requests, rq is just carrier of independent bio's
2042 * and each partial completion should be handled separately.
2043 * Reset per-request error on each partial completion.
2045 * TODO: tj: This is too subtle. It would be better to let
2046 * low level drivers do what they see fit.
2048 if (req->cmd_type == REQ_TYPE_FS)
2049 req->errors = 0;
2051 if (error && req->cmd_type == REQ_TYPE_FS &&
2052 !(req->cmd_flags & REQ_QUIET)) {
2053 char *error_type;
2055 switch (error) {
2056 case -ENOLINK:
2057 error_type = "recoverable transport";
2058 break;
2059 case -EREMOTEIO:
2060 error_type = "critical target";
2061 break;
2062 case -EBADE:
2063 error_type = "critical nexus";
2064 break;
2065 case -EIO:
2066 default:
2067 error_type = "I/O";
2068 break;
2070 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2071 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2072 (unsigned long long)blk_rq_pos(req));
2075 blk_account_io_completion(req, nr_bytes);
2077 total_bytes = bio_nbytes = 0;
2078 while ((bio = req->bio) != NULL) {
2079 int nbytes;
2081 if (nr_bytes >= bio->bi_size) {
2082 req->bio = bio->bi_next;
2083 nbytes = bio->bi_size;
2084 req_bio_endio(req, bio, nbytes, error);
2085 next_idx = 0;
2086 bio_nbytes = 0;
2087 } else {
2088 int idx = bio->bi_idx + next_idx;
2090 if (unlikely(idx >= bio->bi_vcnt)) {
2091 blk_dump_rq_flags(req, "__end_that");
2092 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2093 __func__, idx, bio->bi_vcnt);
2094 break;
2097 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2098 BIO_BUG_ON(nbytes > bio->bi_size);
2101 * not a complete bvec done
2103 if (unlikely(nbytes > nr_bytes)) {
2104 bio_nbytes += nr_bytes;
2105 total_bytes += nr_bytes;
2106 break;
2110 * advance to the next vector
2112 next_idx++;
2113 bio_nbytes += nbytes;
2116 total_bytes += nbytes;
2117 nr_bytes -= nbytes;
2119 bio = req->bio;
2120 if (bio) {
2122 * end more in this run, or just return 'not-done'
2124 if (unlikely(nr_bytes <= 0))
2125 break;
2130 * completely done
2132 if (!req->bio) {
2134 * Reset counters so that the request stacking driver
2135 * can find how many bytes remain in the request
2136 * later.
2138 req->__data_len = 0;
2139 return false;
2143 * if the request wasn't completed, update state
2145 if (bio_nbytes) {
2146 req_bio_endio(req, bio, bio_nbytes, error);
2147 bio->bi_idx += next_idx;
2148 bio_iovec(bio)->bv_offset += nr_bytes;
2149 bio_iovec(bio)->bv_len -= nr_bytes;
2152 req->__data_len -= total_bytes;
2153 req->buffer = bio_data(req->bio);
2155 /* update sector only for requests with clear definition of sector */
2156 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2157 req->__sector += total_bytes >> 9;
2159 /* mixed attributes always follow the first bio */
2160 if (req->cmd_flags & REQ_MIXED_MERGE) {
2161 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2162 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2166 * If total number of sectors is less than the first segment
2167 * size, something has gone terribly wrong.
2169 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2170 blk_dump_rq_flags(req, "request botched");
2171 req->__data_len = blk_rq_cur_bytes(req);
2174 /* recalculate the number of segments */
2175 blk_recalc_rq_segments(req);
2177 return true;
2179 EXPORT_SYMBOL_GPL(blk_update_request);
2181 static bool blk_update_bidi_request(struct request *rq, int error,
2182 unsigned int nr_bytes,
2183 unsigned int bidi_bytes)
2185 if (blk_update_request(rq, error, nr_bytes))
2186 return true;
2188 /* Bidi request must be completed as a whole */
2189 if (unlikely(blk_bidi_rq(rq)) &&
2190 blk_update_request(rq->next_rq, error, bidi_bytes))
2191 return true;
2193 if (blk_queue_add_random(rq->q))
2194 add_disk_randomness(rq->rq_disk);
2196 return false;
2200 * blk_unprep_request - unprepare a request
2201 * @req: the request
2203 * This function makes a request ready for complete resubmission (or
2204 * completion). It happens only after all error handling is complete,
2205 * so represents the appropriate moment to deallocate any resources
2206 * that were allocated to the request in the prep_rq_fn. The queue
2207 * lock is held when calling this.
2209 void blk_unprep_request(struct request *req)
2211 struct request_queue *q = req->q;
2213 req->cmd_flags &= ~REQ_DONTPREP;
2214 if (q->unprep_rq_fn)
2215 q->unprep_rq_fn(q, req);
2217 EXPORT_SYMBOL_GPL(blk_unprep_request);
2220 * queue lock must be held
2222 static void blk_finish_request(struct request *req, int error)
2224 if (blk_rq_tagged(req))
2225 blk_queue_end_tag(req->q, req);
2227 BUG_ON(blk_queued_rq(req));
2229 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2230 laptop_io_completion(&req->q->backing_dev_info);
2232 blk_delete_timer(req);
2234 if (req->cmd_flags & REQ_DONTPREP)
2235 blk_unprep_request(req);
2238 blk_account_io_done(req);
2240 if (req->end_io)
2241 req->end_io(req, error);
2242 else {
2243 if (blk_bidi_rq(req))
2244 __blk_put_request(req->next_rq->q, req->next_rq);
2246 __blk_put_request(req->q, req);
2251 * blk_end_bidi_request - Complete a bidi request
2252 * @rq: the request to complete
2253 * @error: %0 for success, < %0 for error
2254 * @nr_bytes: number of bytes to complete @rq
2255 * @bidi_bytes: number of bytes to complete @rq->next_rq
2257 * Description:
2258 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2259 * Drivers that supports bidi can safely call this member for any
2260 * type of request, bidi or uni. In the later case @bidi_bytes is
2261 * just ignored.
2263 * Return:
2264 * %false - we are done with this request
2265 * %true - still buffers pending for this request
2267 static bool blk_end_bidi_request(struct request *rq, int error,
2268 unsigned int nr_bytes, unsigned int bidi_bytes)
2270 struct request_queue *q = rq->q;
2271 unsigned long flags;
2273 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2274 return true;
2276 spin_lock_irqsave(q->queue_lock, flags);
2277 blk_finish_request(rq, error);
2278 spin_unlock_irqrestore(q->queue_lock, flags);
2280 return false;
2284 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2285 * @rq: the request to complete
2286 * @error: %0 for success, < %0 for error
2287 * @nr_bytes: number of bytes to complete @rq
2288 * @bidi_bytes: number of bytes to complete @rq->next_rq
2290 * Description:
2291 * Identical to blk_end_bidi_request() except that queue lock is
2292 * assumed to be locked on entry and remains so on return.
2294 * Return:
2295 * %false - we are done with this request
2296 * %true - still buffers pending for this request
2298 static bool __blk_end_bidi_request(struct request *rq, int error,
2299 unsigned int nr_bytes, unsigned int bidi_bytes)
2301 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2302 return true;
2304 blk_finish_request(rq, error);
2306 return false;
2310 * blk_end_request - Helper function for drivers to complete the request.
2311 * @rq: the request being processed
2312 * @error: %0 for success, < %0 for error
2313 * @nr_bytes: number of bytes to complete
2315 * Description:
2316 * Ends I/O on a number of bytes attached to @rq.
2317 * If @rq has leftover, sets it up for the next range of segments.
2319 * Return:
2320 * %false - we are done with this request
2321 * %true - still buffers pending for this request
2323 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2325 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2327 EXPORT_SYMBOL(blk_end_request);
2330 * blk_end_request_all - Helper function for drives to finish the request.
2331 * @rq: the request to finish
2332 * @error: %0 for success, < %0 for error
2334 * Description:
2335 * Completely finish @rq.
2337 void blk_end_request_all(struct request *rq, int error)
2339 bool pending;
2340 unsigned int bidi_bytes = 0;
2342 if (unlikely(blk_bidi_rq(rq)))
2343 bidi_bytes = blk_rq_bytes(rq->next_rq);
2345 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2346 BUG_ON(pending);
2348 EXPORT_SYMBOL(blk_end_request_all);
2351 * blk_end_request_cur - Helper function to finish the current request chunk.
2352 * @rq: the request to finish the current chunk for
2353 * @error: %0 for success, < %0 for error
2355 * Description:
2356 * Complete the current consecutively mapped chunk from @rq.
2358 * Return:
2359 * %false - we are done with this request
2360 * %true - still buffers pending for this request
2362 bool blk_end_request_cur(struct request *rq, int error)
2364 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2366 EXPORT_SYMBOL(blk_end_request_cur);
2369 * blk_end_request_err - Finish a request till the next failure boundary.
2370 * @rq: the request to finish till the next failure boundary for
2371 * @error: must be negative errno
2373 * Description:
2374 * Complete @rq till the next failure boundary.
2376 * Return:
2377 * %false - we are done with this request
2378 * %true - still buffers pending for this request
2380 bool blk_end_request_err(struct request *rq, int error)
2382 WARN_ON(error >= 0);
2383 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2385 EXPORT_SYMBOL_GPL(blk_end_request_err);
2388 * __blk_end_request - Helper function for drivers to complete the request.
2389 * @rq: the request being processed
2390 * @error: %0 for success, < %0 for error
2391 * @nr_bytes: number of bytes to complete
2393 * Description:
2394 * Must be called with queue lock held unlike blk_end_request().
2396 * Return:
2397 * %false - we are done with this request
2398 * %true - still buffers pending for this request
2400 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2402 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2404 EXPORT_SYMBOL(__blk_end_request);
2407 * __blk_end_request_all - Helper function for drives to finish the request.
2408 * @rq: the request to finish
2409 * @error: %0 for success, < %0 for error
2411 * Description:
2412 * Completely finish @rq. Must be called with queue lock held.
2414 void __blk_end_request_all(struct request *rq, int error)
2416 bool pending;
2417 unsigned int bidi_bytes = 0;
2419 if (unlikely(blk_bidi_rq(rq)))
2420 bidi_bytes = blk_rq_bytes(rq->next_rq);
2422 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2423 BUG_ON(pending);
2425 EXPORT_SYMBOL(__blk_end_request_all);
2428 * __blk_end_request_cur - Helper function to finish the current request chunk.
2429 * @rq: the request to finish the current chunk for
2430 * @error: %0 for success, < %0 for error
2432 * Description:
2433 * Complete the current consecutively mapped chunk from @rq. Must
2434 * be called with queue lock held.
2436 * Return:
2437 * %false - we are done with this request
2438 * %true - still buffers pending for this request
2440 bool __blk_end_request_cur(struct request *rq, int error)
2442 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2444 EXPORT_SYMBOL(__blk_end_request_cur);
2447 * __blk_end_request_err - Finish a request till the next failure boundary.
2448 * @rq: the request to finish till the next failure boundary for
2449 * @error: must be negative errno
2451 * Description:
2452 * Complete @rq till the next failure boundary. Must be called
2453 * with queue lock held.
2455 * Return:
2456 * %false - we are done with this request
2457 * %true - still buffers pending for this request
2459 bool __blk_end_request_err(struct request *rq, int error)
2461 WARN_ON(error >= 0);
2462 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2464 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2466 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2467 struct bio *bio)
2469 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2470 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2472 if (bio_has_data(bio)) {
2473 rq->nr_phys_segments = bio_phys_segments(q, bio);
2474 rq->buffer = bio_data(bio);
2476 rq->__data_len = bio->bi_size;
2477 rq->bio = rq->biotail = bio;
2479 if (bio->bi_bdev)
2480 rq->rq_disk = bio->bi_bdev->bd_disk;
2483 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2485 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2486 * @rq: the request to be flushed
2488 * Description:
2489 * Flush all pages in @rq.
2491 void rq_flush_dcache_pages(struct request *rq)
2493 struct req_iterator iter;
2494 struct bio_vec *bvec;
2496 rq_for_each_segment(bvec, rq, iter)
2497 flush_dcache_page(bvec->bv_page);
2499 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2500 #endif
2503 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2504 * @q : the queue of the device being checked
2506 * Description:
2507 * Check if underlying low-level drivers of a device are busy.
2508 * If the drivers want to export their busy state, they must set own
2509 * exporting function using blk_queue_lld_busy() first.
2511 * Basically, this function is used only by request stacking drivers
2512 * to stop dispatching requests to underlying devices when underlying
2513 * devices are busy. This behavior helps more I/O merging on the queue
2514 * of the request stacking driver and prevents I/O throughput regression
2515 * on burst I/O load.
2517 * Return:
2518 * 0 - Not busy (The request stacking driver should dispatch request)
2519 * 1 - Busy (The request stacking driver should stop dispatching request)
2521 int blk_lld_busy(struct request_queue *q)
2523 if (q->lld_busy_fn)
2524 return q->lld_busy_fn(q);
2526 return 0;
2528 EXPORT_SYMBOL_GPL(blk_lld_busy);
2531 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2532 * @rq: the clone request to be cleaned up
2534 * Description:
2535 * Free all bios in @rq for a cloned request.
2537 void blk_rq_unprep_clone(struct request *rq)
2539 struct bio *bio;
2541 while ((bio = rq->bio) != NULL) {
2542 rq->bio = bio->bi_next;
2544 bio_put(bio);
2547 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2550 * Copy attributes of the original request to the clone request.
2551 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2553 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2555 dst->cpu = src->cpu;
2556 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2557 dst->cmd_type = src->cmd_type;
2558 dst->__sector = blk_rq_pos(src);
2559 dst->__data_len = blk_rq_bytes(src);
2560 dst->nr_phys_segments = src->nr_phys_segments;
2561 dst->ioprio = src->ioprio;
2562 dst->extra_len = src->extra_len;
2566 * blk_rq_prep_clone - Helper function to setup clone request
2567 * @rq: the request to be setup
2568 * @rq_src: original request to be cloned
2569 * @bs: bio_set that bios for clone are allocated from
2570 * @gfp_mask: memory allocation mask for bio
2571 * @bio_ctr: setup function to be called for each clone bio.
2572 * Returns %0 for success, non %0 for failure.
2573 * @data: private data to be passed to @bio_ctr
2575 * Description:
2576 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2577 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2578 * are not copied, and copying such parts is the caller's responsibility.
2579 * Also, pages which the original bios are pointing to are not copied
2580 * and the cloned bios just point same pages.
2581 * So cloned bios must be completed before original bios, which means
2582 * the caller must complete @rq before @rq_src.
2584 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2585 struct bio_set *bs, gfp_t gfp_mask,
2586 int (*bio_ctr)(struct bio *, struct bio *, void *),
2587 void *data)
2589 struct bio *bio, *bio_src;
2591 if (!bs)
2592 bs = fs_bio_set;
2594 blk_rq_init(NULL, rq);
2596 __rq_for_each_bio(bio_src, rq_src) {
2597 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2598 if (!bio)
2599 goto free_and_out;
2601 __bio_clone(bio, bio_src);
2603 if (bio_integrity(bio_src) &&
2604 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2605 goto free_and_out;
2607 if (bio_ctr && bio_ctr(bio, bio_src, data))
2608 goto free_and_out;
2610 if (rq->bio) {
2611 rq->biotail->bi_next = bio;
2612 rq->biotail = bio;
2613 } else
2614 rq->bio = rq->biotail = bio;
2617 __blk_rq_prep_clone(rq, rq_src);
2619 return 0;
2621 free_and_out:
2622 if (bio)
2623 bio_free(bio, bs);
2624 blk_rq_unprep_clone(rq);
2626 return -ENOMEM;
2628 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2630 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2632 return queue_work(kblockd_workqueue, work);
2634 EXPORT_SYMBOL(kblockd_schedule_work);
2636 int kblockd_schedule_delayed_work(struct request_queue *q,
2637 struct delayed_work *dwork, unsigned long delay)
2639 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2641 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2643 #define PLUG_MAGIC 0x91827364
2645 void blk_start_plug(struct blk_plug *plug)
2647 struct task_struct *tsk = current;
2649 plug->magic = PLUG_MAGIC;
2650 INIT_LIST_HEAD(&plug->list);
2651 INIT_LIST_HEAD(&plug->cb_list);
2652 plug->should_sort = 0;
2655 * If this is a nested plug, don't actually assign it. It will be
2656 * flushed on its own.
2658 if (!tsk->plug) {
2660 * Store ordering should not be needed here, since a potential
2661 * preempt will imply a full memory barrier
2663 tsk->plug = plug;
2666 EXPORT_SYMBOL(blk_start_plug);
2668 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2670 struct request *rqa = container_of(a, struct request, queuelist);
2671 struct request *rqb = container_of(b, struct request, queuelist);
2673 return !(rqa->q <= rqb->q);
2677 * If 'from_schedule' is true, then postpone the dispatch of requests
2678 * until a safe kblockd context. We due this to avoid accidental big
2679 * additional stack usage in driver dispatch, in places where the originally
2680 * plugger did not intend it.
2682 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2683 bool from_schedule)
2684 __releases(q->queue_lock)
2686 trace_block_unplug(q, depth, !from_schedule);
2689 * If we are punting this to kblockd, then we can safely drop
2690 * the queue_lock before waking kblockd (which needs to take
2691 * this lock).
2693 if (from_schedule) {
2694 spin_unlock(q->queue_lock);
2695 blk_run_queue_async(q);
2696 } else {
2697 __blk_run_queue(q);
2698 spin_unlock(q->queue_lock);
2703 static void flush_plug_callbacks(struct blk_plug *plug)
2705 LIST_HEAD(callbacks);
2707 if (list_empty(&plug->cb_list))
2708 return;
2710 list_splice_init(&plug->cb_list, &callbacks);
2712 while (!list_empty(&callbacks)) {
2713 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2714 struct blk_plug_cb,
2715 list);
2716 list_del(&cb->list);
2717 cb->callback(cb);
2721 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2723 struct request_queue *q;
2724 unsigned long flags;
2725 struct request *rq;
2726 LIST_HEAD(list);
2727 unsigned int depth;
2729 BUG_ON(plug->magic != PLUG_MAGIC);
2731 flush_plug_callbacks(plug);
2732 if (list_empty(&plug->list))
2733 return;
2735 list_splice_init(&plug->list, &list);
2737 if (plug->should_sort) {
2738 list_sort(NULL, &list, plug_rq_cmp);
2739 plug->should_sort = 0;
2742 q = NULL;
2743 depth = 0;
2746 * Save and disable interrupts here, to avoid doing it for every
2747 * queue lock we have to take.
2749 local_irq_save(flags);
2750 while (!list_empty(&list)) {
2751 rq = list_entry_rq(list.next);
2752 list_del_init(&rq->queuelist);
2753 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2754 BUG_ON(!rq->q);
2755 if (rq->q != q) {
2757 * This drops the queue lock
2759 if (q)
2760 queue_unplugged(q, depth, from_schedule);
2761 q = rq->q;
2762 depth = 0;
2763 spin_lock(q->queue_lock);
2765 rq->cmd_flags &= ~REQ_ON_PLUG;
2768 * rq is already accounted, so use raw insert
2770 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2771 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2772 else
2773 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2775 depth++;
2779 * This drops the queue lock
2781 if (q)
2782 queue_unplugged(q, depth, from_schedule);
2784 local_irq_restore(flags);
2787 void blk_finish_plug(struct blk_plug *plug)
2789 blk_flush_plug_list(plug, false);
2791 if (plug == current->plug)
2792 current->plug = NULL;
2794 EXPORT_SYMBOL(blk_finish_plug);
2796 int __init blk_dev_init(void)
2798 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2799 sizeof(((struct request *)0)->cmd_flags));
2801 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2802 kblockd_workqueue = alloc_workqueue("kblockd",
2803 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2804 if (!kblockd_workqueue)
2805 panic("Failed to create kblockd\n");
2807 request_cachep = kmem_cache_create("blkdev_requests",
2808 sizeof(struct request), 0, SLAB_PANIC, NULL);
2810 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2811 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2813 return 0;