[PATCH] kernel/posix-timers.c: remove do_posix_clock_notimer_create()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / posix-timers.c
blob216f574b5ffb758ca0630868bca07f03a3d9a116
1 /*
2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
70 * Lets keep our timers in a slab cache :-)
72 static kmem_cache_t *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
87 * The timer ID is turned into a timer address by idr_find().
88 * Verifying a valid ID consists of:
90 * a) checking that idr_find() returns other than -1.
91 * b) checking that the timer id matches the one in the timer itself.
92 * c) that the timer owner is in the callers thread group.
96 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
97 * to implement others. This structure defines the various
98 * clocks and allows the possibility of adding others. We
99 * provide an interface to add clocks to the table and expect
100 * the "arch" code to add at least one clock that is high
101 * resolution. Here we define the standard CLOCK_REALTIME as a
102 * 1/HZ resolution clock.
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
112 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
113 * various clock functions. For clocks that use the standard
114 * system timer code these entries should be NULL. This will
115 * allow dispatch without the overhead of indirect function
116 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
117 * must supply functions here, even if the function just returns
118 * ENOSYS. The standard POSIX timer management code assumes the
119 * following: 1.) The k_itimer struct (sched.h) is used for the
120 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
121 * fields are not modified by timer code.
123 * At this time all functions EXCEPT clock_nanosleep can be
124 * redirected by the CLOCKS structure. Clock_nanosleep is in
125 * there, but the code ignores it.
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
135 static struct k_clock posix_clocks[MAX_CLOCKS];
138 * These ones are defined below.
140 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
141 struct timespec __user *rmtp);
142 static void common_timer_get(struct k_itimer *, struct itimerspec *);
143 static int common_timer_set(struct k_itimer *, int,
144 struct itimerspec *, struct itimerspec *);
145 static int common_timer_del(struct k_itimer *timer);
147 static int posix_timer_fn(void *data);
149 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
151 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
153 spin_unlock_irqrestore(&timr->it_lock, flags);
157 * Call the k_clock hook function if non-null, or the default function.
159 #define CLOCK_DISPATCH(clock, call, arglist) \
160 ((clock) < 0 ? posix_cpu_##call arglist : \
161 (posix_clocks[clock].call != NULL \
162 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
165 * Default clock hook functions when the struct k_clock passed
166 * to register_posix_clock leaves a function pointer null.
168 * The function common_CALL is the default implementation for
169 * the function pointer CALL in struct k_clock.
172 static inline int common_clock_getres(const clockid_t which_clock,
173 struct timespec *tp)
175 tp->tv_sec = 0;
176 tp->tv_nsec = posix_clocks[which_clock].res;
177 return 0;
181 * Get real time for posix timers
183 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
185 ktime_get_real_ts(tp);
186 return 0;
189 static inline int common_clock_set(const clockid_t which_clock,
190 struct timespec *tp)
192 return do_sys_settimeofday(tp, NULL);
195 static int common_timer_create(struct k_itimer *new_timer)
197 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
198 return 0;
202 * Return nonzero if we know a priori this clockid_t value is bogus.
204 static inline int invalid_clockid(const clockid_t which_clock)
206 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
207 return 0;
208 if ((unsigned) which_clock >= MAX_CLOCKS)
209 return 1;
210 if (posix_clocks[which_clock].clock_getres != NULL)
211 return 0;
212 if (posix_clocks[which_clock].res != 0)
213 return 0;
214 return 1;
218 * Get monotonic time for posix timers
220 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
222 ktime_get_ts(tp);
223 return 0;
227 * Initialize everything, well, just everything in Posix clocks/timers ;)
229 static __init int init_posix_timers(void)
231 struct k_clock clock_realtime = {
232 .clock_getres = hrtimer_get_res,
234 struct k_clock clock_monotonic = {
235 .clock_getres = hrtimer_get_res,
236 .clock_get = posix_ktime_get_ts,
237 .clock_set = do_posix_clock_nosettime,
240 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
241 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
243 posix_timers_cache = kmem_cache_create("posix_timers_cache",
244 sizeof (struct k_itimer), 0, 0, NULL, NULL);
245 idr_init(&posix_timers_id);
246 return 0;
249 __initcall(init_posix_timers);
251 static void schedule_next_timer(struct k_itimer *timr)
253 if (timr->it.real.interval.tv64 == 0)
254 return;
256 timr->it_overrun += hrtimer_forward(&timr->it.real.timer,
257 timr->it.real.interval);
258 timr->it_overrun_last = timr->it_overrun;
259 timr->it_overrun = -1;
260 ++timr->it_requeue_pending;
261 hrtimer_restart(&timr->it.real.timer);
265 * This function is exported for use by the signal deliver code. It is
266 * called just prior to the info block being released and passes that
267 * block to us. It's function is to update the overrun entry AND to
268 * restart the timer. It should only be called if the timer is to be
269 * restarted (i.e. we have flagged this in the sys_private entry of the
270 * info block).
272 * To protect aginst the timer going away while the interrupt is queued,
273 * we require that the it_requeue_pending flag be set.
275 void do_schedule_next_timer(struct siginfo *info)
277 struct k_itimer *timr;
278 unsigned long flags;
280 timr = lock_timer(info->si_tid, &flags);
282 if (timr && timr->it_requeue_pending == info->si_sys_private) {
283 if (timr->it_clock < 0)
284 posix_cpu_timer_schedule(timr);
285 else
286 schedule_next_timer(timr);
288 info->si_overrun = timr->it_overrun_last;
291 if (timr)
292 unlock_timer(timr, flags);
295 int posix_timer_event(struct k_itimer *timr,int si_private)
297 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
298 timr->sigq->info.si_sys_private = si_private;
299 /* Send signal to the process that owns this timer.*/
301 timr->sigq->info.si_signo = timr->it_sigev_signo;
302 timr->sigq->info.si_errno = 0;
303 timr->sigq->info.si_code = SI_TIMER;
304 timr->sigq->info.si_tid = timr->it_id;
305 timr->sigq->info.si_value = timr->it_sigev_value;
307 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
308 struct task_struct *leader;
309 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
310 timr->it_process);
312 if (likely(ret >= 0))
313 return ret;
315 timr->it_sigev_notify = SIGEV_SIGNAL;
316 leader = timr->it_process->group_leader;
317 put_task_struct(timr->it_process);
318 timr->it_process = leader;
321 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
322 timr->it_process);
324 EXPORT_SYMBOL_GPL(posix_timer_event);
327 * This function gets called when a POSIX.1b interval timer expires. It
328 * is used as a callback from the kernel internal timer. The
329 * run_timer_list code ALWAYS calls with interrupts on.
331 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
333 static int posix_timer_fn(void *data)
335 struct k_itimer *timr = data;
336 unsigned long flags;
337 int si_private = 0;
338 int ret = HRTIMER_NORESTART;
340 spin_lock_irqsave(&timr->it_lock, flags);
342 if (timr->it.real.interval.tv64 != 0)
343 si_private = ++timr->it_requeue_pending;
345 if (posix_timer_event(timr, si_private)) {
347 * signal was not sent because of sig_ignor
348 * we will not get a call back to restart it AND
349 * it should be restarted.
351 if (timr->it.real.interval.tv64 != 0) {
352 timr->it_overrun +=
353 hrtimer_forward(&timr->it.real.timer,
354 timr->it.real.interval);
355 ret = HRTIMER_RESTART;
359 unlock_timer(timr, flags);
360 return ret;
363 static struct task_struct * good_sigevent(sigevent_t * event)
365 struct task_struct *rtn = current->group_leader;
367 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
368 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
369 rtn->tgid != current->tgid ||
370 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
371 return NULL;
373 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
374 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
375 return NULL;
377 return rtn;
380 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
382 if ((unsigned) clock_id >= MAX_CLOCKS) {
383 printk("POSIX clock register failed for clock_id %d\n",
384 clock_id);
385 return;
388 posix_clocks[clock_id] = *new_clock;
390 EXPORT_SYMBOL_GPL(register_posix_clock);
392 static struct k_itimer * alloc_posix_timer(void)
394 struct k_itimer *tmr;
395 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
396 if (!tmr)
397 return tmr;
398 memset(tmr, 0, sizeof (struct k_itimer));
399 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
400 kmem_cache_free(posix_timers_cache, tmr);
401 tmr = NULL;
403 return tmr;
406 #define IT_ID_SET 1
407 #define IT_ID_NOT_SET 0
408 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
410 if (it_id_set) {
411 unsigned long flags;
412 spin_lock_irqsave(&idr_lock, flags);
413 idr_remove(&posix_timers_id, tmr->it_id);
414 spin_unlock_irqrestore(&idr_lock, flags);
416 sigqueue_free(tmr->sigq);
417 if (unlikely(tmr->it_process) &&
418 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
419 put_task_struct(tmr->it_process);
420 kmem_cache_free(posix_timers_cache, tmr);
423 /* Create a POSIX.1b interval timer. */
425 asmlinkage long
426 sys_timer_create(const clockid_t which_clock,
427 struct sigevent __user *timer_event_spec,
428 timer_t __user * created_timer_id)
430 int error = 0;
431 struct k_itimer *new_timer = NULL;
432 int new_timer_id;
433 struct task_struct *process = NULL;
434 unsigned long flags;
435 sigevent_t event;
436 int it_id_set = IT_ID_NOT_SET;
438 if (invalid_clockid(which_clock))
439 return -EINVAL;
441 new_timer = alloc_posix_timer();
442 if (unlikely(!new_timer))
443 return -EAGAIN;
445 spin_lock_init(&new_timer->it_lock);
446 retry:
447 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
448 error = -EAGAIN;
449 goto out;
451 spin_lock_irq(&idr_lock);
452 error = idr_get_new(&posix_timers_id, (void *) new_timer,
453 &new_timer_id);
454 spin_unlock_irq(&idr_lock);
455 if (error == -EAGAIN)
456 goto retry;
457 else if (error) {
459 * Wierd looking, but we return EAGAIN if the IDR is
460 * full (proper POSIX return value for this)
462 error = -EAGAIN;
463 goto out;
466 it_id_set = IT_ID_SET;
467 new_timer->it_id = (timer_t) new_timer_id;
468 new_timer->it_clock = which_clock;
469 new_timer->it_overrun = -1;
470 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
471 if (error)
472 goto out;
475 * return the timer_id now. The next step is hard to
476 * back out if there is an error.
478 if (copy_to_user(created_timer_id,
479 &new_timer_id, sizeof (new_timer_id))) {
480 error = -EFAULT;
481 goto out;
483 if (timer_event_spec) {
484 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
485 error = -EFAULT;
486 goto out;
488 new_timer->it_sigev_notify = event.sigev_notify;
489 new_timer->it_sigev_signo = event.sigev_signo;
490 new_timer->it_sigev_value = event.sigev_value;
492 read_lock(&tasklist_lock);
493 if ((process = good_sigevent(&event))) {
495 * We may be setting up this process for another
496 * thread. It may be exiting. To catch this
497 * case the we check the PF_EXITING flag. If
498 * the flag is not set, the siglock will catch
499 * him before it is too late (in exit_itimers).
501 * The exec case is a bit more invloved but easy
502 * to code. If the process is in our thread
503 * group (and it must be or we would not allow
504 * it here) and is doing an exec, it will cause
505 * us to be killed. In this case it will wait
506 * for us to die which means we can finish this
507 * linkage with our last gasp. I.e. no code :)
509 spin_lock_irqsave(&process->sighand->siglock, flags);
510 if (!(process->flags & PF_EXITING)) {
511 new_timer->it_process = process;
512 list_add(&new_timer->list,
513 &process->signal->posix_timers);
514 spin_unlock_irqrestore(&process->sighand->siglock, flags);
515 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
516 get_task_struct(process);
517 } else {
518 spin_unlock_irqrestore(&process->sighand->siglock, flags);
519 process = NULL;
522 read_unlock(&tasklist_lock);
523 if (!process) {
524 error = -EINVAL;
525 goto out;
527 } else {
528 new_timer->it_sigev_notify = SIGEV_SIGNAL;
529 new_timer->it_sigev_signo = SIGALRM;
530 new_timer->it_sigev_value.sival_int = new_timer->it_id;
531 process = current->group_leader;
532 spin_lock_irqsave(&process->sighand->siglock, flags);
533 new_timer->it_process = process;
534 list_add(&new_timer->list, &process->signal->posix_timers);
535 spin_unlock_irqrestore(&process->sighand->siglock, flags);
539 * In the case of the timer belonging to another task, after
540 * the task is unlocked, the timer is owned by the other task
541 * and may cease to exist at any time. Don't use or modify
542 * new_timer after the unlock call.
545 out:
546 if (error)
547 release_posix_timer(new_timer, it_id_set);
549 return error;
553 * Locking issues: We need to protect the result of the id look up until
554 * we get the timer locked down so it is not deleted under us. The
555 * removal is done under the idr spinlock so we use that here to bridge
556 * the find to the timer lock. To avoid a dead lock, the timer id MUST
557 * be release with out holding the timer lock.
559 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
561 struct k_itimer *timr;
563 * Watch out here. We do a irqsave on the idr_lock and pass the
564 * flags part over to the timer lock. Must not let interrupts in
565 * while we are moving the lock.
568 spin_lock_irqsave(&idr_lock, *flags);
569 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
570 if (timr) {
571 spin_lock(&timr->it_lock);
572 spin_unlock(&idr_lock);
574 if ((timr->it_id != timer_id) || !(timr->it_process) ||
575 timr->it_process->tgid != current->tgid) {
576 unlock_timer(timr, *flags);
577 timr = NULL;
579 } else
580 spin_unlock_irqrestore(&idr_lock, *flags);
582 return timr;
586 * Get the time remaining on a POSIX.1b interval timer. This function
587 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
588 * mess with irq.
590 * We have a couple of messes to clean up here. First there is the case
591 * of a timer that has a requeue pending. These timers should appear to
592 * be in the timer list with an expiry as if we were to requeue them
593 * now.
595 * The second issue is the SIGEV_NONE timer which may be active but is
596 * not really ever put in the timer list (to save system resources).
597 * This timer may be expired, and if so, we will do it here. Otherwise
598 * it is the same as a requeue pending timer WRT to what we should
599 * report.
601 static void
602 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
604 ktime_t remaining;
605 struct hrtimer *timer = &timr->it.real.timer;
607 memset(cur_setting, 0, sizeof(struct itimerspec));
608 remaining = hrtimer_get_remaining(timer);
610 /* Time left ? or timer pending */
611 if (remaining.tv64 > 0 || hrtimer_active(timer))
612 goto calci;
613 /* interval timer ? */
614 if (timr->it.real.interval.tv64 == 0)
615 return;
617 * When a requeue is pending or this is a SIGEV_NONE timer
618 * move the expiry time forward by intervals, so expiry is >
619 * now.
621 if (timr->it_requeue_pending & REQUEUE_PENDING ||
622 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
623 timr->it_overrun +=
624 hrtimer_forward(timer, timr->it.real.interval);
625 remaining = hrtimer_get_remaining(timer);
627 calci:
628 /* interval timer ? */
629 if (timr->it.real.interval.tv64 != 0)
630 cur_setting->it_interval =
631 ktime_to_timespec(timr->it.real.interval);
632 /* Return 0 only, when the timer is expired and not pending */
633 if (remaining.tv64 <= 0)
634 cur_setting->it_value.tv_nsec = 1;
635 else
636 cur_setting->it_value = ktime_to_timespec(remaining);
639 /* Get the time remaining on a POSIX.1b interval timer. */
640 asmlinkage long
641 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
643 struct k_itimer *timr;
644 struct itimerspec cur_setting;
645 unsigned long flags;
647 timr = lock_timer(timer_id, &flags);
648 if (!timr)
649 return -EINVAL;
651 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
653 unlock_timer(timr, flags);
655 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
656 return -EFAULT;
658 return 0;
662 * Get the number of overruns of a POSIX.1b interval timer. This is to
663 * be the overrun of the timer last delivered. At the same time we are
664 * accumulating overruns on the next timer. The overrun is frozen when
665 * the signal is delivered, either at the notify time (if the info block
666 * is not queued) or at the actual delivery time (as we are informed by
667 * the call back to do_schedule_next_timer(). So all we need to do is
668 * to pick up the frozen overrun.
670 asmlinkage long
671 sys_timer_getoverrun(timer_t timer_id)
673 struct k_itimer *timr;
674 int overrun;
675 long flags;
677 timr = lock_timer(timer_id, &flags);
678 if (!timr)
679 return -EINVAL;
681 overrun = timr->it_overrun_last;
682 unlock_timer(timr, flags);
684 return overrun;
687 /* Set a POSIX.1b interval timer. */
688 /* timr->it_lock is taken. */
689 static int
690 common_timer_set(struct k_itimer *timr, int flags,
691 struct itimerspec *new_setting, struct itimerspec *old_setting)
693 struct hrtimer *timer = &timr->it.real.timer;
694 enum hrtimer_mode mode;
696 if (old_setting)
697 common_timer_get(timr, old_setting);
699 /* disable the timer */
700 timr->it.real.interval.tv64 = 0;
702 * careful here. If smp we could be in the "fire" routine which will
703 * be spinning as we hold the lock. But this is ONLY an SMP issue.
705 if (hrtimer_try_to_cancel(timer) < 0)
706 return TIMER_RETRY;
708 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
709 ~REQUEUE_PENDING;
710 timr->it_overrun_last = 0;
712 /* switch off the timer when it_value is zero */
713 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
714 return 0;
716 mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
717 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
718 timr->it.real.timer.data = timr;
719 timr->it.real.timer.function = posix_timer_fn;
721 timer->expires = timespec_to_ktime(new_setting->it_value);
723 /* Convert interval */
724 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
726 /* SIGEV_NONE timers are not queued ! See common_timer_get */
727 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
728 /* Setup correct expiry time for relative timers */
729 if (mode == HRTIMER_REL)
730 timer->expires = ktime_add(timer->expires,
731 timer->base->get_time());
732 return 0;
735 hrtimer_start(timer, timer->expires, mode);
736 return 0;
739 /* Set a POSIX.1b interval timer */
740 asmlinkage long
741 sys_timer_settime(timer_t timer_id, int flags,
742 const struct itimerspec __user *new_setting,
743 struct itimerspec __user *old_setting)
745 struct k_itimer *timr;
746 struct itimerspec new_spec, old_spec;
747 int error = 0;
748 long flag;
749 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
751 if (!new_setting)
752 return -EINVAL;
754 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
755 return -EFAULT;
757 if (!timespec_valid(&new_spec.it_interval) ||
758 !timespec_valid(&new_spec.it_value))
759 return -EINVAL;
760 retry:
761 timr = lock_timer(timer_id, &flag);
762 if (!timr)
763 return -EINVAL;
765 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
766 (timr, flags, &new_spec, rtn));
768 unlock_timer(timr, flag);
769 if (error == TIMER_RETRY) {
770 rtn = NULL; // We already got the old time...
771 goto retry;
774 if (old_setting && !error &&
775 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
776 error = -EFAULT;
778 return error;
781 static inline int common_timer_del(struct k_itimer *timer)
783 timer->it.real.interval.tv64 = 0;
785 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
786 return TIMER_RETRY;
787 return 0;
790 static inline int timer_delete_hook(struct k_itimer *timer)
792 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
795 /* Delete a POSIX.1b interval timer. */
796 asmlinkage long
797 sys_timer_delete(timer_t timer_id)
799 struct k_itimer *timer;
800 long flags;
802 retry_delete:
803 timer = lock_timer(timer_id, &flags);
804 if (!timer)
805 return -EINVAL;
807 if (timer_delete_hook(timer) == TIMER_RETRY) {
808 unlock_timer(timer, flags);
809 goto retry_delete;
812 spin_lock(&current->sighand->siglock);
813 list_del(&timer->list);
814 spin_unlock(&current->sighand->siglock);
816 * This keeps any tasks waiting on the spin lock from thinking
817 * they got something (see the lock code above).
819 if (timer->it_process) {
820 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
821 put_task_struct(timer->it_process);
822 timer->it_process = NULL;
824 unlock_timer(timer, flags);
825 release_posix_timer(timer, IT_ID_SET);
826 return 0;
830 * return timer owned by the process, used by exit_itimers
832 static void itimer_delete(struct k_itimer *timer)
834 unsigned long flags;
836 retry_delete:
837 spin_lock_irqsave(&timer->it_lock, flags);
839 if (timer_delete_hook(timer) == TIMER_RETRY) {
840 unlock_timer(timer, flags);
841 goto retry_delete;
843 list_del(&timer->list);
845 * This keeps any tasks waiting on the spin lock from thinking
846 * they got something (see the lock code above).
848 if (timer->it_process) {
849 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
850 put_task_struct(timer->it_process);
851 timer->it_process = NULL;
853 unlock_timer(timer, flags);
854 release_posix_timer(timer, IT_ID_SET);
858 * This is called by do_exit or de_thread, only when there are no more
859 * references to the shared signal_struct.
861 void exit_itimers(struct signal_struct *sig)
863 struct k_itimer *tmr;
865 while (!list_empty(&sig->posix_timers)) {
866 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
867 itimer_delete(tmr);
871 /* Not available / possible... functions */
872 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
874 return -EINVAL;
876 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
878 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
879 struct timespec *t, struct timespec __user *r)
881 #ifndef ENOTSUP
882 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
883 #else /* parisc does define it separately. */
884 return -ENOTSUP;
885 #endif
887 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
889 asmlinkage long sys_clock_settime(const clockid_t which_clock,
890 const struct timespec __user *tp)
892 struct timespec new_tp;
894 if (invalid_clockid(which_clock))
895 return -EINVAL;
896 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
897 return -EFAULT;
899 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
902 asmlinkage long
903 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
905 struct timespec kernel_tp;
906 int error;
908 if (invalid_clockid(which_clock))
909 return -EINVAL;
910 error = CLOCK_DISPATCH(which_clock, clock_get,
911 (which_clock, &kernel_tp));
912 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
913 error = -EFAULT;
915 return error;
919 asmlinkage long
920 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
922 struct timespec rtn_tp;
923 int error;
925 if (invalid_clockid(which_clock))
926 return -EINVAL;
928 error = CLOCK_DISPATCH(which_clock, clock_getres,
929 (which_clock, &rtn_tp));
931 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
932 error = -EFAULT;
935 return error;
939 * nanosleep for monotonic and realtime clocks
941 static int common_nsleep(const clockid_t which_clock, int flags,
942 struct timespec *tsave, struct timespec __user *rmtp)
944 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
945 HRTIMER_ABS : HRTIMER_REL, which_clock);
948 asmlinkage long
949 sys_clock_nanosleep(const clockid_t which_clock, int flags,
950 const struct timespec __user *rqtp,
951 struct timespec __user *rmtp)
953 struct timespec t;
955 if (invalid_clockid(which_clock))
956 return -EINVAL;
958 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
959 return -EFAULT;
961 if (!timespec_valid(&t))
962 return -EINVAL;
964 return CLOCK_DISPATCH(which_clock, nsleep,
965 (which_clock, flags, &t, rmtp));